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Abstract We map the spectrum of 1 → 2 parton split-
tings inside a medium characterized by a transport coeffi-
cient q̂ onto the kinematical Lund plane, taking into account
the finite formation time of the process. We discuss the dis-
tinct regimes arising in this map for in-medium splittings,
pointing out the close correspondence to a semi-classical
description in the limit of hard, collinear radiation with short
formation times. Although we disregard any modifications
of the original parton kinematics in course of the propaga-
tion through the medium, subtle modifications to the radia-
tion pattern compared to the vacuum baseline can be traced
back to the physics of color decoherence and accumulated
interactions in the medium. We provide theoretical support
to vacuum-like emissions inside the medium by delimiting
the regions of phase space where it is dominant, identifying
also the relevant time-scales involved. The observed modifi-
cations are shown to be quite general for any dipole created
in the medium.

1 Introduction

Jet quenching, the modification of jet observables in the pres-
ence of a QCD medium, is arguably the most versatile exper-
imental tool to characterize the hot and dense system created
in heavy-ion collisions, see e.g. [1–3]. In the last 20 years
experiments at RHIC [4,5] and then the LHC [6–10] found
a strong suppression of particles produced at high transverse
momentum, the most direct predictions of energy loss, one
of the clearest signatures of the presence of jet quenching
dynamics. The large kinematical reach of the LHC, and the
much larger integrated luminosities expected for the near
future, allow to adapt and design completely new jet tools
[11,12], originally developed for the proton-proton program,
with a much more differential access to different properties
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of the medium. Two examples are the access to different
energy scales in the medium properties, notably, the access
to short distances to measure the properties of its quasiparti-
cle content [13] and the access to the space-time evolution of
the whole system [14], including its initial stages [15]. One
essential ingredient for a correct interpretation of the data is
a good control of the splitting process in the relevant energy-
or time-scale under investigation. Interestingly, the new jet
tools mentioned above can be used to isolate, or at least make
it cleaner, these different scales [16].

The problem of elementary parton splittings is important
in many aspects of high-energy physics. Most prominently,
it allows to resum final-state emissions that accompany hard
processes at colliders (a similar framework exists for resum-
mation of initial-state radiation, but here we focus on the
former). This is manifested experimentally as sprays of col-
limated particles, i.e. a jet. The fundamental splitting vertices
together with a calculation of the available phase space are
the ingredients that enter the formulation of a Monte Carlo
parton shower.

For processes involving soft gluon radiation, one often
invokes a strong separation of scales that allows to define a
classical current. In a diagrammatic language, the current rep-
resents high-energy particles that act as sources of soft gluons
and originate from a espacial position that is fixed in both the
amplitude and its complex conjugate. This method has been
shown to provide an economical description of both initial-
and final-state emissions in the presence of a nuclear medium,
e.g. see [17]. Similarly, the interference pattern off multiple
emitters was studied assuming an instantaneous splitting of
the current, giving rise to the so-called antenna radiation pat-
tern [18–21]. This picture was further corroborated within
a diagrammatic calculation of the two-gluon emission spec-
trum in the limit of strong ordering of their respective emis-
sion times [22]. Recently, both Monte-Carlo studies [23,24]
and analytical calculations [25,26], have highlighted the role
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of jet fluctuations that arise from in-medium splittings on
observables that are sensitive to energy loss in heavy-ion
collisions.

In this work we compute, within a diagrammatic approach,
a real and collinear parton splitting inside a color deconfined
medium and study the set of medium-induced modifications
that arise from allowing this splitting to occur at a finite
distance within the medium. Our discussion is most clearly
cast in the context of a final-state color-singlet splitting, i.e.
γ → qq̄ , but remains valid for generic splitting processes
involving a total color charge. We systematically implement
the high-energy limit in our calculations, that reduces the
complexity of the problem to a semi-classical picture of par-
tons propagating along well-defined trajectories. Although
we disregard any modifications of the original parton kine-
matics in course of the propagation through the medium,
subtle modifications to the radiation pattern compared to the
vacuum baseline can be traced back to the impact of physical
time-scales in the medium, related to color decoherence and
broadening.1

The time-like separation of the splitting vertices in, respec-
tively, the amplitude and the complex-conjugate amplitude
gives rise to two-(dipole) and four-point (quadrupole) corre-
lators of Wilson lines that resum medium interactions. These
correspond to the survival probabilities of the two- and four-
parton configurations at various stages of the process under
consideration. It is crucial to note that in the absence of
this separation these correlators collapse to unity, leaving
no imprint on the splitting process. The appearance of the
quadrupole, describing the propagation of the pair from for-
mation time to the end of the medium, is essential since it
accounts for the accumulated effects of medium interactions
over long distances.

Let us also clarify what we mean by the decoherence of
the dipole. In earlier works, where the dipole was assumed
to form quasi-instantaneously close to the origin, color deco-
herence was shown to introduce a new timescale that gov-
erns the spectrum of subsequent soft emissions [19–21]. This
comes about because the interference pattern between the
radiation off each of the dipole constituents depends on the
color coherence of the pair. In the current setup, we study
in detail the formation of the dipole itself, for the moment
without considering further radiative processes and ask the
simple question of when and how such dipoles are formed.
An important property to understand in this context is the
locality of the splitting, i.e. whether the properties of the
parton pair are determined at the moment of formation or

1 Technically, these two processes relate to the physics of two types of
dipole survival probabilities: the former, to a dipole existing entirely
in the amplitude (or complex conjugate amplitude), and the latter, to a
fictitious dipole consisting of one trajectory in the amplitude and another
in the complex conjugate amplitude.

whether those still can undergo modifications over large dis-
tances in the medium. Our results point to the importance
of both regimes and quantify them in terms of logarithmic
phase space. In close analogy to studies of dipole radiation
patterns in vacuum, it is very helpful to map the kinematics
of the formed dipoles onto the kinematical Lund plane [27].
Filling the Lund plane using jet de-clustering techniques in
proton-proton and heavy-ion collisions has recently attracted
a lot of attention [16,28–31].

Our final results for the emission spectrum in the presence
of a medium can be cast in the form,

dNmed

dz dθ

/
dN vac

dz dθ
= 1 + Fmed , (1)

where we have explicitly factorized the medium-induced
cross-section into the vacuum cross-section and the medium-
induced modification. The function Fmed encodes all infor-
mation relative to the medium modification factor associ-
ated with the parton 1 → 2 splitting function. We discuss
the relevant approximations in the high-energy limit that
allow to simplify the description in Sect. 2 and derive this
expression in Sect. 3. In practice, this factorization allows
for the straightforward discrimination of medium effects, as
will be fully explained in Sect. 3. We discuss the relevant
time-scales contained in the spectrum in Sect. 4 and draw the
phase space for the process under consideration in Sect. 5.
Then, in Sect. 6, we discuss numerical results that largely
verify the preceding analysis. The steps needed to general-
ize the process under consideration to be valid for arbitrary
splitting processes, involving e.g. color-charged dipoles etc.,
are outlined in Sect. 7 and, finally, we present an outlook in
Sect. 8.

2 Implementing the semi-classical limit

Let us consider the splitting of a “parent” parton, with
momentum �p0 = [E, p0], into two “daughter” partons, with
final-state kinematics

�p1 = [zE, p1] , �p2 = [(1 − z)E, p2] , (2)

where p0 = p1 + p2 from conservation of transverse
momentum.2 For the moment, we will focus on the produc-
tion of a color singlet final-state, in particular the splitting of
a photon into a quark–antiquark pair, γ → qq̄ , where the
photon is transversely polarized. This is illustrated in Fig. 1.
The partial amplitude M for such a process, stripped of the
Born-level production amplitude, reads (see also [32])

2 Our notation refers explicitly to light-cone (LC) kinematics, with
x± = (x0 ± x3)/

√
2. Hence, t ≡ x+ stands for LC time and E ≡ p+

is LC energy. Throughout, the minus (−) component of the momenta
has been integrated out, giving rise to an explicit time dependence.
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Fig. 1 Kinematics of the parton splitting process. The dipole opening
angle is n12 = n1 − n2, with |n1| = θ1, |n2| = θ2 and |n12| = θ

Mγ→qq̄ = e

E
ei

p2
1

2zE L+i
p2

2
2(1−z)E L

∫ ∞

0
dt

∫
k1,k2

[G( p1, L; k1, t |zE) Ḡ( p2, L; k2, t |(1 − z)E)
]
i j

× γλ,s,s′(z)k · ε∗
λ G0(k1 + k2, t |E) (3)

where e is the QED coupling constant and γλ,s,s′(z) =
iδs,−s′ [zδλ,s − (1 − z)δλ,−s]/√z(1 − z) is the quark–gluon
splitting vertex with λ = ±1 and k ≡ (1 − z)k1 − zk2.
Throughout, we implement the notations

∫
x ≡ ∫

d2x for
transverse coordinate and

∫
k ≡ ∫

d2k/(2π)2 for transverse
momentum integrations. In this expression,G and Ḡ represent
the dressed retarded propagators for the quark and the anti-
quark, that incorporate an adiabatic turn-off at large times,
see e.g. [33] for details on this regulator. As usual for high-
energy processes, we have assumed that interactions with
the medium only exchange transverse momentum. Hence the
momenta k1 and k2 correspond to the transverse momentum
sharing immediately after splitting.

The fully dressed propagator in the momentum space
transforms to configuration space according to,

G( p1, t1; p0, t0) =
∫
x1,x2

e−i p1·x1+i p0·x0G(�x1, �x0) , (4)

where we have suppressed the color and energy indices. In
configuration space, G(�x1, �x0) is described by a 2+1 dimen-
sional path integral along the trajectory of the particle,

G(�x1, �x0) =
∫ r(t1)=x1

r(t0)=x0

Dr exp

[
i
E

2

∫ t1

t0
ds ṙ2

]
V (t1, t0; [r]),

(5)

where the (conserved) energy E acts as a “mass”. Here,
V (t1, t0; [r]) is a Wilson line in the fundamental representa-
tion at (possibly fluctuating transverse) position r(t),

V (t1, t0; [r]) = P exp

[
ig

∫ t1

t0
dt ta A−,a(t, r(t))

]
, (6)

where ta is a color matrix in the fundamental represen-
tation and A−,a(t, r) is a background field describing

interactions with the medium.3 The antiquark propagator
Ḡ(�x1; �x0) is defined analogously to (5) with the substitution
V (t1, t0; [r]) → V †(t1, t0; [r]). For propagation outside of
the medium, these propagators reduce to

G( p1, L; k1, t |E)
∣∣
t>L = (2π)2δ(k1 − p1)G0( p1, L − t |E) ,

(7)

and analogously for Ḡ, where G0(k, t |E) = e−i k
2

2E t . This
corresponds also to the photon propagator in Eq. (3).

The goal of this work is to focus on the limit of hard
splittings in the medium, i.e. splittings with formation times
much shorter than the typical time-scales of the medium,
where we expect a “semi-classical” picture to dominate the
cross section. We make this statement more precise and map
out the relevant region in phase space in Sects. 4 and 5.
This is in contrast to the limit of medium-induced branch-
ing [33–41], where one investigates emissions with trans-
verse momenta dominated by interactions with the medium,
i.e. p⊥ ∼ √

q̂zE . We will work in the high-energy limit,
i.e. where formally the energy of the particles is infinite,
E → ∞, but we will keep track of the finite momentum shar-
ing fraction z. It turns out that we need to consider two sep-
arate steps in order to establish this correspondence, which
we proceed to outline below. The first step fixes the trajec-
tories of the particles to follow classical trajectories that are
determined by the kinematics of the process while the second
one fixes a common reference point for the pair in transverse
coordinates.

By hard emissions, we explicitly mean that both partons
have energy large enough so that the change in transverse
position due to scattering with the medium can be neglected
and the propagation follows basically straight lines. This con-
tribution can be isolated by considering the so-called eikonal
expansion of the propagator (5) [42,43]. Its zeroth-order
term, which neglects further transverse momentum broad-
ening in the medium, turns out to be

G(0)(�x1, �x0)

= G0(x1 − x0, t1 − t0)V (t1, t0; [xcl]) , (8)

where xcl(t) = t1−t
t1−t0

x0+ t−t0
t1−t0

x1 is the classical path. Taking
the Fourier transform, see Eq. (4), and after some manipu-
lations, we find that the propagator in mixed representation
becomes

3 The background field is boosted in the opposite direction to the pro-
jectile and, hence, it is contracted at x− = 0. This, in turn, guarantees
conservation of longitudinal momentum in the propagator and permits
the representation in Eq. (5).
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G(0)( p1, t1; p0, t0) = e−i
p2

1
2E (t1−t0)

∫
y0, y1

e−i( p1− p0)· y0
E(t1 − t0)

2π i
ei

E(t1−t0)

2 ( y1−n)2

× V (t1, t0; [ y0 + (t − t0) y1]) , (9)

where n ≡ p1/E . In the “semi-classical” limit E(t1 − t0) �
1 (corresponding to the formal limit h̄ → 0) the heat-
kernel in (9) reduces to a delta function of its argument,
limε→0 e−x2/ε/(πε) = δ(x). In particular, we demand that
E � L−1. This step converges the particles path onto the
classical trajectory, and the propagator becomes

G(0)( p1, t1; p0, t0)

= e−i
p2

1
2E (t1−t0)

∫
x

e−i( p1− p0)·xV (t1, t0; [x + (t − t0)n]) ,

(10)

see also [44]. This expression corresponds to the S-matrix of
an energetic particle that traverses the medium, see e.g. [45].

Hence, in this first step we have removed all effects of
non-eikonal broadening in the medium, i.e. that associated
to the fluctuations in the transverse position, after the pair has
been created. However, the initial position of the trajectory of
each leg is not fixed by (10). This leads to a “smearing” of the
antenna initial position in transverse space. We will briefly
return to this detail in Appendix A. For physical processes
happening at large times from the initial position we can treat
the initial position of the Wilson line as a small correction.
Then we find

G(0)( p1, t1; p0, t0)

= (2π)2δ( p0 − p1) e−i
p2

1
2E (t1−t0)V (t1, t0;

[
nt

]
) (11)

for the quark propagator. This ensures that the Wilson lines
accompanying the two hard particles always are initiated at
the same initial transverse position and time.

Replacing the propagators in Eq. (3) with (11) and con-
sidering the splitting inside the medium, 0 < t < L , the
amplitude becomes

Min
γ→qq̄ = e

E
γλ,s,s′(z) p · ε∗

λ

∫ L

0
dt

exp

(
−i

L − t

tf

) [
V1(L , t)V †

2 (L , t)
]
i j

, (12)

where now p ≡ (1 − z) p1 − z p2 is only related to the final-
state momenta. In this expression, we identify the quantum-
mechanical formation time

tf = 2z(1 − z)E

p2 . (13)

This second step completes the semi-classical approxima-
tion where the particles are propagating along trajectories
determined by their kinematics. The two Wilson lines are

r1

r1̄

r2̄

r2
Lt t̄

Fig. 2 The “in-in” contribution to the spectrum. Amplitude (black
lines) and complex conjugate of the amplitude (grey lines) are plot-
ted on top of each other to clearly show the different contributions:
dipole (15) in the region (t, t̄) and quadrupole (16) in (t̄, L)

associated with each of the dipole constituents, such that
e.g. Vi (t̄, t) ≡ V (t̄, t; [r i (s)]) with r i (s) = ni s. Explicitly,
n1 = p1/[zE] and n2 = p2/[(1 − z)E]. For emissions tak-
ing place outside of the medium, t > L , on the other hand,
we can explicitly perform the integration over the splitting
time. The amplitude reads then

Mout
γ→qq̄ = δi j

i z(1 − z) e

E
γλ,s,s′(z)

p · ε∗
λ

p2 , (14)

where we have assumed the adiabatic turn-off prescription at
large times mentioned above (consistent with the usual Feyn-
man prescription in the vacuum propagators in momentum
space). The amplitudes (12) and (14) are written up to pure
phase factors that cancel out in the cross sections. The full
amplitude is simply the sumMγ→qq̄ = Min

γ→qq̄+Mout
γ→qq̄ .

3 Derivation of the spectrum

Moving to the computation of the spectrum of splittings, the
following definitions will become very helpful. We note that
in our setup the trajectories of the particles in the amplitude,
denoted by r1 and r2, and complex-conjugate amplitude,
denoted r 1̄ and r 2̄, are shifted only due the difference in
the splitting time which vary independently, see Fig. 2. The
two-point function,

SI J (t1, t0) ≡ 1

Nc
〈tr VI V

†
J 〉 , (15)

corresponds to the dipole cross section,4 where the extent
of the Wilson lines is implicit from the left-hand side of the
equation and {I, J } = {1, 2, 1̄, 2̄}. Finally, the four-point

4 Throughout we adapt a notation where summation over common
indices of adjacent color matrices is automatically summed over, and
(ta)i j (tb) jk ≡ [tatb]ik , etc.
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function,

Q(t1, t0) = 1

Nc
〈tr V1V

†
2 V2̄V

†
1̄
〉 , (16)

is also referred to as a quadrupole. In the harmonic oscillator
approximation and in a static medium of size L , for details
see [45],

SI J (t1, t0) = exp

[
−1

4
q̂

∫ t1

t0
ds r2

I J (s)

]
, (17)

where q̂ ≡ CFq̂ is the transport coefficient for fundamental
degrees of freedom and r I J ≡ r I − r J describes the sep-
aration of the Wilson lines in transverse coordinate. In the
large-Nc limit, the quadrupole can be written as [39–41],

Q(t1, t0) = S11̄(t1, t0)S22̄(t1, t0)

+
∫ t1

t0
ds S11̄(t1, s)S22̄(t1, s) T (s) S12(s, t0)S1̄2̄(s, t0) ,

(18)

where T (s) = −q̂[r2
12(s) + r2

1̄2̄
(s) − r2

12̄
(s) − r2

1̄2
(s)]/2 =

−q̂ r11̄(s) · r22̄(s) is the transition amplitude. Above, the
two terms in (18) are the so-called factorizable and non-
factorizable pieces of the quadrupole, and describe the prop-
agation of two possible color configurations in the large-Nc

limit, under the constraint of conserving color at any given
time. Concretely, the first term describes the propagation of
two dipoles that correlate separately particle 1 and particle 2
in amplitude and complex conjugate (c.c.) amplitude so that
they evolve independently. This is why this piece is called fac-
torizable. The second, non-factorizable term involves a one-
gluon exchange—described by the transition amplitude—
that alters the color correlation of the system from an initial
correlation of particles 1 and 2 in the amplitude and similarly
in the c.c. at times t < s, to the uncorrelated case at times
t > s.

Note that, for the problem at hand, the separations are
either constant or grow linearly with time. In the high-energy
limit, it is the separation of the splitting time in the amplitude
t and the splitting time in the c.c. amplitude t̄ that govern the
exact trajectories of the Wilson lines. For reference, we list
the relevant differences here,

r11̄(s) = n1(t̄ − t) , r22̄(s) = n2(t̄ − t) , (19)

r12(s) = n12(s − t) , r 1̄2̄(s) = n12(s − t̄) , (20)

where n12 ≡ n1 − n2. Note also that n12 = p/(z(1 − z)E),
where p = (1−z) p1−z p2 is the relative transverse momen-
tum of the pair. Assuming a vanishing initial momentum p0,
we can also deduce that n1 = (1 − z)n12 and n2 = −zn12,
with θ ≡ |n12| and θ1(2) ≡ |n1(2)|, see Fig. 1. In this case,
the transition amplitude takes the simple form

T (s) = −q̂ n1 · n2(t̄ − t)2 = −q̂z(1 − z)n2
12(t̄ − t)2. (21)

For future reference, we take note that
∑

λ,s,s′ |γλ,s,s′(z)|2 =
[z2 + (1 − z)2]/[z(1 − z)].

The inclusive spectrum for the splitting process we are
considering can be written as,

dNmed

dzd p2 = 1

4(2π)2 z(1 − z)

〈 ∣∣Mγ→qq̄
∣∣2

〉

= 1

4(2π)2 z(1 − z)

〈 ∣∣∣Min
γ→qq̄ + Mout

γ→qq̄

∣∣∣2
〉
,

(22)

where the averaging of the amplitude also takes into account
averaging over the ensemble of medium configurations. The
total spectrum in the presence of a medium can be decom-
posed into three parts, Nmed = N in−in + N in−out + N vac.
Here, the first contribution corresponds to a splitting tak-
ing place inside the medium in both the amplitude and the
c.c. amplitude, the second contribution is an interference
between an emission taking place inside the medium in the
amplitude and outside the medium in the c.c. amplitude, or
vice versa, and the last term corresponds to an emission out-
side the medium. We define the vacuum cross-section from
〈|Mout|2〉. It reads,

dN vac

dz dθ
= αem

π

Pqγ (z)

θ
, (23)

where we used that p2 = [z(1 − z)Eθ ]2, Pqγ (z) =
n f Nc[z2 + (1 − z)2] being the relevant Altarelli-Parisi split-
ting function and n f is the number of quark flavors. Then,
after simplifying, we can write for the “in-in” spectrum

dN in-in

dz dθ
= dN vac

dz dθ
2Re

∫ L

0

dt

tf

∫ L

t

dt̄

tf
e
−i t̄−t

tf Q(L , t̄)S12(t̄, t),

(24)

where the quadrupole Q(L , t̄) ≡ Q(L , t̄; t) explicitly
depends on the splitting time in the amplitude through the
finite longitudinal shift of the long-distance propagators. The
in-out spectrum reads,

dN in-out

dz dθ
= −dN vac

dz dθ
2Im

∫ L

0

dt

tf
e
−i L−t

tf S12(L , t). (25)

Summing up all three contributions, the final spectrum takes
the form

dNmed

dz dθ
= dN vac

dz dθ

(
1 + Fmed(z, θ)

)
, (26)
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where the medium modifications are encoded in the factor
Fmed that reads,

Fmed = 2
∫ L

0

dt

tf

[∫ L

t

dt̄

tf
cos

(
t̄ − t

tf

)
S12(t̄, t)Q(L , t̄)

− sin

(
L − t

tf

)
S12(L , t)

]
, (27)

with S12(t̄, t) ≡ S12(τ ) and Q(L , t̄) ≡ Q(τL , τ ) that only
depend on the differences τ = t̄ − t and τL = L − t̄ . Explic-
itly, these functions read

S12(τ ) = e− 1
12 q̂θ2τ 3

, (28)

Q(τL , τ ) = e− 1
4 q̂ξθ2τLτ 2

+ T (τ )

∫ L

t̄
ds e− 1

4 q̂ξθ2(L−s)τ 2
e− 1

12 q̂θ2[(s−t̄)3+(s−t)3−τ 3] ,

(29)

where s ≥ t̄ ≥ t and we defined ξ = (1 − z)2 + z2. The
factorization property in Eq. (26) stems from the fact that the
kinematics of the dipole is not modified after it has been cre-
ated. In contrast, for medium-induced branching the daughter
particles experience additional momentum broadening from
non-eikonal contributions both during their formation time
and afterwards [39–41]. The dependence on the initial energy
does not factorize completely on the right-hand-side of the
equation due to the explicit dependence on the formation
time tf.

The process described by Eq. (27) contains two stages. To
be accurate, for the in-out term, see (25), only the first stage
plays a role. The first stage is governed by the dipole cross
section S12(t1, t0) that appears in both terms in Eq. (27). It can
be interpreted as a survival probability of a (virtual) dipole
consisting of the daughter particles 1 and 2, with a dynamical
transverse size b⊥(t) ∼ θ t , that exist during the time interval
�t = t1 − t0. We will refer to this stage of the process as the
“decoherence” of the pair. The quadrupole Q(τL , τ ) plays
only a role for the “in-in” term, see Eq. (24). Looking in
detail, the first term in (29) describes the survival probability
of a (real) dipole with fixed transverse size b⊥ ∼ θτ at the
moment of formation, propagating the remaining distance to
the end of the medium. Therefore, we will refer to this part
of the dynamics as the broadening of the dipole. As men-
tioned before, in our approximation this broadening does not
receive contributions from the non-eikonal fluctuations that
change the transverse position of the propagating particles off
their classical paths. The non-factorizable piece, given by the
second term in Eq. (29), is typically a small correction. For
example, the transition amplitude T (τ ) ∼ zθ2τ 2 becomes
approximately T (τ ) ∼ tf/E for short-formation times, i.e.
when τ ∼ tf � L (see discussion in Sect. 4). It also vanishes
in the soft limit z → 0 and τ ∼ const.

The terms in (27) correspond, respectively, to the cases
when the splitting occurs inside the medium in both the
amplitude and its complex conjugate, ∝ 〈|Min

γ→qq̄ |2〉 (first
term), already referred to as an “in-in” contribution, and the
interference between a splitting inside and a splitting out-
side, ∝ 2Re〈Min

γ→qq̄M†,out
γ→qq̄〉 (second term), analogously

referred to as an “in-out” contribution. Keeping the size of
the medium fixed L = const. and reducing the medium den-
sity q̂ → 0 reveals a non-trivial cancellation between the two
terms that leads to Fmed → 0.

4 Qualitative discussion of scales

Presently, let us discuss the relevant scales that appear in the
calculation. Considering (27), the emission process is char-
acterized by a competition between the quantum mechanical
formation process, that enforces τ � tf for the “in-in” and
L − t � tf for the “in-out” terms, respectively, as well as the
suppression factors related to color decoherence and broad-
ening. The condition on the splitting times is a consequence
of avoiding strong oscillations of the trigonometric factors in
(27).

The relevant scales for the “in-in” spectrum can be identi-
fied in the dipole and the factorizable piece of the quadrupole,
i.e. the first term in (29). We will refer to them as the deco-
herence and broadening times, and they are given by

td ∼
(

1

q̂θ2

)1/3

, tbroad ∼
(

1

q̂θ2L

)1/2

. (30)

The non-factorizable part of the quadrupole constitutes a
small correction to this qualitative estimate. The decoher-
ence time governs the color decoherence of a dipole, and for
td > L , which implies that θ < θc ∼ (q̂ L3)−1/2, the survival
probability is close to one. This means that the medium does
not resolve the dipole until it exits the medium. In particu-
lar, tf < td implies that p2 >

√
q̂z(1 − z)E , which is related

to the transverse momentum broadening accumulated during
the formation time. The broadening time scale, on the other
hand, is related to transverse momentum broadening along
the medium length L . The condition tf < tbroad implies that
p2 > Q2

s ∼ q̂ L . In the opposite case, the original opening
angle of the dipole will be significantly changed by broad-
ening, and the angle at which the particles emerge does not
correspond to their initial opening angle. Note that tbroad < td
for θ > θc, which implies that the broadening along the
whole medium length is typically larger than during the for-
mation time of (relatively) large-angle splittings. Hence, for
emissions with θ < θc one should not expect any medium
modifications, i.e. Fmed = 0. More importantly, the kinemat-
ical phase space for in-medium splittings that are vacuum-
like, again implied by a vanishing Fmed, also does exist for
tf < tbroad < td at large angles θ > θc. We will compute
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the size of this phase space below up to leading-logarithmic
precision.

It is important to keep in mind that the “in-out” term is
not sensitive to the dynamics encoded in the quadrupole,
see Eq. (25). Instead, the spectrum is only sensitive to the
decoherence time td in the dipole S12(L , t), see (27). At the
same time, the phase limits the range of integration to L−t �
tf. Hence, it tf � L this term averages to 0. However, for
tf ∼ L � td it cancels against the “in-in” term. We will not
discuss this contribution in further detail.

The discussion above holds for jets with E > ωc ∼ q̂ L2.
For smaller energies, one finds stronger conditions on the
angular phase space. Instead, one becomes sensitive to two
dynamical critical angles given by tf|z=1 = td, leading to
θd ∼ (q̂/E3)1/4, and tf|z=1 = tbroad, leading to θbroad ∼
(q̂ L)1/2/E . Note that E < q̂ L2 also implies that θbroad < θd.
Therefore, as long as θbr > R, or ER > Qs , there exists a
regime of hard, in-medium splittings.

Hence, in order to avoid rapid oscillations or exponen-
tial suppression of the cross-section due to medium effects,
the difference of emission times in the amplitude and its
complex-conjugate of the in-in has to satisfy

τ � min[tf, td, tbroad] , (31)

and the emission time for the in-in spectrum itself is of
the same order t ∼ τ . In other words, the actual emission
time is governed by the smallest of the three physical time-
scales of the problem. Since tbroad < td always, it turns out
we can simply write τ � min[tf, tbroad]. Nevertheless, vir-
tual emissions in the medium, that are critical to understand
resummed observables in heavy-ion collisions [25], are not
sensitive to final-state broadening and we will therefore con-
tinue to discuss full hierarchy of scales. At large formation
times, tf � L , we can neglect the factors in the integrands
of Eqs. (24) and (25), to find that

dN in-in

dz dθ

∣∣
tf�L � dN vac

dz dθ
×

(
L

tf

)2

and

dN in-out

dz dθ

∣∣
tf�L � −dN vac

dz dθ
×

(
L

tf

)2

. (32)

We therefore expect that eventually Fmed ≈ 0 at large for-
mation times.

Based on the qualitative discussion of the medium spec-
trum presented above, we can draw a kinematical Lund dia-
gram subject to the general constraint p⊥ ≡ | p| ≥ Q0, where
the cut-off scale Q0 ∼ �QCD. In this work we choose to span
the plane with the logarithmic variables {ln 1

z , ln 1
θ
} and, for

the sake of simplicity, we work in the double-logarithmic
approximation (DLA) where we can neglect all corrections
O(1 − z), i.e. p⊥ � zEθ etc., so that we only deal with
straight lines in the Lund plane. This representation is well
suited to detail the radiation pattern of soft and collinear

emissions. The soft and collinear gluon emission off either a
quark or gluon gives

dσDLA

dz dθ
= ᾱ

1

z

1

θ
, (33)

where we defined ᾱ ≡ 2αsCR/π and where CR is the total
color charge of the dipole. According to (33), at leading order
the Lund plane is uniformly filled with density ρ ∼ ᾱ [16,
29].

At this stage it is worth pointing out that, although we have
considered a photon splitting which does not contain any soft
divergence, the factorization property of Eq. (26) and the
general structure of the medium modification factor Eq. (27)
holds for an arbitrary splitting process. The generalization
of our formulas to the splitting of a colored particle (quark
or gluon), and the necessary replacements, will be further
discussed in Sec. 7. At fixed coupling, the total phase space
(PS) available for radiation off a jet with energy E and a cone
angle R is therefore

(PS)tot = 1

ᾱ

∫ 1

0
dz

∫ R

0
dθ

dσDLA

dz dθ
�(zEθ > Q0)

= 1

2
ln2 ER

Q0
. (34)

In the presence of a medium, the four different competing
time scales that we have identified are: (a) the kinematical
formation time tf, (b) the decoherence time td, (c) the broad-
ening time tbroad and (d) the medium length L . Note that in
our present discussion all these timescales relate to the for-
mation of the dipole and its further propagation through the
medium. However, due to the fixed kinematics of the process,
these timescales will also play a role in the further evolution
of such a dipole, e.g. acting as a source for subsequent radi-
ation.

5 Mapping out the phase space for medium
modifications

We have sketched the Lund diagram for one in-medium split-
ting in Fig. 3 for two possible energy regimes: E > ωc (left)
and E < ωc (right). The different ordering of the time-scales
that were introduced above correspond to the marked areas
on the graph and the lines are given by the following set of
equations

� = ln EL − 2y (tf = L) , (35)

� = ln
E

q̂1/3 − 4

3
y (tf = td) , (36)

� = ln
E

Qs
− y (tf = tbroad) , (37)
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lnE/ωc

lnER/Qs

ln ER4/3

q̂1/3

lnER2L

lnR -1 ln θ -1
c ln θ -1

L

E > ωc

ln 1/z

ln 1/θ

lnER/Qs

ln ER4/3

q̂1/3

lnER2L

lnR -1 ln θ -1
br ln θ -1

d ln θ -1
L

E < ωc

ln 1/z

ln 1/θ

Fig. 3 Lund diagram for one vacuum splitting (soft & collinear) where
we detail the phase space regimes related to medium scales. The bound-
aries depicted on the figures have the following meaning (starting from
the uppermost line and descending): 1) the first line (magenta-blue on
the left, purely magenta on the right) stands for the boundary where
the quantum-mechanical formation time is of the order of the medium
length, tf = L; 2) the magenta-green line represents the boundary where

the formation time is of the order of the decoherence time, tf = td; 3) the
green-red line represents the boundary where the formation time is com-
parable to the time scale for medium-induced broadening, tf = tbroad; 4)
finally the vertical red-blue line on the left represents the critical angle
θ = θc. All relevant definitions are given in Table 1 and the boundaries
of the regions are given by Eqs. (35), (36), (37)

Table 1 Summary of the
transverse momentum, energy
and angular scales related to
medium interactions

Scale Expression

Qs (q̂ L)1/2

ωc q̂ L2

θc (q̂ L3)−1/2

θd (q̂/E3)1/4

θbroad (q̂ L)1/2/E

θL (EL)−1/2

where � ≡ ln 1/z and y ≡ ln 1/θ . In the high-energy case
E > ωc, we have also marked the critical angle θc with a
vertical line. In this case, for θ < θc, tbroad > td > L and so
we have not extended the lines beyond their physical regime.

Let us first consider the high-energy regime, i.e. E > ωc,
see Fig. 3 (left). In order to avoid an interference between
the edge of the medium and the non-perturbative scale Q0,
we also demand for now that Q0 < (RL)−1. For ease of
reference, all the relevant scales are listed in Table 1 with a
short description. Introducing the quantities LR ≡ ln R/θc
and LE ≡ ln E/ωc, let us describe the various regions below:

(A.1) tf < tbroad < td < L (red region): Particles are cre-
ated early in the medium, governed by the quan-
tum mechanical formation time. This corresponds to
vacuum-like emissions inside the medium, see also
[26,44]. The phase space is given by

(PS)1 = LR

(
LE + 1

2
LR

)
, (38)

and is single-logarithmic in the jet energy. The leading
term arises for the case when zE > ωc. In fact, all
other contributions are sub-leading in the jet energy
as long as td < L , see below, starting from the second
term in (38). Furthermore, td < L implies that the
dipole will decohere in color in a finite distance inside
the medium [20,21], which opens up for the possibility
of incoherent energy loss due to secondary medium-
induced radiation [44].

(A.2) tbroad < tf < td < L (green region): In this case, the
timescale for broadening is shorter than the quantum
mechanical formation time and we expect deviations
from pure vacuum-like behavior. This region involves
relatively soft splittings, with zE < ωc and p2 < Qs ,
and the phase space reads

(PS)2 = 1

6
L2
R , (39)

which is not enhanced by logs of the jet energy.
(A.3) tbroad < td < tf < L (magenta region): The forma-

tion of the dipole in this region is strongly suppressed
by the presence of the dipole governing the decoher-
ence of the pair before formation. In particular, this
time ordering implies that ω/L < p2 < (q̂zE)

1/2.
The phase space is

(PS)3 = 1

3
L2
R , (40)

and is also not enhanced by logs of the jet energy.
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(A.4) tf < L < td < tbroad (blue region): In this case, the
splitting takes place inside the medium, but the cre-
ated partons remain coherent. This happens if the split-
ting angle is sufficiently small, θ < θc [18,19]. This
implies further that splittings in this region should fol-
low a vacuum emission pattern. The phase space is
given by

(PS)4 = 1

4
L2
E , (41)

and is double-logarithmic in the jet energy. In this
case the medium does not resolve the splitting and,
for the non-singlet case, the jet is quenched (coher-
ently) due to the presence of a total color charge
[44,46]. It is worth pointing out that this regime does
not exist in the low-energy regime, E < ωc. Due to
the restriction on the energy, the characteristic deco-
herence and broadening times are always shorter than
the medium length and, in effect, all radiation inside
the medium, i.e. tf < L , occur at angles θ > θc, since
(ωcθ

2)−1 < (zEθ2)−1 < L .
(B) tf > L (beyond the tf = L line): Splitting takes place

outside of the medium, and no medium modification
is expected.

To summarize, we have identified two regions of vacuum-like
emissions inside the medium, tf < L , namely regions A.1
and A.4. However, the fate of the dipole after splitting is
expected to be very different. We therefore denote region A.1
as incoherent radiation and region A.4 as coherent radiation.

The total phase space for emissions inside the medium is
the sum of the four contributions,

(PS)tf<L =
4∑

i=1

(PS)i = 1

4
ln2 ER2L . (42)

Note therefore that there is a relatively large probability of a
splitting happening inside the medium, i.e. (PS)tf<L/(PS)tot

∼ 1/2 asymptotically when E → ∞. In Monte Carlo
simulations, the ratio is slowly varying and lies close to
∼ 40 − 45% [47].

Finally, let us briefly consider the low-energy regime, i.e.
E < ωc. In this case, the logarithmic contributions are auto-
matically restricted and the leading-logarithmic approxima-
tions should receive significant corrections. However, it is
interesting to note that the region tf < tbroad < td, corre-
sponding to region A.1 in the high-energy regime, scales
like

(PS)tf<tbroad,E<ωc = 1

2
ln2 ER

Qs
. (43)

As pointed out before, the regime of in-medium hard split-
tings closes whenever ER ∼ Q0. We will currently not

discuss in further detail the remaining phase space regimes,
although their impact can be systematically worked out fol-
lowing the steps above.

6 Numerical results

The main result of this work is to demonstrate the factoriza-
tion property of the medium spectrum given in (26). We have
chosen Q0 = 0.2 GeV and q̂ = 1.5 GeV2/fm as reference
values, for the high-energy regime we have used E = 1000
GeV and L = 2 fm and for the low-energy regime we have
chosen E = 240 GeV and L = 8 fm.5 Our final results
are presented in Fig. 4, where the quantity Fmed is defined in
Eq. (27). We have plotted the result of evaluating the medium-
modification function Fmed in the kinematical Lund diagram
defined in Fig. 3 for both high- and low-energy regimes in
Fig. 4 (left) and Fig. 4 (right) respectively, where the lines
in the two figures are equivalent.6 The full shaded area cor-
responds to the available phase space given the constraint
k⊥ > Q0, in such a way that the three curves represent (from
top to bottom, cf. Fig. 3): (a) tf = L , (b) tf = td and (c)
tf = tbroad.

It is instructive to examine how the medium modification
function behaves for different limits. Commencing our dis-
cussion with the high-energy regime, see Fig. 4 (left), the
regimes where we expect vacuum-like emissions to occur,
i.e. at tf < tbroad < L with td > L (θ < θc) and tf > L , the
medium modifications are negligible. Indeed, we observe that
the onset of modifications follow the line tf = td and the main
modifications are contained to the regime tbroad < tf < td, as
expected from the discussion in Sec. 4. This behavior is more
striking, the smaller the coherence angle compared to the
cone size. This is of little surprise given that tbroad is related to
transverse momentum broadening along the medium length
L , hence making sense for larger media.

In the low-energy regime, see Fig. 4 (right), the same phys-
ical picture holds to a large extent. However, the medium
modifications are much larger and we also observe a “leak-
age” into the regime of short formation times. In this case, the
scaling behavior we have postulated can only be thought to
hold in a parametric sense, and care has to be taken with the
assumptions regarding the importance of transverse momen-
tum broadening in order to make any quantitative statements.
In Fig. 4 (right), the parameters are such that Q0 > (RL)−1.
Apart from serving to prove the expected scaling in the low-

5 The reason behind this choice is to plot the same in-medium phase
space tf < L so that the characteristic angle θc in the high-energy
regime is located approximately at the same absolute angle as θbroad in
the low-energy regime.
6 We have confirmed that the borders do not shift by any significant
amount if we were to include numerical factors into the various scales
used throughout, adding to the robustness of the DLA analysis.
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Fig. 4 Numerical evaluation of the medium modification factor Fmed
for in the high-energy (E > ωc, left) and low-energy regime (E < ωc,
right). Notice that the scale of the color coding on the right is rescaled
by a factor 10 compared to the left. The shaded area corresponds to the

available phase space given the constraint k⊥ > Q0 and the boundaries
of the regions are given by Eq. (35), (36), (37) and equivalent to the
ones in Fig. 3

energy regime, this parameter choice illustrates that part of
the jet, i.e. large-angle and soft emissions, happen to reach the
non-perturbative scale while still being “inside” the medium,
i.e. their formation times being smaller than L . This consti-
tutes a new category of in-medium modifications that goes
beyond the scope of our investigation.

7 Beyond the singlet case

The generalization of the splitting process to arbitrary color
representation is straightforward, and does not modify the
general structure of Eq. (26). One simply has to replace the
coupling constant αem → αs and the Altarelli-Parisi split-
ting function for the relevant one, e.g. Pqγ (z) → Pi j (z)
in the vacuum spectrum (23). In the medium modification
factor Fmed one has to account for the more involved color
algebra. Taken as a concrete example the splitting process
q → q + g, we would replace the expressions for the dipole
and quadrupole by,

S12(t̄, t) → 1

N 2
c − 1

〈
tr

(
V †

2 (t, t̄)V1(t̄, t)
)

tr
(
V †

0 (t, t̄)V2(t̄, t)
)

− 1

Nc
tr

(
V †

0 (t, t̄)V1(t̄, t)
)〉

, (44)

Q → 1

N 2
c − 1

〈
tr

(
V †

1̄
(t̄, L)V1(L , t̄)V †

2 (t̄, L)V2̄(L , t̄)
)

tr

(
V †

2̄
(t̄, L)V2(L , t̄)

)

− 1

Nc
tr

(
V †

1̄
(t̄, L)V1(L , t̄)

)〉
. (45)

In the large Nc limit, the second term in both expressions
above can be neglected, in which case we are left with the
replacement

S12(t̄, t) → S12(t̄, t)S20(t̄, t) , (46)

Q → Q(L , t̄)S22̄(L , t̄). (47)

The appearance of these new dipole structures, S20(t̄, t) and
S22̄(L , t̄), does not render it impossible to transfer the qualita-
tive insight regarding color-singlet dipole splittings to color-
charged ones. In the harmonic oscillator approximation, we
find that

S20(t̄, t) = e− 1
12 q̂(1−z)2θ2τ 3

, (48)

S22̄(L , t̄, t) = e− 1
4 q̂z

2θ2(L−t ′)τ 2
, (49)

where we have defined r20(s) = n1(s − t) and r22̄(s) =
n2(t ′ − t).

Focussing for the moment on the dynamics during for-
mation, we note that the combination S12S20 only depends
on the jet quenching parameter through the combination
q̂eff = q̂(1+(1−z)2) ≈ ((1−z)Nc+z2CF ) ˆ̄q in the large-Nc

limit (recall that, in our calculation so far, q̂ = CF ˆ̄q). This
effective q̂eff was indeed previously identified for medium-
induced quark–gluon splitting, see e.g. [40].

Similar conclusions can be drawn regarding the correction
to the quadrupole. Therefore, although our general discussion
was based on the calculation of a color-singlet splitting, we
see that it can be straightforwardly generalized to splittings
involving a non-zero total color charge by carefully consid-
ering the color dependence of q̂eff, as well as the expected
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replacements in the vacuum spectrum. This validates our dis-
cussion of soft and collinear radiation in terms of the Lund
plane introduced in Sect. 5.

8 Conclusions and outlook

We have studied the production of hard radiation in the pres-
ence of a quark–gluon plasma, and have found two regimes
of vacuum-like emissions inside the medium. By vacuum-
like, we simply mean that the in-medium splitting function
is equal to the one in the vacuum, or Fmed ≈ 0. These cases
include a) the regime of short formation time, in particular
tf < tbroad < L (corresponding to the region A.1 in Fig. 3),
and at small angles, concretely θ < θc (corresponding to
region A.4 in Fig. 3). The fate of these two types of emis-
sions is however different since only in the former regime
do the splitting products lose their color coherence at a finite
distance inside the medium. Due to this rapid decoherence,
the splitting products should therefore become subject to
independent energy loss processes. In contrast, emissions in
region A.4 are color coherent when they exit the medium and
should therefore lose energy as a whole.

We have also identified the border at which long-distance
medium effects start to play a role in the splitting process. In
particular at tf � tbroad, where the relative transverse momen-
tum p2 < Q2

s , the opening angle of the jet could vary sig-
nificantly due to transverse momentum broadening. These
features are also recovered in our numerical calculations
in Sect. 6. Hence, this study confirms the notion of purely
vacuum-like emissions that are emitted inside the medium.

The spectrum of these excitations follow from a “semi-
classical” picture, where the original splitting takes place
immediately after the hard process. Our analysis of time-
scales further corroborates the validity of our assumptions
for the regions of vacuum-like emissions. A further, quanti-
tative study of the regions where tf is similar to tbroad and td
demands that we include the possibility of transverse momen-
tum broadening, i.e. relax the assumption of straight-line tra-
jectories, for further details see [39,40].

Computing higher-order splitting processes, and their vir-
tual corrections, goes beyond the scope of this paper, and
will be pursued in the future. We already anticipate that our
analysis points to mismatch between real and virtual terms,
since the latter do not involve the long-time component of
the processes encoded, in our case, in the quadrupole. Such
a mismatch, albeit due to energy loss processes, was already
shown to entail novel resummation schemes to account for
medium modifications on multi-parton probes, such as jets
[25].
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Appendix A. Beyond the classical picture

Applying the limit E → ∞ and using the previously derived
dressed propagator in Eq. (10), we obtain the amplitude,

Min
γ→qq̄ = e

E
γ

γ→qq̄
λ,s,s′ (z)

∫ L

0
dt e−i(L−t)/tf

×
[
p + i[(1 − z)∂x1 − z∂x2 ]

]

· ελ[V1(tL , t)V †
2 (tL , t)]i j

∣∣
x1=x2=n0t

, (A.1)

up to factors that cancel out in the cross section, and where
n0 = ( p1 + p2)/E . Note that, in this case, the trajectories of
the dipole constituents are described by r i ≡ xi + (s − t)ni ,
while in Sect. 2 we assumed that xi = 0.

The “in-in” and “in-out” emission spectra then become

dN in-in

dz d p2 = dN vac

dz d p2 2Re
∫ L

0

dt

tf

×
∫ L

t

dt̄

tf
e
−i t̄−t

tf V̂1
[
Q(L , t̄)S12(t̄, t)

]
x2=x1=n0t
x̄2=x̄1=n0 t̄

, (A.2)

and

dN in-out

dz d p2 = dN vac

dz d p2 2Im
∫ L

0

dt

tf
e
−i L−t

tf V̂2
[
S12(L , t)

]
x2=x1=n0t

,

(A.3)
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where tf = 2z(1− z)E/ p2 and we have introduced the oper-
ators

V̂1 = 1

p2

(
p + i[(1 − z)∂x1 − z∂x2 ]

)

·
(
p − i[(1 − z)∂ x̄1 − z∂ x̄2 ]

)
, (A.4)

V̂2 = p
p2 · (

p + i[(1 − z)∂x1 − z∂x2 ]
)
. (A.5)

The dipole term, comprising the additional shift of the initial
positions of the Wilson lines, reads

S12(t1, t0)

= exp

{
−1

4
q̂�t

[(
x12 + 1

2
�tn12

)2

+ 1

12
�t2n2

12

]}
,

(A.6)

for generic time intervals, where �t = t1 − t0 and x12 ≡
x1 −x2, while the missing terms in the quadrupole (18) read,
explicitly SI Ī (t1, t0) = exp[− 1

4 q̂�t (x I Ī +nI τ)2], using the
definition in (17).

Because of the constraints on the initial transverse position
in the amplitude and the complex conjugate, leading respec-
tively to x1 = x2 and x̄1 = x̄2, the resulting spectra will
be similar to the terms derived to obtain Eq. (26), with the
definition in (27), except for a unique pre-factor appearing
under the integrals of the “in-in” and the “in-out” terms that
arises from the more involved vertices in (A.2) and (A.3).

We have analyzed these terms in detail for the factorizable
piece of the “in-in” term and for the “in-out” term. In par-
ticular, for the “in-in” term the correction factor appearing
under the integral reads

1 − i
q̂τ 2

4z(1 − z)E
− i

q̂τLτξ

z(1 − z)E

−
(

q̂τLτξ

2z(1 − z)E

)2 (
1 + τ

2ξτL

)
+ q̂τLξ

(z(1 − z)Eθ)2 ,

(A.7)

where we defined τL ≡ L− t̄ and ξ ≡ (1−z)2+z2 to shorten
the expression. For the in-out term the correction factor is
1 − i q̂(L − t)2/[4z(1 − z)E], which closely resembles the
two first terms in (A.7) with τ substituted by L−t . Neglecting
all finite-z corrections and assuming short times, L � t, t̄ ,
these terms scale as

1 − i
tf
td

(
τ

td

)2

− i
tf

tbroad

τ

tbroad

−
(

tf
tbroad

)2 (
τ

tbroad

)2

+
(

tf
tbroad

)2

. (A.8)

This clearly demonstrates that the corrections to the vertex
start to play a role whenever the (kinematical) formation time
ceases to constitute the shortest time-scale to which compare

the difference of emission times τ . In particular, this starts to
happen then τ � tbroad < tf.
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