Transversals of longest paths*

Márcia R. Cerioli ${ }^{1}$, Cristina G. Fernandes ${ }^{\dagger 2}$, Renzo Gómez ${ }^{\ddagger 2}$, Juan Gutiérrez ${ }^{\S 2}$, and Paloma T. Lima ${ }^{3}$
${ }^{1}$ COPPE Sistemas e Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brazil
${ }^{2}$ Departamento de Ciência da Computação, Universidade de São Paulo, Brazil
${ }^{3}$ Department of Informatics, University of Bergen, Norway

Abstract

Let $\operatorname{lpt}(G)$ be the minimum cardinality of a transversal of longest paths in G, that is, a set of vertices that intersects all longest paths in a graph G. There are several results in the literature bounding the value of $\operatorname{lpt}(G)$ in general or in specific classes of graphs. For instance, $\operatorname{lpt}(G)=1$ if G is a connected partial 2-tree, and a connected partial 3 -tree G is known with $\operatorname{lpt}(G)=2$. We prove that $\operatorname{lpt}(G) \leq 2$ for every planar 3 -tree $G ;$ that $\operatorname{lpt}(G) \leq 3$ for every connected partial 3 -tree G; and that $\operatorname{lpt}(G)=1$ if G is a connected bipartite permutation graph or a connected full substar graph. Our first two results can be adapted for broader classes, improving slightly some known general results: we prove that $\operatorname{lpt}(G) \leq k$ for every connected partial k-tree G and that $\operatorname{lpt}(G) \leq \max \{1, \omega(G)-2\}$ for every connected chordal graph G, where $\omega(G)$ is the cardinality of a maximum clique in G.

I. Introduction

It is a well-known fact that, in a connected graph, any two longest paths have a common vertex. In 1966, Gallai raised the following question: Does every connected graph contain a vertex that belongs to all of its longest paths? The answer to Gallai's question is already known to be negative. Figure 1 shows the smallest known negative example, on 12 vertices, which was independently found by Walther and Voss [15] and Zamfirescu [16].

Figure 1: The classical 12-vertex example that has a negative answer to Gallai's question.
However, when we restrict ourselves to some specific classes of graphs, for instance trees, the answer to Gallai's question turns out to be positive. De Rezende et al. [7] generalized the result above, proving that the answer to Gallai's question is positive for 2-trees, and Chen et al. [6]

[^0]extended this result for (connected) series-parallel graphs, also known as partial 2-trees. There are other classes of (connected) graphs which are known to have a positive answer to Gallai's question. Klavžar and Petkovšek [11] proved that this is the case for split graphs, cacti, and graphs whose blocks are Hamilton-connected, almost Hamilton-connected or cycles. Balister et al. [2] and Joos [10] proved the same for the class of circular arc graphs. Chen [5] proved the same for graphs with matching number smaller than three, while Cerioli and Lima [4, 12] proved it for P_{4}-sparse graphs, $\left(P_{5}, K_{1,3}\right)$-free graphs, graphs that are the join of two other graphs and starlike graphs, a superclass of split graphs. Finally, Jobson et al. [9] proved it for dually chordal graphs and Golan and Shan [8] for $2 K_{2}$-free graphs. A graph is called chordal if every induced cycle has length three. Several of the above mentioned classes consist of chordal graphs, so it is tempting to consider Gallai's question for chordal graphs.

A more general approach to Gallai's question is to ask for the size of the smallest transversal of longest paths of a graph, that is, the smallest set of vertices that intersects every longest path. Given a graph G, we denote the cardinality of such a set by $\operatorname{lpt}(G)$. In this direction, Rautenbach and Sereni [13] proved that $\operatorname{lpt}(G) \leq\left\lceil\frac{n}{4}-\frac{n^{2 / 3}}{90}\right\rceil$ for every connected graph G on n vertices, and that $\operatorname{lpt}(G) \leq k+1$ for every connected partial k-tree G. The latter result implies that $\operatorname{lpt}(G) \leq \omega(G)$ for every connected chordal graph G, where $\omega(G)$ is the cardinality of a maximum clique of G. This leaves a wide gap, considering that no connected chordal graph G is known with $\operatorname{lpt}(G)>1$.

In this work, we provide exact results and upper bounds on the value of $\operatorname{lpt}(G)$ when G belongs to some particular classes of graphs. Specifically, we prove that:

- $\operatorname{lpt}(G)=1$ for every connected bipartite permutation graph G.
- $\operatorname{lpt}(G)=1$ for every connected full substar graph G.
- $\operatorname{lpt}(G) \leq 2$ for every planar 3-tree G and $\operatorname{lpt}(G) \leq 3$ for every connected partial 3-tree G.

The upper bounds above are either tight or off by one because the graph G in Figure 1 is a partial 3-tree with $\operatorname{lpt}(G)=2$. We in fact show that $\operatorname{lpt}(G) \leq k$ for every connected partial k-tree G, and derive as a corollary the second part of the third result. Also, the proof of the first part of the third result above can be adjusted to show that $\operatorname{lpt}(G) \leq \max \{1, \omega(G)-2\}$ for every connected chordal graph G. Both of these more general results are slight improvements on one of the results of Rautenbach and Sereni [13]. A summary of the results on lpt is given in Figure 2.

Figure 2: A map with some classes addressed for lpt. For the classes within boxes with dashed borderline, there are previous results in the literature. For the classes within boxes with thick borderline, we present results in this paper. For the classes within boxes with dotted borderline, we also have results [3]. The classes whose boxes are white with thin straight borderline have not yet been studied.

Before we proceed, let us establish some basic notation. All graphs considered in this paper are simple. We denote by $V(G)$ and $E(G)$ the vertex set and the edge set of a graph G, respectively. For a vertex u, we denote by $N_{G}(u)$ the set of neighbors of u in G and by $d_{G}(u)$ the cardinality of $N_{G}(u)$. If the context is clear, we write simply $d(u)$ and $N(u)$ respectively. Let P be a path in G. We denote by $|P|$ the length of P, that is, the number of edges in P. Given a path Q such that the only vertex it shares with P is an extreme of both of them, we denote by $P \cdot Q$ the concatenation of P and Q. For a vertex v in P, let P^{\prime} and $P^{\prime \prime}$ be the paths such that $P=P^{\prime} \cdot P^{\prime \prime}$ with $V\left(P^{\prime}\right) \cap V\left(P^{\prime \prime}\right)=\{v\}$. We refer to these two paths as the v-tails of P.

This paper is organized as follows. In Sections III III and IV we consider, respectively, the class of bipartite permutation graphs, the class of full substar graphs, and the class of planar 3trees. Section IV also contains comments on our results on chordal graphs and on partial 3-trees. In Section V, we state some open problems to be considered in future work.

II. Bipartite permutation graphs

Let \mathcal{L}_{1} and \mathcal{L}_{2} be two parallel lines in the plane. Consider two sets $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ of segments that join a point in \mathcal{L}_{1} to a point in \mathcal{L}_{2}, such that the extremes of every two segments in $X \cup Y$ are distinct, no two segments in X intersect, and no two segments in Y intersect. We denote by r_{i} the extreme of x_{i} in \mathcal{L}_{1} and by s_{i} the extreme of y_{i} in \mathcal{L}_{1}. We may assume that $r_{1}<\cdots<r_{n}$ and $s_{1}<\cdots<s_{m}$, and we write $x_{i}<x_{j}$ or $y_{i}<y_{j}$ if $i<j$. Let σ be the function that maps the extreme in \mathcal{L}_{1} of each segment in $X \cup Y$ to its other extreme.

Consider an associated bipartite graph $G=(X, Y, E)$ where $x y \in E$ if and only if the segments x and y intersect each other. We call the tuple $\left(\mathcal{L}_{1}, \mathcal{L}_{2}, X \cup Y, \sigma\right)$ a line representation of G and a graph is called a bipartite permutation graph if it has a line representation (Figure 3).

Figure 3: A bipartite permutation graph and its corresponding line representation.
In what follows, we assume that $G=(X, Y, E)$ is a connected bipartite permutation graph, with a line representation $\left(\mathcal{L}_{1}, \mathcal{L}_{2}, X \cup Y, \sigma\right)$ as above.

Consider $x_{i_{1}}, x_{i_{2}} \in X$ and $y_{j_{1}}, y_{j_{2}} \in Y$ such that $i_{1} \leq i_{2}$ and $j_{1} \leq j_{2}$. Spinrad et al. [14] showed that bipartite permutation graphs satisfy the following properties.

BP1) If $x_{i_{1}}$ and $x_{i_{2}} \in N\left(y_{j_{1}}\right)$, then $x_{k} \in N\left(y_{j_{1}}\right)$ for $i_{1} \leq k \leq i_{2}$.
BP2) If $x_{i_{1}} y_{j_{2}}$ and $x_{i_{2}} y_{j_{1}} \in E$, then $x_{i_{1}} y_{j_{1}}$ and $x_{i_{2}} y_{j_{2}} \in E$.
Using BF (1) and BF 2) repeatedly, we can generalize BP 2) as follows for $1 \leq i_{1}<\cdots<i_{k} \leq n$ and $1 \leq j_{1}<\cdots<j_{\ell} \leq m$.

BP3) If $x_{i_{1}} y_{j_{\ell}}, x_{i_{k}} y_{j_{1}} \in E$, then $\left\{x_{i_{1}}, \ldots, x_{i_{k}}, y_{j_{1}}, \ldots, y_{j_{\ell}}\right\}$ induces a complete bipartite graph in G.
We are interested in how longest paths intersect in a bipartite permutation graph. We begin by showing that, for every longest path, there exists a longest path with the same set of vertices
that is ordered in some way. Precisely, if $P=a_{1} b_{1} \cdots a_{k} b_{k}$ is a path in G, we say that P is ordered if $a_{1}<\cdots<a_{k}$ and $b_{1}<\cdots<b_{k}$. A similar definition applies when P has even length. As we are interested in vertex intersections, we may restrict attention to such ordered paths.

In what follows, let P be a path in G such that $V(P) \cap X=\left\{a_{1}, \ldots, a_{k}\right\}$ with $k \geq 1$ and $a_{1}<\cdots<a_{k}$, and $V(P) \cap Y=\left\{b_{1}, \ldots, b_{\ell}\right\}$ with $\ell \geq 1$ and $b_{1}<\cdots<b_{\ell}$. Let $X_{i}=\left\{a_{1}, \ldots, a_{i}\right\}$ and $\bar{X}_{i}=\left\{a_{i+1}, \ldots, a_{k}\right\}$ for $i=0, \ldots, k$. Similarly, let $Y_{j}=\left\{b_{1}, \ldots, b_{j}\right\}$ and $\bar{Y}_{j}=\left\{b_{j+1}, \ldots, b_{\ell}\right\}$ for $j=0, \ldots, \ell$. In particular, $X_{0}=Y_{0}=\varnothing$. We denote by $d_{P}\left(X_{i}\right)$ the sum $\sum_{v \in X_{i}} d_{P}(v)$ and by $d_{P}\left(Y_{j}\right)$ the sum $\sum_{w \in Y_{j}} d_{P}(w)$.

Proposition 1. Let i, j be such that $0 \leq i \leq k, 0 \leq j \leq \ell$, and $0<i+j<k+\ell$. If $d_{P}\left(X_{i}\right) \geq d_{P}\left(Y_{j}\right)$, then there exists an edge from X_{i} to \bar{Y}_{j}. If $d_{P}\left(Y_{j}\right) \geq d_{P}\left(X_{i}\right)$, then there exists an edge from Y_{j} to \bar{X}_{i}.

Proof. We will prove only the first claim, as the proof of the second one is analogous. If $j=0$, then $i>0$ and the statement holds because $|P|>1$. Now suppose that $j>0$ and, by contradiction, that $d_{P}\left(X_{i}\right) \geq d_{P}\left(Y_{j}\right)$ and that there is no edge from X_{i} to \bar{Y}_{j}. Because P is a connected bipartite subgraph of G and $i+j<k$, there must exist at least one edge from Y_{j} to \bar{X}_{i}, so

$$
\begin{aligned}
d_{P}\left(Y_{j}\right) & =\left|\left\{w v \in E(P): w \in Y_{j}, v \in X_{i}\right\}\right|+\left|\left\{w v \in E(P): w \in Y_{j}, v \in \bar{X}_{i}\right\}\right| \\
& =\left|\left\{v w \in E(P): v \in X_{i}, w \in V(P)\right\}\right|+\left|\left\{w v \in E(P): w \in Y_{j}, v \in \bar{X}_{i}\right\}\right| \\
& =d_{P}\left(X_{i}\right)+\left|\left\{w v \in E(P): w \in Y_{j}, v \in \bar{X}_{i}\right\}\right| \\
& >d_{P}\left(X_{i}\right)
\end{aligned}
$$

a contradiction.
Lemma 2. There exists an ordered path with the same vertex set as P.
Proof. Without loss of generality, we may assume that $k \geq \ell$ and that, if $k=\ell$, then $i^{*} \leq j^{*}$, where $a_{i^{*}}$ is the extreme of P in X and $b_{j^{*}}$ is the extreme of P in Y. (If $i^{*}>j^{*}$, interchange X and Y.) First, we will show that the following properties hold:
(a) there exists an edge with one end in X_{i} and the other in \bar{Y}_{i-1} for $i=1, \ldots, \ell$;
(b) there exists an edge with one end in Y_{i} and the other in \bar{X}_{i} for every $i=1, \ldots, k-1$.

To show (回), observe that $d_{P}(u)=1$ for at most two vertices u in X_{i} (the extremes of P). Thus $d_{P}\left(X_{i}\right) \geq 2\left|X_{i}\right|-2=2\left|Y_{i-1}\right|$. Because $d_{P}(w) \leq 2$ for every $w \in Y_{i-1}$, we have that $d_{P}\left(Y_{i-1}\right) \leq 2\left|Y_{i-1}\right|$. Hence $d_{P}\left(X_{i}\right) \geq d_{P}\left(Y_{i-1}\right)$ and, as $i-1<\ell$, such edge exists by Proposition 1 .

To show (bb), first suppose that $k=\ell$. We have that $d_{P}\left(Y_{i}\right) \geq d_{P}\left(X_{i}\right)$ because $i^{*} \leq j^{*}$. Indeed, if $a_{i^{*}} \in X_{i}$, then $d_{P}\left(X_{i}\right)=2\left|X_{i}\right|-2=2\left|Y_{i}\right|-2 \leq d_{P}\left(Y_{i}\right)$, and if $a_{i^{*}} \notin X_{i}$, then $b_{j^{*}} \notin Y_{i}$ as $i^{*} \leq j^{*}$. Therefore $d_{P}\left(X_{i}\right)=2\left|X_{i}\right|=2\left|Y_{i}\right|=d_{P}\left(Y_{i}\right)$. As $i<\ell$, by Proposition 1, such an edge exists. Now suppose that $k=\ell+1$. Hence $d_{P}(w)=2$ for every $w \in Y_{i}$ and $d_{P}\left(Y_{i}\right)=2\left|Y_{i}\right|=2\left|X_{i}\right| \geq d_{P}\left(X_{i}\right)$. As $i<k+1$, Proposition 1 implies (b).

Now let $i<\ell$. By ((a), there is a vertex a_{q} in X_{i} with a neighbor $b_{r^{\prime}}$ in \bar{Y}_{i-1}. By (bab), there is a vertex b_{r} in Y_{i} with a neighbor $a_{q^{\prime}}$ in \bar{X}_{i}. As $a_{q} \leq a_{i}<a_{i+1} \leq a_{q^{\prime}}$ and $b_{r} \leq b_{i} \leq b_{r^{\prime}}$, by Property BI 3 , both $a_{i} b_{i}$ and $b_{i} a_{i+1}$ are edges (Figure 4(a)). By (a), $a_{\ell} b_{\ell}$ is an edge, hence $a_{1} b_{1} \cdots a_{\ell} b_{\ell}$ is a path. This implies the result for the case $k=\ell$. Also, if $k=\ell+1$, then $b_{k-1} a_{k}$ is an edge by ((\vec{b}), so $a_{1} b_{1} \cdots a_{k-1} b_{k-1} a_{k}$ is a path.

Lemma 2 implies that we can restrict our attention to ordered longest paths from now on. To prove that $\operatorname{lpt}(G)=1$, we proceed in two steps. First, we will prove that $\operatorname{lpt}(G) \leq 2$. In

Figure 4: The solid line segments represent the edges in P, while the dashed ones are other existing edges.
fact, we prove that, for each edge of G, the set of its ends is a longest path transversal. Finally, we will prove that one element in $\left\{x_{1}, y_{1}\right\}$ is also a longest path transversal, which implies that $\operatorname{lpt}(G)=1$.

Let $x_{i_{1}} y_{j_{1}}$ and $x_{i_{2}} y_{j_{2}}$ be two edges in G. We say that $x_{i_{1}} y_{j_{1}}$ hits $x_{i_{2}} y_{j_{2}}$ if $\left(i_{1}-i_{2}\right)\left(j_{1}-j_{2}\right)<0$. If that is not the case, we say they are parallel. We say that $\left|i_{1}-i_{2}\right|$ is the distance in X and that $\left|j_{1}-j_{2}\right|$ is the distance in Y between such edges. We denote by $\operatorname{dist}_{X}\left(x_{i_{1}} y_{j_{1}}, x_{i_{2}} y_{j_{2}}\right)$ and $\operatorname{dist}_{Y}\left(x_{i_{1}} y_{j_{1}}, x_{i_{2}} y_{j_{2}}\right)$ these two values respectively.

Lemma 3. Let $v w \in E$, with $v \in X$ and $w \in Y$. Every ordered longest path contains a vertex of $\{v, w\}$.
Proof. Suppose by contradiction that there exists an ordered longest path P that does not contain either v or w. We distinguish two cases.

Case 1. There is an edge $x_{i_{1}} y_{j_{1}}$ in P that hits $v w$.
Without loss of generality, assume that $x_{i_{1}}<v$ and $y_{j_{1}}>w$. By Property BP[2], $x_{i_{1}} w$ and $v y_{j_{1}}$ are edges. Let P_{1} be the $x_{i_{1}}$-tail of P that does not contain $y_{j_{1}}$, and P_{2} be the $y_{j_{1}}$-tail of P that does not contain $x_{i_{1}}$. Then $P_{1} \cdot x_{i_{1}} w v y_{j_{1}} \cdot P_{2}$ is a path longer than P, a contradiction.
Case 2. Every edge in P is parallel to $v w$.
Let $x_{i_{1}} y_{j_{1}}$ be the edge of P that is "closer" to $v w$. That is,

$$
\begin{aligned}
\operatorname{dist}_{X}\left(x_{i_{1}} y_{j_{1}}, v w\right) & =\min \left\{\operatorname{dist}_{X}(e, v w): e \in E(P)\right\} \quad \text { and } \\
\operatorname{dist}_{Y}\left(x_{i_{1}} y_{j_{1}}, v w\right) & =\min \left\{\operatorname{dist}_{Y}(e, v w): e \in E(P)\right\} .
\end{aligned}
$$

Observe that, as P is an ordered path, one of $\left\{x_{i_{1}}, y_{j_{1}}\right\}$ is an extreme of P. Suppose that $x_{i_{1}}$ is such an extreme. (A similar proof applies when this is not the case.) Without loss of generality, we may assume that $x_{i_{1}}>v$ and that P is a path with minimum value of $x_{i_{1}}$ among all such paths.

Let H be the subgraph of G induced by the vertices $\left\{x_{i}: i \geq i_{1}\right\} \cup\left\{y_{j}: j \geq j_{1}\right\}$. Since G is connected and $G \neq H$, there is an edge between H and $G-V(H)$. First suppose that such edge links vertices x_{ℓ} in H and y_{r} in $G-V(H)$. Then, by Property B[2], $x_{i_{1}}$ is adjacent to y_{r}. Hence $y_{r} x_{i_{1}} \cdot P$ is also a path, a contradiction (Figure $4(b)$). Now suppose that there is an edge between a vertex x_{ℓ} in $G-V(H)$ and a vertex y_{r} in H. Then, by Property B[2], x_{ℓ} is adjacent to $y_{j_{1}}$. So $Q=x_{\ell} y_{j_{1}} \cdot\left(P-x_{i_{1}}\right)$ is also a longest path. As $V(Q) \backslash V(P)=\left\{x_{\ell}\right\}$, we have that $w \notin V(Q)$. Moreover, if $x_{\ell} \leq v$, then x_{ℓ} is adjacent to w by Property BF[2), and $w x_{\ell} \cdot Q$ would be a path longer than P. So $v<x_{\ell}<x_{i_{1}}$, and Q is a longest path with all of its edges parallel to $v w$, which is a contradiction to the way P was chosen (Figure 4 (c)).

Given a collection \mathcal{C} of ordered longest paths, we say that $P \in \mathcal{C}$ is a left-most path if, for every other path $Q \in \mathcal{C}$ and for every i, the i-th vertex of P in X is smaller than or equal to the i-th
vertex of Q in X, and the same applies with Y instead of X. Such a path exists because all paths in \mathcal{C} are ordered.

Theorem 4. For every connected bipartite permutation graph $G, \operatorname{lpt}(G)=1$.
Proof. Let $G=(X, Y, E)$ with $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ as before. Suppose by contradiction that $\operatorname{lpt}(G)>1$. Then, there exist a longest path P that does not contain y_{1} and a longest path Q that does not contain x_{1}. As G is connected, $x_{1} y_{1}$ is an edge by Property BF[2]). So, by Lemma 3, $x_{1} \in V(P)$ and $y_{1} \in V(Q)$. We may assume that $n \geq m$ and that both P and Q are ordered left-most paths. Thus, for every $i \in\{2, \ldots, m\}$, it suffices to prove the following:
(a) y_{i} is the $(2 i-3)$-rd vertex of P, x_{i-1} is the $(2 i-2)$-nd vertex of P, x_{i} is the $(2 i-3)$-rd vertex of Q, and y_{i-1} is the $(2 i-2)$-nd vertex of Q.
(b) $x_{i} y_{i}$ is an edge.

Indeed, if that is the case, we would have a path $R=x_{1} y_{1} \cdots x_{m} y_{m}$ of length $2 m-1$. But $|V(P) \cap Y|=\left|V(P) \cap\left\{y_{2}, \ldots, y_{m}\right\}\right|=m-1$ and thus $|V(P) \cap X| \leq m$, because $y_{1} \notin V(P)$ and G is bipartite. Hence $|P| \leq 2 m-2<|R|$, a contradiction (Figure 5).

Figure 5: The solid bold line segments indicate P while the solid thin line segments indicate Q.
We prove (a) and (b) by induction on i. If $i=2$, we need to prove that $y_{2} x_{1}$ and $x_{2} y_{1}$ are the first edges of P and Q respectively, and that $x_{2} y_{2}$ is an edge. Remember that $x_{1} \in V(P)$. Obviously x_{1} is not an extreme of P. So x_{1} is the second vertex of P, because P is an ordered longest path. Now we will prove that y_{2} is the first vertex of P. If P starts at y_{j} with $j>2$, then $x_{1} y_{2}$ is an edge by Property BF1), because $y_{j} x_{1}$ and $x_{1} y_{1}$ are edges. Thus $y_{2} x_{1} \cdot\left(P-y_{j}\right)$ is also a longest path, contradicting the choice of P. A similar reasoning shows that $x_{2} y_{1}$ is the first edge of Q. This implies that $x_{2} y_{2}$ is an edge by Property BF 2 , finishing the base case of the induction.

Now fix an $i>2$ and assume that both (a) and (b) are valid for all $j<i$. Then, by the induction hypothesis, $y_{i-1} x_{i-2}$ is the $(2 i-5)$-th edge of P. First, we will prove that x_{i-1} is the $(2 i-2)$-nd vertex of P. Indeed, suppose that x_{j} is the $(2 i-2)$-nd vertex of P with $j>i-1$. Let P^{\prime} and $P^{\prime \prime}$ be the x_{i-2}-tails of P with y_{2} in P^{\prime}. Then $y_{1} x_{1} \cdots y_{i-2} x_{i-2} \cdot P^{\prime \prime}$ is an ordered longest path that contains no vertex of $\left\{x_{i-1}, y_{i-1}\right\}$, a contradiction to Lemma So x_{i-1} is the $(2 i-2)$-nd vertex of P. Now, we will prove that y_{i} is the $(2 i-3)$-rd vertex of P. Suppose that y_{j} is the $(2 i-3)$-rd vertex of P with $j>i$. Then, as $x_{i-1} y_{i-1}$ is an edge by the induction hypothesis, $x_{i-2} y_{i}$ and $x_{i-1} y_{i}$ are edges by Property BP3). Hence, by substituting y_{j} by y_{i} in P, we obtain a longest path that contradicts the choice of P. A similar argument shows that x_{i} is the $(2 i-3)$-rd vertex of Q and that y_{i-1} is the $(2 i-2)$-nd vertex of Q. This implies that $x_{i} y_{i}$ is an edge by Property $\mathrm{BF}[2)$, finishing the proof.

III. Full substar graphs

We now consider a subclass of chordal graphs, namely the full substar graphs. A star is a complete bipartite graph $K_{1, k}$ and, given a tree T, a substar is a subgraph of T that is a star. The vertex of degree k is the center of the star (if $k=1$, we pick an arbitrary vertex to be its center). A substar with center x is a full substar if $k \geq d_{T}(x)-1$. A graph is a full substar graph if it is an intersection graph of a set of full substars of a tree. The tree and the set of full substars is an intersection model for the full substar graph (Figure 6).

Figure 6: A full substar graph and its intersection model.
Given a full substar graph G and its intersection model in a host tree T, we denote by S_{x} the substar associated with $x \in V(G)$. We use capital letters to refer to the vertices of T and lowercase letters to refer to the vertices of G. For a vertex $X \in V(T)$, let \mathcal{C}_{X} be the set of vertices of G whose corresponding stars are centered in X, and \mathcal{C}_{Y}^{X} be the set of vertices of G whose stars are centered in a vertex that belongs to the component of $T-X$ in which Y lies. In what follows, G is a connected full substar graph and T is the host tree of an intersection model for G.

Lemma 5. Let $x \in \mathcal{C}_{X}$. If P is a longest path in G and $x \notin V(P)$, then the following conditions hold:
(i) $V(P) \subseteq \mathcal{C}_{Y}^{X} \cup \mathcal{C}_{X}$, for a node $Y \in N_{T}(X)$;
(ii) if $Y \in V\left(S_{x}\right)$, then $V(P) \cap \mathcal{C}_{X}=\varnothing$; otherwise $\left|V(P) \cap \mathcal{C}_{X}\right| \leq 1$.

Proof. First note that no two consecutive vertices in P lie in \mathcal{C}_{X}. Indeed, if two such vertices exist, they would be both adjacent to x and, by adding x to P between these two vertices, we would get a path longer than P, a contradiction. Similarly, no vertex in \mathcal{C}_{X} is an extreme of P.

Suppose by contradiction that (i) does not hold. So P has vertices u and v whose substars are centered in different components of $T-X$. We may assume that the subpath of P between u and v is as short as possible. If $u v \in E(P)$, then X is in both S_{u} and S_{v}, hence x is adjacent to u and v, leading to a contradiction as above. If $u v \notin E(P)$, then there is a $w \in \mathcal{C}_{X}$ such that $u w, w v \in E(P)$. Because $\left|E\left(S_{x}\right)\right| \geq d_{T}(X)-1$, one of $\{u, v\}$ is adjacent to x, leading again to a contradiction. This shows that (i) holds.

Let Y be as stated in (i). Suppose that $Y \in V\left(S_{x}\right)$ and, by contradiction, that there is an $x^{\prime} \in V(P) \cap \mathcal{C}_{X}$. Because $|P| \geq 1$ and $V(P) \subseteq \mathcal{C}_{Y}^{X} \cup \mathcal{C}_{X}$, there exists $x^{\prime} v \in E(P)$ such that $v \in \mathcal{C}_{Y}^{X} \cup \mathcal{C}_{X}$. Then $x x^{\prime}, x v \in E(G)$, which leads to a contradiction. Now suppose that $Y \notin V\left(S_{x}\right)$ and, by contradiction, that there are $x^{\prime}, x^{\prime \prime} \in V(P) \cap \mathcal{C}_{X}$. Thus $Y \in V\left(S_{x^{\prime}}\right)$ because $\left|E\left(S_{x^{\prime}}\right)\right| \geq d_{T}(X)-1$ and $x \neq x^{\prime}$. Similarly $Y \in V\left(S_{x^{\prime \prime}}\right)$. Let $w^{\prime}, w^{\prime \prime} \in V(P)$ be such that $w^{\prime} x^{\prime}, w^{\prime \prime} x^{\prime \prime} \in E(P)$ and $x^{\prime}, x^{\prime \prime} \notin V\left(P_{w^{\prime} w^{\prime \prime}}\right)$, where $P_{w^{\prime} w^{\prime \prime}}$ denotes the subpath of P between w^{\prime} and $w^{\prime \prime}$. Possibly $w^{\prime}=w^{\prime \prime}$. Also, let $v \in V(P)$ be such that $v \neq w^{\prime \prime}$ and $x^{\prime \prime} v \in E(P)$. Note that $Y \in V\left(S_{w w^{\prime}}\right), V\left(S_{w^{\prime \prime}}\right), V\left(S_{v}\right)$, hence $x^{\prime \prime} w^{\prime}$ and $w^{\prime \prime} v \in E(G)$. Let $P_{x^{\prime}}$ be the x^{\prime}-tail of P that does not contain $x^{\prime \prime}$ and P_{v} be the v-tail of P that does not contain $x^{\prime \prime}$. So $P_{x^{\prime}} \cdot x^{\prime} x x^{\prime \prime} w^{\prime} \cdot P_{w^{\prime}} w^{\prime \prime} \cdot w^{\prime \prime} v \cdot P_{v}$ is a path longer than P, a contradiction.

Lemma 6. If $\operatorname{lpt}(G)>1$, then for any $X \in V(T)$ there exists a longest path P in G and a node $Y \in N_{T}(X)$ such that $V(P) \subseteq \mathcal{C}_{Y}^{X}$.

Proof. We divide the proof in the following two cases.
Case 1. $\mathcal{C}_{X} \neq \varnothing$.
Take $x \in \mathcal{C}_{X}$ with $\left|E\left(S_{x}\right)\right|$ as large as possible. Since $\operatorname{lpt}(G)>1$, there is a longest path P such that $x \notin V(P)$. By Lemma $5(i), V(P) \subseteq \mathcal{C}_{Y}^{X} \cup \mathcal{C}_{X}$ for some $Y \in N_{T}(X)$. If $V(P) \cap \mathcal{C}_{X}=\varnothing$, then $V(P) \subseteq \mathcal{C}_{Y}^{X}$. Otherwise, $Y \notin V\left(S_{x}\right)$ and $V(P) \cap \mathcal{C}_{X}=\left\{x^{\prime}\right\}$ for some x^{\prime}, by Lemma5(ii). Note that x^{\prime} is not an extreme of P, because $x x^{\prime} \in E(G)$ and $x \notin V(P)$. Also, if $N_{G}\left(x^{\prime}\right) \subseteq N_{G}(x)$, then we could add x to P between x^{\prime} and its neighbor in P, a contradiction. Hence $N_{G}\left(x^{\prime}\right) \nsubseteq N_{G}(x)$. So $d_{T}(X)-1 \leq\left|E\left(S_{x^{\prime}}\right)\right| \leq\left|E\left(S_{x}\right)\right|<d_{T}(X)$, and $\left|E\left(S_{x}\right)\right|=\left|E\left(S_{x^{\prime}}\right)\right|=d_{T}(X)-1$. Moreover, there exists $Z \in N_{T}(X)$ such that $Z \neq Y, Z \in V\left(S_{x}\right)$, and $Z \notin V\left(S_{x^{\prime}}\right)$. Because $\operatorname{lpt}(G)>1$, there exists a longest path Q that does not contain x^{\prime}. By Lemma 5, $V(Q) \subseteq \mathcal{C}_{Z}^{X} \cup\left(\mathcal{C}_{X} \backslash\left\{x^{\prime}\right\}\right)$, implying that $V(P) \cap V(Q)=\varnothing$, which is a contradiction since G is connected.

Case 2. $\mathcal{C}_{X}=\varnothing$.
Suppose that every longest path P of G contains vertices whose substars are centered in two different components of $T-X$. Let us argue that $\operatorname{lpt}(G)=1$. As $\mathcal{C}_{X}=\varnothing$, there exists $u v \in E(P)$ with S_{u} and S_{v} centered in $N_{T}(X)$. Let $K=\left\{x \in V(G): X \in V\left(S_{x}\right)\right\}$. So $u, v \in K$ and $K \subseteq V(P)$ because K is a clique, and any vertex in K is in every longest path of G, that is, $\operatorname{lpt}(G)=1$.

We are now ready to prove the main result of this section.
Theorem 7. If G is a connected full substar graph, then $\operatorname{lpt}(G)=1$.
Proof. Suppose by contradiction that $\operatorname{lpt}(G)>1$. We create an auxiliary directed graph D on the same vertex set as T and arc set defined in the following way. For every $X \in V(D)$, we have that $X Y \in E(D)$ if and only if $Y \in N_{T}(X)$ and there exists a longest path P such that $V(P) \subseteq \mathcal{C}_{Y}^{X}$. By Lemma 6, every node in T has outdegree at least one in D. Let $X Y$ be the last arc in a maximal directed path in D. Since T is a tree, $Y X$ is also an arc in D. Because both $X Y, Y X \in E(D)$, there exist two longest paths P and Q in G such that $V(P) \subseteq \mathcal{C}_{Y}^{X}$ and $V(Q) \subseteq \mathcal{C}_{X}^{Y}$. But $\mathcal{C}_{X}^{Y} \cap \mathcal{C}_{Y}^{X}=\varnothing$, implying that $V(P) \cap V(Q)=\varnothing$, a contradiction since G is connected.

IV. Planar 3-trees and related classes

A 3-tree is defined recursively as follows. The complete graph on three vertices is a 3-tree. Any graph obtained from a 3-tree by adding a new vertex and making it adjacent to all the vertices of an existing triangle is also a 3-tree. Note that a 3-tree is planar if, in its recursive construction, the first triangle is used at most twice and any other triangle is used at most once. In this section, we will show that there is a transversal of size two in planar 3-trees.

Let S be a set of vertices in a graph G. We say that S separates vertices u and v if u and v are in different components of $G-S$. Let $X \subseteq V(G)$. We say that S separates X if S separates at least two vertices of X. A path P crosses S if S separates $V(P)$ in G. Otherwise S fences P. For a set $X \subseteq S$, we say that P crosses S at X if $S \cap V(P)=X$. In this case, if $X=\{x\}$, we simply say that P crosses S at x. If P and Q are paths fenced by S, we write $P \sim_{S} Q$ if there exist vertices $u \in V(P)$ and $v \in V(Q)$ such that u and v are in the same component of $G-S$. Otherwise, we write $P \nsim s_{S} Q$. If the context is clear, we simply write $P \sim Q$ and $P \nsim Q$. Note that, if $V(P) \subseteq S$, then $P \varkappa_{S} Q$ for every path Q. For an integer t, we say that P t-intersects S if P intersects S at exactly t vertices. If two paths P and Q intersect S at the same set of vertices, we say they are S-equivalent.

Given a path P that contains vertices a and b, we denote by P_{a} the a-tail of P that does not contain b and by P_{b} the b-tail of P that does not contain a. Also, if the context is clear, we denote by \widetilde{P} the subpath of P that has a and b as its extremes. Thus $P=P_{a} \cdot \widetilde{P} \cdot P_{b}$.

Lemma 8. Let G be a graph with a clique K. Let \mathscr{C} be the set of all longest paths in G that 2-intersect and cross K, and whose extremes are not separated by K. For every three paths in \mathscr{C}, there are two of them that are K-equivalent.

Proof. Suppose by contradiction that there are longest paths P, Q, and R in \mathscr{C} that are not pairwise K-equivalent. Say $V(P) \cap K=\{a, b\}, V(Q) \cap K=\{c, d\}$, and $V(R) \cap K=\{e, f\}$, where $\{a, b\},\{c, d\}$, and $\{e, f\}$ are pairwise distinct but not necessarily pairwise disjoint. We may assume that either $\{a, b\} \cap\{c, d\}=\varnothing$ or $\{a, b\} \cap\{c, d\}=\{b\}=\{d\}$. If \tilde{P} is internally disjoint from Q_{c} and from Q_{d}, and \tilde{Q} is internally disjoint from P_{a} and from P_{b}, then $P_{a} \cdot a c \cdot \tilde{Q} \cdot d b \cdot P_{b}$ and $Q_{c} \cdot c a \cdot \tilde{P} \cdot b d \cdot Q_{d}$ are paths whose lengths sum more than $|P|+|Q|$, a contradiction (FigureZ(a)). Also, because P is a longest path, it has no extreme in K, so both P_{a} and P_{b} have vertices not in K and $P_{a} \sim P_{b}$. Analogously, $Q_{c} \sim Q_{d}$ and $R_{e} \sim R_{f}$. So, $\tilde{P} \sim Q_{c} \sim Q_{d}$ or $\tilde{Q} \sim P_{a} \sim P_{b}$. Applying the same reasoning to paths P and R, and to paths Q and R, we conclude that $\tilde{P} \sim R_{e} \sim R_{f}$ or $\tilde{R} \sim P_{a} \sim P_{b}$, and that $\tilde{Q} \sim R_{e} \sim R_{f}$ or $\tilde{R} \sim Q_{c} \sim Q_{d}$. As P, Q, and R cross K, from the previous, we have that

$$
\begin{equation*}
\tilde{P} \nsim \tilde{Q}, \tilde{P} \nsim \tilde{R}, \text { and } \tilde{Q} \nsim \tilde{R} . \tag{1}
\end{equation*}
$$

Without loss of generality, we may assume that $\tilde{P} \sim Q_{c} \sim Q_{d}$. (Otherwise, interchange P with Q, and $\{a, b\}$ with $\{c, d\}$.) Now, if $\tilde{P} \sim R_{e}$, then $\tilde{Q} \nsim R_{e}$ by (1), and thus $\tilde{R} \sim Q_{c}$. But then $\tilde{R} \sim \tilde{P}$, and we contradict (11). Hence, $\tilde{P} \nsim R_{e} \sim R_{f}$, and $\tilde{R} \sim P_{a}$. Similarly, one can deduce that $\tilde{R} \nsim Q_{c} \sim Q_{d}$. Thus, $\tilde{Q} \sim R_{e}$ and, again, we can deduce that $\tilde{Q} \nsim P_{a} \sim P_{b}$. We conclude that

$$
\begin{equation*}
P_{a} \sim P_{b} \nsim \tilde{Q}, Q_{c} \sim Q_{d} \nsim \tilde{R}, \text { and } R_{e} \sim R_{f} \nsim \tilde{P} \tag{2}
\end{equation*}
$$

(Figure $\mathbf{Z (b)}$). We may assume that either $\{a, b\} \cap\{e, f\}=\varnothing$ or $\{a, b\} \cap\{e, f\}=\{b\}=\{f\}$, and that either $\{c, d\} \cap\{e, f\}=\varnothing$ or $\{c, d\} \cap\{e, f\}=\{d\}=\{f\}$ (the proofs for other cases are analogous). Therefore, by (2), we have three paths, $P_{a} \cdot a c \cdot \widetilde{Q} \cdot d b \cdot P_{b}, Q_{c} \cdot c e \cdot \widetilde{R} \cdot f d \cdot Q_{d}$, and $R_{e} \cdot e a \cdot \widetilde{P} \cdot b f \cdot R_{f}$, whose lengths sum more than $|P|+|Q|+|R|$, a contradiction.

Figure 7: (a) Paths P and Q from the proof of Lemma 8 (b) Paths P, Q, and R, and a tripartite graph representing the interaction between their parts. The graph has three vertices for each of the paths, one for each part. There are two types of edges: straight edges connect parts that are in different components of $G-K$ and dashed edges connect parts that are in the same component of $G-K$. When the interaction between two parts is not determined, we omit the edge between them.

A k-clique is a clique with k vertices in G. A longest path P in G is an attractor for S if P is fenced by S and all S-equivalent longest paths are also fenced by S. We say that P is a k-attractor if $|S \cap V(P)|=k$. A graph H is called a minor of the graph G if H can be formed from G by deleting edges and vertices and by contracting edges. In this case, we say G has an H-minor.

Lemma 9. Let G be a 3-tree with a 4-clique K. If $\operatorname{lpt}(G)>2$, then there is a k-attractor for K with $k \leq 2$.
Proof. Suppose by contradiction that there exists no k-attractor for K with $k \leq 2$. If there is a longest path in G that does not intersect K, then such path is a 0 -attractor, a contradiction. Thus, we may assume that any longest path intersects K at least once.

Case 1. There is a longest path that 1 -intersects K.
Because there is no 1-attractor for K, there exists a longest path P crossing K at a vertex v. Let P^{\prime} and $P^{\prime \prime}$ be the two v-tails of P. Let e be an edge of K containing v. As $\operatorname{lpt}(G)>2$, there exists a longest path Q that does not contain any end of e. If $Q 1$-intersects K at a vertex w, then, as there is no 1-attractor, we can choose Q crossing K at w. Let Q^{\prime} and $Q^{\prime \prime}$ be the two w-tails of Q. Because both P and Q cross K, we may assume that $P^{\prime} \nsim Q^{\prime}$ and $P^{\prime \prime} \nsim Q^{\prime \prime}$. But then $P^{\prime} \cdot v w \cdot Q^{\prime}$ and $P^{\prime \prime} \cdot v w \cdot Q^{\prime \prime}$ are paths, one of them longer than P, a contradiction. Hence, there is a longest path Q that 2-intersects K at vertices different from the ends of e, say $\{w, z\}$. As there is no 2-attractor, we can choose Q crossing K at $\{w, z\}$. Because both P and Q cross K, we may assume that $P^{\prime} \nsim Q_{w}, P^{\prime \prime} \nsim \tilde{Q}$, and $P^{\prime \prime} \nsim Q_{z}$. But then $P^{\prime} \cdot v w \cdot Q_{w}$ and $P^{\prime \prime} \cdot v w \cdot \tilde{Q} \cdot Q_{z}$ are paths, one of them longer than P, a contradiction.
Case 2. Every longest path intersects K at least twice.
Let $K=\{x, y, w, z\}$. Because $\operatorname{lpt}(G)>2$, for every edge of K, there exists a longest path that 2-intersects K at the ends of that edge. By Lemma 8, at least four of these paths are such that their extremes are separated by K. Moreover, as there is no 2 -attractor in G, there are two longest paths P and Q that cross K such that P 2-intersects K at $\{x, y\}$ and Q 2-intersects K at $\{w, z\}$. Because K separates the extremes of both P and Q, we may assume that $P_{x} \nsim Q_{w}$ and $P_{y} \nsim Q_{z}$, and also that $\widetilde{Q} \nsim P_{x}$ or $\widetilde{Q} \nsim P_{y}$. Now note that $\widetilde{P} \nsim Q_{w}$ or $\widetilde{P} \nsim Q_{z}$. Without loss of generality, assume that $\widetilde{P} \nsim Q_{w}$. Suppose that $\widetilde{Q} \nsim P_{y}$ (Figure $\left.8(a)\right)$. Then one of the paths $P_{x} \cdot \widetilde{P} \cdot y w \cdot Q_{w}$ or $P_{y} \cdot y w \cdot \widetilde{Q} \cdot Q_{z}$ is longer than P, a contradiction. So, we may assume that $\widetilde{Q} \nsim P_{x}$. As G has no K_{5}-minor [1], $\widetilde{P} \nsim \widetilde{Q}$ (Figure $\left.8(\mathrm{~b})\right)$. Then one of $P_{x} \cdot \widetilde{P} \cdot y z \cdot \widetilde{Q} \cdot Q_{w}$ or $P_{y} \cdot y z \cdot Q_{z}$ is longer than P, again a contradiction.

Figure 8: Each bipartite graph represents the situation of the paths P and Q in one of the cases of the proof of Lemma 9 Each side of the bipartition has three vertices that represent the parts of each path. There is an edge in the graph if the two corresponding paths are internally disjoint.

Let K be a 4-clique in a graph G. A triangle $\Delta \subseteq K$ is a triangle attractor for K if there exists a k-attractor P for K with $k \leq 2$, such that P is fenced by Δ and $P \propto_{\Delta} v_{\Delta}$, where $\left\{v_{\Delta}\right\}=K \backslash \Delta$.

Corollary 10. Let G be a 3-tree with a 4-clique K. If $\operatorname{lpt}(G)>2$, then there is a triangle attractor for K.

Proof. By Lemma 9 as $\operatorname{lpt}(G)>2$, there is a k-attractor P for K with $k \leq 2$. By the definition of attractor, P is fenced by K, that is, either $V(P) \subseteq K$ or all the vertices of $P-K$ are in a single component H of $G-K$. In the former case, $\operatorname{lpt}(G)=1$, a contradiction. Thus the latter is true. Because G is a 3 -tree, G has no K_{5}-minor [1]. So there is no path in G internally disjoint from K between H and at least one of the vertices in K, say, vertex v_{Δ}. Let $\Delta=K-v_{\Delta}$. Let us argue that $v_{\Delta} \notin V(P)$. Suppose by contradiction that $v_{\Delta} \in V(P)$. Then there exists an edge $v_{\Delta} u \in E(P)$ and, by the previous, we must have that $u \in K$. Because P is a longest path, this implies that P contains all vertices of K, a contradiction, since $|V(P) \cap K|=k \leq 2$. We conclude that $v_{\Delta} \notin V(P)$. Then P is fenced by Δ and $P \nsim \Delta_{\Delta} v_{\Delta}$, so Δ is a triangle attractor for K.

We can finally prove the main result of this section.
Theorem 11. For every planar 3 -tree $G, \operatorname{lpt}(G) \leq 2$.
Proof. Suppose by contradiction that $\operatorname{lpt}(G)>2$. Then, by Corollary 10, for every 4-clique K in G, there exists a triangle attractor Δ for K. We construct a bipartite graph $H=(A, B, E(H))$ as follows. The vertices of A are the 4 -cliques of G. The vertices of B are the triangles of G that separate $V(G)$. As G is a planar 3-tree, $|A|=n-3$ and $|B|=n-4$, where $n=|V(G)|$. There is an edge between a K in A and a Δ in B if Δ is a triangle attractor for K. By Corollary 10 , every K in A has degree at least one. Thus, there exists a vertex Δ in B with degree at least two. So there are 4-cliques K_{1} and K_{2} in G such that Δ is a triangle attractor for K_{1} and K_{2}. Let $\left\{u_{1}\right\}=K_{1} \backslash \Delta$. Let $\left\{u_{2}\right\}=K_{2} \backslash \Delta$. Hence, there exist longest paths P and Q in G such that P is a k_{1}-attractor for K_{1} with $k_{1} \leq 2$ and $P \nsim \Delta_{\Delta} u_{1}$, and Q is a k_{2}-attractor for K_{2} with $k_{2} \leq 2$ and $Q \varlimsup_{\Delta} u_{2}$. Therefore, because G is planar, the number of components of $G-\Delta$ is two, so $V(P) \cap V(Q) \subseteq \Delta$ and, because G is connected, $V(P) \cap V(Q) \neq \varnothing$. Hence both of P and Q intersect Δ at least once.

Suppose that $V(P) \cap K_{1}=\{v\}$. This implies that P and Q only intersect each other at v, and that v divides both longest paths in half. Let P^{\prime} and $P^{\prime \prime}$ be the two v-tails of P, and let Q^{\prime} and $Q^{\prime \prime}$ be the two v-tails of Q. We may assume without loss of generality that $u_{2} \notin P^{\prime}$ and $u_{1} \notin Q^{\prime}$. If $Q^{\prime} \cap K_{1}=\{v\}$, then $P^{\prime} \cdot Q^{\prime}$ is a longest path that crosses K_{1} at v, a contradiction to the fact that P is a 1-attractor for K_{1}. So $Q^{\prime} 2$-intersects K_{1} at $\{v, x\}$, with $x \in \Delta \subseteq K_{2}$. But then $P^{\prime} \cdot Q^{\prime}$ is a longest path that crosses K_{2} at $\{v, x\}$, a contradiction to the fact that Q is a 2 -attractor for K_{2}. Therefore $P 2$-intersects K_{1}, say at ends of an edge $x y$.

By a similar reasoning, we conclude that Q 2-intersects K_{2}. First suppose that Q 2-intersects K_{2} at the same vertices. Then $\left|P_{x}\right|=\left|Q_{x}\right|,\left|P_{y}\right|=\left|Q_{y}\right|$, and $|\tilde{P}|=|\tilde{Q}|$. If $u_{1} \notin V\left(Q_{x}\right)$, then $P_{y} \cdot \tilde{P} \cdot Q_{x}$ is a longest path that crosses K_{1} at $\{x, y\}$, a contradiction because P is a 2 -attractor for K_{1}. Hence $u_{1} \in V\left(Q_{x}\right)$ and $u_{1} \notin V(\tilde{Q})$. Then $P_{x} \cdot \tilde{Q} \cdot P_{y}$ is a longest path that crosses K_{1} at $\{x, y\}$, again a contradiction. So we may assume that Q 2-intersects K_{2} at the ends of an edge $y z$ with $z \neq x$. But then $P_{x} \cdot x z \cdot \tilde{Q} \cdot P_{y}$ and $Q_{z} \cdot z x \cdot \tilde{P} \cdot Q_{y}$ are paths, yielding the final contradiction.

We can generalize the previous result for 3-trees that are not planar, and more broadly for connected chordal graphs, as stated in the next theorem.

Theorem 12. For every connected chordal graph $G, \operatorname{lpt}(G) \leq \max \{1, \omega(G)-2\}$, where $\omega(G)$ is the cardinality of a maximum clique in G.

The proof of Theorem 12 is long and technical. We omit it here, and present it in [3]. Note that $\omega(G)=4$ for a 3 -tree G, hence Theorem 12 is indeed a generalization of Theorem 11 Also, $\omega(G)=\operatorname{tw}(G)+1$ for every chordal graph G, where $\operatorname{tw}(G)$ is the treewidth of G. So Theorem 12 implies that $\operatorname{lpt}(G) \leq \max \{1, \operatorname{tw}(G)-1\}$ for a connected chordal graph G. Even though it is conceivable that $\operatorname{lpt}(G)=1$ for every chordal graph G, as far as we know, the previously best known upper bound on $\operatorname{lpt}(G)$ for chordal graphs comes from the more general upper bound
of Rautenbach and Sereni [13] that states that $\operatorname{lpt}(G) \leq \operatorname{tw}(G)+1$ for every connected graph G. Thus Theorem 12 provides a slight improvement for chordal graphs.

A graph that is a subgraph of a 3-tree is called a partial 3-tree. Given that $\operatorname{lpt}(G) \leq 2$ for every 3-tree G, it is natural to ask whether the same holds for every connected partial 3-tree G. Such a result would be tight, because the graph in Figure 1 is a partial 3-tree. We prove that $\operatorname{lpt}(G) \leq 3$ for every connected partial 3-tree G. In fact, we prove the more general statement that $\operatorname{lpt}(G) \leq k$ for every connected partial k-tree G or, alternatively, the next theorem.

Theorem 13. For every connected graph $G, \operatorname{lpt}(G) \leq \operatorname{tw}(G)$.
We also omit the proof of this theorem here, and present it in [3]. Note that Theorem 13 is a slight improvement on the result of Rautenbach and Sereni [13] mentioned above.

V. Final remarks

Table 1 summarizes the results on transversals of longest paths.

Class	best upper bound on 1pt	References
Arbitrary	$\left\lceil\frac{n}{4}-\frac{n^{2 / 3}}{90}\right\rceil$	[13]
Partial k-tree	k	Theorem 13
Partial 3-tree	3	Theorem 13
Chordal	$\max \{1, \omega(G)-2\}$	Theorem 12
k-Tree	$\max \{1, k-1\}$	Theorem 12
Planar 3-tree	2	Theorem 11
Bip. permutation	1	Theorem 4
Full substar	1	Theorem 7
Dually chordal	1	[9]
Join graph	1	[4, 12]
Split	1	[11]

Table 1: A summary of the main results on transversals of longest paths.
In this work, we proved that connected bipartite permutation graphs admit a transversal of size one. The problem remains open for connected biconvex graphs and connected permutation graphs, well-known superclasses of bipartite permutation graphs.

The class of full substar graphs is a particular class of chordal graphs. We proved that these graphs admit a transversal of size one. It would be nice to extend this result for larger classes of chordal graphs, such as substar graphs (intersection graphs of substars of a tree). Another subclass of chordal graphs is the class of 3-trees. It would be interesting to settle whether or not 3-trees admit a transversal of size one.

Acknowledgements

The authors Fernandes and Gutiérrez would like to thank Julia Ehrenmüller for several discussions in the early stages of the work on planar 3-trees.

References

[1] S. Arnborg, A. Proskurowski, and D. G. Corneil. Forbidden minors characterization of partial 3-trees. Discrete Mathematics, 80(1):1-19, 1990.
[2] P. N. Balister, E. Győri, J. Lehel, and R. H. Schelp. Longest paths in circular arc graphs. Combin. Probab. Comput., 13(3):311-317, 2004.
[3] M. R. Cerioli, C. G. Fernandes, R. Gómez, J. Gutiérrez, and P. T. Lima. Transversals of longest paths. https:/ /arxiv.org/abs/1712.07086, 2017.
[4] M. R. Cerioli and P. T. Lima. Intersection of longest paths in graph classes. Discrete Applied Mathematics, 2019. In press.
[5] F. Chen. Nonempty intersection of longest paths in a graph with a small matching number. Czechoslovak Mathematical Journal, 65(140):545-553, 2015.
[6] G. Chen, J. Ehrenmüller, C. G. Fernandes, C. G. Heise, S. Shan, P. Yang, and A. N. Yates. Nonempty intersection of longest paths in series-parallel graphs. Discrete Mathematics, 340(3):287-304, 2017.
[7] S. F. de Rezende, C. G. Fernandes, D. M. Martin, and Y. Wakabayashi. Intersecting longest paths. Discrete Mathematics, 313:1401-1408, 2013.
[8] G. Golan and S. Shan. Nonempty intersection of longest paths in $2 K_{2}$-free graphs. Available as arXiv:1611.05967, 2016.
[9] A. S. Jobson, A. E. Kézdy, J. Lehel, and S. C. White. Detour trees. Discrete Applied Mathematics, 206:73-80, 2016.
[10] F. Joos. A note on longest paths in circular arc graph. Discussiones Mathematicae Graph Theory, 35(3):419-426, 2015.
[11] S. Klavžar and M. Petkovšek. Graphs with nonempty intersection of longest paths. Ars Combinatoria, 29:43-52, 1990.
[12] P. T. Lima. Interseção de caminhos mais longos em grafos. Master's thesis, Rio de Janeiro: UFRJ/COPPE, 2016.
[13] D. Rautenbach and J.-S. Sereni. Transversals of longest paths and cycles. SIAM J. Discrete Math., 28(1):335-341, 2014.
[14] J. Spinrad, A. Brandstädt, and L. Stewart. Bipartite permutation graphs. Discrete Applied Mathematics, 18(3):279-292, 1987.
[15] H. Walther and H.-J. Voss. Über Kreise in Graphen. VEB Deutscher Verlag der Wissenschaften, 1974.
[16] T. Zamfirescu. On longest paths and circuits in graphs. Math. Scand., 38(2):211-239, 1976.

[^0]: *A preliminary version of this paper was presented at the IX Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS'17).
 ${ }^{\dagger}$ This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (Proc. 423833/2018-9, 308116/2016-0, and 456792/2014-7), by grant \#2013/03447-6, São Paulo Research Foundation (FAPESP).
 \ddagger Research supported by CAPES (Proc. 235671298-48).
 ${ }^{\S}$ Research supported by FAPESP (Proc. 2015/08538-5).

