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A b-coloring of a graph G is a proper coloring of its vertices such that each color class 
contains a vertex that has at least one neighbor in all the other color classes. The 
b-Coloring problem asks whether a graph G has a b-coloring with k colors. The b-
chromatic number of a graph G , denoted by χb(G), is the maximum number k such that G
admits a b-coloring with k colors. We consider the complexity of the b-Coloring problem, 
whenever the value of k is close to one of two upper bounds on χb(G): The maximum 
degree �(G) plus one, and the m-degree, denoted by m(G), which is defined as the 
maximum number i such that G has i vertices of degree at least i − 1. We obtain a 
dichotomy result for all fixed k ∈ N when k is close to one of the two above mentioned 
upper bounds. Concretely, we show that if k ∈ {�(G) + 1 − p, m(G) − p}, the problem is 
polynomial-time solvable whenever p ∈ {0, 1} and, even when k = 3, it is NP-complete 
whenever p ≥ 2. We furthermore consider parameterizations of the b-Coloring problem 
that involve the maximum degree �(G) of the input graph G and give two FPT-algorithms. 
First, we show that deciding whether a graph G has a b-coloring with m(G) colors is 
FPT parameterized by �(G). Second, we show that b-Coloring is FPT parameterized by 
�(G) + �k(G), where �k(G) denotes the number of vertices of degree at least k.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a set of colors, a proper coloring of a graph is an assignment of a color to each of its vertices in such a way that 
no pair of adjacent vertices receive the same color. In the deeply studied Graph Coloring problem, we are given a graph 
and the question is to determine the smallest set of colors with which we can properly color the input graph. This problem 
is among Karp’s famous list of 21 NP-complete problems [16] and since it often arises in practice, heuristics to solve it are 
deployed in a wide range of applications. A very natural such heuristic is the following. We greedily find a proper coloring 
of the graph, and then try to suppress any of its colors in the following way: say we want to suppress color c. If there is a 
vertex v that has received color c, and there is another color c′ �= c that does not appear in the neighborhood of v , then 
we can safely recolor the vertex v with color c′ without making the coloring improper. We terminate this process once we 
cannot suppress any color anymore.
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To predict the worst-case behavior of the above heuristic, Irving and Manlove defined the notions of a b-coloring and the 
b-chromatic number of a graph [14]. A b-coloring of a graph G is a proper coloring such that in every color class there is a 
vertex that has a neighbor in all of the remaining color classes, and the b-chromatic number of G , denoted by χb(G), is the 
maximum integer k such that G admits a b-coloring with k colors. We observe that in a b-coloring with k colors, there is no 
color that can be suppressed to obtain a proper coloring with k − 1 colors, hence χb(G) describes the worst-case behavior 
of the previously described heuristic on the graph G . We consider the following two computational problems associated 
with b-colorings of graphs.

Input: Graph G , integer k
Question: Does G admit a b-coloring with k colors?

b-Coloring

Input: Graph G , integer k
Question: Is χb(G) ≥ k?

b-Chromatic Number

We would like to point out an important distinction from the ‘standard’ notion of proper colorings of graphs: If a graph G
has a b-coloring with k colors, then this implies that χb(G) ≥ k. However, if χb(G) ≥ k then we can in general not conclude 
that G has a b-coloring with k colors. A graph for which the latter implication holds as well is called b-continuous. This 
notion is mostly of structural interest, since the problem of determining if a graph is b-continuous is NP-complete even if 
an optimal proper coloring and a b-coloring with χb(G) colors are given [2].

Besides observing that χb(G) ≤ �(G) + 1 where �(G) denotes the maximum degree of G , Irving and Manlove [14]
defined the m-degree of G as the largest integer i such that G has i vertices of degree at least i − 1. It follows that 
χb(G) ≤ m(G); observe also that m(G) ≤ �(G) +1. Since the definition of the b-chromatic number originated in the analysis 
of the worst-case behavior of graph coloring heuristics, graphs whose b-chromatic numbers take on critical values, i.e. values 
that are close to these upper bounds, are of special interest. In particular, identifying them can be helpful in structural 
investigations concerning the performance of graph coloring heuristics.

In terms of computational complexity, Irving and Manlove showed that both b-Coloring and b-Chromatic Number are 
NP-complete [14] and Sampaio observed that b-Coloring is NP-complete even for every fixed integer k ≥ 3 [19]. Panolan 
et al. [18] gave an exact exponential algorithm for b-Chromatic Number running in time O(3nn4 log n) and an algorithm 
that solves b-Coloring in time O(

(n
k

)
2n−kn4 log n). From the perspective of parameterized complexity [6,8], it has been 

shown that b-Chromatic Number is W[1]-hard parameterized by k [18] and that the dual problem of deciding whether 
χb(G) ≥ n − k, where n denotes the number of vertices in G , is FPT parameterized by k [13].

Since the above mentioned upper bounds �(G) + 1 and m(G) on the b-chromatic number are trivial to compute, it is 
natural to ask whether there exist efficient algorithms that decide whether χb(G) = �(G) + 1 or χb(G) = m(G). It turns 
out both these problems are NP-complete as well [12,14,17]. However, it is known that the problem of deciding whether a 
graph G admits a b-coloring with k = �(G) + 1 colors is FPT parameterized by k [18,19].

The Dichotomy Result. One of the main contributions of this paper is a complexity dichotomy of the b-Coloring problem 
for fixed k, whenever k is close to either �(G) + 1 or m(G). In particular, for fixed k ∈ {�(G) + 1 − p, m(G) − p}, we show 
that the problem is polynomial-time solvable when p ∈ {0, 1} and, even in the case k = 3, NP-complete for all fixed p ≥ 2. 
More specifically, we give XP time algorithms for the cases k = m(G), k = �(G), and k = m(G) − 1 which together with 
the FPT algorithm for the case k = �(G) + 1 [18,19] and the aforementioned NP-hardness result for k = 3 completes the 
picture. We now formally state this result.

Theorem 1. Let G be a graph, p ∈N and k ∈ {�(G) + 1 − p, m(G) − p}. The problem of deciding whether G has a b-coloring with k
colors is

(i) NP-complete if k is part of the input and p ∈ {0, 1},
(ii) NP-complete if k = 3 and p ≥ 2, and

(iii) polynomial-time solvable for any fixed positive k and p ∈ {0, 1}.

Maximum Degree Parameterizations. The positive results in our dichotomy theorem provide XP-algorithms to decide 
whether a graph has a b-coloring with a number of colors that either precisely meets or is one below one of two upper 
bounds on the b-chromatic number, the parameter being the number of colors in each of the cases. Towards more ‘flexible’ 
(parameterized) tractability results, we consider parameterizations of the b-Coloring problem that involve the maximum 
degree �(G) of the input graph G , but ask for the existence of b-colorings with a number of colors that in general is 
different from �(G) + 1 or �(G).
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First, as an addition to the result that in FPT time parameterized by �(G), one can decide whether G has a b-coloring 
with �(G) + 1 colors [18,19], we show that in the same parameterization we can decide in FPT time whether G has a 
b-coloring with m(G) colors.

Theorem 2. Let G be a graph. The problem of deciding whether G has a b-coloring with m(G) colors is FPT parameterized by �(G).

One of the crucially used facts in the algorithm of the previous theorem is that if we ask whether a graph G has a 
b-coloring with k = m(G) colors, then the number of vertices of degree at least k is at most k. We generalize this setting 
and parameterize b-Coloring by the maximum degree plus the number of vertices of degree at least k. We show that this 
problem is FPT as well.

Theorem 3. Let G be a graph. The problem of deciding whether G has a b-coloring with k colors is FPT parameterized by �(G) +�k(G), 
where �k(G) denotes the number of vertices of degree at least k in G.

We now argue that parameterizing by only one of the two invariants used in Theorem 3 is not sufficient to obtain 
efficient parameterized algorithms. From the result of Kratochvíl et al. [17], stating that b-Coloring is NP-complete for 
k = �(G) + 1, it follows that b-Coloring is NP-complete when �(G) is unbounded and �k(G) = 0. On the other hand, 
Theorem 1(ii) implies that b-Coloring is already NP-complete when k = 3 and �(G) = 4. Together, this rules out the 
possibility of FPT- and even of XP-algorithms for parameterizations by one of the two parameters alone, unless P = NP. 
Parameterizations of graph coloring problems by the number of high degree vertices have previously been considered for 
vertex coloring [1] and edge coloring [10].

An extended abstract of this work appeared in the proceedings of MFCS 2019 [15].

Organization. The rest of the paper is organized as follows. After giving preliminary definitions in Section 2, we present the 
hardness results in Section 3, the algorithmic results of the dichotomy in Section 4, and the algorithms for the maximum 
degree parameterizations in Section 5. We conclude in Section 6.

2. Preliminaries

We use the following notation: For k ∈N , [k] := {1, . . . , k}. For a function f : X → Y and X ′ ⊆ X , we denote by f |X ′ the 
restriction of f to X ′ and by f (X ′) the set { f (x) | x ∈ X ′}. For a set X and an integer n, we denote by 

(X
n

)
the set of all 

size-n subsets of X .

Graphs. Throughout the paper a graph G with vertex set V (G) and edge set E(G) ⊆ (V (G)
2

)
is finite and simple. We often 

denote an edge {u, v} ∈ E(G) by the shorthand uv . For graphs G and H we denote by H ⊆ G that H is a subgraph of G , 
i.e. V (H) ⊆ V (G) and E(H) ⊆ E(G). We often use the notation n := |V (G)|. For a vertex v ∈ V (G), we denote by NG (v)

the open neighborhood of v in G , i.e. NG (v) = {w ∈ V (G) | v w ∈ E(G)}, and by NG [v] the closed neighborhood of v in G , 
i.e. NG [v] := {v} ∪ NG(v). For a set of vertices X ⊆ V (G), we let NG (X) := ⋃

v∈X NG(v) \ X and NG [X] := X ∪ NG(X). When 
G is clear from the context, we abbreviate ‘NG ’ to ‘N ’. The degree of a vertex v ∈ V (G) is the size of its open neighborhood, 
and we denote it by degG(v) := |NG(v)| or simply by deg(v) if G is clear from the context. For an integer k, we denote by 
�k(G) the number of vertices of degree at least k in G . A graph is k-regular if all its vertices have degree k.

For a vertex set X ⊆ V (G), we denote by G[X] the subgraph induced by X , i.e. G[X] := (X, E(G) ∩ (X
2

)
). We furthermore 

let G − X := G[V (G) \ X] be the subgraph of G obtained from removing the vertices in X and for a single vertex x ∈ V (G), 
we use the shorthand ‘G − x’ for ‘G − {x}’.

A graph G is said to be connected if for any 2-partition (X, Y ) of V (G), there is an edge xy ∈ E(G) such that x ∈ X and 
y ∈ Y , and disconnected otherwise. A connected component of a graph G is a maximal connected subgraph of G . A path is 
a connected graph of maximum degree two, having precisely two vertices of degree one, called its endpoints. The length
of a path is its number of edges. Given a graph G and two vertices u and v , the distance between u and v , denoted by 
distG(u, v) (or simply dist(u, v) if G is clear from the context), is the length of the shortest path in G that has u and v as 
endpoints.

A graph G is a complete graph if every pair of vertices of G is adjacent. A set C ⊆ V (G) is a clique if G[C] is a complete 
graph. A set S ⊆ V (G) is an independent set if G[S] has no edges. A graph G is a bipartite graph if its vertex set can be 
partitioned into two independent sets. A bipartite graph with bipartition (A, B) is a complete bipartite graph if all pairs 
consisting of one vertex from A and one vertex from B are adjacent, and with a = |A| and b = |B|, we denote it by Ka,b . A 
star is the graph K1,b , with b ≥ 2, and we call center the unique vertex of degree b and leaves the vertices of degree one.

Colorings. Given a graph G , a map γ : V (G) → [k] is called a coloring of G with k colors. If for every pair of adjacent vertices, 
uv ∈ E(G), we have that γ (u) �= γ (v), then the coloring γ is called proper. For i ∈ [k], we call the set of vertices u ∈ V (G)

such that γ (u) = i the color class i. If for all i ∈ [k], there exists a vertex xi ∈ V (G) such that
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(i) γ (xi) = i, and
(ii) for each j ∈ [k] \ {i}, there is a neighbor y ∈ NG(xi) of xi such that γ (y) = j,

then γ is called a b-coloring of G . For i ∈ [k], we call a vertex xi satisfying the above two conditions a b-vertex for color i.

Parameterized Complexity. Let � be an alphabet. A parameterized problem is a set � ⊆ �∗ ×N . A parameterized problem 
� is said to be fixed-parameter tractable, or contained in the complexity class FPT, if there exists an algorithm that for 
each (x, k) ∈ �∗ × N decides whether (x, k) ∈ � in time f (k) · |x|c for some computable function f and fixed integer 
c ∈ N . A parameterized problem � is said to be contained in the complexity class XP if there is an algorithm that for all 
(x, k) ∈ �∗ ×N decides whether (x, k) ∈ � in time f (k) · |x|g(k) for some computable functions f and g .

A kernelization algorithm for a parameterized problem � ⊆ �∗ × N is a polynomial-time algorithm that takes as input 
an instance (x, k) ∈ �∗ × N and either correctly decides whether (x, k) ∈ � or outputs an instance (x′, k′) ∈ �∗ × N with ∣∣x′∣∣+k′ ≤ f (k) for some computable function f for which (x, k) ∈ � if and only if (x′, k′) ∈ �. We say that � admits a kernel
if there is a kernelization algorithm for �.

3. Hardness results

In this section we prove the hardness results of our complexity dichotomy. First, we show that b-Chromatic Number

and b-Coloring are NP-complete for k = m(G) − 1 = �(G), based on a reduction due to Havet et al. [12] who showed 
NP-completeness for the case k = m(G).

Theorem 3.1. b-Chromatic Number and b-Coloring are NP-complete, even when k = m(G) − 1 = �(G).

Proof. As in the proof of Havet et al. [12], the reduction is from the NP-complete problem 3-Edge Coloring of 3-regular 
graphs, which takes as input a 3-regular graph G and asks whether the edges of G can be properly colored with three 
colors.

Given an instance G of 3-Edge Coloring, an instance H of b-Chromatic Number and b-Coloring is constructed as 
follows. The graph H has one vertex for each vertex of G , that we denote by v1, . . . , vn , one vertex for each edge, that we 
denote by u1, . . . , um and a set of 4n + 13 vertices that we denote by S . The edge set of H is such that H[{v1, . . . , vn}] is 
a clique, H[S] is the disjoint union of one copy of the complete bipartite graph Kn,n+3 and two copies of K2,n+3 and viu j
is an edge if the edge corresponding to u j is incident to the vertex corresponding to vi in G . The constructed graph H
is such that �(H) = n + 3 and H has n + 4 vertices of degree n + 3, which implies that m(H) = n + 4. The difference to 
the construction used in [12] is that instead of the three complete bipartite graphs mentioned above, the authors use three 
copies of the star K1,n+2.

Claim 3.1.1. A connected component of H that is a complete bipartite graph can contain b-vertices of at most one color in 
any b-coloring of H with at least n + 3 colors.

Proof. Consider a component of H that induces a Ki,n+3, with i ∈ {2, n}. In any b-coloring with k ≥ n + 3 colors, only the 
vertices of degree at least n + 2, so in this case the vertices of degree n + 3 can be b-vertices in H . If x is a b-vertex for a 
given color, then the remaining k − 1 colors appear on the vertices of N(x). We conclude that any other vertex of degree 
n + 3 of this component will be assigned the same color as x. �

We prove that H has a b-coloring with k = n +3 colors if and only if G is a Yes-instance for 3-Edge Coloring by using the 
same steps as in the proof of Theorem 3 of [12] and with the additional use of Claim 3.1.1. This proves the NP-completeness 
of b-Coloring when k = m(G) − 1 = �(G). Furthermore, we prove that χb(H) ≥ n + 3 if and only if H has a b-coloring with 
n + 3 colors. This yields the analogous result for b-Chromatic Number.

First, assume that G is a Yes-instance for 3-Edge Coloring. Let γE : E(G) → [3] be a proper 3-edge coloring for G . We 
construct a b-coloring γH for H in the following way. For each 1 ≤ i ≤ |E(G)|, γH (ui) = γE (ei) and each 1 ≤ j ≤ n, we let 
γH (v j) = j + 3. Note that since γE is a 3-edge coloring for G , the vertices v1, . . . , vn in H are b-vertices for the colors 
4, . . . , n + 3: Any vertex in G is incident with 3 edges since G is 3-regular, and since γE is proper, each such edge receives a 
different color. Hence, for any vertex vi , the colors {1, 2, 3} appear on NH (vi) ∩ {u1, . . . , u|E(G)|}. Now we can color the rest 
of the graph H in such a way that each connected component that is a complete bipartite graph contains a b-vertex for one 
of the three remaining colors.

Now we consider the other direction. We start by observing that Claim 3.1.1 implies that H does not admit a b-coloring 
with n +4 = m(H) = �(H) +1 colors, since the set of vertices of degree n +3 can contain b-vertices for at most three colors 
in any such a b-coloring. This implies that χb(H) ≥ m(H) −1 = �(H) if and only if H has a b-coloring with m(H) −1 = �(H)

colors.
Assume H has a b-coloring γH with n + 3 colors. Since by Claim 3.1.1 the set S contains b-vertices for at most three 

colors, we have that the vertices v1, . . . , vn are b-vertices in this coloring. Moreover, since they induce a clique in H , they 
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all have distinct colors. Assume, without loss of generality, that γH ({v1, . . . , vn}) = {4, . . . , n + 3}. This implies that for each 
i, γH (N(vi) ∩ {u1, . . . , u|E(G)|}) = {1, 2, 3}. It follows that γE : E(G) → N , defined as γE (ei) = γH (ui), for i ∈ {1, . . . , |E(G)|}, 
is a 3-edge coloring of G . We argue that γE is proper. Suppose for a contradiction that there exist adjacent edge ei and 
e j , sharing the endpoint vs , such that γE (ei) = γE (e j) = c. Since degG(vs) = 3, and two of its incident edges received the 
same color c, we can conclude that at least one of the colors {1, 2, 3} does not appear in the neighborhood of vs in H , a 
contradiction with the fact that vs is a b-vertex of its color in γH . �

The previous theorem, together with the result that b-Coloring is NP-complete when k = �(G) + 1 [17] and when k =
m(G) [12], proves Theorem 1(i). We now turn to the proof of Theorem 1(ii), that is, we show that b-Coloring remains 
NP-complete for k = 3 if k = �(G) + 1 − p or k = m(G) − p for any p ≥ 2, based on a reduction due to Sampaio [19]. Note 
that the following proposition indeed proves Theorem 1(ii) as for fixed p ≥ 2, we have that 3 ∈ {�(G) + 1 − p, m(G) − p} if 
and only if �(G) = p + 2 or m(G) = p + 3.

Proposition 3.2. For every fixed integer p ≥ 2, the problem of deciding whether a graph G has a b-coloring with 3 colors is NP-
complete when �(G) = p + 2 or m(G) = p + 3.

Proof. Sampaio showed that the problem of deciding whether a graph G has a b-coloring with k colors is NP-complete for 
any fixed k ∈ N [19, Proposition 4.5.1]. For the case of k = 3, the reduction is from 3-Coloring on planar 4-regular graphs 
which is known to be NP-complete [11]. In this reduction, one takes the graph of the 3-Coloring instance and adds three 
stars with two leaves each to the graph which can serve as the b-vertices in the resulting instance of b-Coloring. Since this 
does not increase the maximum degree, we immediately have that the problem of deciding whether a graph of maximum 
degree 4 has a b-coloring with 3 colors is NP-complete. In other words, this proves NP-completeness of the question of 
whether a graph G with maximum degree p + 2 admits a b-coloring with 3 colors in the case p = 2. Furthermore, by 
adding more leaves to one of the stars and thereby increasing the maximum degree of the graph in the resulting instance, 
we have that for any fixed integer p ≥ 2, it is NP-complete to decide whether a graph of maximum degree �(G) = p + 2
has a b-coloring with three colors.

Towards the statement regarding m(G), we first observe that for a 4-regular graph G on at least five vertices, we have 
that m(G) = 5. We observe that in any star with at least two leaves, the center vertex can be a b-vertex in a coloring with 3
colors. We construct a graph G ′ by adding five stars with four leaves each to G , and we again have that G has a 3-coloring 
if and only if G ′ has a b-coloring with 3 colors, showing that the problem of deciding whether a graph H with m(H) = 5
has a b-coloring with 3 colors, is NP-complete. In other words, it is NP-complete to decide if a graph H has a b-coloring 
with m(H) = p + 3 has a b-coloring with 3 colors in the case p = 2. Note that in this reduction, the center vertices of the 
stars can be regarded as the vertices determining the m-degree of the graph in the resulting instance of b-coloring with 3
colors, so we can extend this result in a similar way as above. That is, for any p ≥ 2, given a 4-regular graph G , we can add 
p + 3 stars with p + 2 leaves each to G , implying that for the resulting graph G ′ , m(G ′) = p + 3. Again, G has a 3-coloring 
if and only if G ′ has a b-coloring with 3 colors, implying the second statement of the proposition. �

We conclude this section by considering the complexity of the two problems on graphs with few vertices of high degree. 
Since b-Chromatic Number and b-Coloring are known to be NP-complete when k = �(G) + 1 [17], we make the following 
observation which is of relevance to us since in Section 5.2, we show that b-Coloring is FPT parameterized by �(G) +�k(G).

Observation 3.3. b-Chromatic Number and b-Coloring are NP-complete on graphs with �k(G) = 0, where k is the integer associ-
ated with the respective problem.

4. Dichotomy algorithms

In this section we give the algorithms in our dichotomy result, proving Theorem 1(iii). We show that for fixed k ∈ N , 
the problem of deciding whether a graph G admits a b-coloring with k colors is polynomial-time solvable when k = m(G)

(Section 4.2), when k = �(G) (Section 4.3), and when k = m(G) − 1 (Section 4.4), by providing XP-algorithms for each case. 
A natural way of solving the b-Coloring problem is to try to identify a set of k b-vertices, and for each vertex in the set a 
set of k − 1 neighbors that can be used to make a vertex a b-vertex for its color, and then extend the resulting coloring to 
the remainder of the graph. We guess all such sets and colorings, and show that the problem of deciding whether a given 
coloring can be extended to a proper coloring of the remainder of the graph is solvable in polynomial time in each of the 
above cases.

The strategy of identifying the set of b-vertices and subsets of their neighbors that make them b-vertices was (for 
instance) also used to give polynomial-time algorithms to compute the b-chromatic number of trees [14] and of graphs 
with large girth [4]. We capture it by defining the notion of a b-precoloring in the next subsection.
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4.1. b-precolorings

All algorithms in this section are based on guessing a proper coloring of several vertices in the graph, for which we now 
introduce the necessary terminology and establish some preliminary results.

Definition 4.1 (Precoloring). Let G be a graph and k ∈N . A precoloring with k colors of a graph G is an assignment of colors 
to a subset of its vertices, i.e. for X ⊆ V (G), it is a map γX : X → [k]. We call γX proper, if it is a proper coloring of G[X]. 
We say that a coloring γ : V (G) → [k] extends γX , if γ |X = γX .

We use the following notation. For two precolorings γX and γY with X ∩ Y = ∅, we denote by γX ∪ γY the precoloring 
that colors the vertices in X according to γX and the vertices in Y according to Y , i.e. the precoloring γX∪Y := γX ∪ γY

defined as:

γX∪Y (v) =
{

γX (v), if v ∈ X
γY (v), if v ∈ Y

for all v ∈ X ∪ Y

Next, we define a special type of precoloring with the property that any proper coloring that extends it is a b-coloring 
of the graph.

Definition 4.2 (b-precoloring). Let G be a graph, k ∈ N , X ⊆ V (G) and γX a precoloring. We call γX a b-precoloring with k
colors if γX is a b-coloring of G[X]. A b-precoloring γX is called minimal if for any Y ⊂ X , γX |Y is not a b-precoloring.

It is immediate that any b-coloring can be obtained by extending a minimal b-precoloring, a fact that we capture in the 
following observation.

Observation 4.3. Let G be a graph, k ∈ N , and γ a b-coloring of G with k colors. Then, there is a set X ⊆ V (G) such that γ |X is a 
minimal b-precoloring.

The next observation captures the structure of minimal b-precolorings with k colors. Roughly speaking, each such pre-
coloring only colors a set of k b-vertices and for each b-vertex a set of k − 1 of its neighbors that make that vertex the 
b-vertex of its color. We will use this property in the enumeration algorithm in this section to guarantee that we indeed 
enumerate all minimal b-precolorings with a given number of colors.

Observation 4.4. Let γX be a minimal b-precoloring with k colors. Then, X = B ∪ Z , where

(i) B = {x1, . . . , xk} and for i ∈ [k], γX (xi) = i, and
(ii) Z = ⋃

i∈[k] Zi , where Zi ∈ (N(xi)
k−1

)
and γX (Zi) = [k] \ {i}.

We are now ready to give the enumeration algorithm for minimal b-precolorings.

Lemma 4.5. Let G be a graph on n vertices and k ∈N . The number of minimal b-precolorings with k colors of G is at most

β(k) := nk · �k(k−1) · (k − 1)!k, (1)

where � := �(G) and they can be enumerated in time β(k) · kO(1) .

Proof. By Observation 4.4, any minimal b-precoloring only colors a set of k b-vertices, and for each of them a size-(k − 1)

subset of its neighbors that are colored bijectively with the remaining colors.
To guess all b-vertices in G , we enumerate all ordered vertex sets of size k, let {x1, . . . , xk} be such a set. Next, we 

enumerate all size-(k − 1) subsets of neighbors of each xi that can make xi the b-vertex of color i. Let (Z1, . . . , Zk) be 
a tuple of such sets of neighbors. Then we enumerate for each i ∈ [k], all bijective colorings of πi : Zi → [k] \ {i} – these 
are precisely the colorings of Zi that can make xi the b-vertex for color i. Given such a tuple (π1, . . . , πk), we make sure 
that it is consistent: for each i, j ∈ [k] and each vertex v ∈ Zi ∩ Z j , we ensure that πi and π j assign v the same color, i.e. 
πi(v) = π j(v); similarly, if xi ∈ Z j , then we ensure that π j(xi) = i (recall that xi is supposed to be the b-vertex of color 
i). If so, we construct a precoloring γB∪Z according to our choice of B = {x1, . . . , xk} and (π1, . . . πk) and if it is a minimal 
b-precoloring we output it. We give the details in Algorithm 1.

We now show that the algorithm is correct.

Claim 4.5.1. A precoloring γX is a minimal b-precoloring with k colors if and only if Algorithm 1 returns it in line 8 in some 
iteration.
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Input : A graph G , a positive integer k.
Output : All minimal b-precolorings with k colors of G

1 foreach B ∈ (V (G)
k

)
and every ordering x1, . . . , xk of the elements of B do

2 foreach (Z1, . . . , Zk) ∈
(N(x1)

k−1

) × · · · × (N(xk)
k−1

)
do

3 foreach (π1, . . . , πk),
(i) where for all i ∈ [k], πi : Zi → [k] \ {i} is a bijection,

(ii) for all i, j ∈ [k] and all v ∈ Zi ∩ Z j , πi(v) = π j(v), and
(iii) for all i, j ∈ [k], if xi ∈ Z j , then π j(xi) = i

4 do
5 Let Z := ∪i∈[k] Zi and γB∪Z : B ∪ Z → [k];
6 for i ∈ [k] do γB∪Z (xi) := i;
7 for i ∈ [k] and v ∈ Zi do γB∪Z (v) := πi(v);
8 if γB∪Z is a minimal b-precoloring then output γB∪Z and continue;

Algorithm 1: Enumerating all minimal b-precolorings with k colors of a graph.

Proof. Suppose Algorithm 1 returns a precoloring γX . We first argue that γX is well-defined. Let X = B ∪ Z following the 
notation of Algorithm 1. It is immediate that γX |B is well-defined. For the remaining vertices v ∈ Z , we verify as condition 
(ii) in line 3 that whenever v ∈ Zi ∩ Z j , πi(v) = π j(v). Moreover, condition (iii) in line 3 ensures that whenever xi ∈ Z j , 
then π j(xi) = i. Hence if the tuple (π1, . . . , πk) passes the check in line 3, then for each vertex v ∈ Z there is precisely one 
color that γX assigns to v in line 7, and if v ∈ Z j ∩ B , then π j assigns v a color that is consistent with line 6. We can 
conclude that γX is well-defined. By the check performed in line 8, we can conclude that γX is a minimal b-precoloring.

Now suppose that G contains a minimal b-precoloring γX . By Observation 4.4, X consists of an (ordered) set of b-vertices 
B = {x1, . . . , xk} with γX (xi) = i for i ∈ [k], and a set Z that contains, for each xi , a set of k − 1 neighbors Zi ⊆ Z such that 
γX (Zi) = [k] \ {i}. Since Algorithm 1 enumerates all such possible sets in lines 1 and 2, we have that in some iteration, it 
guessed B ∪ Z as the set of vertices to color. Since the algorithm enumerates all combinations of possibilities of coloring 
the sets Zi bijectively with colors [k] \ {i} in line 3, it guessed a tuple of bijections (π1, . . . , πk) from which we obtain 
γX . Clearly we have that in that case, (π1, . . . , πk) passes the check in line 3 and by assumption, γX passes the check in 
line 8. �

It remains to argue its runtime. In line 1, there are 
(n

k

)
choices for the set B and k! choices for its orderings, in line 2, 

there are at most 
(

�
k−1

)k
choices of k-tuples of size-(k − 1) sets of neighbors, and in line 3, we enumerate (k − 1)!k k-tuples 

of bijections of sets of size k − 1. The remaining steps can be executed in time kO(1): By construction, |B ∪ Z | ≤ k2, and 
every color has a b-vertex. It remains to verify whether the coloring γB∪Z is proper on G[B ∪ Z ] to conclude that it is 
a b-precoloring. If so, we can verify minimality in polynomial time by simply trying for each vertex x ∈ B ∪ Z , whether 
γB∪Z\{x} is still a b-precoloring. If we can find such a vertex x, then γB∪Z is not minimal, otherwise it is. The total runtime 
amounts to

(
n

k

)
k! ·

(
�

k − 1

)k

· (k − 1)!k · kO(1) ≤ nk · �k(k−1) · (k − 1)!k · kO(1) = β(k) · kO(1),

as claimed. The upper bound of β(k) on the number of b-precolorings with k colors follows since the kO(1) factor in the run-
time only concerns the construction of the precolorings and the verification of whether they are indeed b-precolorings. �
4.2. Algorithm for k = m(G)

Our first application of Lemma 4.5 is to solve the b-Coloring problem in the case when k = m(G) in time XP parame-
terized by k. It turns out that in this case, we are dealing with a Yes-instance as soon as we found a b-precoloring in the 
input graph that also colors all high-degree vertices (see Claim 4.6.1).

Theorem 4.6. Let G be a graph. There is an algorithm that decides whether G has a b-coloring with k = m(G) colors in time nk2 ·
2O(k2 logk) .

Proof. Let D ⊆ V (G) denote the set of vertices in G that have degree at least k. Note that by the definition of m(G), we 
have that |D| ≤ k.

Claim 4.6.1. G has a b-coloring with k colors if and only if G has a b-precoloring γX such that D ⊆ X and there exists S ⊆ D
such that γX |(X\S) is a minimal b-precoloring.
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Proof. Suppose G has a b-precoloring γX satisfying the condition of the claim. By our choice of D , each vertex in V (G) \ D
has degree at most k − 1. Hence we can greedily compute an extension γ of γX that is a proper coloring of G . By the 
definition of b-precoloring, we have that γ is a b-coloring of G .

Now suppose that G has a b-coloring γ with k colors. Let B = {x1, . . . , xk} be the set of b-vertices of γ and for each 
i ∈ [k], let Zi be a set of k − 1 neighbors of xi such that γ (Zi) = [k] \ {i}. Let Z := ∪i∈[k] Zi . Then, γ |B∪Z is a b-precoloring. 
Clearly, γ |B∪Z contains a minimal b-precoloring on vertex set W ⊆ B ∪ Z . Then, γ |W ∪D is a b-precoloring of G that satisfies 
the condition of the claim. �

The algorithm enumerates all minimal b-precolorings with k colors and for each such precoloring, it enumerates all 
colorings of the vertices D . If combining one such pair of precolorings gives a b-precoloring, it returns a greedy extension 
of it; otherwise it reports that there is no b-coloring with k colors, see Algorithm 2.

Input : A graph G
Output : A b-coloring with m(G) colors if it exists, No otherwise.

1 foreach minimal b-precoloring γX : X → [k] do
2 foreach precoloring γD\X : (D \ X) → [k] do
3 if γX∪D := γX ∪ γD\X is proper then return a greedy extension of γX∪D ;
4 return No;

Algorithm 2: Algorithm for b-Coloring with k = m(G).

The correctness of the algorithm follows from the fact that it enumerates all precolorings that can satisfy Claim 4.6.1. 
We discuss its runtime. By Lemma 4.5, we can enumerate all minimal b-precolorings with k colors in time β(k) · kO(1) . For 
each such minimal b-precoloring, we also enumerate all colorings of D . Since |D| ≤ k, this gives an additional factor of kk

to the runtime which (with � ≤ n) then amounts to

β(k) · kk · kO(1) = nk · �k(k−1) · (k − 1)!k · kk · kO(1) ≤ nk2 · k!k · kO(1) = nk2 · 2O(k2 log k),

as claimed. �
4.3. Algorithm for k = �(G)

Next, we turn to the case when k = �(G). Here the strategy is to again enumerate all minimal b-precolorings, and 
then for each such precoloring we check whether it can be extended to the remainder of the graph. Formally, we use an 
algorithm for the following problem as a subroutine.

Input: A graph G , an integer k, and a precoloring γX : X → [k] of a set X ⊆ V (G)

Question: Does G have a proper coloring with k colors extending γX ?

Precoloring Extension (PrExt)

Naturally, Precoloring Extension is a hard problem, since it includes Graph Coloring as the special case when X = ∅. 
However, when �(G) ≤ k − 1, then the problem is trivially solvable: we simply check if the precoloring at the input is 
proper and if so, we compute an extension of it greedily. Since each vertex has degree at most k − 1, there is always at least 
one color available. The case when k = �(G) has also been shown to be solvable in polynomial time.

Theorem 4.7 (Thm. 3 in [5], see also [7]). There is an algorithm that solves Precoloring Extension in polynomial time whenever 
�(G) ≤ k.

Theorem 4.8. There is an algorithm that decides whether a graph G has a b-coloring with �(G) colors in time nk+O(1) · 2O(k2 log k) .

Proof. The algorithm simply enumerates all minimal b-precolorings and then applies the algorithm for PrExt of Theo-
rem 4.7. This algorithm can be applied with any precoloring of G since k = �(G). We give the details in Algorithm 3.

We now show that the algorithm is correct.

Claim 4.8.1. A graph G contains a b-coloring with k = �(G) colors if and only if Algorithm 3 returns a coloring γ .

Proof. Suppose Algorithm 3 returns a coloring γ . Since γ extends a b-precoloring γX with k colors, we can conclude that 
γ has a b-vertex for each color. By the correctness of the algorithm of Theorem 4.7, we can conclude that γ is a b-coloring 
with k colors.
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Input : A graph G
Output : A b-coloring of G with k = �(G) colors if it exists, and No otherwise.

1 foreach minimal b-precoloring γX of G do
2 Apply the algorithm for PrExt of Theorem 4.7 with input (G, k, γX );
3 if the algorithm found a proper coloring γ extending γX then return γ ;
4 return No;

Algorithm 3: Algorithm for b-Coloring with k = �(G).

Suppose G contains a b-coloring with k colors, say γ . By Observation 4.3, γ contains a minimal b-precoloring, say γX . 
Hence, Algorithm 1, guessed γX in some iteration. Furthermore, since γ is a proper coloring that extends γX , (G, k, γX ) is a
Yes-instance of PrExt, so the algorithm of Theorem 4.7 returned a b-coloring γ ′ that extends γX . �

It remains to argue the runtime. By Lemma 4.5, we can enumerate all b-precolorings in β(k) · kO(1) time and by Theo-
rem 4.7, the algorithm for PrExt runs in time nO(1) . The total runtime is hence (with �(G) = k)

β(k) · kO(1) · nO(1) = nk · �k(k−1) · (k − 1)!k · nO(1) = nk+O(1) · kk(k−1) · (k − 1)!k
≤ nk+O(1) · 2O(k2 log k),

as claimed. �
4.4. Algorithm for k = m(G) − 1

Before we proceed to describe the algorithm for b-Coloring when k = m(G) − 1, we show that the algorithm of The-
orem 4.7 can be used for a slightly more general case of Precoloring Extension, namely the case when all high-degree 
vertices in the input instance are precolored.

Lemma 4.9. There is an algorithm that solves an instance (G, k, γX) of Precoloring Extension in polynomial time whenever 
maxv∈V (G)\X deg(v) ≤ k.

Proof. First, we check whether γX is a proper coloring of G[X] and if not, the answer is No. We create a new instance of
Precoloring Extension (G ′, k, δX ′) as follows. For every vertex x ∈ X and every vertex y ∈ NG(x) \ X , we let xy be a new 
vertex that is only adjacent to y. We denote the set of these newly introduced vertices by X ′ := {xy | x ∈ X, y ∈ NG(x) \ X}. 
We obtain G ′ from G as follows. Let G ′′ = G − X . Then, the vertex set of G ′ is V (G ′) := V (G ′′) ∪ X ′ and its edge set is 
E(G ′) := E(G ′′) ∪ {xy y | xy ∈ X ′}. Now, we define a precoloring δX ′ : X ′ → [k] such that for xy ∈ X ′ , δX ′ (xy) := γX (x).

It is clear that (G, k, γX ) is a Yes-instance of Precoloring Extension if and only if (G ′, k, δX ′ ) is a Yes-instance of Pre-

coloring Extension. Furthermore, for every vertex z ∈ X ′ , degG ′ (z) = 1 and for every vertex v ∈ V (G ′) \ X ′ , degG ′ (v) =
degG(v) ≤ k, so �(G ′) ≤ k. This means that we can solve the instance (G ′, k, γX ′ ) in polynomial time using Theorem 4.7. �
Theorem 4.10. There is an algorithm that decides whether a graph G has a b-coloring with k = m(G) − 1 colors in time nk2+O(1) ·
2k2 log k.

Proof. Let D denote the set of vertices of degree at least k + 1 in G . By the definition of m(G), we have that |D| ≤ k + 1. We 
first enumerate all minimal b-precolorings of G and, for each such precoloring, we enumerate all precolorings of D . Then, 
given a b-precoloring γX with D ⊆ X , we have that every vertex in V (G) \ X has degree at most k, so we can apply the 
algorithm of Lemma 4.9 to verify whether there is a proper coloring of G that extends γX . If so, we output that extension. 
If no such precoloring can be found, then we conclude that we are dealing with a No-instance. We give the details in 
Algorithm 4.

We now prove the correctness of the algorithm.

Claim 4.10.1. G has a b-coloring with k = m(G) − 1 colors if and only if Algorithm 4 returns a coloring γ .

Proof. Suppose Algorithm 4 returns a coloring γ . Then, γ is obtained from a minimal b-precoloring γX and a precoloring 
γD\X , both with k colors, such that γX∪D = γX ∪ γD\X is proper. Furthermore, since all vertices in V (G) \ D have degree at 
most k, the application of the algorithm of Lemma 4.9 returns a correct answer. Hence, γ is a proper coloring and since it 
is obtained by extending a b-precoloring, it is a b-coloring with k colors.

The forward direction can be proved as in Claim 4.8.1 using Observation 4.3 which states that every b-coloring can be 
obtained by extending a minimal b-precoloring. �
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Input : A graph G
Output : A b-coloring of G with k = m(G) − 1 colors if it exists, and No otherwise.

1 foreach minimal b-precoloring γX of G do
2 foreach precoloring γD\X : (D \ X) → [k] do
3 if γX∪D := γX ∪ γD\X is proper then
4 Apply the algorithm for PrExt of Lemma 4.9 with input (G, k, γX );
5 if the algorithm found a proper coloring γ extending γX∪D then return γ ;
6 return No;

Algorithm 4: Algorithm for b-Coloring with k = m(G) − 1.

It remains to argue the runtime. In line 1, we enumerate β(k) (see (1)) minimal b-precolorings in time β(k) · kO(1) using 
Lemma 4.5. For each such precoloring, we enumerate all precolorings of D \ X . Since |D| ≤ k +1, there are at most kk+1 such 
colorings. Finally, we run the algorithm for PrExt due to Lemma 4.9 which takes time nO(1) . The total runtime becomes

β(k) · kO(1) · kk+1 · nO(1) = nk · �k(k−1) · (k − 1)!k · kk+1 · nO(1) ≤ nk2+O(1) · 2k2 log k,

as claimed. �
5. Maximum degree parameterizations

In this section we consider parameterizations of b-Coloring that involve the maximum degree �(G) of the input graph 
G . In Section 5.1 we show that we can solve b-Coloring when k = m(G) in time FPT parameterized by �(G) and in 
Section 5.2 we show that b-Coloring is FPT parameterized by �(G) + �k(G).

Both algorithms presented in this section make use of the following reduction rule, which has already been applied 
in [18,19] to obtain the FPT algorithm for the problem of deciding whether a graph G has a b-coloring with k = �(G) + 1
colors, parameterized by k.

Reduction Rule 5.1 ([18,19]). Let (G, k) be an instance of b-Coloring. If there is a vertex v ∈ V (G) such that every vertex in 
N[v] has degree at most k − 2, then reduce (G, k) to (G − v, k).

5.1. FPT algorithm for k = m(G) parameterized by �(G)

Sampaio [19] and Panolan et al. [18] independently showed that parameterized by �(G), it can be decided in FPT time 
whether a graph G has a b-coloring with �(G) + 1 colors. In this section we show that in the same parameterization, it can 
be decided in FPT time whether a graph has a b-coloring with m(G) colors.

Theorem 5.2 (Theorem 2, restated). There is an algorithm that given a graph G on n vertices decides whether G has a b-coloring with 
k = m(G) colors in time 2O(k4·�) + nO(1) < 2O(�5) + nO(1) , where � := �(G).

Proof. We apply Reduction Rule 5.1 exhaustively to G and consider the following 3-partition (D, T , R) of V (G), where 
D contains the vertices of degree at least k, T the vertices of degree precisely k − 1 and R the remaining vertices, i.e. 
R := V (G) \ (D ∪ T ). Since we applied Reduction Rule 5.1 exhaustively, we make

Observation 5.2.1. Every vertex in R has at least one neighbor in D ∪ T .

We pick an inclusion-wise maximal set B ⊆ D ∪ T such that for each pair of distinct vertices b1, b2 ∈ B , we have that 
dist(b1, b2) ≥ 4.

Case 1 (|B ∩ T | < k).3 We show that for any vertex in u ∈ V (G) \ B , there is a vertex v ∈ B such that dist(u, v) ≤ 4. 
Suppose u ∈ D ∪ T . Since we did not include u in B , it immediately follows that there is some v ∈ B such that dist(u, v) < 4. 
Now suppose u ∈ R . By Observation 5.2.1, u has a neighbor w in D ∪ T and by the previous argument, there is a vertex 
v ∈ B such that dist(w, v) < 4. We conclude that dist(u, v) ≤ 4. Using this observation, we now show that in this case, the 
number of vertices in G is polynomial in k and �.

Claim 5.2.2. If |B ∩ T | < k, then |V (G)| ≤O(k4 · �).

3 This case is almost identical to [18, Case II in the proof of Theorem 2].
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Input : A graph G with k = m(G) // More generally, graph G with �k(G) ≤ k
Output : A b-coloring with k colors of G if it exists, and No otherwise.

1 Apply Reduction Rule 5.1 exhaustively;
2 Let (D, T , R) be a partition of V (G) such that for all x ∈ D , degG(x) ≥ k, for all x ∈ T , degG(x) = k − 1, and 

R = V (G) \ (D ∪ T );
3 Let B ⊆ D ∪ T be a maximal set such that for distinct b1, b2 ∈ B , dist(b1, b2) ≥ 4;
4 if |B ∩ T | < k then // Case 1
5 Solve the instance in time 2O(k4 ·�) using the b-Coloring algorithm [18];
6 if the algorithm of [18] returned a b-coloring γ then return γ ;
7 else return No;
8 else // Case 2, i.e. |B ∩ T | ≥ k
9 Pick a size-k subset of B ∩ T , say B ′ := {x1, . . . , xk};

10 Initialize a k-coloring γ : V (G) → [k];
11 For i ∈ [k], let γ (xi) := i;
12 Let γ color the vertices of D injectively such that γ remains proper on G[B ′ ∪ D];
13 For i ∈ [k], let γ color N(xi) ∩ D such that xi is the b-vertex of color i;
14 Extend the coloring γ greedily to the remainder of G;
15 return γ ;

Algorithm 5: An algorithm that either constructs a b-coloring of a graph G with m(G) colors, or reports that there is 
none, and runs in FPT time parameterized by �(G).

Proof. Note that (B ∪ D, S1, . . . , S4) constitutes a partition of V (G), where Si is the set of vertices of V (G) \ (B ∪ D) that 
are at distance exactly i from B . Since |B ∩ T | < k and |D| ≤ k, we have that |B ∪ D| < 2k, and therefore |S1| < 2k · �. By 
the definition of m(G), all the vertices in S1 ∪ . . . ∪ S4 have degree at most k − 1. This implies that |Si | < (k − 1)i−1 · 2k · �. 
We conclude that the number of vertices in G is at most 2k + 2k · � · ∑4

i=1(k − 1)i−1 =O(k4 · �). �
By Claim 5.2.2, we can solve the instance in Case 1 in time 2O(k4 ·�) using the algorithm of Panolan et al. [18].
Case 2 (|B ∩ T | ≥ k). Let B ′ ⊆ B ∩ T with 

∣∣B ′∣∣ = k and denote this set by B ′ = {x1, x2, . . . , xk}. We show that we can 
construct a b-coloring γ : V (G) → [k] of G such that for i ∈ [k], xi is the b-vertex of color i. For i ∈ [k], we let γ (xi) := i. Next, 
we color the vertices in D . Recall that |D| ≤ k, so we can color the vertices in D injectively with colors from [k], ensuring 
that this will not create a conflict on any edge in G[D]. Furthermore, consider i, j ∈ [k] with i �= j. Since dist(xi, x j) ≥ 4, we 
have that N(xi) ∩ N(x j) = ∅. In particular, there is no vertex in D that has two or more neighbors in B ′ . To summarize, we 
can conclude that we can let γ color the vertices of D in such a way that:

(i) γ is injective on D , and
(ii) γ is a proper coloring of G[B ′ ∪ D].

These two items imply that for each xi (i ∈ [k]), its neighbors N(xi) ∩ D receive distinct colors which are also different from 
i. Let � := |N(xi) ∩ D|. It follows that we can let γ color the remaining (k − 1) − � neighbors of xi in an arbitrary bijective 
manner with the (k − 1) − � colors that do not yet appear in the neighborhood of xi .

After this process, xi is a b-vertex for color i. We proceed in this way for all i ∈ [k]. Since for i, j ∈ [k] with i �= j we 
have that dist(xi, x j) ≥ 4, it follows that there are no edges between N[xi] and N[x j] in G . Hence, we did not introduce any 
coloring conflict in the previous step. Now, all vertices in G that have not yet received a color by γ have degree at most 
k − 1, so we can extend γ to a proper coloring of G in a greedy fashion.

We summarize the whole procedure in Algorithm 5. We now analyze its runtime. Clearly, exhaustively applying Reduc-
tion Rule 5.1 can be done in time nO(1) . As mentioned above, Case 1 can be solved in time 2O(k4 ·�) . In Case 2, the coloring 
of G[B ′ ∪ D] can be found in time O(k2), and extending the coloring to the remainder of G can be done in time nO(1) . The 
claimed bound follows. �

We observe that Algorithm 5 in fact solves a more general case of the b-Coloring problem, a fact which we will use 
later in the proof of Theorem 5.5. By the definition of m(G), �m(G) ≤ m(G), and this is the only property of m(G) that 
the algorithm relies on: it bounds the size of D by |D| ≤ m(G). This is crucially used in lines 5 and 12. Now, if we relax 
the condition of k = m(G) to �k(G) ≤ k, we observe that the assumption �k(G) ≤ k still guarantees that |D| ≤ k. Hence, in 
line 5, the bound of O(k4 · �) on V (G) remains the same and in line 12 we can find a coloring that is injective on D as 
well.

Remark 5.3. Algorithm 5 solves the problem of deciding whether G admits a b-coloring with k colors in time 2O(k4·�) + nO(1) when-
ever �k(G) ≤ k.
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Furthermore, in the proof of Theorem 5.2, we in fact provide a polynomial kernel for the problem: In Case 
1, we have a kernelized instance on O(k4 · �) vertices (see Claim 5.2.2) and in Case 2, we always have a Yes-
instance.

Corollary 5.4. The problem of deciding whether a graph G has a b-coloring with k = m(G) colors admits a kernel on O(k4 · �) =
O(�5) vertices.

5.2. FPT algorithm parameterized by �(G) + �k(G)

The next parameterization of b-Coloring involving the maximum degree that we consider is by �(G) + �k(G). We 
show that in this case, the problem is FPT. By Observation 3.3 we know that b-Coloring is NP-complete on graphs with 
�k(G) = 0, and by Theorem 1, it is NP-complete even when k = 3 and �(G) = 4. Hence, there is no FPT- nor XP-algorithm 
for a parameterization using only one of the two above mentioned parameters unless P = NP. Note that the algorithm we 
provide in this section can be used to solve the case of k = m(G) for which we gave a separate algorithm in Section 5.1, see 
Algorithm 5. However, Algorithm 5 is much simpler than the algorithm presented in this section, and simply applying the 
following algorithm for the case k = m(G) results in a runtime of 2O(kk+3·�) + nO(1) which is far worse than the runtime of 
2O(k4·�) + nO(1) of Theorem 5.2.

Theorem 5.5 (Theorem 3, restated). There is an algorithm that given a graph G on n vertices decides whether G has a b-coloring with 
k colors in time 2O(�·�·min{�,�}�+2) + nO(1) , where � := �(G) and � := �k(G).

Proof. The overall strategy of the algorithm is similar to Algorithm 5. We can make the following assumptions. First, if 
� ≤ k, then we can apply Algorithm 5 directly to solve the instance at hand, see Remark 5.3. Hence we can assume that 
k < �. Furthermore, k ≤ � + 1, otherwise we are dealing with a trivial No-instance; we have that k ≤ min{� − 1, � + 1}. 
Furthermore, we can assume that k > 2, otherwise the problem is trivially solvable in time polynomial in n.

We consider a partition (D, T , R) of V (G), where the vertices in D have degree at least k, the vertices in T have degree 
k − 1 and the vertices in R have degree less than k − 1. We assume that Reduction Rule 5.1 has been applied exhaustively, 
so Observation 5.2.1 holds, i.e. every vertex in R has at least one neighbor in D ∪ T .

Now, we pick an inclusion-wise maximal set B ⊆ D ∪ T such that for each pair of distinct vertices b1, b2 ∈ B , 
dist(b1, b2) ≥ � + 3.

Case 1 (|B ∩ T | < k). By the same argument given in Case 1 of the proof of Theorem 5.2, we have that any vertex in T ∪ R
is at distance at most � + 3 from a vertex in B . We now give a bound on the number of vertices in G in terms of � and �.

Claim 5.5.1. If |B ∩ T | < k, then |V (G)| =O(� · � · min{�, �}�+2).

Proof. The proof strategy is the same as in the proof of Claim 5.2.2. Note that (B ∪ D, S1, . . . , S�+3) constitutes a partition 
of V (G), where Si is the set of vertices of V (G) \ (B ∪ D) that are at distance exactly i from B . Since |B ∩ T | < k and 
|D| ≤ �, we have that |B ∪ D| < k + � and |S1| < � · � + k(k − 1) =O(� · �). By the definition of the set D , all the vertices in 
S1 ∪ . . . ∪ S�+3 have degree at most k − 1. Thus, |Si | = (k − 1) · |Si−1| = |S1| · (k − 1)i−1 for all i ∈ {2, . . . , � + 3}. We conclude 
that the number of vertices in G is at most

k + � + |S1| ·
�+3∑
i=1

(k − 1)i−1 = k + � + |S1| ·O((k − 1)�+2) = O(� · � · (k − 1)�+2),

where (k − 1) ≤ min{� − 2, �} ≤ min{�, �} and therefore |V (G)| =O(� · � · min{�, �}�+2). �
By the previous claim, we can solve the instance in time 2O(�·�·min{�,�}�+2) in this case, using the exact exponential time 

algorithm for b-Coloring due to Panolan et al. [18].
Case 2 (|B ∩ T | ≥ k). Let B ′ ⊆ B ∩ T be of size k and denote it by B ′ := {x1, . . . , xk}. The strategy in this case is as follows: 

We compute a proper coloring of G[D], and then modify it so that can be extended to a b-coloring of G . In this process 
we will be able to guarantee for each i ∈ [k], that either xi can be the b-vertex for color i, or we will have found another 
vertex in D that can serve as the b-vertex of color i. The difficulty here arises from the following situation: Suppose that 
in the coloring we computed for G[D], a vertex xi has two neighbors in D that received the same color. Then, xi cannot 
be the b-vertex of color i in any extension of that coloring, since deg(xi) = k − 1, and k − 1 colors need to appear the 
neighborhood of xi for it to be a b-vertex. However, recoloring a vertex in N(xi) ∩ D might create a conflict in the coloring 
of G[D]. These potential conflicts can only appear in the connected component of G[D ∪ B ′] that contains xi . We now show 
that each component of G[D ∪ B ′] can contain at most one such vertex, by our choice of the set B .

Claim 5.5.2. Let C be a connected component of G[D ∪ B ′]. Then, C contains at most one vertex from B ′ .
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Fig. 1. Illustration of the structure of a graph G in the proof of Theorem 5.5 where k = 4. Here, B ′ = {x1, . . . , x4} and C1, . . . , C4 are the components of 
G[D ∪ B ′] containing x1, . . . , x4, respectively. Note that all vertices in T are of degree 3, all vertices in R of degree at most 2 and all vertices in R have a 
neighbor in D ∪ T .

Proof. Let Z := V (C) ∩ B ′ and assume for the sake of a contradiction that |Z | > 1. Let xi, x j ∈ Z be a pair of distinct vertices 
in Z such that distG[D∪B ′](xi, x j) is minimized among all pairs of distinct vertices in Z . Hence, all vertices on the path 
from xi to x j in G[D ∪ B ′] are from D . Since |D| = �, we have that distG[D∪B ′](xi, x j) ≤ � + 1. However, we then have that 
distG(xi, x j) ≤ distG[D∪B ′](xi, x j) ≤ � +1, a contradiction with the choice of B , by which we have that distG (xi, x j) ≥ � +3. �

Throughout the following, for i ∈ [k], we denote by Ci the connected component of G[D ∪ B ′] that contains xi , and by 
�i the number of vertices of Ci , i.e. �i := |V (Ci)|. By Claim 5.5.2, Ci �= C j, for all i, j ∈ [k], i �= j. We now show that each 
neighbor of xi has no neighbor in D ∩ N[B ′] outside of V (Ci) ∪ N[xi].

Claim 5.5.3. Let i ∈ [k], and y ∈ N(xi) \ D . Then, NG [y] ∩ (D ∪ N[B ′]) ⊆ V (Ci) ∪ N[xi].

Proof. Suppose there is some j ∈ [k] \ {i} such that y has a neighbor z in V (C j) ∪ N[x j]. Since distG(xi, x j) ≥ � + 3 ≥ 4, z
cannot be in N[x j], as it would imply that distG (xi, x j) ≤ 3. We can assume that z ∈ V (C j) \ N[x j]. Since 

∣∣V (C j)
∣∣ ≤ �, there 

is a path of length at most � between z and x j ; appending the edges xi y and yz to this path yields a path of length at 
most � + 2 between xi and x j , a contradiction with distG (xi, x j) ≥ � + 3. �

Let C∅ be the set of connected components of G[D ∪ B ′] that do not contain any vertex from B ′ . We observe that any 
proper coloring of G[D ∪ B ′] can be obtained from independently coloring the vertices in C1, . . . , Ck , and C∅ . If for some 
i ∈ [k], Ci is a trivial4 component, then N(xi) ∩ D = ∅. Hence, we can assign xi any color without creating any conflict with 
the remaining vertices in G[D ∪ B ′]. On top of that, Claim 5.5.3 ensures that assigning a color to a neighbor of any xi (that is 
not contained in D) cannot create a coloring conflict with any vertex in D ∪ N[B ′] that is not contained in V (Ci) ∪ N[xi]. We 
illustrate the structure of G in Fig. 1. Before we proceed with the proof of the next claim, we introduce some notation. For 
X ⊆ V (G), a (pre-) coloring γ : X → [k], and i, j ∈ [k], we denote by γi↔ j the (pre-) coloring obtained from γ by switching
colors i and j, i.e. for v ∈ X we let:

γi↔ j(v) :=
⎧⎨
⎩

γ (v), if γ (v) /∈ {i, j}
i, if γ (v) = j
j, if γ (v) = i

It is immediate that γ is proper if and only if γi↔ j is proper.

Claim 5.5.4. Let i ∈ [k] and let γ : V (Ci) → [k] be a proper coloring of Ci . Then, one can find in time O(k2 · �2
i ) a set 

Yi ⊆ NG(xi) \ D and a proper coloring δ : V (Ci) ∪ Yi → [k] of G[V (Ci) ∪ Yi] that has a b-vertex for color i.

Proof. We can assume that γ (xi) = i, for if γ (xi) = j �= i, we can consider γi↔ j instead. The proof works in two stages. 
First, we show that within the claimed time bound we can find a proper coloring δ : V (Ci) → [k] of Ci satisfying one of the 
following two conditions.

(i) There is a vertex in V (Ci) different from xi that is a b-vertex for color i in δ.
(ii) We have that δ(xi) = i and δ is injective on NCi [xi].

4 We call a connected component of a graph trivial if it contains only one vertex.
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For this first step, we assume that Ci is a nontrivial component of G[D ∪ B ′], otherwise condition (ii) is vacuously 
satisfied. Suppose that neither of the two conditions holds. Let j ∈ [k] with j �= i be a color that does not appear on any 
vertex in NCi (xi), i.e. there is no vertex y ∈ NCi (xi) such that γ (y) = j. Such a color must exist by the facts that γ is not 
injective on NCi [xi] and degG(xi) = k − 1. For each vertex z ∈ V (Ci) with γ (z) = j, we do the following.

1) If γ (N[z]) = [k], i.e. if all colors except j appear in the neighborhood of z, then z is a b-vertex for color j. We let 
δ := γi↔ j and we are in case (i).

2) Otherwise, there is a color j′ �= j that does not appear in the neighborhood of z. We update γ by setting γ (z) := j′ , 
keeping the coloring γ proper.

If these two steps are executed for all vertices that γ colored j without ending up in case (i), then γ is a proper coloring 
of Ci with colors [k] \ { j}. If after these recoloring steps, γ remains non-injective on NCi [xi], then there are two vertices 
y1, y2 ∈ NCi (xi) that received the same color, i.e. γ (y1) = γ (y2). Since no vertex in Ci received color j by γ , we can update 
γ (y2) := j without introducing a conflict.

We repeat this process until we either reached case (i) at some stage, or until the coloring γ is injective on NCi [xi], 
which means we are in case (ii). Since in each iteration, we increase the number of colors appearing in the neighborhood 
of xi by one, we know that the latter condition is met after at most 

∣∣NCi (xi)
∣∣ ≤ k − 1 iterations. This recoloring procedure 

terminates within time O(k · |V (Ci)|2) =O(k · �2
i ).

As any coloring δ satisfying case (i) yields the claim with Yi = ∅, we can from now on assume that we are in case (ii), 
i.e. we have a coloring δ of Ci such that δ(xi) = i and δ is injective on NCi [xi].

We proceed as follows. Let Z = NG(xi) \ V (Ci) be the set of neighbors of xi that are not contained in Ci , and initialize a 
set Yi := ∅. We repeat the following steps, extending the coloring δ to one more vertex at a time, and adding it to Yi , until 
the condition of the claim is met. We keep as an invariant that the coloring δ is proper and injective on NCi [xi] ∪ Yi .

1) Let z ∈ Z \ Yi , and let j ∈ [k] be a color that does not appear on NCi [xi] ∪ Yi in δ. Let furthermore w1, . . . , wt be the 
neighbors of z in V (Ci) ∪ Yi that δ colored j. (If there is no such vertex, we skip the next stage.) Note that for all h ∈ [t], 
wh is not a neighbor of xi , since δ(wh) = j and j is a color that does not appear in the neighborhood of xi so far.

2) For h = 1, . . . , t , we proceed as follows. If wh is a b-vertex of color j in δ, then δi↔ j yields the claim and we terminate 
this process. Otherwise, there is a color j′ �= j that does not appear on any vertex in NG (wh) ∩ (V (Ci) ∪ Yi). We update 
δ(wh) := j′ without introducing a conflict, and repeat Stage 2 for vertex wh+1 (unless h = t).

3) If this stage is reached, then we modified δ in such a way that no neighbor of z in Ci has received color j. Hence, we let 
δ(z) := j, add z to Yi and continue with Stage 1 unless Yi = Z . Note that δ remained injective on NCi [xi] ∪ Yi , as color j
has not yet appeared in the neighborhood of xi .

If the above process is terminated in Stage 2, then we found a coloring satisfying the claim. Otherwise, the coloring δ is 
proper and injective on the neighborhood of xi . Since degG(xi) = k − 1, this implies that xi is a b-vertex for its color i in δ, 
so the target condition of the claim is satisfied as well. It can be verified that this process can be implemented to run in 
time O(k · |V (Ci)| (|V (Ci)| + k)) =O(k2 · �2

i ). �
We now wrap up the treatment of this case. We compute a proper k-coloring γ of G[D ∪ B ′]. We derive from γ another 

k-coloring δ of some induced subgraph of G[D ∪ NG [B ′]] containing D ∪ B ′ . For each i ∈ [k], we do the following. With input 
γ |V (Ci) we compute a proper k-coloring δi of G[V (Ci) ∪ Yi] using Claim 5.5.4, where Yi is the set returned by its algorithm, 
and we let δ|V (Ci)∪Yi := δi . Finally, we let δ|V (C∅) := γ |V (C∅) . As for i �= j, Ci and C j are distinct connected components of 
G[D ∪ B ′] and by Claim 5.5.3, this construction is well-defined and there is no color conflict between any pair of vertices 
zi, z j where zi ∈ V (Ci) ∪ Yi and z j ∈ V (C j) ∪ Y j for i �= j. Since for each i ∈ [k] we applied Claim 5.5.4, δ is a b-precoloring 
of G . All vertices in G that have not received a color so far (recall that δ colors all vertices in D) have degree at most k − 1, 
so we can extend the coloring δ greedily to the remainder of G .

It remains to argue the runtime of the algorithm. Applying Reduction Rule 5.1 exhaustively can be done in time nO(1) . 
As mentioned above, in Case 1 we can solve the instance in time 2O(�·�·min{�,�}�+2) . In Case 2, we can compute a proper 
k-coloring of G[D ∪ B ′] in time O(2�+k · �O(1)) using standard methods [3]. Modifying this coloring to satisfy the conditions 
of Claim 5.5.4 for each i ∈ [k] takes time at most O(

∑k
i=1 k2 · �2

i ) = O(k3 · ∑k
i=1 �2

i ) = O(k3 · �2) = O(�5). Extending the 
coloring to the remainder of G can be done in time nO(1) , so the total runtime of the algorithm is

2O(�·�·min{�,�}�+2) + 2�+k · �O(1) +O(�5) + nO(1) = 2O(�·�·min{�,�}�+2) + nO(1),

as claimed. �
Similar to above, we obtained a kernel for the problem. While this result does not provide a polynomial kernel for the 

parameterization � + �, it does give a polynomial kernel if we consider the problem for fixed values of � and parameter �.
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Corollary 5.6. The problem of deciding whether a graph G admits a b-coloring with k colors admits a kernel on O(� ·� ·min{�, �}�+2)

vertices, where � := �(G) and � := �k(G).

6. Conclusion

We have presented a complexity dichotomy for b-Coloring with respect to two upper bounds on the b-chromatic num-
ber, in the following sense: We have shown that given a graph G and for fixed k ∈ {�(G) +1 − p, m(G) − p}, it can be decided 
in polynomial time whether G has a b-coloring with k colors whenever p ∈ {0, 1} and the problem remains NP-complete 
whenever p ≥ 2, already for k = 3.

The most immediate question left open in this work is the parameterized complexity of the b-Coloring problem when 
k ∈ {m(G), �(G), m(G) − 1}. In all of these cases, we have provided XP-algorithms, and it would be interesting to see 
whether these problems are FPT or W[1]-hard.

Open Problem 1. Let G be a graph and k ∈ {m(G), �(G), m(G) − 1}. Is the problem of deciding whether a graph G has a 
b-coloring with k colors parameterized by k fixed-parameter tractable or W[1]-hard?

We showed that b-Coloring is FPT parameterized by �(G) + �k(G), where �k(G) denotes the number of vertices of 
degree at least k in G , and this is optimal in the sense that there is no FPT nor XP algorithm for the problem param-
eterized by only one of the two invariants. It would be interesting to see if one could devise an FPT-algorithm for the 
parameterization that replaces the maximum degree by the number of colors.

Open Problem 2. Is b-Coloring parameterized by k + �k(G) fixed-parameter tractable?

Note that a positive answer to this question would also imply an FPT-algorithm for the question of whether a graph G
has a b-coloring with k = m(G) colors parameterized by k, partially answering Open Problem 1.

Recently, Effantin et al. [9] introduced the relaxed b-chromatic number of a graph G , χ r
b(G), as the maximum b-chomatic 

number of any induced subgraph of G , i.e. χ r
b(G) := maxX⊆V (G) χb(G[X]). It is clear that χb(G) ≤ χ r

b(G), so it would be 
interesting to see if for fixed k, the problem of deciding whether a graph G admits a b-coloring with k colors when the 
value of k is close to χ r

b(G) admits a similar dichotomy as the ones we presented for the upper bounds �(G) + 1 and m(G)

on χb(G).
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