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Abstract 

The vast biodiversity of marine environments is increasingly being recognized as a 

source for new enzymes with value in both basic research and applications within 

biotechnology. In this project, the major aim was to identify, produce and perform 

biochemical and structural characterization on a selection of marine enzymes. These 

efforts were focused on bacterial proteases (Paper I, II) viral nucleases (Section 4.1, 

and 5.3.2), putative endolysins as well as a DNA-polymerase (Paper III). A versatile 

workflow for the cloning and heterologous expression of genes in Escherichia coli, 

focused on subtilisin-like proteases is described in Paper I. Fragment exchange 

cloning was used to insert genes into expression vectors featuring combinations of 

maltose binding protein (MBP), small ubiquitin-related modifier (SUMO) for 

improved solubility, and His-tags for protein purification with affinity 

chromatography. A casein-based assay was also featured to screen for proteolytic 

activity. All four Bacilli subtilisins tested were successfully produced in soluble and 

active forms. Constructs featuring N-terminal fusion proteins led to highest soluble 

yields and activity values for most, but not all genes tested, highlighting the value of 

including multiple vector configurations. Using this workflow, an intracellular 

subtilisin protease (ISP) from Planococcus sp. AW02J18, was produced and 

characterized (Paper II). Optimal activity was observed at pH 11 and 45 °C, with an 

active range from pH 7.0 to 11 and no activity above 60 °C. Sequence analyses of the 

ISP pro-peptide pointed at the presence of a conserved LIPY/F motif, understood to 

be centrally involved in the autocatalytic maturation of the enzyme via mutational 

analyses. The 3D structure of Planococcus ISP was solved at 1.3 Å resolution with 

X-ray crystallography, producing the second unique ISP structure to date, and the 

first with an intact native catalytic triad. The combined mutational study of the 

LIPY/F motif and the structure of the inhibitory pro-peptide contributed to better 

understanding of the maturation process of Planococcus ISP, and that of ISPs in 

general.  

As a part of the Virus-X project, heterologous production trials were carried out for 

42 putative viral nucleases originating from arctic viromes (Aevarsson et al. under 
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review, see Appendix I), with annotated similarity to T4-Endonuclease V, λ-

Exonuclease, and Exonuclease III (Sections 4.1 and 5.3.2). Candidate genes were 

synthesized as codon optimized (CO) for expression in E. coli and pre-cloned into 

pET-family vectors encoding a His-tag for IMAC at the N- or C-terminal. Only 

twelve candidates were produced as soluble proteins, of which six were able to be 

purified. In turn, the results exemplify the challenges of using E. coli as an expression 

host for environmental viral genes and suggests that CO alone leads to limited 

success. In Paper III, the discovery of a novel prophage is reported from within the 

genome of Hypnocyclicus thermotrophus, a Gram-negative, thermophilic bacterium 

isolated from the Seven Sisters hydrothermal vent field. Designated Hypnocyclicus 

thermotrophus phage H1 (HTH1), the identified prophage genome was 41.6 kbp long 

and consisted of 46 protein-coding genes. Analysis and functional annotation of the 

HTH1 genome with multiple in silico approaches suggested closest taxonomic 

association to the viral family Siphoviridae. The lytic cassette of HTH1 showed 

closest similarity to viruses of Gram-positive bacteria. However, HTH1 was found 

encoding an N-acetylmuramoyl-L-alanine amidase not observed in other compared 

phages. Nine genes putatively related to lysis and nucleic acid processing were 

selected for heterologous production in E. coli. Besides CO genes, codon harmonized 

(CH) variants of each gene were also tested to be able to compare the two 

approaches’ effects on the soluble yield and thermostability of heterologous proteins. 

Five genes led to soluble protein from their CO variants, of which 4 were also soluble 

as CH variants. When compared, CO variants achieved higher soluble protein yields, 

but CH variants led to proteins with higher thermostability, as assessed by differential 

scanning fluorimetry. 

Taken together, this work presents results encompassing key steps of a sequence-

based pipeline for the discovery of marine microbial enzymes. In addition, reported 

findings expand existing knowledge of ISPs and prophages of Fusobacteria from 

hydrothermal vent environments. The cases presented within are connected by a 

common theme of improving soluble production of heterologous proteins in E. coli, 

via various, compatible means. Coupled with the contemporary bioinformatics tools 

facilitating the functional annotation of a wider range of viral genes, complementary 
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implementation of these approaches suggests a promising blueprint for future studies 

aiming the bioprospecting of marine microbial genetic resources. 
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1. Introduction 

1.1 Background 

Enzymes are essential protein catalysts which accelerate and facilitate chemical 

reactions in and around all living cells. The first documented application of enzymes 

for the production of desirable goods in human history is thought to stretch back over 

7000 years ago to the Mediterranean, where calf stomachs - and the enzymes within, 

were used for the production of cheese from milk (McClure et al., 2018). Today under 

the term “biotechnology”, enzymes are increasingly used in a diverse range of 

industrial, medical and academic applications (Lorenz and Eck, 2005; Ward, 2011; 

Singh et al., 2016; Chapman et al., 2018). As biological catalysts, enzymes offer a 

range of advantages over elements traditionally used as catalysts such as palladium, 

gold, or iridium (Bhaduri and Mukesh, 2014). Their high specificity towards the 

reactions they catalyse makes them very desirable in the production of fine chemicals 

and pharmaceutical products (Roy and Abraham, 2006; Sullivan et al., 2009; Sun et 

al., 2018). They can work in milder conditions that promote substrate or product 

stability and avoid unwanted side-reactions (Goldberg et al., 2006; Savile et al., 2010; 

Liu et al., 2017; Patel, 2018). Their biodegradability allows for gentler downstream 

processing in many applications (listed in more detail for proteases in Section 1.4) and 

lowers their environmental impact (Schmid et al., 2001; Illanes, 2008). In addition, 

they can be used in food (Raveendran et al., 2018) and cosmetic products when 

produced in organisms that are recognized as safe (European Food Safety Authority, 

2013; Center for Food Safety and Applied Nutrition, 2018). Indeed, the 

implementation of enzymes for biotechnological applications is not a task without 

challenges. An ideal enzyme for any application needs to remain stable and display 

efficient and specific catalytic activity under defined process conditions (Burton et al., 

2002; Lorenz and Eck, 2005). Despite their many advantages, enzymes are sensitive 

proteins. They function optimally under a limited range of physiochemical conditions, 

often in association with their source organism and its environment (Vieille et al., 

1996; Arnold et al., 2001). In order to expand the library of currently available 
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enzymes, meet the demands of existing biotechnological processes, and stimulate 

innovation for new methods and products, discovery of new enzymes remains 

essential. 

A common rationale for discovering enzymes with desired properties is to study 

organisms from relevant natural sources which can be expected to support life under 

such conditions (Elleuche et al., 2014). Microorganisms in particular, offer broad 

genetic and physiological diversity, possibility of genetic manipulation, quick 

generation times and relatively little space requirements for dense growth (Rao et al., 

1998; Sumantha et al., 2006). The largest repository of microbial diversity is the 

marine environments, which represent over 70% of the Earth’s surface (Kodzius and 

Gojobori, 2015). A wide range of environmental niches can be found within the 

oceans, all housing myriad microorganisms equipped with enzymes molecularly 

adapted to function under their respective native physiochemical conditions (Elleuche 

et al., 2014; Brininger et al., 2018). These include cold waters of the Arctic and 

Antarctic (Marx et al., 2007; de Pascale et al., 2012), as well as some “extreme” 

environments such as the deep seas (Ferrer et al., 2005; Takai et al., 2008), 

hypersaline “underwater lakes” (Kim and Dordick, 1997) and hydrothermal vents at 

the ocean floor with sharp temperature gradients and exposure to unique fluid 

chemistries (Pedersen et al., 2010; Steen et al., 2016; Schouw et al., 2018; Fredriksen 

et al., 2019). Marine microorganisms are therefore considered highly valuable sources 

for the discovery of enzymes and other natural products (Ferrer et al., 2007; Trincone, 

2011; De Santi et al., 2016; Indraningrat et al., 2016). Earlier study of marine 

microorganisms was hampered by their limited cultivability in the laboratory (Staley 

and Konopka, 1985). However, the emerging methodologies within metagenomics 

allowed the culture-independent studies of microbial communities (Handelsman, 

2004), and became a key approach for the study of marine biodiversity and their 

enzymes thanks to developments in sequencing technologies (Beerenwinkel et al., 

2012; Popovic et al., 2015; Goodwin et al., 2016; Ferrer et al., 2019).  

In addition to cellular microorganisms, viruses are also promising sources for enzyme 

discovery. Thanks to their unique way of existence involving the infection and 
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replication inside of a host cell, they bear a unique selection of enzymes (Lwoff, 1957; 

Hobbs and Abedon, 2016). Viruses are recognized as the most abundant biological 

entities in the oceans, estimated to number around 1030-1031 particles (Børsheim et al., 

1990; Fuhrman and Suttle, 1993; Youle et al., 2012). With such a large presence, 

virus-mediated killing of cellular hosts influences microbial communities at large, and 

by extension affect the nutrient and geochemical cycles within ocean ecosystems 

(Suttle, 2007). In addition to their near omnipresence, viruses also host a vast breadth 

of genetic diversity, only a fraction of which is suggested to have been so far explored 

(Forterre and Prangishvili, 2009; Mokili et al., 2012). A majority of discovered viral 

genes were noted to share no significant homology with reference genes in existing 

databases (Paez-Espino et al., 2016; Gregory et al., 2019), leading to the popular “dark 

matter” term being coined to refer to this unexplored viral sequence space (Youle et 

al., 2012; Hatfull, 2015; Michalska et al., 2015). Further exploration of this resource is 

expected to yield a wealth of viral enzymes promising for various applications. 

Prominent examples include enzymes with lytic activities against prokaryote cells, 

which may find bactericidal applications within medicine (Hermoso et al., 2007; 

Plotka et al., 2020); or nucleic acid – modifying enzymes such as DNA polymerases 

(Dale et al., 1985; Choi, 2012), ligases (Engler and Richardson, 1982; Doherty et al., 

1996), or nucleases (Song and Zhang, 2008). These may be utilized to develop 

diagnostic methods or products within biotechnology, medicine, or academia.  

Altogether, the great taxonomic and functional diversity of marine microorganisms 

presents an immense opportunity to discover new enzymes with desired catalytic 

properties and novel functions. However, standing challenges in bioinformatic 

identification, selection, as well as heterologous production of enzyme candidates 

render the discovery process difficult to streamline. Furthermore, in the shadow of the 

coronavirus pandemic affecting the world at the time of writing, it is evident that our 

knowledge of viral pathogens and their workings is far from complete. In this regard, 

the study of viral enzymes will expand our understanding of viral processes and their 

enzymatic constituents, potentially contributing to the prevention and/or treatment of 

similar diseases in the future. 
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1.2 Metagenomics-based enzyme discovery 

In simple terms, “metagenomics” describes the culture-independent study of the 

collective genomes present within a given microbial community sample. The term was 

coined by Jo Handelsman and co-workers in their influential study; describing their 

approach to access the uncultivated genetic diversity of the soil microbiome 

(Handelsman et al., 1998). Since early assemblies of microbial genomes from lower 

diversity samples (Tyson et al., 2004), the application of metagenomics approaches 

has led to ground-breaking discoveries about the evolution of life on Earth (Spang et 

al., 2015), contributed numerous new lineages to the tree of life (Hug et al., 2016; 

Parks et al., 2017), allowed prediction of metabolic functions from uncultured 

microbial lineages (Ravin et al., 2015; Castelle et al., 2018), and provided an 

unprecedented insight into how microorganisms interact with other species and their 

environment (Konstantinidis et al., 2009; Takai and Nakamura, 2010; Dahle et al., 

2013; Urich et al., 2014; Stokke et al., 2015; Steen et al., 2016; He et al., 2017). 

Earlier strategies utilized the generation of extensive clone libraries that were screened 

for genetic markers via (specific or degenerate) polymerase chain reaction primers, 

such as the ones targeting the 16S rRNA gene to identify prokaryotic taxa (Schmidt et 

al., 1991). Thereafter, sub-libraries corresponding to certain groups could be 

constructed and sequenced to allow detailed study of desired metabolic features 

(Schleper et al., 1997; Gillespie et al., 2002). While this approach generated valuable 

new data, it was highly laborious, and the genomic information gathered was often 

incomplete. In the following years, the development of the so-called “next generation” 

DNA-sequencing technologies revolutionized the metagenomics approach and 

propelled it to widespread use (Lynch and Neufeld, 2015; DeCastro et al., 2016; 

Jünemann et al., 2017; Jo et al., 2020). In contemporary studies, DNA extracted from 

a sample is often directly subjected to total sequencing, where data processing via 

bioinformatics tools allows the re-construction of near-complete metagenome 

assembled genomes (MAGs), their annotation and placement in the tree of life 

(Hugerth et al., 2015; Parks et al., 2017; Zaremba-Niedzwiedzka et al., 2017). 
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A multitude of bioinformatical tools and strategies have been developed for the 

computational analysis, annotation, and further processing of metagenomic datasets. 

Some examples include the RAST annotation  server (Glass et al., 2010), Joint 

Genome Institute’s (JGI) Integrated Microbial Genomes (IMG) genome browsing and 

annotation platform (Markowitz et al., 2012), JCVI Metagenomics Reports 

(METAREP) tool for comparative metagenomics (Goll et al., 2010), and more 

recently the multi-purpose and versatile Elastic MetaGenome Browser (EMGB) 

(Jünemann et al., 2017) and the open source anvi’o platform (Eren et al., 2021) for the 

analysis and visualization of omics data.  

Metagenomics has also been used as a powerful approach for the discovery of new 

enzymes, and it has been applied to this context in various ways. A functional 

screening approach usually involves the generation of metagenomic clone-libraries, 

their subsequent heterologous expression in a laboratory host (usually Escherichia 

coli) and their functional screening to identify clones with the expected activity. As 

functional approaches do not rely on any predictions of function based on existing 

knowledge and therefore (Handelsman, 2004), truly novel enzymes may be 

discovered. Example studies report the discovery of diverse hydrolytic enzymes, such 

as proteases (Lämmle et al., 2007; Waschkowitz et al., 2009; García-Moyano et al., 

2021), esterases and lipases (Ho Jeon et al.; Fu et al., 2013). However, this approach is 

strongly dependent on the often-challenging production of properly folded and active 

enzymes to display the expected activity. Furthermore, facilities and specialized 

methods for high-throughput screening of clones are often necessary to perform such 

studies at a viable scale (Uchiyama and Miyazaki, 2009; Colin et al., 2015).  

In contrast, sequence-based discovery strategies look for genes predicted to code for 

desired enzymes. In earlier studies, this was performed by screening the metagenome 

library with targeted PCR primers or hybridization probes (Ferrer et al., 2009). The 

volume of sequencing data is increasing rapidly with metagenome sequencing studies 

from diverse ecosystems (Sukul et al., 2017; Gregory et al., 2019), and with the 
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sequencing of thousands of microbial isolate genomes1. To be able to process this data 

and facilitate their efficient mining for desired enzymes, in silico tools have been 

developed (Roumpeka et al., 2017). Once a list of candidate genes is identified, they 

can be cloned into a suitable vector and heterologously expressed in a host organism 

of choice (Barone et al., 2014; Liebl et al., 2014). After expression, enzyme 

candidates are assayed experimentally to confirm their activities and in case of 

success, proceed to carrying out their functional and/or structural characterization 

(Figure 1). Discoveries via sequence-based approaches include amongst many, 

proteases (Toplak et al., 2013; de Oliveira et al., 2018), xylanase (Fredriksen et al., 

2019), cellulases (Yang et al., 2016) and other glycosyl hydrolases (Wang et al., 

2011). 

Contemporary sequence-based screens are conducted by assessing the homology of 

metagenomic sequences against known enzyme-coding sequences stored on public 

databases such as UniProt (Bateman et al., 2021), NCBI GenBank (Clark et al., 2016) 

and BRENDA (Placzek et al., 2017). In this context, homology is determined based 

on excess similarity between sequences (Pearson, 2013), and has been traditionally 

calculated with the use of search tools such as BLAST (Altschul et al., 1990), 

SSEARCH (Smith and Waterman, 1981), and FASTA (Pearson and Lipman, 1988)). 

This comparison can be performed not only between two DNA sequences, but also 

between protein or translated protein sequences. Sequences with identity values of 

>40% are considered closely related, whereas statistically significant protein 

homologs with >20% identity are reportedly observed (Pearson, 2013). Finally, 

derivative tools such as PSI-BLAST (Altschul et al., 1997) feature sequence 

comparisons against sequence profiles, which are multiple sequence alignments 

generated from a group of homologous sequences. Databases such as MEROPS for 

proteases (Rawlings et al., 2018), CAZy for carbohydrate-active enzymes (Lombard et 

al., 2014), REBASE for restriction nucleases (Roberts et al., 2015) and CLAE for 

Lignocellulose-active fungal enzymes (Strasser et al., 2015) provide focused datasets 

 
1 178012 Isolate genomes listed on JGI Genomes Online Database (GOLD) at the time of writing (Mukherjee et al., 2021). 
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for discrete enzyme classes to compare homology to and predict putative function in 

candidate sequences.  

 

 

Figure 1: Typical sequence-based enzyme discovery pipeline. The 
process starts by defining a discovery goal, often a particular group of 
enzymes. Then, an appropriate resource can be sampled, and its 
metagenome sequenced. Identified genes are annotated to predict their 
function, which allows shortlisting of genes with the desired putative activity. 
Candidate genes are expressed heterologously to produce proteins in 
amounts needed for functional and structural characterization experiments. 
Finally, discovered enzymes may provide novel biological insight about their 
source species or environment and can now be fully assessed for their 
applications in biotechnology. 

Compared to functional screening, sequence-based strategies can be more convenient 

to perform, as they do not rely on any special equipment or mass-cloning of 

sequences. Once a shortlist of gene targets fulfilling the desired homology criteria is 

generated, heterologous production experiments can be carried out at a much smaller 

scale. Discovery of desired enzymes even with only minor differences from existing 

examples allow for legitimate patent submissions for new products or applications, 

similar to the use of mutation or engineering induced changes (Bryan and Pantoliano, 

1988; Brode et al., 1994; Fanoe and Mikkelsen, 2007). However, sequence-based 

approaches are frequently criticised for not being able to detect significantly novel 

proteins or enzymatic functions (Ferrer et al., 2009; Distaso et al., 2017). 

New approaches for the functional annotation and homology prediction of genes are 

constantly being developed and is expected to further improve the capabilities of 

sequence-based enzyme discovery efforts. A major development in methodology is 

the mainstream use of hidden Markov model (HMM) profiles (Söding, 2005; Finn et 

al., 2011). These profiles hold broader information about multiple aligned 

homologous sequences and allow more thorough comparisons of homology between 
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sequences. Current state-of-the-art methods can also represent query sequences as 

HMMs and are able to carry out profile against profile comparisons. Another example 

used for the detection of carbohydrate-active enzymes is the “peptide pattern 

recognition” approach (Busk and Lange, 2013; Agger et al., 2017). Authors have 

described the approach to rely on the analysis of short, conserved motifs around the 

enzyme active site allowing for the reliable prediction of enzyme activity even when 

the overall sequence identity between compared sequences is very different (Busk and 

Lange, 2013).  

Beyond cellular microorganisms, application of metagenomics towards viruses has 

greatly expanded our understanding of viral genetic diversity (Hatfull, 2015). While 

the principles of metagenomics remain the same, the study of viral communities need 

to overcome particular challenges. Viruses vary in their genome architectures, as 

single or double stranded genomes consisting of RNA or DNA can be found in nature 

(Grose and Casjens, 2019). Sampling and sequencing of viruses pose technical 

difficulties and call for specialized methods, as low abundances make it challenging to 

obtain genetic material of sufficient amount and quality for sequencing via common 

sampling routines (Sandaa et al., 2018). Furthermore, their inherent genetic diversity 

greatly complicates functional annotation of viral genes. Developments to improve 

metagenomic access to the virosphere is expected to facilitate the discovery of viral 

enzymes with both known and novel physical and catalytic properties. Addressing 

these specific challenges of viral metagenomics has been the main aim of the Virus-X 

project, via robust sampling routines, development of specialized bioinformatics tools, 

heterologous expression approaches, and a thorough characterization pipeline for 

discovered enzymes (Aevarsson et al. under review, see Appendix I).  

1.2.1 Heterologous production of enzymes in Escherichia coli 

Whether identified with sequence or function-based screens, enzymes need to be able 

to be produced in the necessary amounts and purity in order to be further characterized 

or implemented in any downstream applications. If the enzyme in question comes 

from a cultivable isolate, it might be possible to obtain enough of it simply by 
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growing the isolate in desired capacities, also termed native expression (as 

exemplified in Miyake et al., 2005 and Zhu et al., 2007). However, the desired 

enzyme may be naturally poorly expressed in the native host. Furthermore, in a case 

where using the organism of origin is not feasible (i.e. when enzymes are identified 

from metagenomic sequences or from isolates unable to grow and thrive in the lab) it 

is often necessary to use another organism to host the expression of the enzyme, using 

plasmids as a vehicle. This approach, dubbed recombinant or heterologous 

expression, has become one of the defining tools in molecular biology, since its 

demonstration by Cohen and Boyer in 1973 (Cohen et al., 1973). 

The most common and perhaps the best-known heterologous expression host is the 

Gram-negative bacterium E. coli. This is due to the wide availability of genetic tools 

and favourable factors such as higher expression yields, cell growth characteristics, 

opportunities for intra- or extracellular expression, available post-translational 

modifications and more (Makrides, 1996). The capabilities of the organism have been 

extensively reviewed throughout the past decades (Makrides, 1996; Rosano and 

Ceccarelli, 2014; Rosano et al., 2019). As a heterologous expression host, it offers 

certain advantages that has given the organism its wide use. While many specialized 

strains have been developed for various research applications throughout the years, 

(prominent examples highlighted in Rosano and Ceccarelli, 2014), these advantages 

remain relevant to many common expression strains such as the BL21 and K-12 

families (Daegelen et al., 2009). Escherichia coli strains used in protein expression are 

capable of rapid growth even on simple media such as Luria Broth (LB) (Sezonov et 

al., 2007), and achieve higher cell densities when growth conditions are further 

optimized (Shiloach and Fass, 2005). The foreign DNA of interest can be easily and 

quickly transformed in the cells using chemical competence (Pope and Kent, 1996).  

Some of the prominent challenges associated with E. coli expression, especially when 

attempting to express genes from distant genetic origins, include low or no detectable 

expression, production of insoluble proteins, in misfolded ´inclusion bodies`, and the 

production of soluble but inactive proteins (Rosano and Ceccarelli, 2014). While some 

of these issues can be alleviated by adjusting the expression parameters (such as 
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temperature, inducer amount, growth medium and duration etc.), others require 

design-level implementation of certain elements to overcome some of the more 

fundamental problems.  

The problem of insoluble expression is perhaps the most commonly experienced. It 

can sometimes be remedied by slowing down the expression by lowering incubation 

temperatures or by decreasing the amount of inducer applied (Rosano and Ceccarelli, 

2014). Solubility enhancing proteins are another well-known method of improving 

heterologous soluble yields of otherwise challenging proteins in E. coli. Currently, 

more than 20 different proteins are listed for various levels of solubility-enhancing 

effects (reviewed in detail by Costa et al., 2014; Ki and Pack, 2020). The E. coli 

maltose binding protein (MBP) in particular has been shown to be effective in 

improving solubility of proteases expression (Kapust and Waugh, 1999; Kwon et al., 

2011; Toplak et al., 2013). Some other notable solubility-enhancing fusion proteins 

include the glutathione S-transferase (GST; EC 2.5.1.18) encoded by Schistosoma 

japonicum (Smith and Johnson, 1988), the small ubiquitin-like modifier (SUMO) 

(Malakhov et al., 2004) and more recently, the small Fh8 protein extracted from the 

parasite Fasciola hepatica (Costa et al., 2013a). 

1.2.2 Overcoming codon bias in heterologous expression 

Codon bias is defined as the differing frequencies with which synonymous DNA 

codons are used for transcription between different organisms, and may vary 

significantly between different organisms, and even between different proteins within 

the same organism (Ikemura, 1981; Gouy and Gautier, 1982). This bias indicates the 

availability of particular tRNAs to the gene expression machinery of each species. 

Therefore, attempts to express a gene requiring high frequency of “rare” codons in the 

heterologous host, effectively lacking the tRNA species to perform the task correctly, 

would lead to low levels of protein of interest produced (Kane, 1995; Gustafsson et 

al., 2004). In order to overcome the limitations of incompatible codon biases, and 

improve the effectivity of heterologous protein production, different strategies 

emerged. Codon adaptation indices (CAI) were generated to facilitate comparison of 
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codon differences between species (Sharp and Li, 1987; Carbone et al., 2003). To 

address the problem, one approach is to provide the expression host with the genes to 

express the ‘rare’ tRNAs. For this purpose, commercially available E. coli strains with 

improved intracellular tRNA pools, such as the BL21-CodonPlus (DE3)-RIL cells 

commercialised by Agilent (Agilent Technologies, Santa Clara, CA, USA) or the 

Rosetta (DE3) cells from Merck (Merck, Darmstadt, Germany) can be used.  

Codon optimization (CO) is another approach, where the gene of interest is modified 

to alter the codons to better suit the native codon usage of the expression host, while 

keeping the target amino acid sequence unchanged. While smaller edits were shown to 

be successful via site-directed mutagenesis (Kink et al., 1991), total gene synthesis 

remains an attractive option for the analysis and CO of whole and even multiple 

genes. When performing CO, perhaps the simplest approach is the “one codon – one 

amino acid” design aiming to replace all codons for each amino acid with the one 

most abundant in the expression host, entirely eliminating rare codons. Studies 

demonstrating increased yields with this strategy have been reported from multiple 

hosts (reviewed in Gustafsson et al., 2004). However, in oversaturating the cell with 

an imbalanced tRNA pool, this cruder approach may lead to translation (Kurland and 

Gallant, 1996) or frameshift (Farabaugh and Björk, 1999) errors, and overproduction 

of protein to the extent of hindering host cell growth (Gong et al., 2006). In addition, 

this may cause repetitive mRNA elements, leading to undesirable secondary structure 

formation and hindering the host cell protein expression machinery (Griswold et al., 

2003; Presnyak et al., 2015; Mauger et al., 2019). More refined approaches of CO 

have been developed in the last decade considering not only CAI values, but also 

seeking to avoid extreme GC content or undesirable codon pairs (Boycheva et al., 

2003), repeating sequences and unfavourable mRNA secondary structures (Griswold 

et al., 2003; Wu et al., 2004; Goodman et al., 2013). Multiple software solutions are 

available for researchers to analyse and optimize their sequences with the 

aforementioned considerations (reviewed in Angov, 2011; Gould et al., 2014); 

including proprietary optimisation pipelines implemented by many gene-synthesis 
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companies, such as GenSmart (GenScript, Piscataway, NJ, U.S.A.) (GenScript, 2021) 

and GeneArt (Thermo Fisher Scientific, Waltham, MA, U.S.A.) (Raab et al., 2010). 

Further studies reported that proteins were able to be better expressed with the general 

lack of rare codons in the expression host (Hale and Thompson, 1998; Chang et al., 

2006; Burgess-Brown et al., 2008; Öberg et al., 2011). In other cases, lower yields, 

formation of truncated proteins or inclusion bodies were observed to be unavoidable, 

even after CO (Yadava and Ockenhouse, 2003; Farshadpour et al., 2014, Paper III 

and Aevarsson et al. under review, see Appendix I). As these issues were thought to 

be associated with incorrect protein folding, studies focusing on this link showed that 

even synonymous substitution of codons was able to affect the eventual folding 

quality of the protein of interest (Fedyunin et al., 2012; Liu, 2020; Liu et al., 2021). 

As total removal of rare codons was recognized a sub-optimal strategy, a new 

approach, termed “codon harmonization” (CH) was reported (Angov et al., 2008). By 

attempting to replicate the expression “cadence” of the native host, it was suggested 

that better folded proteins may be produced in the expression host. This would still be 

achieved by synonymous substitution of codons, but also considering regions of rare 

codons in the native host and appropriate substitution towards similarly rare codons in 

the expression host. Applications of the CH approach have since reported improved 

protein yields, quality and host cell viability (Hillier et al., 2005; Angov et al., 2011; 

Wen et al., 2016; Asam et al., 2018; Punde et al., 2019). 

Codon bias is also observed in viruses. Particularly in bacteriophages, viral genes 

were found displaying a high adaptation in codon usage towards that of their host’s, 

but distinct from other unrelated bacteria (Bahir et al., 2009). This occurrence was 

suggested to be a result of codon-selective pressure inherent within the translational 

machinery of the host bacteria (Carbone, 2008). Interestingly, a similar finding was 

reported for viruses infecting humans, but not those infecting other mammals (Bahir et 

al., 2009). The codon bias similarity was especially pronounced for structural proteins 

and was noted as potentially related to infectivity of the virus (Lucks et al., 2008; 

Bahir et al., 2009). Some dsDNA viruses were found to encode tRNAs, and 

subsequently rely less on codon adaptation to their host (Limor-Waisberg et al., 2011). 
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This strategy was suggested to be particularly relevant for lytic phages, granting them 

increased replication effectiveness and virulence, but reported as less common for 

temperate phages (Bailly-Bechet et al., 2007). 

Heterologous expression of many viral genes in E. coli has been described in the past 

four decades (Garapin et al., 1981; Shuman et al., 1988; Braun et al., 1999; Chen et 

al., 2001). However, low yields and insoluble production of proteins are also reported 

(Leavitt et al., 1985; Hizi et al., 1988; Li et al., 2005; Lee et al., 2009). From viral 

metagenomic sequences of ssRNA viruses, Liekniņa and co-workers reported the 

expression of over 100 coat protein genes, where nearly 40% of tested proteins were 

observed forming inclusion bodies in initial tests, but this result was able to be 

improved by lower-temperature expression conditions (Liekniņa et al., 2019). In some 

other studies, CO approaches was utilized in an attempt to achieve higher protein 

yields. Improved yields of three structural proteins from Chinese Sacbrood Virus 

using the one codon – one amino acid application of CO have been reported (Fei et al., 

2015). For the expression of chicken anemia virus capsid protein, significant 

improvements with the use of CO were also observed (Lee et al., 2011). At the time of 

writing, Paper III appears as the sole example of the CH approach applied for the 

expression of viral genes.  

1.3 Viruses of Arctic Marine Biomes 

The Arctic ocean houses a broad range of marine biomes, such as surface and deep 

waters, sea ice, and hydrothermal vents in the ocean floor. Its shallow waters are 

subject to significant fluctuations in the availability of light and phytoplankton 

productivity throughout the polar year (Winter et al., 2012; Wilson et al., 2017). 

Temperature shifts in the water are noted to be less severe, but not less significant, 

affecting viruses as well as their hosts (De Paepe and Taddei, 2006; Kirchman et al., 

2009). As with other marine environments, viruses also play key roles in nutrient and 

carbon cycles in the Arctic (Stein and MacDonald, 2004; Suttle, 2005; Yamamoto-

Kawai et al., 2006), where the viral shunt recycles living cells into dissolved and 

particulate organic material (Fuhrman, 1999; Wilhelm and Suttle, 1999).  
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The present understanding of arctic marine viral abundance and diversity has been 

driven by the large-scale sampling efforts and application of viral metagenomics 

(Breitbart et al., 2002; Mokili et al., 2012). One of the more recent undertakings was 

the Tara Oceans Polar Circle (TOPC) expedition, which sampled 41 sites up to 1000 

m depth around the Arctic Ocean, generating a metagenomic insight into the diversity 

of DNA viruses in the region (Gregory et al., 2019). The authors described the Arctic 

waters as a major hotspot of viral biodiversity. However, among the viral genomes 

analysed in this study, only 10% of total sequences were able to be taxonomically 

assigned. These corresponded mainly to the tailed dsDNA bacteriophages of the order 

Caudovirales (Myoviridae, Siphoviridae and Podoviridae) followed by large dsDNA 

algal viruses in the family Phycodnaviridae. In deeper waters, viral assemblages 

sequenced from 16 sites around the Arctic Ocean, at depths between 10 to 3246 

meters were studied (Angly et al., 2006). The authors reported the detection of dsDNA 

viral hits mainly corresponding to the families Podoviridae, followed by Siphoviridae. 

While a total lack of hits for chp1-like ssDNA microphages were reported, a high 

abundance of prophage-like sequences was observed (Angly et al., 2006). 

This finding supported the earlier works of Payet and Suttle, who studied the viruses 

infecting phytoplankton and bacteria at various locations in the Canadian Arctic via 

gradient gel electrophoresis fingerprinting of amplicons (Payet and Suttle, 2013, 

2014). By targeting genes encoding DNA polymerase B (polB) and major capsid 

protein (g23) which act as markers for Phycodnaviridae and Myoviridae, respectively, 

Phycodnaviridae was observed to be sensitive to changes in hydrological conditions 

and microbial dynamics, but not T4-like Myoviridae. Furthermore, the authors 

reported that lytic virus infections were associated with periods with high 

phytoplankton productivity, whereas lysogeny was preferred at periods of lower 

productivity (Payet and Suttle, 2013, 2014). A similar study used the genes g23 and 

mcp to target T4-like Myoviridae and large dsDNA algal viruses, respectively, and 

study their seasonal variations north and west of Svalbard. Here, seasonal abundance 

and diversity of free viral particles was noted as highest during the polar winter and in 
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deeper water samples, and lowest during the summer months and in surface water 

samples (Sandaa et al., 2018). 

A recent study targeting the viral populations of the deep ocean floor was able to 

isolate viral DNA and construct viromes from samples taken from 5571 m deep 

sediments in the Greenland Sea (Corinaldesi et al., 2017). Here, a dominating fraction 

of viruses that could be taxonomically placed, was noted as tailed dsDNA 

bacteriophages belonging to the order Caudovirales; where Siphoviridae, Myoviridae 

and Podoviridae were the three most represented taxonomic groups overall. Viruses 

with ssDNA genomes (mainly of families Circoviridae, Geminiviridae and 

Inoviridae) as well as retrotranscribing viruses (Retroviridae), giant viruses 

(Mimiviridae) were also reported as observed in minor fractions.  

Successful isolation of viruses from Arctic Ocean habitats are known, but rare. Four 

members of Phycodnaviridae, infecting the Arctic picophytoplankton Micromonas 

polaris have recently been isolated from Kongsfjorden, Norway (Maat et al., 2017). 

At Franklin Bay, Canada, a cold-active T5-like siphovirus was isolated from the 

obligate psychrophilic bacterium Colwellia psychrerythraea strain 34H, sampled from 

a nepheloid layer (Wells and Deming, 2006). One of the colder niches of the Arctic 

Ocean, sampling of the sea ice led to the isolation of a ssDNA filamentous phage f327 

from a Pseudoalteromonas strain (Yu et al., 2015). Here, it was also noted the 

prevalence of similar members of Inoviridae in the Arctic sea ice (Yu et al., 2015). 

Also from sea ice, the isolation of three lytic phages: a Myovirus infecting Shiwanella 

and two Siphoviruses infecting Flavobacterium and Colwellia species have been 

reported (Borriss et al., 2003). 

Viruses of Arctic hydrothermal vents  
Hydrothermal vent environments are one of the most remarkable and diverse biomes 

in the marine biosphere. Hydrothermal vents appear as fissures or tears on the sea 

floor where geothermally heated seawater is ejected out often forming chimney-like 

structures (Corliss et al., 1979; Pedersen et al., 2010; Dick, 2019). They feature 

various harsh physiochemical conditions, including steep gradients of temperature (up 
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to above 300 oC) and reducing chemistry of vent fluids mixing with the surrounding 

seawater (Nakamura and Takai, 2014; Steen et al., 2016). The vent plumes may 

disperse in a wide range, feeding diverse populations of chemolithoautotrophic and 

heterotrophic prokaryotes (Lam et al., 2004; Takai and Nakamura, 2010, 2011; Steen 

et al., 2016; Dahle et al., 2018). Although microbiological study of hydrothermal vent 

environments has received increasing attention in the past decades, studies focusing 

on viruses have been sparse (Ortmann and Suttle, 2005; Williamson et al., 2008; 

Lossouarn et al., 2015; Castelán-Sánchez et al., 2019). Even fewer studies examined 

the viruses of Arctic hydrothermal environments to date. 

At the Loki’s Castle vent field, a viral study of the deep, surrounding waters and 

hydrothermal vent plumes was performed (Ray et al., 2012). The authors managed to 

isolate a near-complete genome of an Enterobacteriophage lambda-like virus via an 

approach using pulsed field gel electrophoresis (PFGE) (Sandaa et al., 2010) and 

subsequent sequencing of DNA bands. The Caudovirales dsDNA viruses were the 

most prevalent group in the samples analysed – wherein Siphoviruses were found to 

be more abundant in the plume samples, and Myoviruses in the surrounding water 

samples. In-depth analysis of integrase-like genes in the viral sequences indicated a 

significant lysogenic potential of the viral populations (Ray et al., 2012), in line with 

previous studies from other hydrothermal sites (Williamson et al., 2008). Above the 

vent sites at the Arctic Mid-Ocean Ridge (AMOR), a study of T4-like viral 

communities in the shallow (99-600 m) and deep (1999-3000 m) water column was 

reported via g23 gene profiling (Le Moine Bauer et al., 2018). Vent plume induced 

changes were not reported in the diversity of the viral profiles between water column 

samples and the vent field plume samples – but instead depth was indicated as the 

main factor influencing diversity of T4-like Myoviridae in these sites (Le Moine 

Bauer et al., 2018). 

The current collection of recovered viromes and viral isolates from arctic marine 

environments point at the presence of an immense repository of viruses and associated 

genetic diversity (Paez-Espino et al., 2016). While aforementioned studies have 

focused on examining the ecology of viral populations, the bioprospecting potential of 
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this resource has not yet been fully explored, especially not for environments 

potentially housing extremophiles (Krishnamurthy and Wang, 2017; Dávila-Ramos et 

al., 2019; Gil et al., 2021). The efforts of the Virus-X project (Aevarsson et al. under 

review, see Appendix I) are therefore of timely importance, aiming the mining of 

arctic marine viromes towards the discovery of enzymes with biotechnological 

interest, in addition to expanding existing knowledge on viral ecology. 

1.4 Serine proteases 

Proteases (or peptidases) (EC 3.4.-.-, (Webb, 1992; McDonald et al., 2009)) are a 

subset of the hydrolase class of enzymes which catalyse the breaking down of peptide 

bonds between amino acids, with known members catalogued in the MEROPS 

peptidase database (https://www.ebi.ac.uk/merops/) (Rawlings et al., 2018). Proteases 

can be classified into two groups according to their pattern of cleavage. Exopeptidases 

are proteases which cleave peptide bonds at or close to the proteins’ exposed amine 

(N-terminus) or carboxylic (C-terminus) end groups. Conversely, endopeptidases 

target internal peptide bonds of a protein, able to break down larger proteins into 

smaller polypeptide chains (Rawlings and Salvesen, 2012). Proteases are further 

divided into seven main groups based on the mechanistic features they possess, 

namely: Serine (EC 3.4.21.-), Cysteine (EC 3.4.22.-), Aspartate (EC 3.4.23.-), 

Metallo- (EC 3.4.24.-), Threonine (EC 3.4.25.-), Glutamate (EC 3.4.23.31), and 

Asparagine proteases (EC 3.4.23.44) (López-Otín and Bond, 2008; Placzek et al., 

2017).  

The active sites of the proteases are regarded to be composed of pockets termed 

“subsites” (Schechter and Berger, 1967). Each subsite binds a corresponding residue 

on the substrate. These subsites and the amino acid residues around the cleavage site 

of the substrate are referred to according to a particular set of rules. In this method of 

labelling, the cleavage site is considered the zero-point, and the substrate residues are 

labelled outwards from the cleavage site as “···-P4-P3-P2-P1-P1′-P2′-P3′-P4′-···” from 

the N- to the C- termini. Similarly, the corresponding subsites flanking the active site 
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of the protease outward from the cleavage site are labelled “···-S4-S3-S2-S1-S1′-S2′-S3′-

S4′-···” from the N- to the C- termini (Figure 2). 

 

 

Figure 2: The naming practice of substrate residues and protease 
subsites around protease active sites. Substrate residues are labelled 
with the Px, whereas protease subsites are labelled with the Sx lettering. The 
double-crossing line indicates the substrate cleavage site between the P1 
and the P1´ position. Only four residues and subsites on each end is 
displayed for brevity. Adapted from Schechter and Berger, 1967. 

 

Serine proteases comprise the second most abundant group of proteases after 

metalloproteases (López-Otín and Bond, 2008). Their characteristic incorporation of a 

nucleophilic serine residue in their active site distinguishes them from other groups of 

proteases. The serine residue commonly acts in accordance with an aspartate and a 

histidine residue, forming the common catalytic triad of serine proteases (Figure 3) 

(Ekici et al., 2008). The catalytic serine typically resides in a conserved, glycine-

containing peptide in the form of GxSxG (Ward et al., 2009). 

 

Figure 3: Residues in the active site of subtilisin-like serine proteases. 
Adapted from Ekici et al., 2008 
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Serine proteases are commonly found in eukaryotes and prokaryotes alike and are 

involved in many critical physiological processes. For example, subtilisins commonly 

act as broad-target digestive enzymes in Gram-positive bacteria (Siezen and 

Leunissen, 1997; Mitrofanova et al., 2017). Thrombin plays regulatory roles in 

platelet aggregation, endothelial cell activation and other aspects of vascular biology 

with the aid of protease-activated receptors (Posma et al., 2016). Granzyme B 

activates caspases responsible for coordinating apoptosis (Zhou and Salvesen, 1997; 

Jacquemin et al., 2015). A serine protease activity cascade is also noted to take part in 

signal transduction influencing the development of Drosophila embryos (Veillard et 

al., 2016). Some extracellular serine proteases secreted by pathogenic microorganisms 

are found to act as virulence factors (Gaillot et al., 2002; Muszewska et al., 2017; 

Martínez-García et al., 2018). 

In biotechnology, many serine proteases have seen widespread uses in detergent 

formulations thanks to their broad substrate specificity (Niehaus et al., 2011; Vojcic et 

al., 2015; Salwan and Sharma, 2019). Other examples include trypsin (EC 3.4.21.4), 

which is used as a valuable research tool in fields such as molecular biology and 

proteomics (Gudmundsdóttir and Pálsdóttir, 2005; Toth et al., 2017). Further 

applications of serine proteases extend to dehairing of leather (Dayanandan et al., 

2003; Ward et al., 2009; Zambare and Nilegaonkar, 2017), meat tenderization (Bekhit 

et al., 2014), in the production of protein hydrolysates as nutritional supplements to 

food and feed (Aspmo et al., 2005; dos Santos Aguilar and Sato, 2018) in contact lens 

solutions to remove protein debris from the lens and avoid eye irritation (Rejisha and 

Murugan, 2020), and more (Rao et al., 1998; Ward et al., 2009). 

Serine proteases are typically grouped by their substrate specificities, largely defined 

by the substrate residue closest to the N-terminal of the cleavage site (P1). Example 

groups include the trypsin-like (Lys/Arg at P1), chymotrypsin-like (Phe/Tyr/Leu at 

P1), or elastase-like (Ala/Val at P1) serine proteases. However, some groups deviate 

from this pattern of categorization, including subtilisins, known for their broader 

substrate specificity (Siezen and Leunissen, 1997), herpesvirus type serine proteases 
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with a unique Ser-His-His active site organization (Chen et al., 1996) and more (Ekici 

et al., 2008). 

1.4.1 Subtilisins 

Subtilisins (also referred to as subtilases) (EC 3.4.21.62) are a group of serine 

proteases known for their broad substrate specificity, initially identified from the 

ubiquitous, Gram-positive soil bacterium Bacillus subtilis (Ottesen and Svendsen, 

1970; Siezen and Leunissen, 1997). They comprise the S8 protease family in 

MEROPS, with the family type enzyme denoted as subtilisin Carlsberg from Bacillus 

licheniformis (Evans et al., 2000). Members of the S8B subgroup, exemplified by the 

Saccharomyces cerevisiae kexin (EC 3.4.21.61), have a preference for cleavage after 

dibasic amino acid residues (Henrich et al., 2005). Additionally, the human proprotein 

convertase subtilisin/kexin type 9 (PCSK9) has also been an important example for its 

role in cholesterol regulation and has received great attention in medicine (Lambert et 

al., 2009; Momtazi-Borojeni et al., 2019). Subtilisins have been studied extensively 

with a rich collection of structures published on the Protein Data Bank (PDB) 

(Berman et al., 2000). At the time of writing, 26 structures could be retrieved when 

searched for subtilisin Carlsberg and 63 for subtilisin BPN`, with more being actively 

added (Wu et al., 2020; Toplak et al., 2021).   

Subtilisins commonly display activity at an alkaline pH range, and act on aromatic or 

hydrophobic residues such as tyrosine, phenylalanine and leucine (Gupta et al., 2002). 

They are distinguished from other groups of serine proteases by the order (Ser, His, 

Asp) of their catalytic residues in the amino acid sequence. They also possess a 

significantly different α/β protein scaffold compared to the β/β scaffold of 

chymotrypsin-like serine proteases (Siezen and Leunissen, 1997). Two Ca2+ binding 

sites are commonly found in subtilisin structures, adding further stability and in some 

cases, thermostability to the molecule (Pantoliano et al., 1988; Smith et al., 1999). 

Like other serine proteases, subtilisins can be commonly inhibited with 

phenylmethane sulfonylfluoride (PMSF) (Powers et al., 2002). An example structure 

of subtilisin Carlsberg and its catalytic site can be seen in Figure 4A and 4B (Bode et 
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al., 1987), and in a similar assembly later by Radisky et al. (PDB:1TM5) (Radisky et 

al., 2004).   

 

 

Figure 2: Three-dimensional protein structures obtained using X-ray 
crystallography. (A) Subtilisin Carlsberg with calcium ions depicted as 
green spheres, and (B) its catalytic triad (PDB:1CSE). (C) Homodimeric 
structure of the Alkalihalobacillus clausii ISP (PDB:2WV7). Structures were 
visualized with UCSF ChimeraX (Pettersen et al., 2021). 

 

Domain architecture of subtilisins 
Subtilisins are commonly found in the form of extracellular subtilisin proteases 

(ESPs). These are produced in the cell in an inactive precursor state called zymogens; 

and are made up of three main parts (Figure 5): An N-terminal leader sequence which 

directs their secretion outside the cell (Power et al., 1986), a short pro-domain which 

promotes correct folding and acts as an inhibitor (Zhu et al., 1989; Ohta et al., 1991), 
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and the catalytic domain (Siezen and Leunissen, 1997). Exceptionally, in some plant 

subtilisins, an additional C-terminal fibronectin (Fn)‐III‐like domain was observed, 

noted to be necessary for activity in some enzymes (Cedzich et al., 2009; Schaller et 

al., 2018). After secretion, the pro-domain is removed by autoproteolysis in order to 

achieve maturation and unlock catalytic activity (Power et al., 1986). Although some 

have been reported to be dimeric (Seki et al., 1994; Silva Lopez and De Simone, 

2004), mature ESPs are usually found as monomers (Rawlings and Salvesen, 2013).  

 

Figure 3: Comparative illustration of the domain structures of 
extracellular subtilisin protease (ESPs) and intracellular subtilisin 
proteases (ISPs). Features shown are the ESP signal peptide (SP), pro-
domain and the ISP N-terminal pro-peptide (Pro), attached to the Mature 
protease domains, with respect to N- and C-termini. 

  

Different from the well-studied ESPs, a lesser-known fraction of subtilisins termed 

intracellular subtilisin proteases (ISPs) exist. They are understood to be a major 

intracellular agent in Bacilli species, responsible for most of the casein and 

collagenolytic activity observed from within the cells (Orrego et al., 1973; Burnett et 

al., 1986). As opposed to ESPs, ISPs are found to be homodimeric, exemplified by the 

three-dimensional structure of Acidobacillus clausii ISP depicted in Figure 4C 

(Vévodová et al., 2010).  

While ISPs share a 40-50 % amino acid sequence identity when compared to full-

length ESP sequences (Vévodová et al., 2010), they display some noteworthy 

differences in their structure. Most notably, instead of the common ESP pro-domain, 

they feature a short (16-25 amino acids) N-terminal pro-peptide with no significant 

sequence homology to the ESP pro-domain (Figure 5). This pro-peptide covers the 

active site of the enzyme blocking the binding of the substrate while present. A 
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notable LIPY/F sequence motif conserved within known ISPs (but not observed in 

ESPs) is found within the pro-peptide. This motif is described to play a key role in this 

steric control of enzymatic activity by introducing a structural shift that prevents the 

direct binding of substrate to the active site of the enzyme. The pro-peptide is 

removed during maturation of the enzyme, allowing proteolytic activity to take place 

(Gamble et al., 2011).  

1.5 Nucleases 

Nucleases are enzymes which catalyse the cleavage of phosphodiester bonds in 

nucleic acids. As a subgroup of hydrolases, they are denoted with the enzyme 

commission number ranging from EC 3.1.11.X to 3.1.31.X. Nucleases are ubiquitous 

and can be found in all types of organisms. Inside the cell, they are involved with the 

repair, replication, and recombination of DNA (Marti and Fleck, 2004; Mimitou and 

Symington, 2009; Ganai and Johansson, 2016), and also in the degradation of 

exogenous or unnecessary DNA (Pollard et al., 2001). Outside the cell, nucleases may 

degrade foreign nucleic acids to use as nutrition (Beliaeva et al., 1976; Pinchuk et al., 

2008), or act defensively against potentially toxic nucleic acids (Li et al., 2001; 

Pingoud and Jeltsch, 2001; Baulcombe, 2004; Hsia et al., 2005). Conversely, in 

pathogenic organisms, similar enzymes act as the aggressors, functioning as virulence 

factors and working to overcome the target’s immune measures (Ma et al., 2017; 

Dang et al., 2018). In viruses, besides virulence (Kindler et al., 2017), they are also 

associated with gene recombination (Gammon and Evans, 2009) and the proper 

generation of virions after infection (Goldstein and Weller, 1998; Li and Rohrmann, 

2000).  In addition to discrete nucleases, many nucleic acid polymerases are also 

found to display secondary nucleolytic activities, associated with proofreading 

functions (Klett et al., 1968; Setlow et al., 1972; Lyamichev et al., 1993; Ganai and 

Johansson, 2016).  

Due to their diversity, the classification of nucleases can be a complex matter. 

However, some basic properties are most commonly used to refer to many nucleases. 

Substrate specificity can be an important distinction, divided between targeting DNA 
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or RNA molecules. They are often considered in terms of their cleavage pattern as 

well, where exonucleases are noted to cleave singular nucleotides from the ends of the 

substrate, and endonucleases target phosphodiester bonds within the substrate, 

releasing mono- or oligonucleotide products, respectively (Yang, 2011). Furthermore, 

they can also be grouped by their preference for single stranded (ss) or double 

stranded (ds) targets, or their requirement for metal ions for their activity (Shen et al., 

1997; Yang, 2011; Beese and Steitz, 2020). It must be noted that many exceptional 

nucleases have been reported to deviate from above classifications – such as those 

with non-specific activity targeting both DNA and RNA (Laskowski Sr, 1982; 

Rangarajan and Shankar, 2001; Hsia et al., 2005), or those with both endo- and 

exonuclease activities via a structural targeting preference of cleavage site, such as the 

Flap endonuclease 1 family (Lyamichev et al., 1993; Harrington and Lieber, 1994) 

and the Mre11 (Paull and Gellert, 1998) nucleases (3’ to 5’, and 5’ to 3’, respectively). 

Nucleic acid modification via cleavage is an essential process, and therefore nucleases 

find applications within a diverse range of fields. Earlier in their study, nucleases saw 

use as tools for gene mapping (Southern, 1975; Holsinger and Jansen, 1993), which 

were applicable for DNA comparison methods in forensic analyses (Sajantila and 

Budowle, 1991; Balazs, 1992). They were also instrumental in the finer study of DNA 

methylation and accessibility (Bird and Southern, 1978; Grummt and Gross, 1980). 

However, some of the best-known and used examples of nucleases are restriction 

endonucleases. Since the reporting of EcoRI (EC 3.1.24.4) from E. coli (Yoshimori et 

al., 1972), hundreds more restriction enzymes were identified from diverse organisms, 

driving cloning and heterologous expression of genes in molecular biology. Over 670 

enzymes with diverse cleavage site preferences are commercially available today 

(New England Biolabs, 2021).  

More recently, an endonuclease associated with the clustered regularly interspaced 

short palindromic repeats (CRISPR) viral immunity system of prokaryotes has been 

described (Barrangou et al., 2007). The landmark study describing application of the 

RNA guided, targeted activity of the CRISPR associated protein (Cas) 9 nuclease 

(Jinek et al., 2012) has made possible the precise, customizable editing of genes and 
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genomes, earning its authors the Nobel Prize in chemistry in 2020 (Ledford and 

Callaway, 2020).  

Nucleases with homology to three well-described archetypes were produced as part of 

this work (Aevarsson et al. under review, see Appendix I). Description of the distinct 

features of these enzymes are provided below.  

1.5.1 T4 Endonuclease V 

T4 Endonuclease V (EC 3.1.25.1) is a thoroughly studied enzyme, identified from the 

lytic T4 Myovirus infecting E. coli (Ackermann and Krisch, 1997). It is a 16 kDa 

protein with a domain architecture comprising a pyrimidine dimer DNA glycosylase 

domain (Pfam: PF03013) at the N-terminal. T4 endonuclease V is associated with 

UV-damage repair of DNA molecules, by cleaving pyrimidine dimers at damaged 

sites (Tanaka et al., 1975). This is performed via a two-pronged activity: a DNA 

glycosylase activity cuts the glycosylic bond at the 5' pyrimidine of the dimer, 

generating an apyrimidic site, which is then removed by the endonucleolytic activity 

of the enzyme (Gordon and Haseltines, 1980; Dodson and Lloyd, 1989). Since its 

heterologous production (Higgins and Lloyd, 1987), and the elucidation of its 

structure (Vassylyev et al., 1995; Golan et al., 2006), T4 Endonuclease V became an 

enzyme of particular interest in dermatology. Referred to as T4N5 or Dimericine, the 

enzyme has undergone clinical trials and was eventually approved as a means to treat 

UV damage in human skin and help prevent skin cancer (Cafardi and Elmets, 2008; 

Zahid and Brownell, 2008). 

1.5.2 Lambda (λ) exonuclease  

Originating from the Siphovirus phage λ infecting E. coli K12 (Lederberg and 

Lederberg, 1953), the λ exonuclease (EC 3.1.11.3) is 26 kDa and contains a YqaJ-like 

viral recombinase domain (Pfam: PF09588) towards the N-terminal. The enzyme 

carries out exonucleolytic cleavage on preferably phosphorylated dsDNA, in the 5'- to 

the 3'- direction, generating a ssDNA strand and releasing nucleoside 5'-phosphate 

molecules; although non-phosphorylated dsDNA can also be targeted at a much 
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slower rate (Little, 1967). This activity requires alkaline conditions, and Mg+2 ions as 

a co-factor, associated with two metal-binding sites within the protein (Little et al., 

1967; Carter and Radding, 1971). The structure of the enzyme is described as a toroid 

formed by three sub-units, able to accommodate and act upon DNA molecules 

through the central cavity (Kovall and Matthews, 1997), with a central fold reported to 

be conserved among other nucleases, including type II restriction endonucleases 

(Kovall and Matthews, 1998). Also referred to as “λ recombinase”, λ exonuclease is 

associated with the single strand annealing homologous DNA recombination system 

of dsDNA break repair in phage λ with the aid of Redβ annealase (Radding and 

Shreffler, 1966; Weller and Sawitzke, 2014). Besides its application in molecular 

biology, λ exonuclease has also been approved as an investigational drug for the 

treatment of spinal muscular atrophy under the trade name Spinraza and nusinersen 

(Haché et al., 2016; Chiriboga, 2017). 

1.5.3 Exonuclease III 

Exonuclease III (Exo III) (EC: 3.1.11.2) is a multifunctional enzyme identified from 

E. coli K12 (Richardson and Kornberg, 1964; Richardson et al., 1964). Besides its 3'-

5'-exonuclease activity, Exo III exhibits phosphatase, ribonuclease H, and 

endonuclease activities, acting on apurinic or apyrimidinic DNA substrates, likely all 

from a single active site (Weiss, 1981; Mol et al., 1995). Exonuclease activity is 

dependent on Mg+2 ions (expected to be two per molecule), and it degrades dsDNA 

(but not ssDNA) in a 3′ to 5′ direction, releasing 5′ phosphomononucleotides as 

products (Richardson et al., 1964; Mol et al., 1995). The enzyme does not need a blunt 

dsDNA end for cleavage initiation as it can also act on nicked dsDNA sites and on 

circular substrates (Thomas And and Olivera, 1978). The inclusion of a short 3′-

overhang can be used to prevent cleavage of dsDNA by Exo III (Ding et al., 2019). 

The 31 kDa enzyme has an N-terminal nuclease domain (Pfam: PF03372), that is 

shared among other magnesium dependent nucleases and phosphatases (Mol et al., 

1995; Dlakić, 2000). Thanks to its broad range of activities, Exo III is noted to be a 

key enzyme for DNA repair within E. coli (Mol et al., 1995; Lovett, 2011). Today, 

Exo III is commercially available, commonly used in molecular biology for its 
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exonuclease activity, with particular applications in generating ssDNA templates 

towards dideoxy sequencing, and intermediates for site-directed mutagenesis 

(Henikoff, 1984; Vandeyar et al., 1988; Lovett, 2011).  

1.6 Viral Endolysins 

Endolysins (lysins, peptidoglycan hydrolases) refers to a group of enzymes facilitating 

the degradation of the bacterial cell wall after viral replication, enabling the release of 

viral progeny. In dsDNA bacteriophages, endolysins are specialized hydrolytic 

enzymes targeting one of the 4 main bonds of the peptidoglycan (PG) (also called 

murein) layer of the bacterial cell envelope (BCE) (Fernandes and São-José, 2018). 

This layer is present in nearly all bacteria atop the cell membrane (CM), and consists 

of glycan chains, anchored together by a matrix of cross-linking peptides (Vollmer et 

al., 2008).  

The makeup of the BCE varies between different types of bacteria. In simpler Gram-

positive bacteria, BCE consists of the CM and a thicker PG layer which defines the 

cell wall (CW). Gram-negative bacteria, however, feature a thinner PG layer, but it is 

delimited on the outside by the lipid bilayer outer membrane (OM) (Silhavy et al., 

2010). The space between the PG layer and the OM defines the dense, aqueous 

periplasm layer, rich in proteins (Figure 6) (Mullineaux et al., 2006). Furthermore, the 

PG in both groups may also contain other proteins that bind to the layer, such as the 

covalently attached teichoic acids in Gram-positive species (Brown et al., 2013). 
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Figure 4: Cell wall architectures of (A) Gram-positive and (B) Gram-negative 
bacteria. (C) Illustration representing the repeating N-acetylglucosamine-N-
acetylmuramic acid chains (NAG – NAM, in blue and green, respectively) cross-
linked to form the bacterial PG structure, and various endolysins targeting specific 
bonds. Adapted from Alcorlo et al., 2017 and Fernandes and São-José, 2018. 

 

In closer detail, the glycan strands of the PG are made up of alternating N-

acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) residues, linked via β(1–

4) bonds. A short peptide “stem” is also attached to each NAM residue, in place of the 

D-lactoyl group. These peptides are reported to often consist of the residues L-Ala-g-

D-Glu-m-DAP-D-Ala-D-Ala (m-DAP for 2,6-diaminopimelic acid) in Gram-negative 

bacteria, and L-Ala-g-D-Glu-L-Lys-D-Ala-D-Ala in most Gram-positive bacteria 

(Vollmer et al., 2008). The cross-linking of the glycan chains is achieved by bonds 

between amino acid residues at positions 3 (commonly L-Lys or m-DAP) and 4 (D-

Ala), via a peptide bond in Gram-negative bacteria, or via interpeptide bridges 

typically in Gram-positive bacteria (Vollmer et al., 2008). While this common 

structure defines the basis of the layer, the PG layer is an editable structure, where 

modifications such as N-deacylation, O-acylation, amidation or amino acid 

substitutions are understood to take place as a response to changing conditions in and 

outside of the cell (Vollmer, 2008; Cava and de Pedro, 2014). 
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Endolysins are often divided into three major groups, based on the bond they target 

within the PG structure. Namely, these are peptidases, amidases, and glycosidases 

(Fernandes and São-José, 2018). Peptidases break the peptide bonds between amino 

acid residues and can include endopeptidases which cleave any of the internal peptide 

bonds, or carboxypeptidases which detach C-terminal amino acids. Amidases cleave 

the amide bond between the first amino acid residue (usually L-Ala) of the peptide 

stem and the NAM (EC 3.5.1.28). Glycosidases act on one of the two glycosidic 

bonds present between glycan units and can be grouped as N-acetyl-β-D-

glucosaminidases (glucosaminidases, EC 3.2.1.30), N-acetyl-β-D-muramidases 

(muramidases or lysozymes EC 3.2.1.92) and lytic transglycosylases (EC 3.2.1.-) 

(Alcorlo et al., 2017).  

Some viral endolysins bear affinity to different sections of the PG by encoding one or 

more secondary carbohydrate binding domains. A ubiquitous example is the short 

Lysin Motif (LysM) domain, which binds to the NAG units in the glycan chain of the 

PG (Buist et al., 2008; Mesnage et al., 2014). However, as these enzymes are 

expressed without signal peptides to direct their translocation past the CM, they lack 

the means to reach the PG without aid. Instead, access to the PG layer is enabled by 

another class of proteins: the holins. At mid-late phases of phage replication these 

transmembrane proteins bind to and “form holes” within the CM and compromise its 

integrity (Wang et al., 2000; Catalão et al., 2013). This allows endolysins to act on the 

PG and also leads to cell death by causing the collapse of the proton motive force, 

which drives many essential cell functions (Rice and Bayles, 2008; Cahill and Young, 

2019). The viral lysis acting against different bacteria may involve additional 

associated proteins, and their mechanism may therefore differ from the underlying 

foundation explained above. The current opinion on these mechanisms and all 

associated proteins is reviewed in great detail by Fernandes and São-José (Fernandes 

and São-José, 2018), and also by Cahill and Young (Cahill and Young, 2019).  

The application of phages for the control and elimination of bacterial pathogens has 

been one of the earliest thoughts of viral applications of biotechnology (Ho, 2001). 

With the era of (meta)genomics and improved access to viral gene resources, 
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therapeutic use of phages and phage-derived proteins once again garnered high 

research interest (Dixon, 2004; Matsuzaki et al., 2005). Endolysins’ natural 

bactericidal effects are therefore considered an obvious extension for the concept of 

phage therapy. Numerous studies have already demonstrated the effects of the 

potential application of endolysins (Nelson et al., 2001; Briers et al., 2014; Islam et 

al., 2019). As an alternative to antibiotics treatments, these enzymes could offer higher 

specificity, and no known toxicity and or triggering of bacterial resistance against 

their effects (Schmelcher et al., 2012; Rodríguez-Rubio et al., 2013). These proteins 

could act on antibiotic resistant pathogens, overcoming one of the major medical 

challenges of the era of antibiotics (Gupta and Prasad, 2011; Zhang et al., 2013; 

Plotka et al., 2019). In addition, further applications of endolysins have been reported 

towards protein purification (Joshi and Jain, 2017), crystallography (Boura et al., 

2017), and food preservation (van Nassau et al., 2017). For the discovery of many 

such enzymes, viral genomes appear as an exceptionally rich source (Fernández-Ruiz 

et al., 2018; Santos et al., 2018), and highlight the possibilities present in the study of 

viral sequence space.  
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2. Aims of study 

The main goal of this project was to identify, produce and characterize the functional 

and structural qualities of various enzymes of marine microorganisms, with activities 

potentially relevant for biotechnology applications. 

Additional sub-goals were noted as: 

• To assemble a versatile process for the efficient heterologous production 

of candidate enzymes in E. coli, tailored to promote protein solubility. 

• To achieve soluble heterologous production of viral proteins in E. coli, 

and investigate the application of the emerging “codon harmonization” 

approach on proteins produced  

• To achieve the identification, production, and characterization of 

multiple enzymes from psychrophilic and thermophilic microorganisms. 
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3. Materials  

All relevant materials used in each study are described in detail in their respective 

papers. The marine genetic resources used in this study are sourced as described 

below: 

Planococcus sp. AW02J18 (1379956) featured in Paper II, was isolated from a biota 

sample 135 m below the surface, in the coastal area of Lofoten (68.5025473N°, 

015.0046585E°) in 2009. Identified through 16S rRNA gene sequence analysis, it was 

provided by the bacterial collection at the University of Tromsø (De Santi et al., 

2016). 

The viral nucleases studied herein were extracted from viromes generated within the 

Virus-X project (Aevarsson et al. under review, see Appendix I). Sampling was 

carried out on transects from Spitsbergen to the Arctic ocean, Spitsbergen to the Fram 

Strait and Southeast to the Jan Mayen Fracture Zone at depths of 1500m and - 3594m 

(Sandaa et al., 2018, Aevarsson et al. under review, see Appendix I). 

Hypnocyclicus thermothrophus featured in Paper III was isolated from a microbial 

mat situated in a hydrothermal vent field at the Northern Kolbeinsey Ridge, 166 km 

west of Jan Mayen in the Greenland Sea (Roalkvam et al., 2015). 
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4. Methods 

Detailed materials and methods associated with each part of the study is presented in 

their respective papers (Papers I-III). However, experimental details about the 

production of viral nuclease candidates are provided below. 

4.1 Heterologous production of viral nuclease candidates 

The viral nuclease genes presented within this thesis (Supplementary Table 1) were 

identified and selected by collaborators within the Virus-x consortium using a multi-

faceted approach (summarized in Figure 4 of Aevarsson et al. under review, see 

Appendix I). This integrative approach featured sequence homology comparisons as 

well as more advanced HMM-HMM profile similarity searches against multiple 

databases. These included sequence (Pfam (Finn et al., 2016), GenBank (Clark et al., 

2016)) functional (KEGG (Ogata et al., 1999), GO (Ashburner et al., 2000)) and 

structural (PDB (Berman et al., 2000)) knowledgebases. These resources were co-

implementation with the help of contemporary tools such as HH-suite3 (Steinegger et 

al., 2019), 3DM systems (Kuipers et al., 2010) and the EMGB annotation browser 

(Jünemann et al., 2017).  

All expression constructs were transformed into E. coli BL21-Gold(DE3)pLysS 

(Merck, Darmstadt, Germany) cells using the heat-shock protocol provided by the 

manufacturer, using 30 ng of plasmid per 15 µL of bacteria suspension. Single 

colonies were picked from Lysogeny Broth (LB)-agar plates containing 100 µg/mL 

ampicillin after plating and overnight growth at 37 °C, and 4 ml pre-cultures in LB 

broth with 100 µg/mL ampicillin and 50 µg/mL chloramphenicol were subsequently 

inoculated and incubated overnight at 37 °C with 220 rpm shaking. The next day, 4 ml 

expression cultures in LB media containing 100 µg/mL ampicillin were inoculated 

with 100 µl of each pre-culture and were grown at 37 °C and 220 rpm until an optical 

density at 600 nm of 0.5-0.6 was reached. The temperature of the incubator was then 

reduced to 30 °C and allowed to equilibrate for 30 minutes. Expression was induced 

with the addition of 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), and 
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cultures were allowed to further grow for 4 hours. Following expression, cells were 

harvested by centrifugation at 5000 x g at 4 °C for 10 min. Collected cells were re-

suspended in 1 ml of lysis buffer containing 50 mM HEPES pH 7.5, 300 mM NaCl, 

10% Glycerol and were lysed using ultrasonication performed at 4 °C using 4 x 10 

second bursts at 10 second intervals, with 27% amplitude. An aliquot representing the 

total protein fraction was taken and stored at 4 °C from each crude lysate before 

clarification of lysates by centrifugation at 12000 x g at 4 °C for 3 min. After 

clarification, aliquots were taken from all samples representing the soluble protein 

fraction and stored at 4 °C. 

Aliquots taken from lysed cell pellets, representing the total protein and soluble 

protein fractions were run on a gradient (8-16%) SDS-PAGE gel (Supplementary 

Figure 1) (GenScript, Piscataway, NJ, U.S.A.) to assess expression levels. Precision 

Plus Dual Color (Bio-Rad, Hercules, CA, U.S.A.) protein ladder was used for protein 

molecular mass determination. Equivalent volumes of lysate (16 µl) were mixed with 

sample buffer (4 µl) and loaded onto the electrophoresis. The gel was run at 200 V, 

and subsequently stained using InstantBlue (Expedeon, Cambridge, UK) using 

staining protocol provided by the manufacturer. After staining was complete, unbound 

dye was washed off the gel using distilled water on a benchtop shaker to reveal 

protein bands. 

All IMAC protein purification experiments were carried out on an ÄKTA start 

(Cytiva, Uppsala, Sweden) system equipped with 5 ml HisTrap FF Ni-NTA (Cytiva, 

Uppsala, Sweden) columns, set up in a cold room at 4 °C. Clear lysate samples were 

prepared in equilibration buffer (Buffer A) which contained 20 mM HEPES pH 7.5 

and 500 mM NaCl; and were loaded with a speed of 5 ml/min into the column pre-

equilibrated with Buffer A. The elution buffer (Buffer B) was prepared to contain 20 

mM HEPES pH 7.5, 500 mM NaCl and 500 mM imidazole. After washing unbound 

proteins away with 25 ml Buffer A, bound proteins were eluted stepwise with 10 ml of 

100% Buffer B, and fractions were collected for analysis with SDS-PAGE 

(Supplementary Figure 2). Purified protein fractions were pooled, and proteins were 

shifted into a new buffer containing 20 mM HEPES pH 7.5, 300mM NaCl, 2mM 
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TCEP (tris(2-carboxyethyl)phosphine) and 30% Glycerol (v/v)  with Amicon Ultra -

15 centrifugal filters (Merck Millipore, Cork, Ireland) to be stored at -20 °C. 
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5. Results and discussion 

The main results of each study carried out in this thesis, are presented within their 

respective papers. The cloning, heterologous expression, and biochemical as well as 

structural characterization of bacterial serine proteases, are presented in Paper I and 

II. The results pertaining to the discovery of the H. thermothrophus prophage, its 

analysis and heterologous expression of its genes are presented and discussed in 

Paper III. Results of the heterologous expression trials of viral nuclease candidates, 

performed in the context of Virus-X are summarized in Section 5.3.2, with relevant 

tables and figures provided under supplementary data.  

Within this thesis, a wide group of enzymes were targeted for discovery, and 

subsequent heterologous expression trials. These included bacterial serine proteases, 

as well as endolysins, nucleases and other nucleic acid-processing enzymes of viral 

origin. Proteases were chosen as a target group of enzymes within the enzyme 

discovery drive of the NorZymeD project, which aimed for their application in the 

valorization of by-products of food production. As one of the major sectors of the 

Norwegian food industry, side-cuts from fish farming was seen as an available 

resource which could be degraded by proteases to produce peptides with nutritional 

and economical value (Aspmo et al., 2005; Chalamaiah et al., 2012; NorZymeD, 

2021). In the case of the viral enzymes, the viromes made accessible through the 

Virus-X project presented a near pristine genetic resource for bioprospecting. 

Therefore, “low-hanging” enzymes, expected to be particularly abundant and diverse 

within viral genomes were targeted. Endolysins, nucleases, DNA polymerases and 

similar nucleic-acid processing enzymes are not only of profound ecological interest, 

but also have the potential to provide valuable tools and applications within academia, 

medicine, and other fields (Freitag-Pohl et al., 2019; Dorawa et al., 2020; Plotka et al., 

2020, Aevarsson et al. under review, see Appendix I). 
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5.1 Bioinformatical annotation and selection of target genes  

The functional annotation of genes in metagenome libraries still largely depends on 

our knowledge of previously described proteins and genes, and many genes remain 

poorly annotated (Fernández-Arrojo et al., 2010; Steinegger et al., 2019). The 

annotation of metagenomic viral sequences is particularly challenging, due to their 

inherent diversity and the lack of known precedence for many (Krishnamurthy and 

Wang, 2017). The lack of an elegant solution to this challenge consequently makes it 

difficult to mine genetic resources from both terrestrial and marine environments 

(Howe et al., 2014; Gregory et al., 2019). For an enzyme discovery study, the class of 

enzymes being sought after, and their native host are key factors defining the 

complexity of the annotation step and will inform the optimal combination of tools to 

achieve best results.  

Focused databases for particular enzyme classes or activities are valuable assets for 

the identification of new enzyme targets, as they provide an easily consultable, 

collected resource for relevant enzymes. For the selection of protease candidates in 

Paper I and II, the extensive MEROPS protease database was utilized (Rawlings et 

al., 2012, 2014, 2018). This process yielded relevant subtilisins for the verification of 

the expression procedure reported in Paper I and the discovery of the Planococcus 

ISP in Paper II. Expected proteolytic activity was demonstrated on both accounts, 

and the MEROPS classification provided helpful contextual insight on other features 

of proteases such as co-factors, inhibitors as well as structural information. 

Determination of similar protease targets could be performed without MEROPS 

today, as resources are available that can examine sequences and search for indicators 

of desired activity – such as Pfam (Finn et al., 2016) or Interpro (Blum et al., 2021) 

domains, particular nucleotide, or amino acid sequence identity with a benchmark 

enzyme, or with the utilization of 3DM super-alignments (Kuipers et al., 2010). 

Sequence alignment searches against MEROPS and similar databases was an efficient 

way to detect relevant sequences, but modern tools, such as HH-Suite3, can perform 

fast, and broader analyses of genes with the computing power available for use today 

(Steinegger et al., 2019). 
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For a thorough identification and annotation genes of viral origin within the genome 

of H. thermotrophus in Paper III multiple approaches were needed. The PHAge 

Search Tool Enhanced Release – PHASTER (https://phaster.ca/) tool was used for its 

targeted approach in detecting viral genes not readily picked up by the prokaryotic 

annotation pipeline of NCBI (Arndt et al., 2016; Li et al., 2021). PHASTER predicts 

phage genes via homology searches against a custom database, comprising sequences 

from NCBI phages, a dedicated prophage database (Srividhya et al., 2006), and 

bacterial genomes previously assessed via the tool (Bleriot et al., 2020; Plotka et al., 

2020). Although the referred prophage database no longer appears to be supported 

(Srividhya et al., 2006), it´s understood that the PHASTER database includes the 

contained sequence information necessary for the analysis. 

Compared to other tools for prophage detection, such as PhiSpy (Akhter et al., 2012) 

and Prophinder (Lima-Mendez et al., 2008) PHASTER offers better usability, and 

prediction power; although the newer PhageWeb tool is reported as an efficient 

alternative (Sousa et al., 2018). Different from other tools, PhageWeb also provides 

additional analyses such as G+C content, presence of tRNAs and also reports hits 

against public protein databases such as UniProt (Bateman et al., 2021), Pfam (Finn et 

al., 2016) and Interpro (Blum et al., 2021) which can help inform the functional 

profile of the prophage genome, and its relationship with the host organism (Sousa et 

al., 2018).  

In Paper III the PHASTER annotations were complemented with other tools in order 

to produce thorough annotation of genes, and best inform the study. Besides the H. 

thermotrophus gene annotations presented on GenBank, and those produced by 

PHASTER, the Eggnog-mapper (http://eggnog-mapper.embl.de/) tool was tested, 

which specializes in reporting orthology relationships between genes and their 

functional annotations (Huerta-Cepas et al., 2017, 2019). In addition the HHsearch 

(Söding, 2005) feature of the HH-suite3 web server (https://toolkit.tuebingen.mpg.de) 

was used, which is able to represent and compare both the query and the target 

proteins as HMM profiles, offering higher resolution comparisons of homology 

against public sequence and structure databases such as Pfam (Finn et al., 2016), 
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UniProt (Bateman et al., 2021) and PDB (Zimmermann et al., 2018; Steinegger et al., 

2019). While PHASTER was able to detect the presence of viral genes, it was not able 

to provide thorough annotation of many genes that was not part of the viral backbone. 

Eggnog-mapper was able provide better annotations on a few select genes but did not 

significantly improve the resolution of the viral annotations, likely due to the inherent 

lack of orthologs of viral genes. Compared to the other approaches, the HHsearch tool 

was able to provide the most thorough annotation of HTH1 genes, significantly 

reducing the number of hypothetical genes in the annotation, and also highlighting 

previously unremarked putative activities of some genes (Supplementary Tables 1 

and 2, Paper III). 

For the inspection of single genes and their putative domain structures, the HMMER 

web server (https://www.ebi.ac.uk/Tools/hmmer/) has been utilized, which can display 

additional annotations from Pfam (Finn et al., 2016) and Interpro (Blum et al., 2021) 

for protein domains as well as SignalP (Petersen et al., 2011; Almagro Armenteros et 

al., 2019) for the presence of signal peptides and transmembrane regions (Finn et al., 

2011; Potter et al., 2018). This analysis was used to inform the heterologous 

expression experimental design, as signal peptides, transmembrane regions, and 

differences in domain structures may call for truncations, or different placement of 

His-tags and expression vector systems (Kwon et al., 2011, Paper I). 

5.2 Phylogeny and taxonomy analyses of prophage genes 

Paper III reports on the discovery of a prophage gene cluster within the genome of H. 

thermotrophus, a free-living, Gram-negative, thermophilic bacterium sourced from a 

vent field in the Arctic Mid-Ocean Ridge (AMOR) (Roalkvam et al., 2015). Analysis 

of the bacterial genome using PHASTER (Arndt et al., 2016) led to the detection of 

prophage-associated gene regions. Closer inspection of their functional annotations 

using multiple approaches, suggested the presence of a 41.6 kbp long prophage 

region, containing 46 protein coding genes; referred to as Hypnocyclicus 

thermotrophus phage H1 (HTH1). In this study, HTH1 was found to be taxonomically 

associated with the viral family Siphoviridae, via multiple bioinformatical analyses.  
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Traditional viral taxonomy classifies viruses by their morphology, and their nucleic 

acid structure (Ackermann, 2007; King et al., 2011). Considering the great diversity of 

the virosphere, the International Committee on Taxonomy of Viruses (ICTV) 

communicated support towards sequence-based assignments of taxonomy over phage 

genomes, with thorough bioinformatical analyses (Simmonds et al., 2017). Soon after, 

the committee also expanded the existing scheme of viral classification (Wildy, 1971; 

Francki et al., 1991) to a wider hierarchy in hopes of accommodating this rising 

exploration of viral genetic diversity (Gorbalenya et al., 2020). 

As the lytic induction, isolation, and imaging of HTH1 was not possible within the 

scope of Paper III, multiple bioinformatical approaches were employed to thoroughly 

assess the taxonomy of HTH1 based on the present sequence information. At the 

genome-level, all prophage genes were analysed using the MEGAN software (Huson 

et al., 2016) in order to perform lowest common ancestor (LCA) affiliation analysis. 

The use of this approach has been previously reported for the taxonomy of marine 

viruses (Roux et al., 2016), and also specifically in extreme hydrothermal vent 

environments (Castelán-Sánchez et al., 2019). A comparison of the phage head-neck-

tail module genes to existing viral clusters via the Virfam tool 

(http://biodev.cea.fr/virfam/) was also utilized, which leverages the ACLAME 

database of mobile genetic elements (Leplae et al., 2010; Lopes et al., 2014).  

Additional phylogeny analyses on HTH1 at a gene level was performed to gain further 

insight on its relationship with other viruses. Unlike prokaryotes, where the 

sequencing of 16S rRNA have become the norm for examining phylogeny (Lane et 

al., 1985; Pace et al., 1986) viral sequences were long considered to lack similar genes 

until more genomes were available for study (Rohwer and Edwards, 2002). More 

recently, a set of orthologous gene groups were reported as “signature genes” by 

Kristensen and co-workers for the detection of some viral taxa (Kristensen et al., 

2013). Herein, holin was identified as one such gene for members of T1-like 

Siphoviruses; and HTH1 was found to contain a gene annotated as such. As the 

nucleotide sequence diversity of the gene was found too high for comparisons against 

gene repositories, the amino acid sequence instead was used to assess protein-level 
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phylogeny of HTH1 holin homologs. Genome-based phylogeny approaches have also 

been previously used to compare closely related viruses (Rokas et al., 2003; Olsen et 

al., 2020). However, as a larger dataset of viruses with multiple homologous genes 

would be required to carry out a thorough analysis of HTH1, this analysis was not 

included in Paper III. Alignment-free phylogenomic approaches have also been 

developed (Zhang et al., 2017), which could potentially be applied to analyse HTH1 in 

a future study. 

An analysis was performed using sequences extracted from the viral subset of NCBI 

nr, queried for similar proteins to HTH1 holin via protein BLAST (blastp) (Altschul et 

al., 1990). Hosting a rich database of well-described viral isolate genomes, hits against 

this database were chosen in an effort to improve confidence in the taxonomic 

assignment of HTH1 (Figure 1 of Paper III). This search was further extended to the 

IMG/VR (Paez-Espino et al., 2016) and Ocean Gene Atlas (Villar et al., 2018) 

databases to look for similar phages in environmental metagenomes (Supplementary 

Figure 2 of Paper III).  

The combined results of different analysis approaches provided generally congruous 

insight into the taxonomy of HTH1, pointing at closest association with Siphoviridae 

bacteriophages infecting the phylum Firmicutes. Interestingly, none of the tools used 

indicated close similarity to known viruses of Fusobacteria or other Gram-negative 

bacteria, indicating a novel lysogenic interaction seen in H. thermotrophus. Without 

access to morphological data, application of multiple approaches was necessary to 

suggests a confident sequence-based classification of the prophage. However, it 

remains interesting to pursue a morphological study of HTH1 in the future. 

Furthermore, network-based, rather than tree-based representations of viral phylogeny 

have recently been highlighted (Dion et al., 2020), and phylogeny analysis of a wider 

viral sequence space around HTH1 may yield further insight into its relation to other 

viruses. 
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5.3 Approaches towards heterologous production of soluble 
proteins in E. coli 

Throughout this work, E. coli has been the expression host used for the screening and 

characterization of proteases (Paper I and II), as well as for exploring viral genes 

both from arctic viromes (Sections 4.1, 5.3.2, and Aevarsson et al. under review, see 

Appendix I) and the HTH1 prophage (Paper III).  

5.3.1 Proteases and solubility tags 

Proteases are considered challenging proteins to heterologously produce, as they are 

prone to inclusion body formation, and undesired proteolytic activity by foreign 

enzymes under production may lead to rapid cell toxicity and greatly reduced yields 

(Komai et al., 1997; D’alessio et al., 1999; Tang et al., 2004; Li and Li, 2009; Dutta et 

al., 2010; Pushpam et al., 2011). For the expression of protease candidates in Papers I 

and II, experimental design choices were made in an effort to overcome these 

challenges.  

In Paper I, the goal was to assemble a streamlined and efficient procedure for the 

successful expression and activity screening of proteases. The FX cloning approach 

was used to insert candidate sequences into the cloning vector pINITIAL (Geertsma 

and Dutzler, 2011), employing multiple selection genes for high cloning efficiency. 

Candidate genes were then sub-cloned into six expression vectors based on the 

arabinose inducible pBAD vectors (Geertsma and Dutzler, 2011). All six vectors 

employed a His-tag at either the N- or C-terminus of candidate genes for the efficient 

purification of proteins downstream via IMAC. In addition, four vectors also encoded 

the proteins MBP (Kapust and Waugh, 1999) or SUMO (Malakhov et al., 2004) at the 

N-terminus to enhance soluble yields of heterologous proteins. Validation experiments 

for the screening procedure was carried out by demonstrating the production of 

soluble and active subtilisins in Paper I. An expected solubility-enhancing trend was 

observed from many but not all of the constructs featuring MBP and SUMO tags. 

Hence, the value of using multiple constructs to test each candidate was underlined to 

potentially increase the chances of obtaining soluble and active enzymes. 
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The Planococcus ISP featured in Paper II was discovered by using the procedure 

detailed in Paper I to screen shortlisted target genes for proteases, sourced from 

sequence-based mining of marine sequences. The enzyme was then expressed in 

soluble form in all six expression vectors tested, successfully purified, and further 

characterized both for its function and structure. Although from a reportedly cold-

adapted host, the ISP was found to function optimally at pH 11 and at 45 °C with an 

active range from pH 7.0 to 11, with no activity observed above 60 °C. Furthermore, 

the crystal structure of the mature enzyme was determined by X-ray crystallography to 

a 1.3 Å resolution, which became the highest resolution ISP structure reported to date; 

and the first one with a native catalytic triad (PDB: 6F9M). Together, these findings 

allowed the examination of the interplay of structure and function for the regulation of 

proteolytic activity in the Planococcus ISP, contributing new insights towards ISPs as 

a whole. The biotechnological application potential of the enzyme, however, remains 

to be assessed. A new ISP from Bacillus velezensis SW5 has recently been described 

by Yang and co-workers, which report significant proteolytic activity of the enzyme 

against fibrin (Yang et al., 2020). Testing the Planococcus ISP on a similar panel of 

substrates would be a valuable component for such an analysis. 

The procedure presented in Paper I lies parallel to a similar pipeline developed for 

protease expression (Kwon et al., 2011) where rapid and efficient cloning via Gateway 

Cloning (Katzen, 2007) and the use of multiple expression vectors with purification 

and solubility tags were featured. FX- and Gateway Cloning are comparable 

approaches for moving target genes into vectors, providing rapid and confident 

cloning with the use of directional ligation and multiple selection factors for positive 

clones - including negative selection by the ccdB gene in incorrect clones (Bernard et 

al., 1994; Scholz et al., 2013). However, as Gateway is a proprietary method, FX-

cloning remains the more affordable option without sacrificing cloning performance. 

Tight control of expression is exceptionally important when expressing proteases. The 

functionality of this approach while using expression vectors featuring the T7 

promoter, combined with the choice of the E. coli BL21(DE3)pLysS strain in order to 
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ensure a tightly controllable expression with IPTG induction has been demonstrated 

(Kwon et al., 2011). 

The SUMO tag is a smaller protein and was reported to outperform MBP and other 

well-established proteins such as glutathione S-transferase (GST), thioredoxin (Trx) 

and the transcription termination anti-termination factor (NusA) in promoting soluble 

expression (Marblestone et al., 2006). This was found to be the case in the results of 

Paper I (Figure 4), where N-terminal SUMO fusion constructs of subtilisin variants 

yielded the highest proteolytic activity against fluorescently tagged casein. To 

available knowledge, this study remains the only example in which the SUMO tag 

was used for the successful soluble production of subtilisin. 

5.3.2 Codon adjustment strategies for the expression of viral genes 

As a part of this thesis, production trials were carried out for 42 viral enzymes with 

putative nuclease activities, chosen by Virus-X partners (Supplementary Table 1). 

Expression constructs were designed based on protein domain analyses, placing the 

His-tag at the N- or C-terminus, in plasmids pET-3a and pET-21a, respectively 

(Novagen Inc., 2006). Synthesis and CO of genes was performed through the 

GenSmart pipeline at the synthesis stage, offered by GenScript (GenScript, 2021). 

Genes were subsequently obtained synthetically in chosen plasmids and tested for 

expression. The E. coli BL21-Gold(DE3)pLysS strain was chosen for expression in 

order to hinder potential cytostatic effects which may be caused by leaky gene 

expression. Among the 42 nucleases tested, only 12 were detected in soluble forms 

(Supplementary Figure 1). Six of the soluble candidates were also able to be purified 

using IMAC on single experiments (Supplementary Figure 2).  

Codon optimization has been demonstrated to produce a varying benefit in previous 

studies targeting expression of viral proteins in E. coli. While successful soluble 

production of viral structural proteins has been reported with the help of CO (Lee et 

al., 2011), its benefits do not appear guaranteed. For the soluble expression of VLP1 

protein from mouse polyomavirus various approaches were tested, where best yields 

were reportedly achieved without CO, but with the use of E. coli Rosetta(DE3)pLysS 
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cells, which express rare tRNAs (Chuan et al., 2008). Here, use of a GST-fusion 

construct was also tested, but was reported not to promote significantly higher yields 

of soluble proteins (Chuan et al., 2008).  

Existing information regarding the heterologous expression of viral metagenomic 

sequences is scarce. In one such study, when 110 ssRNA virus coat proteins from 

metagenomic sequences were produced in E. coli, an approximately 40% protein 

solubility rate was observed without CO or other experimental optimizations 

(Liekniņa et al., 2019). This success rate is comparable to the one reported by the 

Virus-X consortium in Aevarsson et al. (under review, see Appendix I), and slightly 

higher than the ratio of soluble heterologous nucleases in this work. Herein, CO was 

used as a convenient approach to potentially improve the soluble production of viral 

nucleases at the synthesis stage. Due to constraints of time, requirements of industrial 

partners and the number of nuclease candidates tested, it was not feasible within the 

time frame of this project to finely tune expression conditions for each nuclease 

family or implement fusion tag solutions (similarly to Paper I). Fusion tags have been 

utilized for select targets within the Virus-X project (Aevarsson et al. under review, 

see Appendix I), and with further optimization of expression parameters, it is likely 

that more nucleases can be produced in soluble form. 

In Paper III a set of 9 prophage genes from HTH1 putatively related to lysis and 

nucleic acid processing activities were selected for heterologous expression trials in E. 

coli, with an experimental design largely shared with the nuclease candidates. Here 

CH variants for each chosen gene were also implemented to compare the two 

approaches for their benefits in expressing viral genes. As harmonization of genes is 

not similarly available from gene synthesis providers, the design of CH candidates for 

the experiments presented in Paper III were carried out manually. The Codon 

Harmonization Tool (Claassens et al., 2017), based on the original harmonization 

algorithm (Angov et al., 2008) was utilized for this step. All nine candidates tested 

were able to be produced recombinantly, however only five proteins were found 

soluble from the CO variants. Four were also observed as soluble from their CH 

variants. On SDS-PAGE images, CO gene variants of candidates were found to yield 
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higher amounts of soluble protein compared to their CH versions. The four proteins 

produced in soluble form from both variants, N-acetylmuramoyl-L-alanine amidase, a 

putative rRNA biogenesis protein, a putative DNase, and a hypothetical protein; were 

subsequently purified using IMAC. Finally, the thermostability of both protein 

variants were analysed using differential scanning fluorometry where all CH variants 

was observed to display higher thermostability than their CO counterparts. 

In the case of HTH1 proteins, comparison of the two codon adjustment approaches 

showed that CO led to the production of higher soluble protein yields, yet CH was 

able to promote higher thermostability in target proteins. It can be argued that this 

increased stability indicated a higher folding quality, in line with the expected effect 

of the harmonization approach reported previously (Angov et al., 2011; Wen et al., 

2020). The results suggest that CH could be a particularly preferable approach when 

structural analyses of the proteins are sought after the production step. It may also be 

speculated that the improved folding quality would positively affect the activity of the 

produced enzymes, although further work on functional characterization is necessary 

to conclusively assess the subject. Furthermore, Paper III represents the first 

application of CH for the expression of viral genes to the best of current knowledge 

and may provide insight for similar studies in the future.  

5.3.3 Considerations for designing new experiments 

In this thesis, multiple approaches for generating soluble protein expression in E. coli, 

on previously known genes from publicly available databases (Paper I), genes from 

isolated genomes (Paper II and III), or viral metagenomes (Section 4.1, 5.3.2, and 

Aevarsson et al. under review, see Appendix I). It is clear that it would have been 

beneficial to be able test, and compare the different tools featured herein 

(solubilization tags, CO, CH) systematically on each set of genes investigated. Doing 

so would allow the determination of the combination of optimal approaches for each 

scenario, and likely greatly improve the odds of obtaining soluble proteins in desired 

yields. Moreover, the toolbox for soluble expression is constantly expanding, and new 

features and opportunities should be considered. For example, novel solubility-
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enhancing fusion proteins, and their applications are reported. Some examples include 

the 31 kDa ATP-independent folding chaperone Spheroplast Protein Y (Spy) (Quan et 

al., 2011; Ruan et al., 2020), the small 8 kDa protein Fh8 sourced from Fasciola 

hepatica, and the tiny 1 kDa H-tag constituted by the first 11 N-terminal amino acids 

of Fh8 (Costa et al., 2013a). Fh8 was also reported to be able to function as a 

purification tag for hydrophobic interaction chromatography, facilitating results on par 

with the traditional His-tag and IMAC strategy (Costa et al., 2013b). While most 

fusion proteins are reported as aiding soluble heterologous expression in E. coli in 

some context, small fusion tags may be considered favourable over larger ones, as 

they exert less stress over the cell, and reportedly do not lead to significant loss of 

solubility after proteolytic tag removal (Costa et al., 2013a, 2014). Ultimately as with 

many other protein-related challenges, no single “best” fusion tag can be highlighted 

to ensure the soluble production of a given protein of interest, and therefore testing a 

selection of most relevant tags remains the most educated strategy.  

Considered together, the results obtained in this thesis also show that E. coli remains a 

steadfastly relevant host organism for heterologous expression, even for genes from 

viral metagenomes. However, other valuable host organisms can also be implemented 

to complement E. coli, and benefit from their unique strengths. Some of the most 

prominent alternatives include the Gram-positive bacterium B. subtilis which also has 

a wide genetic toolkit available and allows high yields from extra-cellular expression 

of proteins. In this way, cytotoxic proteins could be expressed outside the cell with 

high yields. (Vavrová et al., 2010; Biver et al., 2013). Baker’s yeast Saccharomyces 

cerevisiae is a similarly well-studied eukaryotic host, that may be preferable when 

post-translational modification of produced proteins is required (Damon et al., 2011). 

For the production of thermophilic proteins, the Gram-negative bacterium Thermus 

thermophilus may be beneficial, compatible with cultivation and screening of 

enzymes in higher temperatures (Cava et al., 2009). Switching between different hosts 

can be cumbersome, but shuttle vector systems are available to facilitate the use of 

multiple expression systems simultaneously (Troeschel et al., 2012; Nakata, 2017), 

and some work has already been done to expand the procedure presented in Paper I to 
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include various Bacillus species alongside E. coli (Larsen and Bjerga, 2018). Even 

more alternative organisms exist and has recently been reviewed by Lewin et al. 

(Lewin et al., 2017). Ultimately, choice(s) of host organism should be made with the 

goals and the circumstances of a given study in mind.  

The results obtained in this thesis also point to that codon adjustment approaches still 

hold value to fine tune the codon landscape of target genes and promote higher yields 

and/or better folding quality (Paper III). While these strategies may be unfeasible if 

the chosen genes are to be cloned manually into desired expression vectors; both CO 

and CH may be implemented without difficulty if gene synthesis options are available. 

For studies with greater scopes (such as the Virus-X project), it may be possible to 

automate the harmonization of target sequences to enable large-scale implementation 

of the strategy. If the study is focused on a smaller number of genes for heterologous 

expression, more effort-intensive approaches may be relevant to maximize the 

chances of successfully producing target proteins. Some examples include refolding of 

insoluble inclusion bodies (D’alessio et al., 1999; Dutta et al., 2010; Ramón et al., 

2014), protein engineering to potentially modify key properties of target proteins 

(Cherry et al., 1999; Taguchi et al., 1999; Fernandes et al., 2015), and fine tuning of 

culture conditions (Fouchet et al., 1994; Shiloach and Fass, 2005; Gutiérrez-González 

et al., 2019). 
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6. Future research 

In this doctoral study, a large part of work has been carried out in the framework of 

two large research projects. While this setting provided unique opportunities and 

chance to work with amazing groups of inspiring researchers, at times, it also made it 

difficult to implement certain ideas due to considerations of time, continuity and co-

compatibility with other research groups, and the overarching scope of the respective 

projects. Nevertheless, this work contributed to improving access to marine genetic 

resources for the discovery of enzymes, in a fast-developing era of high-throughput 

sequencing (van Dijk et al., 2018), omics technologies (Eren et al., 2021), and a global 

viral pandemic (Pfefferbaum and North, 2020).  

Through the course of this doctoral study, a large set of viral genes have been 

successfully expressed as soluble enzymes in E. coli providing a basis for their 

subsequent in-depth biochemical and structural characterization. Like for the proteases 

presented in Paper I and II, enzyme activity assays should be implemented to assess 

the activity of all proteins produced as soluble.  

The viral nucleases have been tested for production in a limited experimental design, 

and more of them may be possible to produce and purify via solubility tags or other 

methods discussed above. This is also true for the genes from HTH1, from which the 

biotechnologically interesting DNA polymerase was found insoluble and could likely 

benefit from further optimization to achieve soluble production. Activity assays 

considered for the nucleases, may have to include an array of related assays to check 

for multiple DNA polymerase, endo- or exonuclease activities, and strand specificities 

(Fernández-Garciá et al., 2017; del Prado et al., 2019).  

Among the purified proteins, the Planococcus ISP was functionally and structurally 

characterized. However, to determine its suitability for biotechnological applications, 

its activity needs to be further assessed against application relevant substrates, such as 

fibrin (Yang et al., 2020) and fish proteins (Aspmo et al., 2005). Following their 

characterization, this is also imperative for the viral nucleases. Purified HTH1 
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enzymes are currently undergoing structural analyses via protein crystallization (pers. 

comm. M. Håkansson and S. Al-Karadaghi, SARomics Biostructures), but their 

functional characterization, including an expected moderate thermophilic activity 

profile, remains to be assessed.  

After characterization, it may be possible to modify key properties of promising 

enzymes via protein engineering in an effort to push them past the threshold towards 

applications in biotechnology (Vojcic et al., 2015; Rigoldi et al., 2018). For a study 

focused on this subject, 3DM systems (Kuipers et al., 2010) could provide a thorough 

starting knowledgebase to guide engineering efforts and help navigate the patent 

landscape of similar enzyme applications. 

Finally, a potential morphological study, covering the lytic induction, isolation, and 

electron microscope imaging of HTH1 would be of great interest in strengthening the 

sequence-based study of prophage taxonomy presented in Paper III, and reveal 

further insights into H. thermotrophus and the viral interactions of hydrothermal vent 

environments 

In future endeavours targeting the sequence-based mining of marine genetic resources, 

the strengths of the different strategies demonstrated herein should be combined in 

accordance with the requirements of the study. Example features could include the 

deep sequence analysis capabilities used towards the viral candidates, the versatility 

and efficiency of the pipeline developed for the expression and activity screening of 

proteases (tailored to screen for the desired enzymatic activity), and the larger-scale 

implementation of relevant solubility and quality enhancing measures for the 

production of target enzymes. Putting together one such “complete” approach would 

contribute greatly to improving the success rate in marine bioprospecting by bringing 

more enzyme candidates to a state where they can be functionally and structurally 

characterized. 
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7. Conclusion 

The work presented in this thesis altogether emphasizes marine microbial diversity as 

an important resource for enzyme discovery, both towards expanding our 

understanding of marine microbial life, and also for application of enzymes within 

various biotechnological fields. The aims set for this doctoral work has largely been 

met, as pertinent experimental methods and bioinformatical tools were bridged 

together in an effort to overcome challenges of sequence-based enzyme discovery. 

This combined competence allowed the efficient screening, discovery, heterologous 

production, and characterization of a varying portfolio of enzyme classes including 

proteases, nucleases and endolysins. The multi-faceted application of modern 

sequence analysis tools allowed not only the analysis of arctic marine viral 

metagenomes for the identification and heterologous production of novel viral enzyme 

targets, but also the detection and in silico characterization of a novel prophage from 

the hydrothermal vent bacterium H. thermotrophus. The functional and structural 

characterization of the intracellular subtilisin protease from Planococcus sp. 

AW02J18 expanded our current knowledge about ISPs and their mechanisms of 

activity regulation. Similarly, the combined genomic and protein-level study of the H. 

thermotrophus phage H1, generated novel insight over the lysogenic phage-host 

interactions in Fusobacteria and hydrothermal vent environments. The efforts towards 

improving the soluble production of heterologous proteins in E. coli have been the 

common thread that linked the study of different enzyme targets, and as such the 

approaches demonstrated in this direction stand to benefit a wide range of future 

studies. Although the use of individual elements such as solubility enhancing fusion 

proteins, codon adaptation strategies, and parallel testing of gene expression in varied 

configurations were demonstrated in separate case studies, it is clear that their optimal 

benefit lies in their complementary application. As no “one approach to express them 

all” can be named, thorough functional annotation of genes and targeted protein 

expression workflows constructed towards defined research goals will together allow 

the deepest access to the vast genetic resources of marine microorganisms.
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a  b  s  t  r  a  c  t

Subtilisins  and  other  serine  proteases  are  extensively  used  in  the  detergent,  leather  and  food  industry,  and
frequently  under  non-physiological  conditions.  New  proteases  with  improved  performance  at  extreme
temperatures  and  in  the  presence  of chemical  additives  may  have  great  economical  potential.  The  increas-
ing availability  of genetic  sequences  from  different  environments  makes  homology-based  screening  an
attractive  strategy  for  discovery  of new  proteases.  A  prerequisite  for  large-scale  screening  of  protease-
encoding  sequences  is  an  efficient  screening  procedure.  We  have  developed  and implemented  a  screening
procedure  that  encompasses  cloning  of candidate  sequences  into  multiple  expression  vectors,  cytoplas-
mic  expression  in E.  coli,  and a casein-based  functional  screen.  The  procedure  is  plate-format  compatible
and  can  be  completed  in  only  four days,  starting  from  the  gene  of  interest  in  a  suitable  cloning  vector.
The  expression  vector  suite  includes  six  vectors  with  combinations  of  maltose-binding  protein  (MBP)  or
the  small  ubiquitin-related  modifier  (SUMO)  for  increased  solubility,  and  polyhistidine  tags  for  down-
stream  purification.  We  used  enhanced  green  fluorescent  protein  and  four  Bacilli  subtilisins  to validate  the
screening  procedure  and  our  results  show  that proteins  were  expressed,  soluble  and  active.  Interestingly,
the  highest  activities  were  consistently  achieved  with  either  MBP  or SUMO  fusions,  thus  demonstrating
the  merit  of  including  solubility  tags.  In  conclusion,  the  results  demonstrate  that  our  approach  can  be
used  to efficiently  screen  for  new  subtilisins,  and  suggest  that the  approach  may  also  be  used to screen
for  proteins  with  other  activities.

©  2016  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Proteases are proteolytic enzymes that have great industrial,
therapeutic and academic value because of their ability to degrade
proteins and peptides (reviewed in Li et al., 2013). In particular,
serine proteases have broad applications in the detergent, leather
and food industry, due to their broad substrate specificity and their
activity at neutral to alkaline pHs (reviewed in Gupta et al., 2002).
The industrial conditions under which these proteases are applied
may  be non-physiological, and include high temperatures, cocktails
of detergents and other chemical additives. Discovery and devel-
opment of proteases that are applicable to industry have a great
economic potential, and both sequence- and function-based dis-

∗ Corresponding author.
E-mail addresses: Gro.Bjerga@uni.no (G.E.K. Bjerga), Hasan.Arsin@uib.no

(H. Arsın), Oivind.Larsen@uni.no (Ø. Larsen), Pal.Puntervoll@uni.no (P. Puntervoll),
Hans.Kleivdal@uni.no (H.T. Kleivdal).

covery can be used (examplified in Biver et al., 2013; Kwon et al.,
2011). These approaches require a robust production line, which
should include molecular cloning and recombinant expression, and
functional screening procedures tailored to the relevant proteases
(Kwon et al., 2011; Sroga and Dordick, 2002).

Subtilisin-like serine proteases are extensively used in industry,
mainly in detergents, and according to a HERA-report,1 the Euro-
pean Union used about 1000 tons of pure subtilisins in 2002. These
proteases are well represented among species of Bacilli, are active
at an alkaline pH range, and show specificity towards aromatic or
hydrophobic residues (Groen et al., 1992). Subtilisins are involved
in nutritional regulation in their native hosts and are frequently
secreted. They are produced as inactive precursor proteins called
pre-pro-proteins or zymogens consisting of a leader sequence that
direct their export, a pro-sequence and the catalytic domain. The

1 Human & Environmental Risk Assessment on ingredients of household cleaning
products, Edition 2.0 February 2007.

http://dx.doi.org/10.1016/j.jbiotec.2016.02.009
0168-1656/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).
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pro-sequence acts as an inhibitor and as a molecular chaperone to
guide correct folding of the active enzyme both in vivo and in vitro
(Ikemura et al., 1987; Ohta et al., 1991; Zhu et al., 1989).

Autoproteolytic maturation poses a challenge for heterologous
production, but subtilisin-like proteases have been successfully
produced in E. coli by periplasmic expression (Ikemura and Inouye,
1988; Ikemura et al., 1987). Increased solubility and yield have
been achieved with solubility tags, such as the maltose-binding
protein (MBP2) (Bedouelle and Duplay, 1988; di Guan et al., 1988;
Kapust and Waugh, 1999 Kapust and Waugh, 1999), fused to the N-
terminus of active serine proteases (Kwon et al., 2011; Sakaguchi
et al., 2008). For identification and downstream purification of
mature subtilisin-like proteases, they are often expressed in fusion
to C-terminal affinity tags, such as polyhistidine (his) (Ghasemi
et al., 2012; Hu et al., 2013; Sroga and Dordick, 2002).

In this study, we have developed a screening procedure for rapid
and efficient identification of functional subtilisins. The procedure
uses E. coli as host, implements a versatile cloning system tailored to
proteases, followed by recombinant expression in the cytosol, and
direct activity screening of lysates using fluorescein isothiocyanate
(FITC)-conjugated casein as substrate. The cloning system allows
expression of candidate proteases with terminal his-tags for purifi-
cation, optionally in combination with N-terminal fusions to MBP
and the small ubiquitin-related modifier (SUMO) for improved sol-
ubility. To validate our approach we have tested four homologous
Bacilli subtilisins, and show that our screening procedure effectively
expresses and detects active, recombinant subtilisins.

2. Material and methods

2.1. Construction of a tailored vector suite

A tailored suite of six different vectors were designed and
constructed for the recombinant expression of proteases (Fig. 1,
Table 1). p1-p3 vectors contain N-terminal decahistidine tags, and
p12, p6 and p7 vectors contain C-terminal hexahistidine tags. The
preference for the C-terminal hexahistidine to decahistidine was
based on experimental data showing better yields of expression
and solubility of eGFP with shorter tag (data not shown). The p2
and p3 vectors were generated by introducing genes encoding the
MBP  and SUMO fusion partners, respectively, between the exist-
ing His-tag and HRV 3C protease (3C) protease site of the p1 vector
(Table 1) (Geertsma and Dutzler, 2011). The p12 vector was  con-
structed based on p5 (Table 1) (Geertsma and Dutzler, 2011), where
the 3C cleavage site and decahistidine tag was replaced with a hex-
ahistidine tag. Vectors p6 and p7 were constructed by introducing
the above-mentioned fusion partners between the start codon and
the first SapI site, replacing the 3C and decahistidine region.

For downstream applications, N-terminal affinity and solubility
tags were made removable by the utility of specific proteases. A 3C
site was designed to p2 and p7, identical to the design in p1 to allow
cleavage by 3C protease (Cordingley et al., 1989). No linear motif
was added to p3 and p6, as the ubiquitin-like protease 1 (Ulp1)
specifically recognizes the tertiary structure of SUMO to remove
the tag (Mossessova and Lima, 2000).

Synthetic genes (GenScript) optimized for E. coli production
encoding either the E. coli malE gene or the S. cerevisiae smt3 gene
served as templates for megaprimer PCRs of MBP  (aa 27–391, Gen-
Bank acc. no.: AIZ93193) and SUMO (aa 2–97, GenBank acc. no.:

2 Abbreviations: his, polyhistidine; MBP, maltose binding protein, SUMO, small
ubiquitin-related modifier; FX-cloning, fragment exchange cloning; RF, restriction-
free  cloning; EMP, exponential megapriming PCR; 3C, HRV 3C protease; Ulp1,
ubiquitin-like protease 1, FITC, fluorescein isothiocyanate; HRP, horseradish per-
oxidase; eGFP, enhanced green fluorescent protein.

Fig. 1. Schematic representation of the expression vector suite.
Upon restriction-ligation in the FX-cloning regime the gene of interest is replacing
the  ccdB counterselection gene in expression vectors. All vectors, named p1, p2, p3,
p12, p7 and p6, contain his-tags, either N-terminally (decahistidine) or C-terminally
(hexahistidine). In addition, four of the vectors contain the MBP and SUMO solubility
partners as fusions to the N-terminies of the protease sequences. Triangles show
placement and orientation of the SapI sites used in the FX-cloning procedure. Linear
sequence motifs are introduced to allow tag removal by 3C protease in p1, p2 and
p7  (black line), whereas the SUMO fusion in p3 and p6 can be removed by Ulp1
protease after tertiary structure recognition.

DAA12341), respectively, by exponential megapriming PCR cloning
(EMP, Ulrich et al., 2012). In brief, the megaprimers of genes encod-
ing MBP  and SUMO were amplified using Phusion polymerase
(NEB), purified with the QIAquick PCR purification kit (Qiagen) and
inserted to vectors by linear (in case of p2 and p3) or exponen-
tial plasmid amplification (in case of p6 and p7) and treated as
described in the protocols (Ulrich et al., 2012; van den Ent and Löwe,
2006). To remove parental DNA, the PCR products were digested
with 10U DpnI (NEB) and transformed into E. coli MC1061 cells.
Plasmids were isolated using the NucleoSpin plasmid purification
kit (Macherey-Nagel). Sanger sequencing was used to confirm cor-
rect cloning of all vectors. Primers for RF and EMP  cloning were
designed using an online tool (Bond and Naus, 2012). Information
on primers and vectors used in this study is summarized in Table
S1 and Table 1, respectively.

2.2. Molecular cloning of eGFP and subtilisins to vector suite

The pCMV cyto-EGFP-myc plasmid served as template for the
amplification of a mutated gfp gene (egfp) encoding enhanced green
fluorescent protein (eGFP, residues 2-239) (Cormack et al., 1996) by
Phusion PCR and primers in Table S1. The egfp gene was integrated
into the pINITIAL cloning vector (Table 1) by digesting the PCR prod-
uct and the vector with SapI (NEB) and ligating with T4 DNA ligase
(NEB) according to the fragment exchange (FX) cloning protocol
(Geertsma, 2014). The ligation reaction was transformed into E. coli
MC1061 cells and clones were selected on LB-agar (1% (w/v) tryp-
tone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 1.5% (w/v) agar-agar)
supplemented with kanamycin (50 �g/ml, Sigma-Aldrich). Plas-
mids were isolated as above, and sequencing was  used to confirm
correct cloning of all pINITIAL constructs. Sub-cloning from pINI-
TIAL to the expression vectors (Fig. 1) were carried out as outlined
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Table 1
Vectors used in this study.

Vector name Fusion partners His-tag
length (aa)

Fusion
partner
size (kDa)

Promoter Tag removala Resistance gene Vector type Reference

pINITIAL – – – – – cam Cloning Geertsma and
Dutzler (2011)

p1 (pBXNH3) N-his 10 2.6 pBAD 3C amp  Expression Geertsma and
Dutzler (2011)

p2 N-his-MBP 10 42.7 pBAD 3C amp  Expression This study
p3  N-his-SUMO 10 12.6 pBAD Ulp1 amp  Expression This study
p5  (pBXC3H) C-his 10 2.3 pBAD 3C amp  Expression Geertsma and

Dutzler (2011)
p12 C-his 6 0.8 pBAD – amp  Expression This study
p7  N-MBP, C-his 6 41.4 pBAD 3C amp  Expression This study
p6  N-SUMO, C-his 6 11.3 pBAD Ulp1 amp  Expression This study
pUC57:smt3  (S2-G97)-opt (smt3 template) – – – – kan Cloning This study
pUC57:His-malE(K27-Q391)

3C-opt
(malE  template) – – – – kan Cloning This study

pUC57.kan, SapI-free – – – – – kan Cloning GenScript

a For p6 and p7 the N-terminal fusion partners, but not the C-terminal his tags, are removable.

above, except that clones were selected on LB agar with ampicillin
(100 �g/ml, Sigma-Aldrich).

Codon-optimized apr genes (GenScript) encoding Bacilli sub-
tilisins (Table 2) flanked by SapI sites served as templates for FX
cloning of full-length genes to expression vectors, or served as tem-
plates for PCRs in the case of truncated genes. Otherwise, genes
were cloned as described above. Empty vectors were generated
by replacing the ccdB gene with a GSGSGS linker to allow their
cloning and expression in E. coli MC1061 cells. The GSGSGS-linker
was constructed by hybridizing two oligos to one double stranded
DNA fragment designed to contain sticky SapI overhangs to allow
its integration to the pINITIAL vector. Information on primers used
is summarized in Table S1.

2.3. Site-directed mutagenesis

A Phusion PCR using mutagenesis primers (Table S1) was
designed to generate a S325A mutation in the apr gene of B. licheni-
formis DSM13 in pINITIAL. Parental DNA was removed by DpnI
digestion. Mutants were then transformed into E. coli MC1061 and
selected to LB agar containing 34 �g/ml chloramphenicol (Sigma-
Aldrich). The mutant subtilisin was sub-cloned to the expression
vector suite as described above.

2.4. Recombinant expression

Recombinant expression was carried out according to a protocol
described elsewhere (Vincentelli et al., 2011). The E. coli MC1061
strain was utilized for expression due to its inability to metabolize

the inducer, L-arabinose. Precultures in LB media were inoculated
directly from positive clones on LB agar with 100 �g/ml ampicillin
and grown 16–20 h at 250 rpm at 37 ◦C. In deep 24-well plates, 4 ml
2YT media (1.6% (w/v) tryptone, 1% (w/v) yeast extract and 0.5%
(w/v) NaCl) containing 100 �g/ml ampicillin was inoculated with
100 �l precultures and incubated at 37 ◦C at 250 rpm for 2 h to reach
log phase. Cultures were equilibrated to 20 ◦C for 30 min  before
induction of the pBAD promoter with 0.1% (v/v) L-arabinose (Sigma-
Aldrich) for 16–20 h at 250 rpm at 20 ◦C. To improve the protocol,
cultures can also be autoinduced by replacing lactose with arabi-
nose in a trace-metal free version of the ZYP-5052 media (Studier,
2005). 100 �l culture was used for OD measurements by reading
absorbance at 600 nm using the Hidex Sense microplate reader
(Kem-En-Tec Nordic). The cells were harvested using an Allegra X-
12R benchtop centrifuge (Beckman Coulter) at 4750 rpm for 15 min.
Cells were resuspended in 1 ml  8.5 N lysis buffer (50 mM Tris HCl
pH 8.5, 50 mM NaCl, 0.25 mg/ml  lysozyme, 10% (v/v) glycerol), and
incubated at 20 min  at room temperature during gentle agitation
for lysis. Lysis was completed by ultrasound using five seconds
pulse two times at 40–60% amplitude with a CV-18 probe pow-
ered by an Ultrasonic Homogenizer 4710 (Cole Parmer). Lysates
were cleared by centrifugation at 4750 rpm for 15 min. Cleared
lysate samples (representing soluble fraction) were analysed by
SDS-PAGE (Laemmli, 1970).

2.5. Immunoblot

Proteins from cleared lysates were analysed by SDS-PAGE, and
transferred onto a nitrocellulose membrane (Towbin et al., 1979)

Table 2
Subtilisins used in this study.

Origin (short
name)

Enzyme name GenBank acc. no. ATCC reference Reference
(protease)

Reference
(genome)

Length (aa) Sequence identity
to B. licheniformis
DSM13 (%).

Bacillus
licheniformis
DSM13 (Bli)

Subtilisin Carlsberg
AprE

AAU40017 14580 Jacobs et al. (1985) Rey et al. (2004) 379 100

Bacillus
paralicheniformis
ATCC  9945a (Bpa)

Subtilisin Carlsberg
AprE

AGN35600 9945a Jacobs et al. (1985) Rachinger et al.
(2013)

379 98.2

Bacillus subtilis
subsp. subtilis str.
168 (Bsu)

SubtilisinE CAB12870 23857 Stahl and Ferrari
(1984)

Kunst et al. (1997) 381 66.1

Bacillus
amyloliquefaciens
ATCC  23844 (Bam)

BPN’ subtilisin AAB05345 23844 Vasantha et al.
(1984)

– 382 66.1
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Fig. 2. Recombinant expression of eGFP in the vector suite.
A.  Fluorescence from cultures containing eGFP in six different fusion constructs. Fluorescence was  normalized to the optical density of the bacterial cultures. Expression from
empty  vectors was used as a control. The Table below shows the presence of tags in the different constructs. B. Analysis of protein integrity of soluble eGFP fusion proteins
by  SDS-PAGE. Sizes of molecular weight standard (M)  are shown to the right (in kDa). Asterisks indicate the expected mass of the recombinant proteins.

using the Trans-Blot Turbo (BioRad) transfer system. A mouse mon-
oclonal anti-polyhistidine antibody (H1029, Sigma-Aldrich) and
a mouse monoclonal anti-MBP antibody (M1321, Sigma-Aldrich)
were used to detect recombinant expression of subtilisin mutants.
The primary antibodies were detected with a secondary rabbit HRP-
linked mouse IgG (NA931 V, GE Healtcare). The HRP-reaction was
developed with the Clarity Western ECL Substrate (BioRad), and
imaged in the Chemi-Doc gel imager (BioRad).

2.6. eGFP fluorescence measurement

Upon harvest, 100 �l culture from eGFP expression was  used for
OD measurements by reading the absorbance at 600 nm using the
FluoStar Optima microplate reader (BMG Labtech). Fluorescence
from cell cultures was measured at excitation 485 nm and emis-
sion 520 nm,  and values were normalized to optical density of the
bacterial cultures to compensate for growth differences.

2.7. Casein-based protease assay

The protease fluorescent detection kit (PF0100, Sigma-Aldrich)
was used for detection of proteolytic activity (Twining, 1984). 5 �l
cleared lysates were used in activity assays with 10 �l FITC-labelled
casein and adjusted to 25 �l with 20 mM phosphate buffer pH 7.6,
and incubated at 60 ◦C for 1 h. Unhydrolyzed proteins were precip-
itated by 75 �l 0.6 N Trichloroacetic Acid (TCA) at 37 ◦C for 30 min.
Hydrolyzed FITC-peptides were then collected by centrifugation
in a Heraeus Pico centrifuge (Thermo Scientific) at 13.000 rpm for
5–10 min. 2 �l supernatant was added to 200 �l 0.5 M TrisHCl pH
8.5 in MicroFluor 1 plates (Thermo Scientific) and fluorescence
was measured at excitation 485 nm and emission 520 nm using
the Hidex Sense microplate reader. As a control, Alcalase ®2.4 L
(P4860, Sigma-Aldrich) was used at a dilution 1:50 000 in lysis
buffer.

3. Results and discussion

3.1. Screening procedure design and vector suite validation

Our aim was  to develop a quick but robust screening procedure
for subtilisin-like proteases. We  identified a set of design require-
ments for such a screening procedure: the entire procedure should
be compatible with a plate format for high throughput; expression
should be carried out in the cytoplasm of E. coli for high yield; the
cloning system should facilitate simple, parallel sub-cloning into a
set of vectors for exploitation of purification and solubility tags; and
finally, a functional screen should be implemented for assessment
of activity from recombinant proteases in lysates. A recently devel-
oped vector suite, which facilitates sub-cloning based on fragment
exchange (FX) of the gene of interest from a cloning vector into mul-
tiple expression vectors, was  chosen as a starting point (Geertsma
and Dutzler, 2011). The approach is highly effective due to the direc-
tional cloning caused by the orientation of the type IIS restriction
sites (SapI) and the presence of counter selection genes. Based on
available vectors (p1 and p5, Table 1), we constructed five new ones,
p2, p3, p6, p7 and p12 (Fig. 1, Table 1), designed to express serine
proteases in fusion to selected affinity and solubility tags. We chose
to include two solubility tags for use in N-terminal fusions, namely
MBP  (Kapust and Waugh, 1999) and SUMO (Malakhov et al., 2004).
In case the tags would interfere with maturation and/or proteolytic
activity, specific protease sites were included for tag removal (3C
and Ulp1 proteases, respectively). All constructs contained either
an N-terminal or C-terminal his-tag to enable detection and protein
purification. The C-terminal his-tag containing vectors were con-
structed to allow purification of mature protease (Ghasemi et al.,
2012; Hu et al., 2013; Sroga and Dordick, 2002). Cloning was scaled
to a plate-based format that allowed parallel cloning of many con-
structs simultaneously.

To validate the expression vectors, we chose the gene encod-
ing eGFP for simple fluorescence-based monitoring of recombinant
protein production. The egfp gene was  cloned into the pINITIAL
cloning vector, verified by sequencing, and sub-cloned into our
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Fig. 3. Activity of recombinant B. licheniformis DSM13 pro-subtilisin in E. coli.
A. Cartoon of the annotated B. licheniformis DSM13 subtilisin with leader sequence (square-shaped box), proteolytic cleavage positions (arrows), catalytic triad
(open  rings) and Pfam domain annotations (PF-coded oval-shaped box). Below the constructs used in this study are shown: the full-length pre-pro subtil-
isin  sequence (residues 1-379, C1), the pro-subtilisin construct (residues 30-379, C2), and the mature subtilisin (residues 106-379, C3). Cartoon is drawn to
scale.  B. The soluble fraction of extracts containing subtilisin constructs (C1-C3) in three vectors, p1, p2 or p3, were screened for proteolytic activity against
FITC-conjugated casein. Fluorescence was normalized to optical density of expression cultures, to account for growth effects. Expression from empty vectors
was  used as a control. Error bars represent standard deviation between two independent experiments. C. Analysis of protein integrity of native pro-subtilisin
and  the catalytic S325A mutant by SDS-PAGE (upper panel) and immunoblots (IB). Antibodies against the his-tag (middle panel) and the MBP  tag (lower panel)
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panel of expression vectors. Next, the vectors were used to express
the eGFP fusion proteins in E. coli MC1061, and the expression cul-
tures were monitored directly for in vivo fluorescence (Fig. 2A)
(such as applied in Scholz et al., 2013). The N-terminally his-tagged
eGFP construct (p1) had a much higher level of fluorescence than
the one with a C-terminal his-tag (p12), which fluoresced just
above background. Both the N- and C-terminally his-tagged con-
structs displayed increased fluorescence when fused to either MBP
or SUMO (Fig. 2A). Protein expression levels in the soluble fraction
correlated well with the in vivo fluorescence data (Fig. 2B), sug-
gesting that the differences in fluorescence were due to different
amounts of soluble protein. These results validated the integrity
of the vectors, and demonstrated that the MBP  and SUMO tags
increased the solubility of the target protein, in line with previous
data (Marblestone et al., 2006).

3.2. Validation of the screening procedure using four Bacillus
subtilisins

To validate the suitability of the vector suite for expression of
serine proteases, the industrially relevant subtilisin from Bacillus
licheniformis (trade name: Alcalase 2.4 L, NovozymesTM) was cho-
sen as a reference protease. As periplasmic expression of subtilisin
in E. coli has shown low expression levels (Ikemura and Inouye,
1988; Ikemura et al., 1987), we decided to attempt cytoplasmic
expression (e.g. Hu et al., 2013; Maciver et al., 1994; Zhang et al.,
2005).

To investigate whether expressing the full-length or other trun-
cated versions of the apr gene would affect solubility and activity,
we cloned three versions of the gene of the Bacillus licheniformis
DSM13 apr into the p1, p2, and p3 vectors (Fig. 3A). The first con-
struct contained the entire apr gene, encoding pre-pro subtilisin
(residues 1-379, C1). The second construct contained a truncated
gene encoding pro-subtilisin (residues 30-379, C2) without the
leader sequence. The third construct contained a truncated gene
where the part encoding both the pre and pro sequences was
removed (residues 106-379, C3). All gene versions were codon-
optimized to improve protein expression. The three apr gene
variants were cloned into pINITIAL, sub-cloned into the three
expression vectors, and expressed in the E. coli MC1061 strain.

To measure the activity of the expressed subtilisin fusions, we
chose an in vitro casein-based protease assay (Twining, 1984). In
this assay, the use of fluorescein isothiocyanate (FITC) conjugated
casein allows direct screens for protease activity in the cleared
extracts, thus eliminating elaborate purification steps. Casein was
chosen to facilitate screening for proteases with broad specificity
for peptide bonds. The soluble extracts containing subtilisin fusions
were tested in the assay, and compared to extracts from strains car-
rying empty plasmid vectors (Fig. 3B). The negative controls using
empty vectors did not exhibit any activity, which suggests that the
activity observed in the extracts containing subtilisin fusion was
not due to E. coli host proteases. Hence, the proteolytic degradation
of FITC-casein in those extracts is likely caused by the activity of
the expressed native subtilisin fusions. Cultures expressing the C2
version were shown to be the optimal construct (Fig. 3B). The C1
version showed significant growth deficiencies, which may  suggest
that the subtilisin leader sequence caused misfolding. Despite this,
some activity was observed with soluble extracts containing C1 in
the FITC-casein assay. In contrast, soluble extracts containing the
C3 construct showed no activity. In line with previous data, these

results strongly suggest that putative leader sequences should be
removed when screening for new subtilisins using our system, but
that the pro sequence should be kept intact (Ikemura et al., 1987;
Ohta et al., 1991; Zhu et al., 1989).

It was not obvious that N-terminal fusion tags would promote
correct folding of subtilisin, as these might hinder folding assisted
by the pro domain. The highest activity was, however, observed
with the extracts containing the N-terminal his-SUMO (p2) and his-
MBP  (p3) fusion constructs of the C2 version of subtilisin (Fig. 3B).
These results show that fusion to a large solubility partner at the
N-terminal of pro-subtilisin promoted production of active serine
proteases. Our data is in line with previous data obtained with MBP
(Kwon et al., 2011; Sakaguchi et al., 2008). To our knowledge, this is
the first time subtilisin has been successfully expressed as a SUMO
fusion protein in E. coli.

As a C-terminal his-tag may  allow downstream purification
and detection after maturation, the C2 subtilisin construct was
also cloned to the p6, p7 and p12 vectors. As an additional neg-
ative control, we constructed a mutant of the truncated apr gene
where the codon for the nucleophilic serine S325 in the catalytic
triad was mutated to an alanine codon (Fig. 1) (Carter and Wells,
1988). The soluble fractions of sonicated cells were analysed by
SDS-PAGE, revealing striking differences in the observed protein
patterns of the native subtilisin fusion proteins and their cognate
mutant controls (Fig. 3C). The lack of high molecular weight pro-
teins in the native subtilisin-containing fractions suggests that they
are expressed and have proteolytic activity. However, there were
no visible protein bands corresponding to the native subtilisin
fusion proteins, and mass spectrometry (MS) analysis of the sam-
ples also failed to identify them. Instead, the MS  analysis revealed
the presence of known protease resistant E. coli membrane and
periplasmic proteins (Table S2). In contrast to the native subtilisin
fusion proteins, most of the mutant subtilisins, with the exception
of the p12 mutant construct, were identified, either directly on the
Coomassie-stained SDS-PAGE, or by immunoblotting using anti-his
and anti-MBP antibodies (Fig. 3C). Overall, this suggests that the
subtilisin fusion proteins are expressed, soluble and active.

All subtilisin fusion proteins were able to digest FITC-casein
(Fig. 3D), but again the highest activity was observed with the
extracts containing the N-terminal his-SUMO and his-MBP fusion
constructs. Interestingly, the conventional subtilisin construct
design with a C-terminal his-tag (p12) was  the second lowest
performing construct in the activity assay. The extent of hydrol-
ysis observed by the SDS-PAGE analysis (Fig. 3C) correlated with
the level of proteolytic activity observed in the FITC-casein assay
(Fig. 3D).

Furthermore, there is a striking similarity to the eGFP validation
experiment (Fig. 2); the effect of the different fusion constructs
on the levels of fluorescence in the eGFP experiment is similar to
the activities observed with the subtilisin fusion proteins (Fig. 3D).
This suggests that the vector suite may  have some generic features,
and that its utility is not restricted to proteases. To conclude, the
described E. coli based expression system was used to successfully
express soluble B. licheniformis DSM13 subtilisin fusion proteins,
which were active in the casein-based activity assay.

As a final validation step of our screening procedure, we per-
formed a mini screen of the B. licheniformis DSM13 apr gene and
three other Bacilli genes from B. paralicheniformis ATCC 9945a, B.
amyloliquefaciens ATCC 23844 and B. subtilis subsp.  subtilis str. 168
(Table 2). The subtilisins encoded by these genes are thermophilic

were used to identify the recombinant mutant constructs. Sizes of molecular weight standard (M)  are shown to the right (in kDa). Asterisks indicate the expected mass of the
unprocessed recombinant proteins. The mature subtilisin is 27 kDa D. FITC-casein activity of soluble E. coli extracts containing fusion constructs of native pro-subtilisin from
B.  licheniformis DSM13 and the catalytic S325A mutant. Hydrolysis was  measured as in B, except error bars show standard deviation in two replicates in one representative
experiment.
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Fig. 4. Proteolytic activity of four Bacilli subtilisin homologues.
The soluble fractions of E. coli extracts containing fusion constructs of the four homologous subtilisins were screened for proteolytic activity against FITC-conjugated casein.
Hydrolysis was  measured as in Fig. 3, where error bars show standard deviation in two  replicates in one representative experiment. Bli, Bacillus licheniformis DSM13; Bpa,
Bacillus paralicheniformis ATCC 9945a;  Bsu, Bacillus subtilis subsp.  subtilis str. 168; Bam, Bacillus amyloliquefaciens ATCC 23844.

with temperature optimums above 40 ◦C (Table 2) (examples in
Ferreira et al., 2003; Peng et al., 2003; Sellami-Kamoun et al.,
2008), and their pairwise sequence identities range from 66 to
98% (Table 2). The three additional apr genes, without the leader
sequence encoding part, were cloned into the six expression vec-
tors. Each of the four subtilisins was expressed from the six
expression plasmids, and soluble extracts were tested for pro-
tease activity using the FITC-casein assay (Fig. 4). All four subtilisin
targets were positively identified as active proteases in four or
five of the constructs, using three times the background signal
to determine the threshold. The two constructs that showed the
most consistent activity across the different subtilisins were the
his-MBP (p2) and his-SUMO fusions (p3). This suggests that one
could restrict future screens for new subtilisins to only the p2 and
p3 vectors, thus increasing the throughput of the system. How-
ever, the high activity of the p12 construct of B. amyloliquefaciens
ATCC 23844 subtilisin (Fig. 4) demonstrates the merit of including
additional vectors in the screen, as the C-terminal his tag allows
for downstream purification and characterization. This construct
also indicates that the success of recombinant expression from a
particular vector may  be protein-dependent, and that a range of
expression vehicles with different properties may  be valuable to
identify positive candidates.

4. Conclusion

The development of a screening procedure for the identifica-
tion of recombinant subtilisins has been described. The overall
procedure enables a four-day approach from the sub-cloning of
candidate genes in expression vectors to the evaluation of enzy-
matic activity (Fig. 5). The approach utilizes a rapid cloning method
for sub-cloning of genes into six expression vectors and subsequent
recombinant expression in E. coli MC1061, an ultrasound-based
cell lysis and direct activity assessment of soluble fractions with
FITC-casein. The screening approach has been validated using four
homologous Bacilli apr encoded subtilisins of varying degree of
sequence identities (ranging from 65 to 98%) and temperature
profiles (ranging roughly 40–80 ◦C). All subtilisins were identi-

Fig. 5. A flow-chart of the rapid, solubility-optimized screening procedure for
recombinant subtilisins in E. coli.
The procedure has been developed and tailored to subtilisins, and enables a four-
day approach succeeding from sub-cloning of candidate genes in expression vectors
to  the evaluation of enzymatic activity. The screening-approach utilizes a rapid and
versatile FX-cloning regime, subsequent recombinant production in E. coli MC1061,
an  ultrasound-based cell lysis and activity assaying with FITC-casein.

fied as active proteases in at least four of the constructs. Hence,
this approach is suitable for application in discovery of novel
subtilisin-like proteases or for application on engineered subtilisin-
like proteases (Bryan, 2000; Wells and Estell, 1988) to effectively
screen production of mutants and their enzymatic activity. We
also showed, using eGFP, that the utility of the vector suite is not
restricted to proteases. Other applications may, however, require
tailoring to the specific type of protein, depending on their proper-
ties, such as metal-requirement, temperature and pH range.
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Abstract
Intracellular subtilisin proteases (ISPs) have important roles in protein processing during the sta-

tionary phase in bacteria. Their unregulated protein degrading activity may have adverse effects

inside a cell, but little is known about their regulatory mechanism. Until now, ISPs have mostly

been described from Bacillus species, with structural data from a single homolog. Here, we study

a marine ISP originating from a phylogenetically distinct genus, Planococcus sp. The enzyme was

successfully overexpressed in E. coli, and is active in presence of calcium, which is thought to

have a role in minor, but essential, structural rearrangements needed for catalytic activity. The

ISP operates at alkaline pH and at moderate temperatures, and has a corresponding melting

temperature around 60 �C. The high-resolution 3-dimensional structure reported here, repre-

sents an ISP with an intact catalytic triad albeit in a configuration with an inhibitory pro-peptide

bound. The pro-peptide is removed in other homologs, but the removal of the pro-peptide from

the Planococcus sp. AW02J18 ISP appears to be different, and possibly involves several steps. A

first processing step is described here as the removal of 2 immediate N-terminal residues. Fur-

thermore, the pro-peptide contains a conserved LIPY/F-motif, which was found to be involved

in inhibition of the catalytic activity.
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1 | INTRODUCTION

ISPs have key roles in cell cycle regulation, specifically in protein recy-

cling by processing proteins during transition to the stationary

phase.1,2 To prevent proteolysis that may be lethal to the cell, the

activity of an intracellular protease must be tightly controlled.

Although a potential ISP inhibitor protein has been identified,3,4 the

primary mechanism of regulation is likely intrinsic.5,6 In the precursor

protein, an N-terminal pro-peptide of typically 16-20 residues binds

across the active site and inhibits activity. As shown for a few

homologs,6,7 the pro-peptide is released by intra-molecular maturation

allowing the enzyme to act on exogenous substrates. ISPs are

homodimeric,6 which contributes to making ISPs a structurally distinct

family of subtilases. The catalytic domain of ISPs are homologous to

those of other members of the Subtilisin superfamily, such as the

extracellular subtilisin proteases (ESPs), which is a “Peptidase S8”

domain in the Pfam classification.8 According to the MEROPS pepti-

dase database,9 both ISPs and ESPs belong to the S08 family in

clan SB.

Within this domain a catalytic triad is arranged as an aspartate, a

histidine and a serine (Asp32, His64, and Ser221, respectively, refer-

ring to the processed SubtilisinE from B. subtilis; Uniprot ID:

CAB12870). In brief, the nitrogen-bonded protein (Nε2-H) of His64 is

hydrogen bonded to the hydroxyl group proton of Ser221. This inter-

action causes a charge separation of the hydroxyl, deprotonating the

serine oxygen and activating it for nucleophilic attack on the carbonyl

of the peptide substrate, which ultimately leads to breakage of the

peptide bond.10 Aside from homology within the catalytic domain, sig-

nificant architectural differences exist between ISPs and ESPs. The

N-termini of ESPs contain short leader sequences of about 20-30
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residues for protein secretion,11 followed by a pro-domain of typically

60-80 residues,12,13 which is not conserved in sequence, but vital to

their folding and function.14 In an analogous manner to the ISP pro-

peptide, the ESP pro-domain is processed intra-molecularly during

maturation of the enzyme into an active conformation. The pro-

domain has dual roles in acting as an inhibitor,15,16 and as a molecular

chaperone that guides folding of the active enzyme.16–18

The first ESP structure was solved in 1969,19 and has since been

reported for several homologues20,21 and a number of engineered

mutants.22 For ISPs, however, structural information is known from a

single homologue, the Bacillus clausii ISP,5,6 with 4 structures reported

(PDB IDs: 2WVT, 2WWT, 2X8J, and 2XRM). The 4 structures repre-

sent 2 activity states: the inactive state with the inhibitory pro-

peptide bound and the active state without the pro-peptide bound.

Notably, all B. clausii structures are from inactive mutants carrying cat-

alytic Ser250 to Ala mutations.

In ISPs, the leader sequence and pro-domain of ESPs are replaced

with a pro-peptide (also termed N-terminal extension). The pro-

peptide binds across the active site, with residues Phe4-Leu6 forming

a central β-strand of a 3-stranded antiparallel β-sheet.6 The pro-

peptide also contains a LIPY/F motif, not found in ESPs. In B. clausii

ISP this motif is involved in inhibiting the active site. Residues within

the motif contribute to disruption of the conformation of the catalytic

triad by shifting the catalytic Ser and His residues apart.5 According to

a standardized residue nomenclature for peptide binding to the active

site,23 residues N-terminal to the scissile bond of the peptide sub-

strate are termed P4, P3, P2, and P1, and those C-terminal to the

bond are termed P1’, P2’, P3’, and P4’, where the scissile bond is

between P1 and P1’. The corresponding sites in the enzyme are S4,

S3, S2, S1, S1’, S2’, S3’, and S4’. In B. clausii ISP, Leu6 and Ile7 corre-

spond to P2 and P1 and are pointing inwards into the hydrophobic

pocket at the S2 and S1 sites, respectively. Pro8 holds a unique posi-

tion at the centre of a small curve, which displaces the peptide bond

between Ile7 (P1 site) and Pro8 (P1’ site) out of reach of the active site

Ser, whereas Tyr9 is occupying the S1’ site. The proline-centred curve

is unique in B. clausii ISP, and contrasts the scissile bond in ESPs,

which is positioned to allow autoproteolytic processing. Altogether,

the structure suggests that the residues in the pro-peptide are

involved in blocking the active site serine.5,6

Both ESPs and B. clausii ISP harbor a conserved high affinity

metal-binding site occupied by a metal ion that serves a structural

role.5,6,24,25 The high affinity metal-binding site in ESPs is occupied by

calcium,24,26 whereas in B. clausii ISP it is occupied by sodium.5,6 In

addition, B. clausii ISP has 2 unique binding sites for divalent metal

ions, probably occupied by calcium ions, in each monomer: 1 close to

the dimer interface and 1 in proximity to the active site. The latter is

involved in ordering a loop that contributes to formation of 1 of the

binding sites (S1) involved in catalysis. Due to the processing of the

pro-peptide and the positioning of calcium, the catalytic triad and sub-

strate binding cleft are significantly rearranged, especially at the S1

binding site.5 In a proposed model for ISP regulation,27 it was sug-

gested that once a minor fraction of the pool of ISPs adopts an open

conformation, calcium binding takes place and reshapes the S1 bind-

ing site, which ultimately releases the pro-peptide within this popula-

tion and leads to a cascade of activation of other ISPs. The sequence

of events and details of how the maturation precedes, in particular

the role of calcium, are not known.

This study reports an ISP from a marine isolate, Planococcus

sp. AW02J18, which is from a related, but phylogenetically distinct

genus to B. clausii. Here, we present biochemical data for the recombi-

nant enzyme, showing it is active in presence of calcium, at alkaline

pH and moderate temperatures. We furthermore present a high-

resolution structure of an ISP with an intact catalytic triad and an

inhibitory pro-peptide bound across the active site. The structure sup-

ports previous findings and unique features of ISPs, such as its dimeric

nature, sodium binding in the high-affinity metal-binding site and

active site blocking by the pro-peptide. The processing of the pro-

peptide appears however to be different from reported ISPs, possibly

involving multiple processing steps. We also present mutagenesis data

supporting an inhibitory role of the LIPY/F motif of the pro-peptide.

2 | MATERIALS AND METHODS

2.1 | In silico identification of an intracellular
subtilisin protease

The ISP sequence was identified from sequence-based mining of a

marine bacterial isolate, Planococcus sp. AW02J18 (Supporting Infor-

mation Table S1). This isolate was collected during expeditions in the

coastal areas of Lofoten in 2009, and is stored in a bacterial collection

at the University of Tromsø. The sampling procedure and collection

has been presented elsewhere.28 Genomic material was isolated for

Illumina sequencing (MiSeq). Using a sequence-based approach, trans-

lated genomic sequences from a marine bacterial collection were

mined for subtilisin-like proteases by searching for S08 family homo-

logs against the MEROPS database.9 The ISP candidate was identified

in this data set, and the sequence has been deposited in GenBank

with the accession code MG786190.

2.2 | The LIPY/F sequence conservation

Sequences homologous to Planococcus sp. AW02J18 ISP were identi-

fied using the UniProt blast search engine (default settings) against

the UniRef90 database (UniProt release 2017_10).29 Sequence hit

number 156, UniRef90_A0A136C445, was the first sequence to con-

tain 2 motif mutations (LVNE) making the motif unlikely to be func-

tional and was used to define the distance cut-off (expect value 4e-

107; 57% sequence identity to Planococcus sp. AW02J18 ISP). Hence,

the top 155 sequence hits were used to make a multiple sequence

alignment (MAFFT, default settings).30 Three sequences were frag-

ments that lacked the LIPY/F motif, and were manually removed

(UniRef90: UPI00098840FB, UPI000590D2A7, UPI000689F3EC).

The alignment containing the remaining 152 sequences was used to

construct a sequence logo (default parameters).31

2.3 | Sub-cloning of the isp gene to expression
vectors

To facilitate enzyme expression we used our previously developed

screening procedure for subtilisin-like serine proteases.32 The
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Planococcus sp. AW02J18 ISP protein sequence was used as template

for gene synthesis (GenScript), and the synthetic isp gene was codon-

optimized to improve its expression in E. coli. The isp gene was

synthesized with flanking SapI sites, and delivered in a customized

SapI-free pUC57 vector with kanamycin selection marker. The isp

gene was sub-cloned from the delivery vector to a suite of expression

vectors using a fragment exchange (FX) cloning method.33 Construction

of the expression vectors have been described previously.32

2.4 | Gene truncation and mutagenesis

Truncation constructs and mutants were prepared from the pUC57

template. Primers were designed to contain a SapI-cloning site and a

15-20 bp gene-specific region targeting the desired truncation start.

Primers in Supporting Information Table S2 were used to amplify the

truncated ISP versions by PCR using Phusion polymerase. Gene frag-

ments were purified, and cloned into the pINITIAL cloning vector by

FX-cloning.32 Plasmids were sequenced to confirm correct trunca-

tions. Point mutations were prepared by site-directed mutagenesis

using primers in Supporting Information Table S2. Truncation con-

structs and mutants were sub-cloned into the p12 expression vector,

using FX cloning.

2.5 | Small-scale expression and analysis of protein
integrity

Small-scale recombinant expression was carried out according to the

protocol described previously32 in 4 mL culture volumes. Following

expression, cells were collected and resuspended in 1 mL lysis buffer

(50 mM Tris-HCl pH 8.5, 50 mM NaCl, 0.25 mg/mL lysozyme, 10%

(v/v) glycerol). Lysis was completed by ultrasonication using two 5-s

pulses at 40-60% amplitude with a CV-18 probe powered by an Ultra-

sonic Homogenizer 4710 (Cole Parmer). Lysates were cleared by cen-

trifugation at 4600 × g for 20 min. Cleared lysate samples

(representing soluble fraction) were analyzed by SDS-PAGE and

immunoblot as described previously.32 As background controls,

lysates containing empty vector were used, herein termed GS due to

the insertion of triple GS encoding sequence as a replacement of the

ccdB gene in the expression vector.32

Semi-quantitative analysis of recombinant protein in cleared

extracts was performed in Image Lab 3.0 (BioRad). Target band inten-

sities were extracted from image data of Coomassie-stained SDS-

PAGE gels, and normalized to the total protein intensities in the lane

excluding the target band intensities to adjust for variable growth

rates and protein expression levels.

2.6 | Large-scale expression

E. coli MC1061 cells containing the p1:ISP, p12:ISP, or the p12:ISP-

S251A (catalytic mutant) constructs were grown in 1 L terrific broth

medium (1.2% tryptone, 2.4% yeast extract, 0.4% glycerol, 17 mM

KH2PO4, and 72 mM K2HPO4) supplemented with ampicillin (100 μg/

mL) in 2.5 L Thomson's Ultra Yield™ flasks (Thomson Instrument

Company). Protein expression was induced by 0.1% (w/v) L-arabinose

overnight at 20 �C with 250 rpm shaking. Cells were collected by

centrifugation (JLA-9.1000 rotor, Beckman) at 7500 × g, 30 min at

4 �C, and stored at −20 �C.

2.7 | Protein purification

Frozen cell pellets from about 1 L culture were resuspended in

50 mM Tris HCl pH 7.5 at room temperature (RT, roughly around

20 �C), 150 mM NaCl and 0.25 mg/mL lysozyme. After incubation for

30 min at 37 �C and 250 rpm, the cell suspension was cooled on ice

before sonication in a final concentration of 500 mM NaCl. Cell debris

was removed by centrifugation at 20,000 × g for 20 min at 4 �C (JA-

25.50 rotor, Beckman). The cleared lysate was loaded onto 2 × 5 mL

HisTrap FF crude columns (GE Healthcare) equilibrated with 50 mM

Tris-HCl pH 7.5 (at RT), 500 mM NaCl and 10 mM imidazole on the

ÄKTA Pure (GE Healthcare) system. Bound proteins were eluted in

the same buffer containing 800 mM imidazole. Fractions containing

protein were pooled and dialyzed 2 times in Spectra Por® dialysis

tubes (Spectrum Laboratories, Inc.) with 6-8 kilo dalton (kDa) MWCO

against 1 L 20 mM Tris-HCl pH 7.5 overnight at 4 �C. 1 mM CaCl2

was added to a 50 μg/mL ISP solution and incubated overnight at RT

during slow stirring, yielding what we herein term Asn3-ISP (approx.

35 kDa). Protein solutions were concentrated using Amicon 10 kDa

MWCO spin-filter columns (Merck) with buffer exchange to 50 mM

Tris HCl pH 7.5, 50 mM NaCl and stored in aliquots at 4 �C at con-

centrations 80 mg/mL (WT) and 150 mg/mL (mutant). From 1 L

expression culture yields of 0.2 g of purified Asn3-ISP (no tags), and

0.4 g of the catalytic mutant (with C-terminal His-tag) were typically

achieved. Purity and protein mass estimation was assessed by quanti-

tative analysis in Image Lab 3.0 (BioRad), by extracting the target band

intensities from image data of Coomassie-stained SDS-PAGE gels.

The size exclusion chromatography experiments were ran using a

pre-calibrated Superdex 200 10/300 GL (GE Healthcare) column on

the ÄKTA Explorer (GE Healthcare) system. The system was equili-

brated using the loading buffer (50 mM Tris-HCl pH 7.5, 150 mM

NaCl). 500 μl Asn3-ISP at 0.8 mg/mL concentration was loaded onto

the column in loading buffer in the absence or presence of 2 mM

CaCl2 or 1 mM EDTA. The CaCl2 supplemented sample was prepared

immediately before the chromatography experiment to avoid autoly-

sis, and the EDTA-treated samples were prepared overnight in order

to allow time for chelation.

Mass spectrometry (MS) analyses were performed at the PROBE

facility (University of Bergen, Norway). N-Terminal amino acid

sequencing was carried out at Alta Bioscience (University of Birming-

ham, United Kingdom).

2.8 | Protease activity assays

The protease fluorescent detection kit (Sigma-Aldrich) was used for

routine detection of proteolytic activity as previously described.32,34

Briefly, 10 μL lysate or 5 μM enzyme was assessed for activity on

FITC-casein in 50 mM TrisHCl pH 8.5 (at RT), 50 mM NaCl, in

absence or presence of 1 mM CaCl2 in a total volume of 50 μL at

37 �C for 1 h unless otherwise stated. Temperature optimum was

assayed using the FITC-casein assay. For the mutants, activity was

assessed using EnzChek™ Protease Assay Kit (ThermoFischer).
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10 μg/mL BODIPY FL casein was prepared by resuspending the sub-

strate in 50 mM Tris-HCl pH 8.5 (at RT) and 50 mM NaCl. 12.5 μL of

BODIPY-FL casein was used per reaction, with 10 μL cleared extract

in 50 mM Tris pH 8.5 (at RT), 50 mM NaCl and 1 mM CaCl2 in a final

volume of 100 μL. Samples were incubated at 37 �C for 1 h, and fluo-

rescence was read.

pH optimum was determined using 1 μM Asn3-ISP, 350 μM

N-succinyl-AAPF p-nitroanilide (Sigma-Aldrich) in 50 mM NaCl, 1 mM

CaCl2, and 50 mM buffer (citrate buffer pH 3.0-6.0, acetate buffer

pH 4.0-6.0, sodium phosphate buffer pH 6.0-8.0, Tris-HCl buffer

pH 7.0-9.0 and glycine buffer pH 9.0-11.0). Reaction was run at

25 �C for 20 min, in presence of excess substrate.

2.9 | Determining the specific activity

Specific activity was determined using a protease colorimetric detec-

tion kit (Sigma-Aldrich). To avoid assay interference with amino

groups from Tris, Asn3-ISP was dialyzed against 25 mM borate/NaOH

pH 8.2, 50 mM NaCl before assaying. Casein was solubilized in water

at pH 8.3. One unit is defined as the amount of enzyme that will

hydrolyze casein to produce color (as determined by addition of Folin-

Ciocalteu's Reagent) equivalent to 1.0 μmole tyrosine per minute at

pH 8.3 at 37 �C in presence of 10 mM CaCl2.

2.10 | Differential scanning calorimetry

Prior to Differential Scanning Calorimetry (DSC) measurements, ali-

quots of Asn3-ISP at approximately 1 mg/mL were dialyzed into the

following conditions overnight at 4 �C: 50 mM Hepes pH 8.0, 50 mM

NaCl (DSC buffer); DSC buffer with 2 mM CaCl2; DSC buffer with

1 mM ethylenediaminetetraacetic acid (EDTA). Thermal unfolding tran-

sitions were measured using a Nano-Differential scanning Calorimeter-

III (Calorimetry Sciences Corporation) from 5 to 75 �C with scan rates

of 1 �C/s. Buffer from the final dialysis step was used as a reference.

Data were analyzed using the NanoAnalyze software (TA Instruments).

2.11 | Crystallization

Crystallization experiments were performed with a stock solution of puri-

fied Asn3-ISP at 30 mg/mL in 50 mM TrisHCl pH 7.5 (at RT), 50 mM

NaCl. Initial crystallization conditions were screened using the vapor dif-

fusion sitting drop method set up by a Phoenix crystallization robot (Art

Robbins Instruments). The plates were set up with 60 μl reservoirs solu-

tions and sitting drops with equal amounts of reservoir solution mixed

with protein stock solution in a total drop volume of 1 μl. The screens

were incubated at 20 �C. Diffraction-quality crystals were obtained from

6 conditions, as outlined in Supporting Information Table S3.

2.12 | X-ray data collection

Crystals grown in 0.25 M NH4Ac, 22% PEG 1500, 0.1 M Na-Citrate

pH 4.0, were transferred through a cryoprotectant solution (crystalli-

zation conditions with 20% (v/v) glycerol added, thereafter mounted

in a nylon loop and flash-cooled in liquid N2. X-ray diffraction data

were collected at the European Synchrotron Radiation Facility (ESRF;

Grenoble, France) beamline ID23EH1. The data were integrated by

XDS/XSCALE,35 scaled and analyzed by programs in the CCP4 pro-

gram suite36 through autoPROC.37 A summary of the data collection

statistics is found in Table 1.

2.13 | Structure determination

The crystal structure was solved by molecular replacement using Mol-

Rep in the CCP4 program package36 with 2XRM5 as search model

(a representative structure of the homologous ISP from B. clausii). The

initial refinement was executed in Refmac38 followed by automated

model improvement in Buccaneer.39 The manual building was done in

Coot40 interspersed by cycles of refinement in Phenix41 and resulted

in final Rcryst/Rfree values of 13.04/15.03. A summary of the refine-

ment statistics is shown in Table 2. The atomic coordinates and struc-

ture factors have been deposited in the RCSB Protein Data Bank

(www.rcsb.org) with the accession code 6F9M. Figures presented in

the results section were generated using Chimera.42

3 | RESULTS

3.1 | A new intracellular subtilisin protease with a
conserved LIPY/F motif

A previously uncharacterized protease from Planococcus sp. AW02J18

was identified in an enzyme discovery initiative as a candidate for

expression in E. coli (Supporting Information Table S1). According to

sequence analysis, this protease contained a catalytic domain

(Peptidase_S8/PF00082) as annotated by Pfam (residues 40-311,

Figure 1A). Sequence analysis also revealed that it shared 53%

sequence identity to the previously described intracellular subtilisin

protease (ISP) from B. clausii6 (Supporting Information Figure S1). As

expected from SignalP analysis, the ISP sequence does not contain a

leader sequence to direct its export,43 and is thus predicted to have

TABLE 1 Data collection and processing statisticsa

Diffraction source/Beamline ESRF ID23EH1

Wavelength (Å) 0.98

Detector Q315R CCD (ADSC)

Crystal-to-detector distance (mm) 214.77

Rotation range pr. image (�) 0.1

Total rotation range (�) 130

Space group P212121

a, b, c (Å) 70.17, 85.18, 104.58

α, β, γ (�) 90, 90, 90

Mosaicity (�) 0.2

Resolution range (Å) 66.05-1.30 (1.32-1.30)

Total No. of reflections 675238 (36457)

No. of unique reflections 142753 (7606)

Completeness (%) 92.2 (99.1)

Multiplicity 4.7 (4.8)

<I/σ (I)> 16.4 (2.2)

Rp.i.m. 0.026 (0.412)

Wilson B-factor (Å2) 17.39

a Values in parentheses are for the outermost shell
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an intracellular localization. Instead, the Planococcus sp. AW02J18 ISP

contains a short pro-peptide with a LIPY-sequence at the N-terminus,

also identified in other homologues (Supporting Information

Figure S1). Although the LIPY sequence has been reported as a con-

served motif,6 evidence of its conservation has not previously been

presented. To analyze the evolutionary conservation of the motif,

sequences homologous to the Planococcus sp. AW02J18 ISP were col-

lected. Using 152 UniRef90 sequences in a sequence alignment, we

analyzed conservation of the motif in a context with 2 flanking resi-

dues on each side (8 residue window). A LIPY/F motif is derived from

the alignment (Figure 1B). A hydrophobic leucine or valine, or in rare

cases an isoleucine occurs at the first position. At the second position,

the motif contains most often a hydrophobic isoleucine, but in certain

sequences phenylalanine, leucine or valine. The third position is occu-

pied by a highly conserved proline found in all but 2 sequences. This

residue is structurally significant as part of the proline-centred curve

in B. clausii ISP, which positions the scissile bond between proline and

the previous residue out of reach for autocatalysis. At the fourth posi-

tion, an aromatic tyrosine, phenylalanine or in rare cases histidine

occurs. At flanking positions of these 4 residues some consensus

occurs, such as a charged residues at proximate positions to the

LIPY/F motif, and hydrophobic residues at positions 2 residues

upstream and downstream (Figure 1B). A 4-residue motif can be

expressed using the Prosite pattern syntax as [LVI]-[IFLV]-P-[YFH].

3.2 | The first 2 residues of the calcium-dependent
ISP is processed

The full-length isp gene from Planococcus sp. AW02J18 was sub-

cloned to a suite of expression vectors for heterologous expression.

From SDS-PAGE analysis, we found that all recombinant constructs

yielded soluble enzyme, but that solubility was further improved by

use of fusion tags (Figure 1C). Since many serine proteases require

calcium for proper folding and structural stability, activity was

assessed on fluorescein isothiocyanate (FITC) conjugated casein in the

absence or presence of calcium ions. Compared to extracts from

strains carrying empty vectors, all recombinant enzymes were active,

but required calcium for activity (Figure 1D). The p1-construct encod-

ing an N-terminal deca-histidine (His) tag was chosen for in-depth

characterization due to its potential to yield a recombinant enzyme

that would mimic the native processed ISP, and ease downstream

purification (Figure 1). In the absence of calcium, immobilized metal

affinity chromatography (IMAC) was used for protein purification of

His-ISP (approx. 38 kDa). In analogy to the ISP from B. clausii, the

enzyme was incubated in presence of calcium to mature by autopro-

teolysis. From SDS-PAGE we obtained a “matured ISP”, with an

expected lower mass (�35 kDa) than full-length, of 95% purity

(Figure 2A). With N-terminal sequencing we determined the

starting residue on this protein entity to Asn3; we thus termed this

protein Asn3-ISP. Using Asn3-ISP, we found that increasing concen-

trations of calcium had a positive effect on activity (Figure 2B),

whereas EDTA inactivated the enzyme (Figure 2C). From SDS-PAGE

analysis of the reaction products, we found that Asn3-ISP was further

processed or degraded in presence of calcium (Figure 2C). In absence

of calcium or in calcium-depleted reactions, the enzyme was however

persistent against proteolysis (Figure 2C), and could be stored for

1 month without any effect on activity (Supporting Information

Figure S2).

To further understand the processing, calcium chloride was added

at various concentrations to the full-length recombinant enzyme

(His-ISP) at a pH range 7.0-8.5. SDS-PAGE revealed that 2 processed

ISP species < 37 kDa appeared in presence of 1 mM CaCl2

(Figure 2D, protein bands numbered 2-3). N-terminal sequencing was

performed on these 2 processed protein species, but data were only

conclusive for the uppermost processed protein. In this protein, the

artificial N-terminal residues (His-tag and 3C protease site) and the

2 first native residues of the ISP (residues Met1, Lys2) were pro-

cessed. This confirms what is referred to as the Asn3-ISP. Increasing

the concentration of calcium chloride up to 10 mM led to further pro-

cessing as well as the appearance of degradation products (that is,

fragments smaller than the 31 kDa peptidase domain). MS analyses

were performed on various entities after calcium-induced activation,

with identification of ISP peptides in all samples (Supporting Informa-

tion Figure S3 and Table S5). No obvious sequential pattern between

protein entities was identified. Tag-removal was confirmed by immu-

noblot analysis and compared to a catalytic mutant designed by repla-

cing the catalytic Ser251 with Ala (Supporting Information Figure S4).

The processing of the recombinant ISP from Planococcus

sp. AW02J18 appears to occur in multiple steps.

TABLE 2 Structure determination and refinement statistics

Resolution range (Å) 44.563-1.298

Completeness (%) 92.19

No. of reflection, working set 142740

No. of reflection, reference set 1992

Final Rcryst 13.04

Final Rfree 15.03

MolProbity score 1.315

Clashscore 3.35

No. of non-H atoms

Proteina 4548

Water 549

Otherb 30

Total 5127

R.m.s. deviations

Bonds (Å) 0.007

Angles (�) 0.962

Average B factors (Å2)

Overall 23.57

Protein 21.87

Water 37.20

Other* 32.01

Ramachandran plot (%)

Preferred 96.87

Allowed 2.61

Outliers 0.52

a Two molecules pr. asymmetric unit.
b Two molecules of acetate, sodium and triethylene glycol (Peg 3) were

identified in the electron density and modeled. These occupy similar
positions around the 2 protein molecules in the asymmetric unit.

BJERGA ET AL. 5



3.3 | Planococcus sp. AW02J18 ISP operates at
moderate temperatures and alkaline pH

To identify its optimal conditions for further activity assessments,

Asn3-ISP was characterized with respect to the specific activity, tem-

perature and pH optimum in casein assays (Figure 3). It was found to

operate optimally at pH 11.0, but was active across pH 7.0-11.0,

whereas no activity was observed below pH 6.0 (Figure 3A). Precipita-

tion was observed at pH 4.0 in both citrate and acetate buffers, likely

explained by an estimated pI around 4. The temperature optimum was

found to be around 45 �C (Figure 3B). No activity was identified

above 60 �C, which indicates that the protein is destabilized at high

temperatures. Using optimal temperature (45 �C) in alkaline condi-

tions (pH 8.3) and 10 mM CaCl2 the specific activity of the ISP was

determined on casein to be 13 ± 1 U/mg.

To determine the thermal unfolding temperature of Asn3-ISP,

DSC measurements were carried out (Figure 4). The enzyme unfolded

as a single peak, which could be fitted to 2 two-state transitions with

melting temperatures (Tm) separated by approximately 3.0 �C

(Table 3). In the DSC data, the apparent Tm in absence of calcium and

EDTA was around 60 �C, which is consistent with the data on temper-

ature optimum and stability (Figure 4A). Addition of CaCl2 increased

the directly measured Tmax by 1.7 �C, and the apparent Tm by up to

3.0 �C indicating that calcium has a stabilizing effect on the enzyme

(Figure 4B). The presence of EDTA slightly increased the apparent Tm

(Figure 4C). Repeat scanning did not give rise to any subsequent

unfolding transitions, indicating that ISP does not refold on the time-

scale used for this experiment; therefore the thermodynamics of

unfolding were not analyzed further. No exothermic signals indicative

of aggregation were present in the raw data (not shown), and no visi-

ble precipitate was observed suggesting that these data can be used

in a comparative manner to understand the effect of EDTA and cal-

cium on the system.

3.4 | Structure of ISP with an intact catalytic triad
and pro-peptide

ISPs are distinct from ESPs with regards to the N-terminal pro-pep-

tide, their dimeric structure, and the sodium binding in the high affin-

ity metal binding site,5,6 but details regarding their maturation are still

unclear. To shed light on the latter, the crystal structure of the

Asn3-ISP was determined by X-ray crystallography to a resolution of

1.3 Å (Figure 5). In addition to being the second unique structure of

an ISP, it is the first structure of an ISP with a native catalytic triad,

and it represents the highest resolution structure of this enzyme fam-

ily to date. The structure of the ISP (residue 3-310) is dimeric, with

each monomer including an almost intact pro-peptide bound across

the active site. Using size exclusion chromatography (SEC) the molec-

ular weight of Asn3-ISP in solution was estimated. The absence of cal-

cium and presence of EDTA gave similar elution profiles in SEC and

FIGURE 1 Overexpression and activity assessment of the recombinant ISP. A, A cartoon of the ISP architecture drawn to scale. Black box,

LIPY/F motif; oval circle, Peptidase_S08 Pfam domain (PF00082); green pins point to residues involved in catalysis (catalytic triad). B,
Sequence logo showing the evolutionary conservation of the LIPY/F motif based on an alignment with 152 ISP sequences. C, ISP
constructs were produced from multiple vectors, and cleared lysates were inspected on SDS-PAGE for the presence of soluble
overexpressed proteins. Arrows indicate soluble ISP proteins. Fusion partners from the various vectors are: p1, N-terminal His-tag; p2, N-
terminal His-tag and MBP; p3; N-terminal His-tag and SUMO protein; p7, N-terminal MBP and C-terminal His-tag; p12; C-terminal His-tag.
Empty vector controls (GS) will produce fusion partners only, wherein MBP and SUMO can be observed on SDS-PAGE. M, BioRad's
Precision Plus Protein™ Dual Color Standard. D, Cleared lysates (see C for details), including empty vector controls (GS) were assayed over
night with FITC-casein, in the presence (+) or absence (−) of 1 mM CaCl2. Dotted line indicates the highest data point for background
measurements (in the absence of calcium)
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mass estimates; here, 13.4 mL and 115 kDa, respectively (Supporting

Information Figure S5). In presence of calcium, the Asn3-ISP eluted in

2 peaks at 13.2 and 14.1 mL corresponding to masses of approxi-

mately 128 and 88 kDa, respectively (referring to the regression line

produced from known calibration proteins). Based on the theoretical

mass of Asn3-ISP being 35 kDa, this suggests 3.3 monomers per olig-

omer in absence of calcium. In presence of calcium the oligomeric

state shifts to a mixed population of both 3.7 and 2.5 monomers per

oligomer. In the structure, there are 2 molecules of triethylene glycol

(Peg3) symmetrically bound at the dimer interface distant from the

active site (Figure 5A), which may be adducts of Peg 1500 during crys-

tallization or introduced during recombinant expression. In 3 structures

of ISP from B. clausii, similar molecules are bound in this region: a

strontium ion and a tetraethylene glycol molecule bound in an over-

lapping position (PDB ID: 2XRM); 3 water molecules bound in the

same region (PDB ID: 2WWT); and Peg3 (PDB ID: 2X8J) almost per-

fectly overlapping the conformation observed in the Planococcus

sp. AW02J18 ISP structure.

The structure contains a catalytic core (residues 20-310) overlap-

ping the Pfam assigned Peptidase_S8 domain (residues 40-311). The

first 2 residues, 2 loop regions (residues 184-191 and 217-223), and

the C-terminal 20 residues are not defined in the electron density.

Superpositioning of Planococcus sp. AW02J18 ISP (chain A) with the

catalytic mutant B. clausii ISP (PDB ID: 2X8J, chain A) gave an RMSD

of 0.67 Å across 282 atom pairs in an improved fit where far-apart

residues are removed (across all 292 atom pairs of residues in the

alignment: 1.21 Å), confirming that they have the same overall fold

(Figure 5B). Superpositioning showed that catalytic triad residues are

structurally conserved, although distances are slightly different in each

monomer. Two distinct conformations were modelled in each mono-

mer due to poor electron density: Monomer A, residues 248-252

(including the catalytic triad residue Ser251) and Monomer B, residues

16-20 (including parts of the pro-peptide). In monomer A the dis-

tances between Ser251Oγ and His86Nϵ2 is 3.20 and 3.58 Å, respec-

tively, whereas the corresponding distance for monomer B measures

to 3.82 Å (Figure 5C). Superpositioning with the structure represent-

ing the active state of B. clausii ISP (PDB ID: 2XRM) has a shorter dis-

tance, although only estimated, as both B. clausii structures are

Ser251Ala mutants. One surface loop (residues 97-104) is different,

probably reflecting an insertion in the Planococcus sp. AW02J18 ISP

(Supporting Information Figure S1). Although the side-chains of some

residues in this loop (residues Asp100, Glu101, and Glu102) are visible

only at low contour levels, a sodium ion in each monomer was puta-

tively identified and modeled in electron density as for the B. clausii

ISP structures (PDB IDs: 2XRM and 2X8J).

The 2 loop regions that are disordered (residues 184-191 and

217-223) in Planococcus sp. AW02J18 ISP are ordered in the structure

that simulates the active state of the B. clausii ISP. Residues from both

loops are contributors in the coordination of a calcium ion, in B. clausii

ISP, these are: Asp186 (side-chain; SC), Arg188 (mainchain; MC),

Thr191 (MC), Glu193 (SC), and Thr221 (SC). In Planococcus

sp. AW02J18 ISP the residues contributing with specific side-chain con-

tacts to the calcium ion are conserved, while 1 of the 2 unspecific main

chain contacts are not conserved (Supporting Information Figure S1).

3.5 | Mutations in the LIPY/F motif of the pro-
peptide relieve inhibition

Removal of the first 18 residues of B. clausii ISP by calcium treatment

or by truncation released an ISP enzyme in an active conformation.5

The proteolytic site for cleavage is however not conserved among

ISPs (Supporting Information Figure S1). As calcium seemed to

improve activity (Figure 2B), but also further process the Asn3-ISP

(Figure 2D), we aimed at identifying the second processing site for

FIGURE 2 ISP activity, stability and processing. A, SDS-PAGE analysis

of purified Asn3-ISP. Purity was estimated to 95% by inspection of
lane intensity. B, Using the FITC-casein assay, 4 μM Asn3-ISP was
incubated with increasing concentration of CaCl2 at 37 �C for 1 h.
50% activity is achieved with 2.5 mM CaCl2. C, The activity of 1 μg
Asn3-ISP (as in A) was measured in the presence or absence of 5 mM
CaCl2 and concentrations of EDTA up to 50 mM (upper panel). Dotted
line represents the average of buffer (37248 units) in presence of
5 mM CaCl2 and 5 mM EDTA. Lower panel shows SDS-PAGE
containing 0.5 μg Asn3-ISP treated with CaCl2 and EDTA as in the
activity assay. M, BioRad's Precision Plus Protein™ Dual Color
Standard. D, The His-ISP protein construct (p1-construct, numbered 1)
was used to investigate calcium-induced maturation. 1, 5 or 10 mM
CaCl2 was added to 2 μg enzyme at pH range 7.0-8.5 at room
temperature for incubation overnight before analysis on SDS-PAGE.
Theoretical mass of Asn3-ISP (numbered 2), 35 kDa. M, BioRad's
Precision Plus Protein™ Dual Color Standard
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maturation. Despite repeated efforts, MS and N-terminal sequencing

of various protein species isolated from SDS-PAGE gels did not reveal

other processing than the removal of the 2 first residues (Supporting

Information Figure S3 and Table S4). As an alternative approach, we

designed various constructs where the N-terminal region of the Plano-

coccus sp. AW02J18 ISP was truncated (Figure 6A). To design a close

mimic of the N-terminus of native and processed enzyme, a

p12-based construct was chosen (ISP-His, 38 kDa). This mimicked the

full-length ISP sequence and respective truncation mutants with C-

terminal His-tags albeit with 2 artificial residues at the N-terminus of

recombinant enzyme (MS, Figure 6A). A Leu6 truncation construct

was designed to remove the first 5 residues, not affecting the LIPY-

sequence, to assay potential detrimental effects of removal of the

β1-strand of the antiparallel β-sheet required for structural stability

(Figure 6B). An Arg10 truncation construct (that is, starting at Arg10)

was designed to remove the LIPY-sequence from the native N-termi-

nus, to release auto-inhibition induced by the motif. The Thr15-Arg20

truncations were designed to truncate the pro-peptide in search for

an active enzyme that would mimic the processed B. clausii ISP. Trun-

cations beyond Arg20 were considered to be destructive as these

were anticipated to interfere with secondary structure elements in

the core of the catalytic domain according to the B. clausii ISP struc-

tures.5,6 Positions of ISP truncations are summarized in Figure 6. None

of the truncations were expected to impair the high affinity metal-

binding site or dimerization, as previous reports have identified the

binding site and the dimer interface in other distant regions of the

protein.27 According to SDS-PAGE analysis recombinant enzymes

were either not obtained or below our detection limits (Supporting

Information Figure S6). Growth of E. coli was not affected by recombi-

nant expression, suggesting that active enzymes, if present, were not

lost due to cell death. In case the recombinant enzymes were present

at undetectable levels, the truncated enzymes were assessed in an

activity assay, but found not to present activity (Figure 6C).

The LIPY/F-motif (residues 6-9 in Planococcus sp. AW02J18 ISP) is

conserved in pro-peptides of ISPs (Supporting Information Figure S1).

In B. clausii ISP the LIPY-sequence is involved in binding the hydropho-

bic pocket at the active site, wherein Pro holds a critical position in dis-

placing the scissile bond between Ile and Pro out of reach of the active

site serine.6 According to structural data on Planococcus sp. AW02J18

ISP (Figure 5B) and B. clausii ISP6 the LIPY-sequence is involved in

binding the active site, potentially having critical roles in inhibiting

auto-proteolysis or cleavage of exogenous peptides. To investigate

whether the LIPY/F-motif is required for inhibition, we designed point

mutations in the motif by targeting the side chains of Leu6 and Ile7,

which are protruding into the hydrophobic pocket. We designed Ala

and Lys mutations at both sites and a double alanine mutant (substitut-

ing both positions with Ala). According to SDS-PAGE analysis, the

Leu6Ala, and both Ile single mutants were successfully expressed, but

gave lower yields than wild-type ISP (Figure 6D). Expression levels for

the Leu6Lys single mutant and the double mutant were low, if any, and

FIGURE 3 pH and temperature optimum of ISP. A, Using the N-succinyl-AAPF p-nitroanilide peptide, the activity of 1 μM Asn3-ISP at

pH 3.0-11.0 was measured in the initial rate of the reaction at 25 �C. Background from buffer was subtracted and data was made relative
to measurement data at pH 11.0. Citrate buffer was used for pH 3.0-6.0 (diamonds), acetate buffer for pH 4.0-6.0 (square), sodium
phosphate buffer from pH 6.0-8.0 (down-pointing triangles), Tris-HCl buffer for pH 7.0-9.0 (up-pointing triangles, dotted line between
points) and glycine buffer (circles) for pH 9.0-11.0. Error bars represent deviation between 2 replicas in 1 representative experiment. The
pI of the ISP is estimated to approximately 4.4 (vertical dotted line). B, Activity of 5 μM Asn3-ISP was monitored in the FITC-casein assay
across a temperature range of 25-70 �C. Background was subtracted and made relative to the measured data at 45 �C. CaCl2 was added
immediately before assaying. The assay took place for 1 h at the respective temperatures. Error bars represent deviation between data
points from 3 independent experiments. The horizontal dotted line represents the highest background measurement

TABLE 3 Thermal denaturation measured by DSCa

Treatment ΔHcal Tmax ΔS ΔHvH1 Tm1 ΔHvH2 Tm2 ΔD

None 120.1 60.7 0.356 105.0 57.2 209.1 61.0 0.49

2 mM CaCl2 145.1 62.4 0.421 142.0 60.1 266.0 62.8 0.70

EDTA 125.0 61.1 0.345 111.7 58.0 215.2 61.4 0.39

a ΔHcal (calorimetric enthalpy), ΔS (entropy of unfolding) and Tmax are calculated directly from the unfolding transition. ΔHvH and Tm are derived

from fitting 2 two-stated scaled models to each transition after subtraction of buffer scans and a sigmoidal baseline
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variation occurred in independent experiments. The ratio of soluble

protein to expressed protein was generally higher for the mutants than

for wild-type ISP (data not shown). Cleared lysates containing the wild-

type ISP and mutants were assessed in an in vitro BODIPY-casein assay

and compared to extracts from strains carrying the empty vector

(Figure 6E). As expected, the wild-type ISP was found to be active upon

calcium treatment as determined from an increase in fluorescent signal.

Upon calcium addition, the Leu6Ala, and both Ile mutants showed a

similar response, but mutants showed a higher than baseline level of

activity even in the absence of calcium. No activity was detected for

the Leu6Lys mutant, probably because it was not expressed. The dou-

ble mutant was however found to be active, despite the low expression

levels. The activity of the double mutant was similar both in absence

and presence of calcium, albeit low. In all cases, EDTA prevented activ-

ity, likely by chelating calcium at 1 or several binding sites.

4 | DISCUSSION

An ISP from Planococcus sp. AW02J18 is herein characterized in terms

of its catalytic activity, stability and structure. For recombinant

expression, we explored the utility of N-terminal His, His-SUMO, or

His-MBP fusion tags to promote soluble expression of ISP, as previous

data have shown that N-terminal tags can be used for both intracellu-

lar1 and extracellular serine proteases.32 Expression trials showed that

all fusion constructs were soluble (Figure 1). The ISP was active in the

presence of calcium (Figure 2). The assumption that ISP requires pro-

peptide processing for activation, for example, as in B. clausii ISP,

allowed exploitation of its native protease activity for intrinsic tag

FIGURE 4 Thermal unfolding transitions of Asn3-ISP. Unfolding

was measured in metal-depleted ISP in 3 conditions; A, without
additives, B, in presence of 2 mM CaCl2, and C, in presence of
1 mM EDTA. Representative thermograms are shown after
subtraction of buffer scans and fitting of a sigmoidal baseline
(solid lines). The sum of the 2 two-state models fitted to each
thermogram is shown with dashed lines. The Tm of the higher
temperature transition is indicated with a vertical dotted drop-line
for comparison

FIGURE 5 Structure of Planococcus sp. AW02J18 ISP. A, Dimer

presented in ribbon. The pro-peptide (residues 3-20) is shown in
magenta in both monomers (chain A in tan, chain B in green). The
N-terminal and C-terminal residues are labelled in monomer A. The
catalytic Ser251 is shown as a yellow sphere. The Peg molecules in
the dimer interface are shown in red. B, Superposition of the ISP
from Planococcus sp. AW02J18 (green, chain B) on the ISP
template from B. clausii (blue, PDB ID: 2X8J, chain A). Ser251 in
ISP from Planococcus sp. AW02J18 is shown as a yellow sphere,
and its pro-peptide (residues 3-20) is shown in magenta. C, The
catalytic triad of Planococcus sp. AW02J18 ISP (green, chain B) and
the catalytic mutant of B. clausii ISP (cyan, chain A). Distance (Å)
between Ser251 and His86 in Planococcus sp. AW02J18 ISP is

given as a dashed line
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removal. Indeed, the construct with an N-terminal His-tag facilitated

creation of a processed ISP without artificial tags in the presence of

calcium (Figure 2 and Supporting Information Figure S3).

The ISP operates at moderate temperatures, with optimal condi-

tions at 45 �C (Figure 3), and unfolds at about 60 �C (Figure 4). The

organism of which this ISP originates, Planococcus sp. AW02J18, was

FIGURE 6 Engineering ISP at the N-termini. A, Alignment of the N-terminal region of ISP and the various truncated versions (indicated by

starting residue given in 3-letter ambiguity codes and their sequential numbers). A grey box indicates the LIPY/F-motif. Beta-strands (β), alpha
helix (α), and arrow that points to the site of maturation refers to information from B. clausii ISP (PDB ID: 2X8J). Residues in light grey (MS) are
added to the recombinant enzymes. B, Solvent-accessible surface of Planococcus sp. AW02J18 ISP is shown (tan, chain A) with the catalytic serine
residue in yellow. The pro-peptide (residues 3-20) is shown in magenta, with the Leu6 and Ile7 residues of the LIPY/F motif colored by atom.
Additionally, defining residues used in the truncation experiment are indicated. C, Cleared lysates containing wild-type ISP-His or truncated
versions (p12 constructs), were screened for activity against BODIPY-FL-casein in the absence and presence of 1 mM CaCl2 (+Ca) for 1 h at

37 �C. Fluorescence was normalized to optical density of expression cultures, to account for any growth effects. Lysates with empty vectors
(GS) was used as background, and samples were calculated as fold above control. Error bars represent standard deviation between parallels in
2 experiments. D, A representative SDS-PAGE analysis of cleared lysates containing wild-type ISP-His (WT) or mutant versions (double, both
Leu6 and Ile7 mutated to Ala). M, BioRad's Precision Plus Protein™ Dual Color Standard; and GS, extracts with empty vector. Arrow points to the
recombinant ISP variants. The lower panel shows intensities of target ISP proteins relative to the target corrected total lane intensity. Intensity
data arise from 2 independent experiments. E, Cleared lysates from D analyzed as in C, in absence or presence of 1 mM CaCl2 (Ca) or with
1 mM EDTA
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isolated from a marine habitat, and is known to thrive at cold to mod-

erate temperatures (data not shown). Although some ISPs are active

at neutral pH,7 Planococcus sp. AW02J18 ISP, like the majority of

ISPs,2,44–46 has optimal activity at alkaline pH (Figure 3). So far, 1 ISP

has been structurally characterized, namely the ISP from B. clausii. This

study provides structural information on a second unique ISP that

originates from a phylogenetically and physiologically distinct genus.47

The ISP crystallized mostly at acidic pH (Supporting Information

Table S3), and calcium was not found in any of the crystals. The lack

of activity and low processing below pH 7.0 (Figures 2 and 3) may

partly explain why structures are in the inactive conformation.

Whether lack of crystals at conditions above pH 7.0 is caused by deg-

radation or because the active state does not promote crystal growth

is impossible to say. Processing is not induced by pH shift alone

(Figure 2D), but requires calcium. Both ISPs were found to crystallize

in a dimeric state; thus, dimerization appears to be a generic feature

of ISPs. According to size exclusion chromatography, the presence of

calcium the Asn3-ISP lead to a mixed population of quaternary struc-

tures corresponding to approximately 2.5 and 3.7 monomers per olig-

omer (Supporting Information Figure S5). Whereas the dimeric form is

confirmed in the crystal, the oligomeric state in solution was inconclu-

sive. It appeared however that the presence of calcium induced 2 new

states compared to the calcium-depleted enzyme solutions. In accor-

dance with earlier observations, calcium depletion may lead to a more

compact structure (here represented by the shift from 3.7 to 3.3

monomers per oligomer state). The presence of calcium may induce

autoproteolysis, thereby reducing the apparent molecular weight (here

represented by the shift from 3.3 to 2.5 monomers per oligomers).

The higher molecular weight induced by the presence of calcium (here

represented by the 3.7 monomer per oligomer state) may arise from a

less compact structure or even from aggregation. The 2 monomers

contained regions of poor electron density in proximity to each other.

These are most likely partially flexible regions as a consequence of the

structural reorganization caused by the insertion of the pro-peptide in

the substrate-binding region. The C-terminal 20 residues were not

defined in electron density, while in 2 different crystal forms repre-

senting structures of ISP from B. clausii (PDB ID: 2X8J and 2WWT),

these residues are stabilized through interactions with symmetry

mates. According to sequence alignments, the C-terminal region is not

conserved (Supporting Information Figure S1), but the reason for this

region being flexible in the structure of Planococcus sp. AW02J18 ISP

is not clear. Ultimately, the requirement and role of the C-terminal

residues in folding and dimerization of ISPs remains unclear.

From studies of B. clausii ISP, divalent metal ions, possibly cal-

cium, bind close to the S1 pocket.5,6 In the crystals of Planococcus

sp. AW02J18 ISP, calcium was not identified at any of the metal bind-

ing site. Two loop regions were not defined in the electron density of

ISP, which is also the case for the B. clausii ISPs containing the intact

pro-peptide (PDB IDs: 2X8J and 2WWT). These loop regions are how-

ever ordered in the B. clausii ISP structure that simulates the active

conformation of the enzyme, albeit with a catalytic mutation (PDB ID:

2XRM). Residues from both loops contribute to the coordination of a

calcium ion, and these residues are conserved in aligned sequences

(Supporting Information Figure S1). This could indicate a specific role

of calcium in the transition from inactive to active enzyme, not only

for the B. clausii ISP, but also for other ISPs. Asn3-ISP from Planococ-

cus sp. AW02J18 was active in presence of calcium, but susceptible to

self-degradation (Figure 2). The fact that ISPs were not active without

exogenous addition of calcium suggests that available metal binding

sites were not occupied after production. Due to conservation of

calcium-coordinating residues (Supporting Information Figure S1), and

the need for high EDTA concentrations to inhibit activity (Figure 2C),

low affinity for calcium is likely not the case. DSC results suggest that

additional calcium is only slightly stabilizing, and tightly bound calcium

(removable with EDTA) is not essential for overall stability (Figure 4).

DSC showed however that calcium does have a minor stabilizing

effect; thus suggesting that the added calcium in our assays contribute

to minor structural rearrangements.

It is likely that there are structural rearrangements, such as pro-

peptide flip-out or removal, in order for the 2 loops to order and coor-

dinate calcium. The IP residues of the LIPY/F motif in the pro-peptide

are spatially close to residues in 1 of the loops that need to be reor-

iented upon calcium binding. The 2 residues form hydrophobic inter-

actions to the side-chain of Phe195 in our inactive structure and

probably hinder this reorienting into the active conformation (this

side-chain appears to be shifted almost 15 Å in the active state).

It is likely that the pro-peptide in the ISP from Planococcus

sp. AW02J18 is removed, in analogy to several Bacillus ISPs.5,7 From

the available structures of ISPs with intact pro-peptides (PDB ID:

6F9M, 2X8J, 2WWT, 2WVT, whereof 2 are shown in Figure 5B) and

the sequence alignment (Supporting Information Figure S1), we found

that 2 short beta-strands in the pro-peptide are likely structurally con-

served. The secondary structure elements are stabilized by main chain

interactions, which are sequence independent. A unique feature of the

Planococcus sp. AW02J18 ISP that is not found in homologous ISPs is

the presence of the 2 consecutive proline residues in the transition

between the pro-peptide and the catalytic domain (Supporting Infor-

mation Figure S1). The removal of the ISP pro-peptide in Planococcus

sp. AW02J18 appears to be different, and possibly involves several

steps (Figure 2D). In the first step the 2 first residues of the ISP (Met1,

Lys2) are removed (protein band numbered 2, Figure 2D), as identified

in the crystal and by N-terminal sequencing. Another product, which

appears as the main product (around 30-35 kDa) at pH 8.5 in presence

of 10 mM CaCl2 (protein band numbered 3, Figure 2D), could possibly

be functional. This product could in principle arise from processing of

the C-terminal region of the protein, too, albeit not identified in the

crystal or MS analyses (Supporting Information Figure S5 and

Table S4). The N-terminal residues of this protein could not be identi-

fied. Unfortunately, MS analyses did not reveal obvious processing pat-

terns at the N-terminal in the protein species from the SDS-PAGE

analysis (Supporting Information Figure S5 and Table S4). This may

partly be due to a lack of sequential degradation. Ultimately, we could

not determine which ISP moiety that is responsible for or contribute to

the activity identified in assays. A truncation experiment was con-

ducted to trim the pro-peptide in the hunt for processing site(s). Two

artificial residues (Met-Ser) are unavoidably added to the N-terminal

end of these truncation constructs, which arise from fusion of the isp

gene fragment to the start codon and the ligation seam added during

sub-cloning (Figure 6A), and their negative interference on protein

stability cannot be ruled out. Sequence analysis of Planococcus
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sp. AW02J18 ISP, reveals that it contains 2 prolines in the transition

from the pro-peptide to the catalytic domain (Supporting Information

Figure S1). Whereas Pro at the P2 site is likely accepted, Pro at the P1

is highly unlikely due to the preference of hydrophobic residues at the

S1 site.27 Multiple prolines are normally not present in sites for autop-

roteolysis by serine proteases,48 and the prolines may instead serve a

structural role.49 This does not however rule out that other proteases,

for example proline-specific endopeptidases, could process and remove

the pro-peptide in native conditions, or that processing site(s) are in

other regions that were not included in this study.

Although it has been found that the pro-peptide of B. clausii ISP

has a role in inhibition, the contribution of the conserved residues

within the LIPY/F-motif has not been studied in detail. Due to the fact

that Leu and Ile are conserved in the motif, and that the ISPs likely pre-

fer hydrophobic amino acids at the S2 and S4 sites,27 we studied point

mutations of Leu6 and Ile7 in Planococcus sp. AW02J18 ISP. Data form

3 of the 4 single point mutations, which resulted in increased activity -

even in the absence of excessive calcium, indicate that Leu6 and Ile7

have substantial roles in inhibition and support the involvement of cal-

cium during activation. A closer inspection of the structural context

suggests that substitution of Leu6 with Ala likely reduced the hydro-

phobic interaction to the active site, and thus relieves the inhibition

(Figure 7). The substitution to lysine however seems to both reduce

expression level (Figure 6D). It furthermore does not respond on

calcium addition in the activity assay (Figure 6E). Assuming that the

mutant is properly folded, inhibition could be explained by the possi-

bility that lysine can form hydrogen bond and/or salt bridge interac-

tions with the catalytic Asp49 and the Asn84 residues, respectively

(Figure 7). Structural explanations for the Ile7 mutants were not con-

clusive due to their proximity to the flexible region (183-193), but it is

likely that both mutations cause reduced interactions with the pro-

peptide. We thus conclude that the pro-peptide, with the LIPY/F motif

in a central position, is involved in inhibition. Our data is in line with

the proposed ISP model,27 suggesting that calcium binding at the

active site is prevented during pro-peptide inhibition.
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