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Abstract

Let lpt(G) be the minimum cardinality of a transversal of longest paths in G, that is, a set of vertices

that intersects all longest paths in a graph G. There are several results in the literature bounding the

value of lpt(G) in general or in specific classes of graphs. For instance, lpt(G) = 1 if G is a connected

partial 2-tree, and a connected partial 3-tree G is known with lpt(G) = 2. We prove that lpt(G) ≤ 2 for

every planar 3-tree G; that lpt(G) ≤ 3 for every connected partial 3-tree G; and that lpt(G) = 1 if G

is a connected bipartite permutation graph or a connected full substar graph. Our first two results can

be adapted for broader classes, improving slightly some known general results: we prove that lpt(G) ≤ k

for every connected partial k-tree G and that lpt(G) ≤ max{1, ω(G)− 2} for every connected chordal

graph G, where ω(G) is the cardinality of a maximum clique in G.

I. Introduction

It is a well-known fact that, in a connected graph, any two longest paths have a common vertex.
In 1966, Gallai raised the following question: Does every connected graph contain a vertex that belongs
to all of its longest paths? The answer to Gallai’s question is already known to be negative. Figure 1
shows the smallest known negative example, on 12 vertices, which was independently found by
Walther and Voss [15] and Zamfirescu [16].

Figure 1: The classical 12-vertex example that has a negative answer to Gallai’s question.

However, when we restrict ourselves to some specific classes of graphs, for instance trees, the
answer to Gallai’s question turns out to be positive. De Rezende et al. [7] generalized the result
above, proving that the answer to Gallai’s question is positive for 2-trees, and Chen et al. [6]
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extended this result for (connected) series-parallel graphs, also known as partial 2-trees. There
are other classes of (connected) graphs which are known to have a positive answer to Gallai’s
question. Klavžar and Petkovšek [11] proved that this is the case for split graphs, cacti, and
graphs whose blocks are Hamilton-connected, almost Hamilton-connected or cycles. Balister
et al. [2] and Joos [10] proved the same for the class of circular arc graphs. Chen [5] proved the
same for graphs with matching number smaller than three, while Cerioli and Lima [4, 12] proved
it for P4-sparse graphs, (P5, K1,3)-free graphs, graphs that are the join of two other graphs and
starlike graphs, a superclass of split graphs. Finally, Jobson et al. [9] proved it for dually chordal
graphs and Golan and Shan [8] for 2K2-free graphs. A graph is called chordal if every induced
cycle has length three. Several of the above mentioned classes consist of chordal graphs, so it is
tempting to consider Gallai’s question for chordal graphs.

A more general approach to Gallai’s question is to ask for the size of the smallest transversal of
longest paths of a graph, that is, the smallest set of vertices that intersects every longest path. Given
a graph G, we denote the cardinality of such a set by lpt(G). In this direction, Rautenbach and

Sereni [13] proved that lpt(G) ≤ ⌈ n
4 − n2/3

90 ⌉ for every connected graph G on n vertices, and that
lpt(G) ≤ k + 1 for every connected partial k-tree G. The latter result implies that lpt(G) ≤ ω(G)
for every connected chordal graph G, where ω(G) is the cardinality of a maximum clique of G.
This leaves a wide gap, considering that no connected chordal graph G is known with lpt(G) > 1.

In this work, we provide exact results and upper bounds on the value of lpt(G) when G

belongs to some particular classes of graphs. Specifically, we prove that:

• lpt(G) = 1 for every connected bipartite permutation graph G.

• lpt(G) = 1 for every connected full substar graph G.

• lpt(G) ≤ 2 for every planar 3-tree G and lpt(G) ≤ 3 for every connected partial 3-tree G.

The upper bounds above are either tight or off by one because the graph G in Figure 1 is a partial
3-tree with lpt(G) = 2. We in fact show that lpt(G) ≤ k for every connected partial k-tree G, and
derive as a corollary the second part of the third result. Also, the proof of the first part of the
third result above can be adjusted to show that lpt(G) ≤ max{1, ω(G)− 2} for every connected
chordal graph G. Both of these more general results are slight improvements on one of the results
of Rautenbach and Sereni [13]. A summary of the results on lpt is given in Figure 2.

Figure 2: A map with some classes addressed for lpt. For the classes within boxes with dashed borderline, there are
previous results in the literature. For the classes within boxes with thick borderline, we present results in
this paper. For the classes within boxes with dotted borderline, we also have results [3]. The classes whose
boxes are white with thin straight borderline have not yet been studied.
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Before we proceed, let us establish some basic notation. All graphs considered in this paper
are simple. We denote by V(G) and E(G) the vertex set and the edge set of a graph G, respectively.
For a vertex u, we denote by NG(u) the set of neighbors of u in G and by dG(u) the cardinality
of NG(u). If the context is clear, we write simply d(u) and N(u) respectively. Let P be a path
in G. We denote by |P| the length of P, that is, the number of edges in P. Given a path Q

such that the only vertex it shares with P is an extreme of both of them, we denote by P · Q the
concatenation of P and Q. For a vertex v in P, let P′ and P′′ be the paths such that P = P′ · P′′

with V(P′) ∩ V(P′′) = {v}. We refer to these two paths as the v-tails of P.
This paper is organized as follows. In Sections II, III, and IV, we consider, respectively, the

class of bipartite permutation graphs, the class of full substar graphs, and the class of planar 3-
trees. Section IV also contains comments on our results on chordal graphs and on partial 3-trees.
In Section V, we state some open problems to be considered in future work.

II. Bipartite permutation graphs

Let L1 and L2 be two parallel lines in the plane. Consider two sets X = {x1, . . . , xn} and
Y = {y1, . . . , ym} of segments that join a point in L1 to a point in L2, such that the extremes
of every two segments in X ∪ Y are distinct, no two segments in X intersect, and no two seg-
ments in Y intersect. We denote by ri the extreme of xi in L1 and by si the extreme of yi in L1.
We may assume that r1 < · · · < rn and s1 < · · · < sm, and we write xi < xj or yi < yj if i < j.
Let σ be the function that maps the extreme in L1 of each segment in X ∪ Y to its other extreme.

Consider an associated bipartite graph G = (X, Y, E) where xy ∈ E if and only if the seg-
ments x and y intersect each other. We call the tuple (L1,L2, X ∪ Y, σ) a line representation of G

and a graph is called a bipartite permutation graph if it has a line representation (Figure 3).

x1 x2 x3

y1 y2 y3 y4

r1 r2 s1 s2 r3 s3 s4

σ(s1) σ(s2) σ(s3) σ(r1) σ(s4) σ(r2) σ(r3)

Figure 3: A bipartite permutation graph and its corresponding line representation.

In what follows, we assume that G = (X, Y, E) is a connected bipartite permutation graph,
with a line representation (L1,L2, X ∪Y, σ) as above.

Consider xi1 , xi2 ∈ X and yj1 , yj2 ∈ Y such that i1 ≤ i2 and j1 ≤ j2. Spinrad et al. [14] showed
that bipartite permutation graphs satisfy the following properties.

BP1) If xi1 and xi2 ∈ N(yj1), then xk ∈ N(yj1) for i1 ≤ k ≤ i2.

BP2) If xi1yj2 and xi2yj1 ∈ E, then xi1yj1 and xi2yj2 ∈ E.

Using BP1) and BP2) repeatedly, we can generalize BP2) as follows for 1 ≤ i1 < · · · < ik ≤ n

and 1 ≤ j1 < · · · < jℓ ≤ m.

BP3) If xi1yjℓ , xik
yj1 ∈ E, then {xi1 , . . . , xik

, yj1 , . . . , yjℓ} induces a complete bipartite graph in G.

We are interested in how longest paths intersect in a bipartite permutation graph. We begin
by showing that, for every longest path, there exists a longest path with the same set of vertices
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that is ordered in some way. Precisely, if P = a1b1 · · · akbk is a path in G, we say that P is ordered

if a1 < · · · < ak and b1 < · · · < bk. A similar definition applies when P has even length. As we
are interested in vertex intersections, we may restrict attention to such ordered paths.

In what follows, let P be a path in G such that V(P) ∩ X = {a1, . . . , ak} with k ≥ 1 and
a1 < · · · < ak, and V(P) ∩ Y = {b1, . . . , bℓ} with ℓ ≥ 1 and b1 < · · · < bℓ. Let Xi = {a1, . . . , ai}
and Xi = {ai+1, . . . , ak} for i = 0, . . . , k. Similarly, let Yj = {b1, . . . , bj} and Y j = {bj+1, . . . , bℓ}
for j = 0, . . . , ℓ. In particular, X0 = Y0 = ∅. We denote by dP(Xi) the sum ∑v∈Xi

dP(v) and
by dP(Yj) the sum ∑w∈Yj

dP(w).

Proposition 1. Let i, j be such that 0 ≤ i ≤ k, 0 ≤ j ≤ ℓ, and 0 < i + j < k + ℓ. If dP(Xi) ≥ dP(Yj),

then there exists an edge from Xi to Y j. If dP(Yj) ≥ dP(Xi), then there exists an edge from Yj to Xi.

Proof. We will prove only the first claim, as the proof of the second one is analogous. If j = 0, then
i > 0 and the statement holds because |P| > 1. Now suppose that j > 0 and, by contradiction,
that dP(Xi) ≥ dP(Yj) and that there is no edge from Xi to Y j. Because P is a connected bipartite
subgraph of G and i + j < k, there must exist at least one edge from Yj to Xi, so

dP(Yj) = |{wv ∈ E(P) : w ∈ Yj, v ∈ Xi}|+ |{wv ∈ E(P) : w ∈ Yj, v ∈ Xi}|

= |{vw ∈ E(P) : v ∈ Xi, w ∈ V(P)}|+ |{wv ∈ E(P) : w ∈ Yj, v ∈ Xi}|

= dP(Xi) + |{wv ∈ E(P) : w ∈ Yj, v ∈ Xi}|

> dP(Xi),

a contradiction.

Lemma 2. There exists an ordered path with the same vertex set as P.

Proof. Without loss of generality, we may assume that k ≥ ℓ and that, if k = ℓ, then i∗ ≤ j∗,
where ai∗ is the extreme of P in X and bj∗ is the extreme of P in Y. (If i∗ > j∗, interchange X
and Y.) First, we will show that the following properties hold:

(a) there exists an edge with one end in Xi and the other in Yi−1 for i = 1, . . . , ℓ;

(b) there exists an edge with one end in Yi and the other in Xi for every i = 1, . . . , k − 1.

To show (a), observe that dP(u) = 1 for at most two vertices u in Xi (the extremes of P).
Thus dP(Xi) ≥ 2|Xi| − 2 = 2|Yi−1|. Because dP(w) ≤ 2 for every w ∈ Yi−1, we have that
dP(Yi−1) ≤ 2|Yi−1|. Hence dP(Xi) ≥ dP(Yi−1) and, as i − 1 < ℓ, such edge exists by Proposition 1.

To show (b), first suppose that k = ℓ. We have that dP(Yi) ≥ dP(Xi) because i∗ ≤ j∗. Indeed,
if ai∗ ∈ Xi, then dP(Xi) = 2|Xi| − 2 = 2|Yi| − 2 ≤ dP(Yi), and if ai∗ /∈ Xi, then bj∗ /∈ Yi as i∗ ≤ j∗.
Therefore dP(Xi) = 2|Xi| = 2|Yi| = dP(Yi). As i < ℓ, by Proposition 1, such an edge exists. Now
suppose that k = ℓ+ 1. Hence dP(w) = 2 for every w ∈ Yi and dP(Yi) = 2|Yi| = 2|Xi| ≥ dP(Xi).
As i < k + 1, Proposition 1 implies (b).

Now let i < ℓ. By (a), there is a vertex aq in Xi with a neighbor br′ in Yi−1. By (b), there is
a vertex br in Yi with a neighbor aq′ in Xi. As aq ≤ ai < ai+1 ≤ aq′ and br ≤ bi ≤ br′ , by Prop-
erty BP3), both aibi and biai+1 are edges (Figure 4(a)). By (a), aℓbℓ is an edge, hence a1b1 · · · aℓbℓ
is a path. This implies the result for the case k = ℓ. Also, if k = ℓ+ 1, then bk−1ak is an edge
by (b), so a1b1 · · · ak−1bk−1ak is a path.

Lemma 2 implies that we can restrict our attention to ordered longest paths from now on.
To prove that lpt(G) = 1, we proceed in two steps. First, we will prove that lpt(G) ≤ 2. In
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aq ai ai+1 aq′

br bi br′

(a)

xi1 x
ℓ

yr yj1

(b)

x
ℓ

xi1

yj1 yr

(c)

Figure 4: The solid line segments represent the edges in P, while the dashed ones are other existing edges.

fact, we prove that, for each edge of G, the set of its ends is a longest path transversal. Finally,
we will prove that one element in {x1, y1} is also a longest path transversal, which implies that
lpt(G) = 1.

Let xi1yj1 and xi2yj2 be two edges in G. We say that xi1yj1 hits xi2yj2 if (i1 − i2)(j1 − j2) < 0. If
that is not the case, we say they are parallel. We say that |i1 − i2| is the distance in X and that |j1 − j2|
is the distance in Y between such edges. We denote by distX(xi1yj1 , xi2yj2) and distY(xi1yj1 , xi2yj2)
these two values respectively.

Lemma 3. Let vw ∈ E, with v ∈ X and w ∈ Y. Every ordered longest path contains a vertex of {v, w}.

Proof. Suppose by contradiction that there exists an ordered longest path P that does not contain
either v or w. We distinguish two cases.

Case 1. There is an edge xi1yj1 in P that hits vw.

Without loss of generality, assume that xi1 < v and yj1 > w. By Property BP2), xi1w and vyj1
are edges. Let P1 be the xi1-tail of P that does not contain yj1 , and P2 be the yj1-tail of P that does
not contain xi1. Then P1 · xi1wvyj1 · P2 is a path longer than P, a contradiction.

Case 2. Every edge in P is parallel to vw.

Let xi1yj1 be the edge of P that is “closer” to vw. That is,

distX(xi1yj1 , vw) = min{distX(e, vw) : e ∈ E(P)} and
distY(xi1yj1 , vw) = min{distY(e, vw) : e ∈ E(P)}.

Observe that, as P is an ordered path, one of {xi1 , yj1} is an extreme of P. Suppose that xi1 is such
an extreme. (A similar proof applies when this is not the case.) Without loss of generality, we
may assume that xi1 > v and that P is a path with minimum value of xi1 among all such paths.

Let H be the subgraph of G induced by the vertices {xi : i ≥ i1} ∪ {yj : j ≥ j1}. Since G

is connected and G 6= H, there is an edge between H and G − V(H). First suppose that such
edge links vertices xℓ in H and yr in G − V(H). Then, by Property BP2), xi1 is adjacent to yr.
Hence yrxi1 · P is also a path, a contradiction (Figure 4(b)). Now suppose that there is an edge
between a vertex xℓ in G −V(H) and a vertex yr in H. Then, by Property BP2), xℓ is adjacent to yj1 .
So Q = xℓyj1 · (P − xi1) is also a longest path. As V(Q) \ V(P) = {xℓ}, we have that w /∈ V(Q).
Moreover, if xℓ ≤ v, then xℓ is adjacent to w by Property BP2), and wxℓ · Q would be a path longer
than P. So v < xℓ < xi1 , and Q is a longest path with all of its edges parallel to vw, which is a
contradiction to the way P was chosen (Figure 4(c)).

Given a collection C of ordered longest paths, we say that P ∈ C is a left-most path if, for every
other path Q ∈ C and for every i, the i-th vertex of P in X is smaller than or equal to the i-th
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vertex of Q in X, and the same applies with Y instead of X. Such a path exists because all paths
in C are ordered.

Theorem 4. For every connected bipartite permutation graph G, lpt(G) = 1.

Proof. Let G = (X, Y, E) with X = {x1, . . . , xn} and Y = {y1, . . . , ym} as before. Suppose by
contradiction that lpt(G) > 1. Then, there exist a longest path P that does not contain y1 and a
longest path Q that does not contain x1. As G is connected, x1y1 is an edge by Property BP2). So,
by Lemma 3, x1 ∈ V(P) and y1 ∈ V(Q). We may assume that n ≥ m and that both P and Q are
ordered left-most paths. Thus, for every i ∈ {2, . . . , m}, it suffices to prove the following:

(a) yi is the (2i − 3)-rd vertex of P, xi−1 is the (2i − 2)-nd vertex of P, xi is the (2i − 3)-rd vertex
of Q, and yi−1 is the (2i − 2)-nd vertex of Q.

(b) xiyi is an edge.

Indeed, if that is the case, we would have a path R = x1y1 · · · xmym of length 2m − 1. But
|V(P) ∩ Y| = |V(P) ∩ {y2, . . . , ym}| = m − 1 and thus |V(P) ∩ X| ≤ m, because y1 6∈ V(P) and G

is bipartite. Hence |P| ≤ 2m − 2 < |R|, a contradiction (Figure 5).

x1 x2 x3 x4

y1 y2 y3 y4

Figure 5: The solid bold line segments indicate P while the solid thin line segments indicate Q.

We prove (a) and (b) by induction on i. If i = 2, we need to prove that y2x1 and x2y1 are
the first edges of P and Q respectively, and that x2y2 is an edge. Remember that x1 ∈ V(P).
Obviously x1 is not an extreme of P. So x1 is the second vertex of P, because P is an ordered
longest path. Now we will prove that y2 is the first vertex of P. If P starts at yj with j > 2, then
x1y2 is an edge by Property BP1), because yjx1 and x1y1 are edges. Thus y2x1 · (P − yj) is also a
longest path, contradicting the choice of P. A similar reasoning shows that x2y1 is the first edge
of Q. This implies that x2y2 is an edge by Property BP2), finishing the base case of the induction.

Now fix an i > 2 and assume that both (a) and (b) are valid for all j < i. Then, by the induction
hypothesis, yi−1xi−2 is the (2i − 5)-th edge of P. First, we will prove that xi−1 is the (2i − 2)-nd
vertex of P. Indeed, suppose that xj is the (2i − 2)-nd vertex of P with j > i − 1. Let P′ and P′′ be
the xi−2-tails of P with y2 in P′. Then y1x1 · · · yi−2xi−2 · P′′ is an ordered longest path that contains
no vertex of {xi−1, yi−1}, a contradiction to Lemma 3. So xi−1 is the (2i − 2)-nd vertex of P. Now,
we will prove that yi is the (2i − 3)-rd vertex of P. Suppose that yj is the (2i − 3)-rd vertex of P

with j > i. Then, as xi−1yi−1 is an edge by the induction hypothesis, xi−2yi and xi−1yi are edges
by Property BP3). Hence, by substituting yj by yi in P, we obtain a longest path that contradicts
the choice of P. A similar argument shows that xi is the (2i − 3)-rd vertex of Q and that yi−1
is the (2i − 2)-nd vertex of Q. This implies that xiyi is an edge by Property BP2), finishing the
proof.
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III. Full substar graphs

We now consider a subclass of chordal graphs, namely the full substar graphs. A star is a complete
bipartite graph K1,k and, given a tree T, a substar is a subgraph of T that is a star. The vertex of
degree k is the center of the star (if k = 1, we pick an arbitrary vertex to be its center). A substar
with center x is a full substar if k ≥ dT(x)− 1. A graph is a full substar graph if it is an intersection
graph of a set of full substars of a tree. The tree and the set of full substars is an intersection
model for the full substar graph (Figure 6).

d
e

f

b c

a
Sa

Sb Sc

Sd S f
Se

b

b

b

b

b

b

b

Figure 6: A full substar graph and its intersection model.

Given a full substar graph G and its intersection model in a host tree T, we denote by Sx the
substar associated with x ∈ V(G). We use capital letters to refer to the vertices of T and lowercase
letters to refer to the vertices of G. For a vertex X ∈ V(T), let CX be the set of vertices of G whose
corresponding stars are centered in X, and CX

Y be the set of vertices of G whose stars are centered
in a vertex that belongs to the component of T − X in which Y lies. In what follows, G is a
connected full substar graph and T is the host tree of an intersection model for G.

Lemma 5. Let x ∈ CX. If P is a longest path in G and x /∈ V(P), then the following conditions hold:

(i) V(P) ⊆ CX
Y ∪ CX , for a node Y ∈ NT(X);

(ii) if Y ∈ V(Sx), then V(P) ∩ CX = ∅; otherwise |V(P) ∩ CX| ≤ 1.

Proof. First note that no two consecutive vertices in P lie in CX. Indeed, if two such vertices exist,
they would be both adjacent to x and, by adding x to P between these two vertices, we would get
a path longer than P, a contradiction. Similarly, no vertex in CX is an extreme of P.

Suppose by contradiction that (i) does not hold. So P has vertices u and v whose substars are
centered in different components of T −X. We may assume that the subpath of P between u and v
is as short as possible. If uv ∈ E(P), then X is in both Su and Sv, hence x is adjacent to u and v,
leading to a contradiction as above. If uv 6∈ E(P), then there is a w ∈ CX such that uw, wv ∈ E(P).
Because |E(Sx)| ≥ dT(X)− 1, one of {u, v} is adjacent to x, leading again to a contradiction. This
shows that (i) holds.

Let Y be as stated in (i). Suppose that Y ∈ V(Sx) and, by contradiction, that there is
an x′ ∈ V(P) ∩ CX. Because |P| ≥ 1 and V(P) ⊆ CX

Y ∪ CX, there exists x′v ∈ E(P) such
that v ∈ CX

Y ∪ CX. Then xx′, xv ∈ E(G), which leads to a contradiction. Now suppose
that Y 6∈ V(Sx) and, by contradiction, that there are x′, x′′ ∈ V(P) ∩ CX . Thus Y ∈ V(Sx′)
because |E(Sx′)| ≥ dT(X) − 1 and x 6= x′. Similarly Y ∈ V(Sx′′). Let w′, w′′ ∈ V(P) be such
that w′x′, w′′x′′ ∈ E(P) and x′, x′′ 6∈ V(Pw′w′′), where Pw′w′′ denotes the subpath of P between w′

and w′′. Possibly w′ = w′′. Also, let v ∈ V(P) be such that v 6= w′′ and x′′v ∈ E(P). Note that
Y ∈ V(Sw′), V(Sw′′), V(Sv), hence x′′w′ and w′′v ∈ E(G). Let Px′ be the x′-tail of P that does not
contain x′′ and Pv be the v-tail of P that does not contain x′′. So Px′ · x′xx′′w′ · Pw′w′′ · w′′v · Pv is a
path longer than P, a contradiction.
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Lemma 6. If lpt(G) > 1, then for any X ∈ V(T) there exists a longest path P in G and a node

Y ∈ NT(X) such that V(P) ⊆ CX
Y .

Proof. We divide the proof in the following two cases.

Case 1. CX 6= ∅.
Take x ∈ CX with |E(Sx)| as large as possible. Since lpt(G) > 1, there is a longest path P

such that x /∈ V(P). By Lemma 5(i), V(P) ⊆ CX
Y ∪ CX for some Y ∈ NT(X). If V(P) ∩ CX = ∅,

then V(P) ⊆ CX
Y . Otherwise, Y /∈ V(Sx) and V(P)∩CX = {x′} for some x′, by Lemma 5(ii). Note

that x′ is not an extreme of P, because xx′ ∈ E(G) and x /∈ V(P). Also, if NG(x′) ⊆ NG(x), then
we could add x to P between x′ and its neighbor in P, a contradiction. Hence NG(x′) 6⊆ NG(x).
So dT(X)− 1 ≤ |E(Sx′)| ≤ |E(Sx)| < dT(X), and |E(Sx)| = |E(Sx′)| = dT(X)− 1. Moreover, there
exists Z ∈ NT(X) such that Z 6= Y, Z ∈ V(Sx), and Z /∈ V(Sx′). Because lpt(G) > 1, there exists
a longest path Q that does not contain x′. By Lemma 5, V(Q) ⊆ CX

Z ∪ (CX \ {x′}), implying
that V(P) ∩ V(Q) = ∅, which is a contradiction since G is connected.

Case 2. CX = ∅.
Suppose that every longest path P of G contains vertices whose substars are centered in two

different components of T − X. Let us argue that lpt(G) = 1. As CX = ∅, there exists uv ∈ E(P)
with Su and Sv centered in NT(X). Let K = {x ∈ V(G) : X ∈ V(Sx)}. So u, v ∈ K and K ⊆ V(P)
because K is a clique, and any vertex in K is in every longest path of G, that is, lpt(G) = 1.

We are now ready to prove the main result of this section.

Theorem 7. If G is a connected full substar graph, then lpt(G) = 1.

Proof. Suppose by contradiction that lpt(G) > 1. We create an auxiliary directed graph D on the
same vertex set as T and arc set defined in the following way. For every X ∈ V(D), we have
that XY ∈ E(D) if and only if Y ∈ NT(X) and there exists a longest path P such that V(P) ⊆ CX

Y .
By Lemma 6, every node in T has outdegree at least one in D. Let XY be the last arc in a maximal
directed path in D. Since T is a tree, YX is also an arc in D. Because both XY, YX ∈ E(D), there
exist two longest paths P and Q in G such that V(P) ⊆ CX

Y and V(Q) ⊆ CY
X. But CY

X ∩ CX
Y = ∅,

implying that V(P) ∩ V(Q) = ∅, a contradiction since G is connected.

IV. Planar 3-trees and related classes

A 3-tree is defined recursively as follows. The complete graph on three vertices is a 3-tree. Any
graph obtained from a 3-tree by adding a new vertex and making it adjacent to all the vertices
of an existing triangle is also a 3-tree. Note that a 3-tree is planar if, in its recursive construction,
the first triangle is used at most twice and any other triangle is used at most once. In this section,
we will show that there is a transversal of size two in planar 3-trees.

Let S be a set of vertices in a graph G. We say that S separates vertices u and v if u and v
are in different components of G − S. Let X ⊆ V(G). We say that S separates X if S separates
at least two vertices of X. A path P crosses S if S separates V(P) in G. Otherwise S fences P.
For a set X ⊆ S, we say that P crosses S at X if S ∩ V(P) = X. In this case, if X = {x}, we
simply say that P crosses S at x. If P and Q are paths fenced by S, we write P ∼S Q if there
exist vertices u ∈ V(P) and v ∈ V(Q) such that u and v are in the same component of G − S.
Otherwise, we write P ≁S Q. If the context is clear, we simply write P ∼ Q and P ≁ Q. Note
that, if V(P) ⊆ S, then P ≁S Q for every path Q. For an integer t, we say that P t-intersects S if P
intersects S at exactly t vertices. If two paths P and Q intersect S at the same set of vertices, we
say they are S-equivalent.
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Given a path P that contains vertices a and b, we denote by Pa the a-tail of P that does not
contain b and by Pb the b-tail of P that does not contain a. Also, if the context is clear, we denote
by P̃ the subpath of P that has a and b as its extremes. Thus P = Pa · P̃ · Pb.

Lemma 8. Let G be a graph with a clique K. Let C be the set of all longest paths in G that 2-intersect and

cross K, and whose extremes are not separated by K. For every three paths in C, there are two of them that
are K-equivalent.

Proof. Suppose by contradiction that there are longest paths P, Q, and R in C that are not
pairwise K-equivalent. Say V(P) ∩ K = {a, b}, V(Q) ∩ K = {c, d}, and V(R) ∩ K = {e, f},
where {a, b}, {c, d}, and {e, f} are pairwise distinct but not necessarily pairwise disjoint. We may
assume that either {a, b} ∩ {c, d} = ∅ or {a, b} ∩ {c, d} = {b} = {d}. If P̃ is internally disjoint
from Qc and from Qd, and Q̃ is internally disjoint from Pa and from Pb, then Pa · ac · Q̃ · db · Pb

and Qc · ca · P̃ · bd · Qd are paths whose lengths sum more than |P|+ |Q|, a contradiction (Fig-
ure 7(a)). Also, because P is a longest path, it has no extreme in K, so both Pa and Pb have vertices
not in K and Pa ∼ Pb. Analogously, Qc ∼ Qd and Re ∼ R f . So, P̃ ∼ Qc ∼ Qd or Q̃ ∼ Pa ∼ Pb. Ap-
plying the same reasoning to paths P and R, and to paths Q and R, we conclude that P̃ ∼ Re ∼ R f

or R̃ ∼ Pa ∼ Pb, and that Q̃ ∼ Re ∼ R f or R̃ ∼ Qc ∼ Qd. As P, Q, and R cross K, from the
previous, we have that

P̃ 6∼ Q̃, P̃ 6∼ R̃, and Q̃ 6∼ R̃. (1)

Without loss of generality, we may assume that P̃ ∼ Qc ∼ Qd. (Otherwise, interchange P

with Q, and {a, b} with {c, d}.) Now, if P̃ ∼ Re, then Q̃ 6∼ Re by (1), and thus R̃ ∼ Qc. But
then R̃ ∼ P̃, and we contradict (1). Hence, P̃ 6∼ Re ∼ R f , and R̃ ∼ Pa. Similarly, one can deduce
that R̃ 6∼ Qc ∼ Qd. Thus, Q̃ ∼ Re and, again, we can deduce that Q̃ 6∼ Pa ∼ Pb. We conclude that

Pa ∼ Pb 6∼ Q̃, Qc ∼ Qd 6∼ R̃, and Re ∼ R f 6∼ P̃ (2)

(Figure 7(b)). We may assume that either {a, b} ∩ {e, f} = ∅ or {a, b} ∩ {e, f} = {b} = { f},
and that either {c, d} ∩ {e, f} = ∅ or {c, d} ∩ {e, f} = {d} = { f} (the proofs for other cases
are analogous). Therefore, by (2), we have three paths, Pa · ac · Q̃ · db · Pb, Qc · ce · R̃ · f d · Qd,
and Re · ea · P̃ · b f · R f , whose lengths sum more than |P|+ |Q|+ |R|, a contradiction.

K

d

c

b

a

Pa

Pb

Qc

Qd

P̃

Q̃

(a)

Pa

P̃

Pb

Qc

Q̃

Qd

Re R̃
R f

(b)

Figure 7: (a) Paths P and Q from the proof of Lemma 8. (b) Paths P, Q, and R, and a tripartite graph representing the
interaction between their parts. The graph has three vertices for each of the paths, one for each part. There
are two types of edges: straight edges connect parts that are in different components of G − K and dashed
edges connect parts that are in the same component of G − K. When the interaction between two parts is
not determined, we omit the edge between them.
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A k-clique is a clique with k vertices in G. A longest path P in G is an attractor for S if P is
fenced by S and all S-equivalent longest paths are also fenced by S. We say that P is a k-attractor
if |S ∩ V(P)| = k. A graph H is called a minor of the graph G if H can be formed from G by
deleting edges and vertices and by contracting edges. In this case, we say G has an H-minor.

Lemma 9. Let G be a 3-tree with a 4-clique K. If lpt(G) > 2, then there is a k-attractor for K with k ≤ 2.

Proof. Suppose by contradiction that there exists no k-attractor for K with k ≤ 2. If there is a
longest path in G that does not intersect K, then such path is a 0-attractor, a contradiction. Thus,
we may assume that any longest path intersects K at least once.

Case 1. There is a longest path that 1-intersects K.

Because there is no 1-attractor for K, there exists a longest path P crossing K at a vertex v.
Let P′ and P′′ be the two v-tails of P. Let e be an edge of K containing v. As lpt(G) > 2, there
exists a longest path Q that does not contain any end of e. If Q 1-intersects K at a vertex w, then,
as there is no 1-attractor, we can choose Q crossing K at w. Let Q′ and Q′′ be the two w-tails of Q.
Because both P and Q cross K, we may assume that P′

≁ Q′ and P′′
≁ Q′′. But then P′ · vw · Q′

and P′′ · vw · Q′′ are paths, one of them longer than P, a contradiction. Hence, there is a longest
path Q that 2-intersects K at vertices different from the ends of e, say {w, z}. As there is no
2-attractor, we can choose Q crossing K at {w, z}. Because both P and Q cross K, we may assume
that P′

≁ Qw, P′′
≁ Q̃, and P′′

≁ Qz. But then P′ · vw · Qw and P′′ · vw · Q̃ · Qz are paths, one of
them longer than P, a contradiction.

Case 2. Every longest path intersects K at least twice.

Let K = {x, y, w, z}. Because lpt(G) > 2, for every edge of K, there exists a longest path that
2-intersects K at the ends of that edge. By Lemma 8, at least four of these paths are such that
their extremes are separated by K. Moreover, as there is no 2-attractor in G, there are two longest
paths P and Q that cross K such that P 2-intersects K at {x, y} and Q 2-intersects K at {w, z}.
Because K separates the extremes of both P and Q, we may assume that Px ≁ Qw and Py ≁ Qz,
and also that Q̃ ≁ Px or Q̃ ≁ Py. Now note that P̃ ≁ Qw or P̃ ≁ Qz. Without loss of generality,
assume that P̃ ≁ Qw. Suppose that Q̃ ≁ Py (Figure 8(a)). Then one of the paths Px · P̃ · yw · Qw

or Py · yw · Q̃ · Qz is longer than P, a contradiction. So, we may assume that Q̃ ≁ Px. As G has
no K5-minor [1], P̃ ≁ Q̃ (Figure 8(b)). Then one of Px · P̃ · yz · Q̃ · Qw or Py · yz · Qz is longer than P,
again a contradiction.

(a) Px

P̃

Py

Qw

Q̃

Qz

(b) Px

P̃

Py

Qw

Q̃

Qz

Figure 8: Each bipartite graph represents the situation of the paths P and Q in one of the cases of the proof of Lemma 9.
Each side of the bipartition has three vertices that represent the parts of each path. There is an edge in the
graph if the two corresponding paths are internally disjoint.

Let K be a 4-clique in a graph G. A triangle ∆ ⊆ K is a triangle attractor for K if there exists
a k-attractor P for K with k ≤ 2, such that P is fenced by ∆ and P ≁∆ v∆, where {v∆} = K \ ∆.

Corollary 10. Let G be a 3-tree with a 4-clique K. If lpt(G) > 2, then there is a triangle attractor for K.
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Proof. By Lemma 9, as lpt(G) > 2, there is a k-attractor P for K with k ≤ 2. By the definition
of attractor, P is fenced by K, that is, either V(P) ⊆ K or all the vertices of P − K are in a single
component H of G − K. In the former case, lpt(G) = 1, a contradiction. Thus the latter is true.
Because G is a 3-tree, G has no K5-minor [1]. So there is no path in G internally disjoint from K
between H and at least one of the vertices in K, say, vertex v∆. Let ∆ = K − v∆. Let us argue
that v∆ /∈ V(P). Suppose by contradiction that v∆ ∈ V(P). Then there exists an edge v∆u ∈ E(P)
and, by the previous, we must have that u ∈ K. Because P is a longest path, this implies that P
contains all vertices of K, a contradiction, since |V(P) ∩ K| = k ≤ 2. We conclude that v∆ /∈ V(P).
Then P is fenced by ∆ and P ≁∆ v∆, so ∆ is a triangle attractor for K.

We can finally prove the main result of this section.

Theorem 11. For every planar 3-tree G, lpt(G) ≤ 2.

Proof. Suppose by contradiction that lpt(G) > 2. Then, by Corollary 10, for every 4-clique K
in G, there exists a triangle attractor ∆ for K. We construct a bipartite graph H = (A, B, E(H))
as follows. The vertices of A are the 4-cliques of G. The vertices of B are the triangles of G that
separate V(G). As G is a planar 3-tree, |A| = n − 3 and |B| = n − 4, where n = |V(G)|. There is
an edge between a K in A and a ∆ in B if ∆ is a triangle attractor for K. By Corollary 10, every K

in A has degree at least one. Thus, there exists a vertex ∆ in B with degree at least two. So there
are 4-cliques K1 and K2 in G such that ∆ is a triangle attractor for K1 and K2. Let {u1} = K1 \ ∆.
Let {u2} = K2 \ ∆. Hence, there exist longest paths P and Q in G such that P is a k1-attractor
for K1 with k1 ≤ 2 and P ≁∆ u1, and Q is a k2-attractor for K2 with k2 ≤ 2 and Q ≁∆ u2.
Therefore, because G is planar, the number of components of G − ∆ is two, so V(P) ∩ V(Q) ⊆ ∆

and, because G is connected, V(P) ∩ V(Q) 6= ∅. Hence both of P and Q intersect ∆ at least once.
Suppose that V(P) ∩ K1 = {v}. This implies that P and Q only intersect each other at v, and

that v divides both longest paths in half. Let P′ and P′′ be the two v-tails of P, and let Q′ and Q′′

be the two v-tails of Q. We may assume without loss of generality that u2 /∈ P′ and u1 /∈ Q′.
If Q′ ∩ K1 = {v}, then P′ · Q′ is a longest path that crosses K1 at v, a contradiction to the fact
that P is a 1-attractor for K1. So Q′ 2-intersects K1 at {v, x}, with x ∈ ∆ ⊆ K2. But then P′ · Q′ is
a longest path that crosses K2 at {v, x}, a contradiction to the fact that Q is a 2-attractor for K2.
Therefore P 2-intersects K1, say at ends of an edge xy.

By a similar reasoning, we conclude that Q 2-intersects K2. First suppose that Q 2-intersects K2
at the same vertices. Then |Px| = |Qx|, |Py| = |Qy|, and |P̃| = |Q̃|. If u1 /∈ V(Qx), then Py · P̃ · Qx

is a longest path that crosses K1 at {x, y}, a contradiction because P is a 2-attractor for K1.
Hence u1 ∈ V(Qx) and u1 /∈ V(Q̃). Then Px · Q̃ · Py is a longest path that crosses K1 at {x, y}, again
a contradiction. So we may assume that Q 2-intersects K2 at the ends of an edge yz with z 6= x.
But then Px · xz · Q̃ · Py and Qz · zx · P̃ · Qy are paths, yielding the final contradiction.

We can generalize the previous result for 3-trees that are not planar, and more broadly for
connected chordal graphs, as stated in the next theorem.

Theorem 12. For every connected chordal graph G, lpt(G) ≤ max{1, ω(G)− 2}, where ω(G) is the

cardinality of a maximum clique in G.

The proof of Theorem 12 is long and technical. We omit it here, and present it in [3]. Note
that ω(G) = 4 for a 3-tree G, hence Theorem 12 is indeed a generalization of Theorem 11. Also,
ω(G) = tw(G) + 1 for every chordal graph G, where tw(G) is the treewidth of G. So Theorem 12
implies that lpt(G) ≤ max{1, tw(G) − 1} for a connected chordal graph G. Even though it is
conceivable that lpt(G) = 1 for every chordal graph G, as far as we know, the previously best
known upper bound on lpt(G) for chordal graphs comes from the more general upper bound

11



of Rautenbach and Sereni [13] that states that lpt(G) ≤ tw(G) + 1 for every connected graph G.
Thus Theorem 12 provides a slight improvement for chordal graphs.

A graph that is a subgraph of a 3-tree is called a partial 3-tree. Given that lpt(G) ≤ 2 for every
3-tree G, it is natural to ask whether the same holds for every connected partial 3-tree G. Such a
result would be tight, because the graph in Figure 1 is a partial 3-tree. We prove that lpt(G) ≤ 3
for every connected partial 3-tree G. In fact, we prove the more general statement that lpt(G) ≤ k
for every connected partial k-tree G or, alternatively, the next theorem.

Theorem 13. For every connected graph G, lpt(G) ≤ tw(G).

We also omit the proof of this theorem here, and present it in [3]. Note that Theorem 13 is a
slight improvement on the result of Rautenbach and Sereni [13] mentioned above.

V. Final remarks

Table 1 summarizes the results on transversals of longest paths.

Class best upper bound on lpt References

Arbitrary
⌈

n
4 − n2/3

90

⌉
[13]

Partial k-tree k Theorem 13
Partial 3-tree 3 Theorem 13
Chordal max{1, ω(G)− 2} Theorem 12

k-Tree max{1, k − 1} Theorem 12
Planar 3-tree 2 Theorem 11
Bip. permutation 1 Theorem 4
Full substar 1 Theorem 7
Dually chordal 1 [9]
Join graph 1 [4, 12]
Split 1 [11]

Table 1: A summary of the main results on transversals of longest paths.

In this work, we proved that connected bipartite permutation graphs admit a transversal of
size one. The problem remains open for connected biconvex graphs and connected permutation
graphs, well-known superclasses of bipartite permutation graphs.

The class of full substar graphs is a particular class of chordal graphs. We proved that these
graphs admit a transversal of size one. It would be nice to extend this result for larger classes
of chordal graphs, such as substar graphs (intersection graphs of substars of a tree). Another
subclass of chordal graphs is the class of 3-trees. It would be interesting to settle whether or not
3-trees admit a transversal of size one.
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