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Abstract
This thesis presents methods and theory for exploring new physics by using neutrinos as
the portal. A thorough introduction on the state of neutrino physics in, and beyond the
Standard Model framework, is presented. Anomalies arise from short baseline neutrino
oscillation experiments, which may hint towards a fourth neutrino with a mass at the
eV-scale. This is explained by the addition of a dark, Abelian symmetry group. The
new symmetry is broken at the MeV-scale. To obtain sizeable active-sterile mixing, a
hierarchy between Yukawa couplings is required. Majorana masses are included for right-
handed neutrinos, which by the see-saw mechanism, provide a spectrum of light neutrino
masses. The dark sector neutrinos are allowed to couple to the active neutrinos by Yukawa
couplings which form a non-diagonal Yukawa matrix.

The interplay between neutrino masses, Yukawa couplings, mixing angles and vacuum
expectation values, is studied to provide solutions for the short baseline anomalies while
remaining within experimental limits. Simple parameter scans are employed to further
investigate the structure of the model. A parameter region compatible with global fits
of reactor neutrino data is presented. When applied to bounds arising from resonant
leptogenesis, the model confines right-handed neutrino masses in the 1TeV − 100TeV
range.
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1 Introduction
The Standard Model is the framework for particle physics, it describes the interactions
between the elementary particles and how they come to be. Members of the Standard
Model include particles such as the familiar electron, the quantum of light, the photon,
the long-awaited Higgs boson and many more. Three peculiar members of the Standard
Model are the elusive neutrinos, ghostly particles which seldom interact with the others.
Neutrinos come in three “flavours” (νe, νµ and ντ ), and they are known to oscillate
between flavours as they propagate through spacetime.

Remarkably, despite their elusive nature, neutrinos can lead the way towards discov-
ering new intriguing physics. Although massive, neutrinos have a near vanishing mass in
comparison to the other fermions and the origin of neutrino masses is currently an open
question. The discovery of neutrino masses imply the existence of right-handed neu-
trinos; even more elusive particles which can only interact gravitationally and through
Yukawa couplings with the already elusive neutrinos. Although the gravitational foot-
print of right-handed neutrinos may be too faint to discover, their existence brings about
a window into the dark, unexplored realm of physics beyond the Standard Model.

Neutrino oscillation data can provide the mass squared difference between the three
neutrino masses, which along with cosmological data confines the neutrino mass scale to
the sub-eV-scale. This aforementioned mass squared difference between neutrino masses
is the driving force of neutrino oscillations. Studies of neutrino oscillations at short
baselines suggest, however, that the Standard Model picture of oscillations is incomplete.
Oscillation experiments at short baselines deviate from the predicted values and point
towards a mass splitting at the eV-scale responsible for the observed deviations. As the
three neutrinos of the Standard Model are too light to provide the mass necessary for
the observed mass splitting, a fourth neutrino at the eV-scale may be responsible. Not
only is this neutrino much heavier than the known neutrinos, but it must also be a gauge
singlet of the Standard Model as the decay of the Z boson is only compatible with three
active neutrinos. The short baseline anomalies may point towards a whole new class of
particles, sterile neutrinos.

A natural explanation of the lightness of neutrino masses is the celebrated see-saw
mechanism [1–5]. The see-saw mechanism generates light neutrinos masses at the cost of
generally very heavy right-handed neutrino masses. Although unconstrained, a popular
scale to put right-handed neutrino masses is at the Grand Unified Theory scale, Λ ∼
1016GeV, however, this scale may be much lower. The short baseline anomaly may be
reconciled if one, or more, right-handed neutrinos obtain their mass at the eV-scale,
which inevitably leads to very small Yukawa couplings. Another possibility is, that in
their mixing, neutrinos probe an unexplored dark sector through active-sterile neutrino
oscillations. This has striking implications, an active neutrino may oscillate into a sterile
state, which is unable to communicate with the Standard Model, effectively rendering
the once active neutrino a missing particle. This process may also occur in reverse; an
active neutrino may blossom into existence from the point of view of observers made
of Standard Model particles, which corresponds to a sterile neutrino oscillating into an
active neutrino.

From a model-building perspective, the addition of sterile neutrinos as a springboard
into additional dark interactions and dark sectors is a hot topic. The reader is assumed
to be familiar with the existence of the non-luminous matter which accounts for the
majority of the matter-energy in the universe, so-called dark matter. Barring a vast
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array of exclusion plots, regions of parameter space where dark matter cannot reside, the
particle content of dark matter is still as open as it was upon its discovery. If dark matter
can interact with itself, then there will inevitably be additional dark particles that are
responsible for the mediation of some dark charge. Until dark matter is resolved, the
topic of modelling dark sectors will remain a hot topic as no scientist can turn away the
urge to discover something new.

This thesis will examine the effects of adding a dark Abelian gauge group to the
Standard Model symmetry. The group is endowed with a complex scalar that yields
particle masses through the Brout-Englert-Higgs (BEH) mechanism [6–8]. The model
includes a dark neutrino at the eV-scale and a dark, massive vector boson. The goal of
this thesis is to provide the structure needed to incorporate the short baseline anomaly
while providing a model which is compatible with existing limits on the properties of the
dark particle content. To achieve this goal, the relevant tools are extracted from known
results from quantum field theory and the Standard Model. Bounds from leptogenesis are
imposed to restrict the parameter space of right-handed neutrino masses. Adapting these
tools to the model is the main discussion of this thesis. In addition, simple parameter
scans are conducted to further explore the parameter space the model provides.

The thesis is structured as follows; first, a basic introduction to the theories underlying
quantum field theory is given. Following this, a thorough discussion is conducted on the
Standard Model and the mathematical structure needed to explain it. After this, a
discussion on the state of neutrino physics, structured to provide a natural springboard
into the realm of sterile neutrinos, is provided. A review on physics beyond the Standard
Model and how it can be probed, with emphasis on sterile neutrinos, is presented. The
rest of the thesis provides a delve into model specifics; the masses, the mixing, the
Yukawa structure and more. An effective 1 + 1 mixing scenario is studied, which reveals
the qualitative structure needed to yield three mixing regions; small, moderate and large.
Afterwards, the complete 3 + 1 mixing scenario is analyzed and the structure of the
Yukawa matrices is inferred. The model is then subjected to bounds from leptogenesis,
which provides a parameter space suitable for explaining both leptogenesis and the short
baseline anomaly.
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1.1 Classical mechanics
Newtonian mechanics has from its inception served as a formidable tool for calculating
more or less everything humans can perceive. As first formulated by Newton in 1687, the
laws of motion were given by the all-time classic equation

~F =
d~p

dt
= m~a. (1.1.1)

The next hundred years gave rise to a new formulation of classical mechanics. The
combined effort of mathematicians and physicists such as d’Alembert, Maupertuis, Euler
and Lagrange gave rise to what is today called Lagrangian mechanics. The key principle
of Lagrangian mechanics is invariance of the action S, from which the equations of motion
(EOF) follow. In classical mechanics, the action is defined as the integral from a prior
time t1, to some later time t2, given by the functional

S =

∫ t2

t1

L(q(t), q̇(t), t) dt. (1.1.2)

As usual, overhead dots are time derivatives and q is a vector of coordinates from con-
figuration space. The integrand is the revered Lagrangian, which in the simplest form is
given by

L = T − V, (1.1.3)

where T is the kinetic energy and V is the potential energy of the system under considera-
tion. The principle of least action, also known as the principle of stationary action, states
that any physical path is one such that the action is stationary. Hence, any physical path
can be obtained as solutions to

δS = 0, (1.1.4)

where δ is the functional derivative. The resulting equations are called the Euler-Lagrange
equations and serve as an alternative, yet equivalent method of solving problems in clas-
sical mechanics.

The third formalism of classical mechanics came in 1833 with the advent of Hamil-
tonian mechanics. Although similar to the Lagrangian approach, the two differ both in
derivation and in how the equations are solved. Lagrangian mechanics yields a second-
order differential equation for each generalized coordinate, while Hamiltonian mechanics
yields two equations, but to sweeten the deal, Hamilton’s equations are first-order dif-
ferential equations. There is much more theory to these formalism’s than covered here,
however as the two are related by the Legendre transformation and the Lagrangian ap-
proach is best suited for quantum field theory (QFT), only the Lagrangian formalism
will be further discussed. The interested reader is referred to a textbook on classical
mechanics, e.g. [9].

After some time, inconsistencies of the Newtonian theory were discovered. Essentially
all these problems are related to extreme cases, e.g. the very fast, the very small or
even disjoint subjects such as the notion of simultaneity. To resolve these issues, three
new theories were needed, special relativity (SR), general relativity (GR) and quantum
mechanics (QM). In the following sections, a brief introduction/refresher on both special
relativity and quantum mechanics is given.
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1.2 Special relativity and relativistic notation
In standard theoretical physics convention, natural units are used throughout the thesis,
~ = c = k = 1.

The Einstein summation convention is also used throughout. This convention states
that repeated covariant (written in subscript) and contravariant indices (written in su-
perscript) are to be summed over

3∑
µ=0

AµB
µ ≡ AµB

µ. (1.2.1)

In standard convention, greek letters such as α, β, µ, ν are understood to range from 0 to
3, while roman letters such as i, j, k, are taken from 1 to 3. Unless specified otherwise,
the distinction between greek and roman letters is the one specified here.

Regardless of definition, the summation convention is often severely violated, espe-
cially in papers with convoluted notation. As an example, many objects have various
add-ons to them, being names, labels or some overhead symbol (or in extreme settings,
a combination of all). In these cases, indices are placed where ever there is room, while
summation is still implied. As a less convoluted example, quantities such as AiBi or even
AiBiCi will appear while summation is still implied. This may often be quite confusing,
so the thesis is written to respect the summation convention given by (1.2.1).

The thesis is written in the framework of special relativity, which is a four-dimensional,
flat, pseudo-Riemannian manifold defined by the metric signature in the (+,-,-,-) particle
physics convention

gµν = diag (1,−1,−1,−1) . (1.2.2)

In general relativity, the nomenclature is to assign gµν1 as the metric for any arbitrary
region of spacetime (i.e. not necessarily flat) while ηµν is taken as the flat spacetime
metric, sometimes called the Minkowski metric. In this thesis, effects arising from general
relativity are not considered, and hence the metric defined in (1.2.2) is used.

Elements of Minkowski space are four-dimensional vectors x, which are creatively
called four-vectors in the standard literature. Dual to the vectors, forms2 are defined
as linear maps from the vector space to the underlying field, F. Here, field is taken in
the mathematical sense of the word, which for practical purposes is either the set of real
numbers R, or the set of complex numbers C. Starting from a vector, the corresponding
form is obtained by index-lowering, which is the physicist’s name for the isomorphism of
obtaining elements of the form given the corresponding vector and metric. The compo-
nents of the form (also called the covariant components of the original vector) are given
by

xµ = gµνx
ν . (1.2.3)

1Strictly speaking, these are the components of the metric. However, in most papers, the distinction
between the metric (g) and elements of the metric (gµν) is assumed to be understood from context and
they are often used interchangeably about each other.

2Forms are elements of the dual space, which is the space dual to the original vector space. Forms
are called many different names, including, but not limited to, co-vectors, one-forms, dual-vectors and
bras, the latter arising from Dirac’s bra-ket notation.
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The two most relevant four-vectors are the spacetime coordinate x and the four-
momentum P . Their covariant components are given in terms of their contravariant
components by

xµ = gµνx
ν = (x0,−x1,−x2,−x3) = (t,−~x) (1.2.4)

Pµ = gµνP
ν = (E,−p1,−p2,−p3) = (E,−~p). (1.2.5)

The standard vector notation of an overhead arrow is reserved for spatial three-vectors
like the three-position ~x.

Vectors and forms belong to a much broader class of objects called tensors. One
may define a tensor in many ways, highly dependent on where one learns the topic. A
mathematician will give the rigorous definition of a (p, q) tensor T , as the multi-linear
map from p copies of the dual space V ∗ and q copies of the vector space V

T : (V ∗)p × (V )q → F. (1.2.6)

Physicists usually refrain from this definition, instead opting to define a tensor by how it
transforms under a change of coordinates. On a differentiable manifold 3, e.g. Minkowski
space, components of tensors transform p times covariantly and q times contravariantly.
As a concrete example, under a change of coordinates, a (p, q) = (2, 2) tensor transforms
as

T
µ′
1µ

′
2

ν′1ν
′
2
=
∂xµ

′
1

∂xµ1

∂xµ
′
2

∂xµ2

∂xν1

∂xν
′
1

∂xν2

∂xν
′
2
T µ1µ2
ν1ν2

. (1.2.7)

In the physics department, the definition of a tensor is usually taken as the one given
in (1.2.7). Although rather tedious to compute by hand, as each component of the trans-
formed tensor is a sum of n4 terms (in relativistic physics n = 4), it is no match for a
computer, unless of course, n is extremely large. When defined from transformation prop-
erties, it is clear why tensors are invaluable; tensors preserve their form under change of
coordinates. The coordinate transformation imposed in equation (1.2.7) is a general one.
That is, the transformed coordinates can be any differentiable functions of the previous
coordinates. For special relativity, this is too general. However, if the transformed coor-
dinates are chosen as linear functions of the previous ones and the underlying manifold is
Minkowskian, then equation (1.2.7) represents a Lorentz transformation of a rank (2, 2)
tensor.

A consequence of how tensors transform is that their contraction(s) are invariant
under any change of coordinates. A contraction is an operation on tensors, which acts
as the map from a (p, q) tensor to a (p− 1, q − 1) tensor by summing over one covariant
and one contravariant index. As an example, consider the spacetime separation dxµ. The
contraction of dxµ with itself 4 is the Lorentz invariant spacetime interval

dxµdxµ = gµνdx
µdxν = dt2 − d~x2 ≡ ds2. (1.2.8)

The use of the spacetime separation, as opposed to the spacetime coordinate itself,
is due to the former being observable and the latter not. Experiments can only measure

3A differentiable manifold is essentially a continuous space which locally resembles Rn.
4Rigorously, the contraction of dxµ is not by itself, but rather the covariant object dxµ. However, as

they are related by the metric, this distinction is to be understood implicitly.
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objects relative to some background; a difference. To prove invariance of the contraction,
consider again the spacetime coordinate xµ. Under a change of coordinates from unprimed
coordinates to primed ones, the contraction transforms as

xµxµ =
∂xµ

∂xµ′ x
µ′ ∂xν

′

∂xµ
xν′ = δν

′

µ′xµ
′
xν′ = xµ

′
xµ′ (1.2.9)

where the Kronecker delta is defined as

δν
′

µ′ =

{
1, µ′ = ν ′

0, µ′ 6= ν ′.
(1.2.10)

A quick, but index heavy calculation, shows that equation (1.2.9) generalizes to con-
tractions of general tensors. For a more thorough introduction to these concepts see
an introductory book on tensor calculus or a standard textbook on general relativity,
e.g. [10–13].

The Lorentz invariance of tensor contractions is fundamental in physical theories
and especially for the Lagrangian formulation of QFT. On a differentiable manifold,
derivatives are introduced to track the change in neighbouring tensors. Derivatives can
be thought of as linear maps from a (p, q) tensor to a (p+ 1, q) tensor

∂µ ≡ ∂

∂xµ
: T ∈ (p, q) → ∂µT ∈ (p+ 1, q). (1.2.11)

As derivatives track changes, they are associated with the movement, hence expres-
sions involving derivatives are called kinetic terms in QFT jargon. Examples of kinetic
terms in the Standard Model (SM) Lagrangian are vast as each field corresponding to a
particle has one such term. A concrete example is the electromagnetic (EM) field strength
tensor Fµν

5, defined as the anti-symmetric two-form

Fµν ≡ ∂µAν − ∂νAµ, (1.2.12)

where Aµ are the covariant components of the four-potential, defined in terms of the
scalar and vector potential as

Aµ = gµνA
ν = (ϕ,− ~A). (1.2.13)

In fact, all bosonic fields with spin one, so called vector fields, share the same structure
of the kinetic term.

1.3 Quantum mechanics
Having discussed special relativity, the next foundation this thesis is built upon is the the-
ory of quantum mechanics. From the point of view of quantum mechanics, particles are
not represented by points in spacetime, but rather as quantum states described by vectors
in Hilbert space; an infinite-dimensional vector space of square-integrable functions. Fun-
damental to the theory of QM is the notion of observables, which are quantities one can
measure in an experiment. In Hilbert space, observables are the eigenvalues of Hermitian
operators acting on states. In contrast to both relativity and classical mechanics, QM is a
probabilistic theory, i.e. one cannot predict the outcome of an experiment with absolute

5Also called the EM tensor or the Faraday tensor.
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certainty. Instead one rather talks about the probability that an experiment will yield
a certain outcome, which are the eigenvalues of the operator the experiment is sensitive
to. Another peculiarity of QM is that the theory is based upon complex numbers, as
the theory does not work when restricted to real numbers. Conservation of probability is
imposed by

〈ψ|ψ〉 = 1, (1.3.1)
which says that the square of the norm of any quantum state should be unity. If a
discrete basis is used, then the above equation can be written as an infinite sum, while
if the basis is continuous, then the sum is replaced by an integral. For example, bound
states yield quantized spectra of allowed energies when acted upon by the Hamiltonian,
but the location of a particle necessarily yields a continuous spectrum. A problem with
QM is that while position is an observable, time is not, rather acting as an evolution
parameter. This whole discussion has sparked countless papers and books debating the
role of time in quantum mechanics. Although a very interesting topic, this is not the
time to venture into that realm.

A quantum state is denoted |ψ〉 and the time evolution of the state is given by the
Schrödinger equation

i∂t|ψ(t)〉 = Ĥ|ψ(t)〉, (1.3.2)
where Ĥ is the Hamiltonian; an Hermitian operator corresponding to total energy. The
solution to the Schrödinger is formally given by

|ψ(t)〉 = e−iĤt|ψ(0)〉 = U(t)|ψ(0)〉, (1.3.3)
which can be interpreted vaguely as a rotation in Hilbert space, albeit the whole expo-
nentiating an operator limits the interpolation of that view. The operator U(t) is called
the propagator as it propagates the state in time. For this reason, one can define a basis
in Hilbert space which rotates at the same rate as the exponent in the above equation. In
this basis, the states are stationary, while the operators receive time-dependence in what
is called the Heisenberg picture of quantum mechanics. The case when operators carry
time dependence while operators do not is called the Schrödinger picture of quantum
mechanics.

Returning to the solution of the Schrödinger equation, as the Hamiltonian is Hermitian
Ĥ† = Ĥ, the propagator is unitary, which implies conservation of probability. Combining
the quantum mechanical formalism with special relativity results in quantum field theory;
the foundation of this thesis.

2 The Standard Model of particle physics

2.1 Lagrangian field theory
A preliminary for understanding QFT is the Lagrangian field theory approach. As dis-
cussed previously in Section 1.1, the key to a relativistic field theory is the principle of
least action. However, to account for relativity, some new insight is needed. First of
all, in the non-relativistic approach, the action is given as an integral over time, which
is problematic as different observers experience different flows of time. Secondly, the
generalized coordinates only depend on time, which again is ambiguous in a relativistic
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framework. To resolve the first issue, the Lagrangian is replaced with a new object, called
the Lagrangian density, denoted L. These are related by

L =

∫
d3~x L. (2.1.1)

To resolve the second issue, the notion of a field is defined. In physics, a field is a
tensor defined at each point in spacetime. This is a very general definition. To get a
field-theoretic Lagrangian density, the generalized coordinates are replaced by fields and
their derivatives. In particular all derivatives, not just the time derivatives. Let ϕ be
a field and Ω be some arbitrary spacetime region with boundary ∂Ω. This boundary is
usually taken at spatial and temporal infinity where all fields vanish. The principle of
least action states that

δS[ϕ] = δ

∫
Ω

d4x L (φ, ∂µφ) = 0, (2.1.2)

where d4x is the spacetime differential element. Proceeding with the integral leads to

0 =

∫
Ω

d4x

(
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

)
=

∫
Ω

d4x

(
∂L
∂ϕ

δϕ+ ∂µ

(
∂L

∂(∂µϕ)
δϕ

)
− ∂µ

(
∂L

∂(∂µϕ)

)
δϕ

)
.

(2.1.3)

Applying the divergence theorem to the middle term yields∫
Ω

d4x ∂µ

(
∂L

∂(∂µϕ)
δϕ

)
=

∫
∂Ω

d4x
∂L

∂(∂µϕ)
δϕ, (2.1.4)

which vanishes as the variation at the boundary is zero. Hence, the principle of least
action demands that

0 =

∫
Ω

d4x

(
∂L
∂ϕ

δϕ− ∂µ

(
∂L

∂(∂µϕ)

)
δϕ

)
, (2.1.5)

which due to the fundamental lemma of calculus of variations, yields the Euler-Lagrange
equations

∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
= 0. (2.1.6)

Given a Lagrangian density, which from now on will be referred to simply as the
Lagrangian, the equations of motions are obtained by plugging said Lagrangian into the
Euler-Lagrange equations. Obtaining the equations of motion is rather easy, the tricky
part, however, is to choose the right Lagrangian for the problem at hand. There are a few
symmetries a physically meaningful Lagrangian has to respect, e.g. Poincaré invariance.
However, before discussing this subject further, some new theory has to be introduced.

2.2 Noether’s theorem and conserved currents
Many modern physical theories rely heavily on symmetry and invariance, for which the
most powerful tool is Noether’s Theorem. Proven by Emmy Noether in 1915, her the-
orem states that [14]: Every differentiable symmetry of the action has a corresponding
conserved current and conserved charge.
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There is, however, a subtle criterion for the theorem to hold; the fields have to satisfy
the Euler-Lagrange equations. At first, this seems obvious as physical fields are by def-
inition solutions to the Euler-Lagrange equations, a direct consequence of the principle
of least action. The crux of this argument is in the word physical. Particle interactions
are mediated through other particles, which need not be physical particles. These are
particles created and annihilated as a means of obtaining a final state from an initial
state. Particles that do not satisfy the equations of motion are called virtual particles.

Returning to Noether’s theorem, a symmetry of the action is a variation on the field
ϕ which leaves the action invariant. A variation in the field is generally expressed as
ϕ → ϕ′. As a standard example, consider a Lagrangian with a U(1) invariance. This
means that the Lagrangian is invariant under the field variation ϕ → eiαϕ for some real
number α. The variation of the action with respect to α is

0 =
δS[eiαϕ]

δα
=

∫
Ω

d4x
δL[eiαϕ, ∂µeiαϕ]

δα
. (2.2.1)

In a similar fashion to the derivation of the Euler-Lagrange equations, one can show
that the above equation leads to (the explicit dependence of the Lagrangian is suppressed
for cleaner notation)

0 =
δL
δα

=

(
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)

)
δϕ

δα
+ ∂µ

(
∂L

∂(∂µϕ)

δϕ

δα

)
. (2.2.2)

If ϕ is a physical field, i.e. it satisfies the equations of motion, then the terms in the
first parenthesis vanish and the equation reduces to the continuity equation

∂µJ
µ = 0, (2.2.3)

for the conserved current6

Jµ =
∂L

∂(∂µϕ)

δϕ

δα
. (2.2.4)

From a conserved current, a conserved charge follows. The physical meaning of the
conserved charge is dependent on the particular symmetry imposed on the action. The
conserved charge is given as the integral over the zeroth component of the conserved
current taken over all space

Q =

∫
d3~x J0. (2.2.5)

To prove that Q is conserved, simply differentiate the above equation with respect to
time and use the continuity equation

∂tQ =

∫
d3~x ∂tJ

0 =

∫
d3~x ~∇ · ~J = 0. (2.2.6)

The last integral is a total derivative, hence using the divergence theorem one can
move the integral to the boundary at spatial infinity where all fields vanish.

The previous example illustrates how one would go about obtaining Noether currents
for a Lagrangian that does not change under the symmetry. This is not always the case.
The Lagrangian itself may change under the symmetry as long as the variation of the

6Conserved currents are also called Noether currents
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action remains zero. For example, under infinitesimal spacetime translations, a Lorentz
scalar like the Lagrangian transforms as

L(x+ ε) = L(x) + εν∂νL(x) +O(εν)2, (2.2.7)

which implies that the variation of the Lagrangian is given as

δL
δεν

= ∂νL. (2.2.8)

The above equation is a total derivative, meaning that the integral can be relocated
to the boundary where the variation is assumed to vanish, leaving the action unchanged.
Therefore, a more correct statement is that the symmetry is that of the action, not the
Lagrangian. From the Euler-Lagrange equations (2.1.6) of the Lagrangian itself L[ϕ, ∂µϕ],
one can show that spacetime translations lead to the conserved tensor current [15]

T µν =
∂L

∂(∂µϕ)
∂νϕ− gµνL, ∂µT

µν = 0. (2.2.9)

This object is the famous energy-momentum tensor, where for each ν, there is a con-
served charge. The conserved charges of the energy-momentum tensor is the energy and
momentum of the system.

So far the examples used to illustrate Noether’s theorem were variations of the field
with respect to scalars. If the field has several components, say ϕ is some vector, then
a natural question to ask is: what happens if the variation is a matrix acting on ϕ? To
answer this, it is convenient to take a brief detour into the mathematical structure of
groups.

2.3 Elements of group theory
A group is a set G, together with a binary operation ◦. The elements of the group satisfy
the four group axioms:

1. Associativity: For each a, b, c ∈ G : a ◦ (b ◦ c) = (a ◦ b) ◦ c

2. Identity element: ∃ e ∈ G such that ∀ a ∈ G: a ◦ e = e ◦ a = a

3. Inverse element: For each a ∈ G ∃ b ∈ G such that a ◦ b = b ◦ a = e.

4. Closure: ∀ a, c ∈ G the following holds: a ◦ c ∈ G

If in addition, the group is commutative, then the group is said to be Abelian. In
physics, the relevant groups are usually matrix groups, which are in general not com-
mutative. Hence a theory based on matrix groups is non-Abelian7. There are several
important matrix groups in physics, but for this thesis, there are two, in particular, that
stand out: the orthogonal group (also called the rotation group) O(N), and the special
unitary group SU(N). Both of these are matrix groups that preserve the norm of the
vector acted upon. Generally, a N × N matrix has N2 degrees of freedom, i.e. none of
the matrix elements are constrained. However, to get something interesting, some kind
of symmetry has to be imposed on the group. As an example of a symmetry, elements of
the rotation group are defined to satisfy

7Non-Abelian theories are also called Yang-Mills theories in the physics literature.
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ATA = I ∀A ∈ O(N), (2.3.1)
where I is the identity matrix in N dimensions. This is an equation between two sym-
metric matrices which have N(N + 1)/2 degrees of freedom. This is due to Sij = Sji

for any symmetric matrix S. Hence members of O(N) can be written in terms of
N2 − N(N + 1)/2 = N(N − 1)/2 independent numbers. This number is called the
dimension of the group. The determinant of orthogonal matrices is found by taking the
determinant of equation (2.3.1), yielding

det(ATA) = det(AT )det(A) = (det(A))2 = det(I) = 1,→ det(A) = ±1. (2.3.2)

Orthogonal matrices with positive determinant constitute a group of their own, namely
the special orthogonal group, defined as

SO(N) = {A ∈ O(N) : det(A) = +1}. (2.3.3)
The dimensions of SO(N) and O(N) are the same, as the requirement of positive deter-
minant is not an independent equation, but rather a choice of sign. Orthogonal matrices
with negative determinants are combinations of rotations and reflections.

The special unitary group SU(N) can be viewed as the complex analogue of the
special orthogonal group SO(N). Quantum mechanics says that the norm of a state,
represented by a vector in Hilbert space, is related to the probability of observing said
state. Conservation of probability, a general mathematical statement, is related to the
conservation of the norm of quantum states. Furthermore, as all states live in Hilbert
space, they can be expressed in terms of one another with linear transformations. In the
language of Dirac’s bra-ket notation, quantum states evolve as |ψ〉 → U |ψ〉, where |ψ〉 is
the wave function and U is a matrix. Equating the norm leads to

〈ψ|ψ〉 → 〈ψ|U †U |ψ〉 = 1,→ U †U = I, (2.3.4)
which expresses the very fundamental fact: Conservation of probability implies unitarity.
A general N × N complex valued matrix has N2 complex degrees of freedom which are
2N2 real degrees of freedom. One can show in a similar fashion to that of orthogonal
matrices, that the dimension of SU(N) is N2 − 1. To summarize, the dimensions of the
relevant groups are

dim(SO(N)) =
N(N − 1)

2
. dim(SU(N)) = N2 − 1. (2.3.5)

Invertible matrix groups, which SO(N) and SU(N) happens to be, are called Lie
groups. Lie groups can be viewed as differentiable manifolds on which each element of
the group can be written in terms of the group generators [16]. The number of generators
is equal to the dimension of the group. The generators are a subset of the group and act,
loosely speaking, as a direction on the manifold, serving a similar role to the usual basis
vectors from linear algebra. Let Tα be the generators of the group G, then any member
g ∈ G connected to the origin can be written as

g = exp (iθαT
α) , θα ∈ R. (2.3.6)

The generators form a Lie algebra, defined through the Lie bracket. For matrix Lie
groups, the Lie bracket is a commutator
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[Tα, T β] = ifαβγT γ, (2.3.7)

where fαβγ are the structure constants. The form of the structure constants varies de-
pending on the group. As an example, SU(N) and its corresponding algebra su(N) is
totally antisymmetric; fαβγ ∝ εαβγ. In fact, the Standard Model is based upon the
Lagrangian being invariant under the combined gauge group

GSM = SU(3)⊗ SU(2)⊗ U(1). (2.3.8)

Another important group is the Lorentz group. To understand the structure of the
Lorentz group, consider a general Lorentz transformation of a vector

x = Λx. (2.3.9)

As discussed in Section 1.2, the contraction of a vector with its covariant counterpart is
invariant. The relativistic inner product under the above Lorentz transformation is

xTgx→ xTΛTgΛx, (2.3.10)

where g = (gµν) is the matrix representation of the spacetime metric. By definition,
the above transformation must leave the inner product invariant, meaning that Lorentz
transformations are required to satisfy

ΛTgΛ = g. (2.3.11)

The above equation shows the Lorentz matrices are orthogonal matrices with respect
to the Minkowski metric, as opposed to the Euclidean metric (which is the identity
matrix). The Lorentz group is denoted as O(1, 3) (or O(3, 1) in the (-,+,+,+) convention)
and is defined as

O(1, 3) = {Λ ∈ O(1, 3) : ΛTgΛ = g}. (2.3.12)

The discussion on the degrees of freedom for orthogonal matrices applies to the Lorentz
group as well. The reasoning is simple; the sign of the diagonal entries of the metric does
not add nor remove any constraining equations. Hence, the dimension of the Lorentz
group is 4(4− 1)/2 = 6. The full Lorentz group O(1, 3) includes matrices, when applied
to four-vectors, yield effects such as e.g. time reversion, T. Discrete symmetries such as
T, and space inversion, P, are particular members of the Lorentz group which cannot be
connected to the origin. The subgroup of Lorentz transformations which exclude both
time-reversal and space inversion is called the proper, orthochronous Lorentz group and
is defined as

SO+(1, 3) ≡ SO(1, 3) = {Λ ∈ O(1, 3) : det(Λ) = 1}. (2.3.13)

The last group which will be mentioned in this section is the Poincaré group; the
combined group of spacetime translations, rotations and boosts. The latter two make up
the Lorentz group. Spacetime translations are parametrized by four numbers, meaning
that the Poincaré group is a ten-dimensional non-Abelian group. Invariance under the
Poincaré group is a fundamental requirement for any physical theory including relativity.

Before applying this to the Standard Model, there are two more things that needs to
be addressed:
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1. The field content of the Standard Model.

2. The transition from global symmetries to gauged ones.

2.4 The field content of the Standard Model
Recall that a field was defined as some tensor that depends on spacetime. The field
content of the universe can be broadly categorized into two types depending on the
intrinsic spin of the field.

2.4.1 Bosonic fields

Fields that have an integer value of the spin quantum number, referred to as just spin,
are called bosons. Bosons are particles following Bose-Einstein statistics and are the
mediators of the three fundamental forces described by the Standard Model; the electro-
magnetic, weak and strong interaction. Bosonic fields with spin 0 are called scalar fields,
which indicated by the name, means they transform as scalars under Lorentz transforma-
tions. Moving incrementally upwards, the next type of bosonic fields are the ones with
spin 1, called vector fields as they transform as vectors under Lorentz transformations.
Depending on the mass of the vector fields, they have either two or three degrees of
freedom, the massless ones having the least. An example of a vector field is the familiar
photon field, which from electromagnetic theory is known to have two degrees of free-
dom. These are the oscillating electric and magnetic fields perpendicular to the direction
of motion. As far as the SM goes, scalar and vectors fields are all one needs to describe
the bosonic field content of the observed fundamental particles.

Before continuing to the fermion sector, an honourable mention is given to the gravi-
tion; the quantum of gravity. If it exists, the graviton is a massless spin 2 tensor field.
Gravitons require spin 2 as they would be produced from the stress-energy tensor Tµν ,
which generates gravity through the famous Einstein field equations (EFE)

Rµν −
R

2
gµν + Λgµν = 8πGTµν . (2.4.1)

The EFE are a set of six coupled, partial, non-linear differential equations for the
components of the general (not Minkowskian) metric gµν . Technicalities aside, the EFE
relates energy to curvature. The solutions to the EFE (which are infamously hard to
come by) are tensor fields, of which the gravitons must also be. At the time of this thesis,
there is no experimentally verified theory which both accounts for gravity and quantum
mechanics.

2.4.2 Fermionic fields

Fermionic fields are classified as fields with half-integer spin. All the fundamental fermionic
fields have spin 1/2 and follow Fermi-Dirac statistics. Hence, this discussion will only
focus on spin half fields, called spinors. As with every other field, spinors are required
to be representations of the Lorentz group. The algebra of the Lorentz group can be
decomposed as [16]

so(1, 3) = su(2)⊕ su(2). (2.4.2)
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The algebra su(2) is the antisymmetric algebra of the Pauli matrices, which acts on
two-dimensional, complex vector space. The elements of these vector spaces are called
Weyl spinors and they are further distinguished based on their particular representa-
tion. A (1

2
, 0) Weyl spinor is called left-chiral ψW

L , while a (0, 1
2
) Weyl spinor is called

right-chiral, ψW
R . Under infinitesimal Lorentz transformations, the chiral Weyl spinors

transform as [15]

δψW
L =

1

2

(
iθj − βj

)
σjψ

W
L (2.4.3)

δψW
R =

1

2

(
iθj + βj

)
σjψ

W
R , (2.4.4)

where θj are real rotation angles, βj are boost angles and σj are the Pauli matrices.
Oddly enough, nature cares a great deal about the chirality of spinors, going so far as to
neglect right chiral spinors in weak interactions altogether. From two Weyl spinors, one
can construct a Dirac spinor as the direct sum

ψ = ψW
L ⊕ ψW

R =

(
ψW
L

ψW
R

)
, (2.4.5)

which is a four-component object. The Dirac spinors, spinors for short, are the funda-
mental building blocks of fermionic matter. All free fermion fields are described in terms
of spinors through the Dirac equation

(iγµ∂µ −mI)ψ = 0. (2.4.6)

For each component ψα, the Dirac equation acts as a relativistic wave equation. The
γµ in the Dirac equation are called the gamma matrices and they satisfy the Clifford
algebra

{γµ, γν} = 2gµν , (2.4.7)

where the curly brackets refer to the anti-commutator

{A,B} ≡ AB +BA. (2.4.8)

In addition to the four gamma matrices, it is convenient to define a fifth gamma
matrix as the matrix product of all the other gamma matrices

γ5 ≡ γ5 ≡ iγ0γ1γ2γ3. (2.4.9)

2.5 Gauge symmetries
As stated in previous sections, the Standard Model is based on the gauge group G defined
in (2.3.8). The gauge in gauge group means that the symmetry is local. A local symmetry
can be thought of as a variation in a field, confined to some region of spacetime. In
mathematical terms, a field transform as

ϕ→ X(x)ϕ, (2.5.1)

where X(x) is a differentiable object of spacetime, i.e. a field.
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2.5.1 The electromagnetic interaction U(1)

Consider the free Dirac Lagrangian, which is trivially invariant under global U(1) trans-
formations, given as

L = ψ
(
i/∂ −m

)
ψ. (2.5.2)

In the above equation some new notation is introduced, the ”barred” spinor ψ is defined
as

ψ ≡ ψ†γ0, (2.5.3)

while the ”slashed” partial derivative is defined as the contraction

/∂ ≡ γµ∂µ. (2.5.4)

If instead, a local U(1) symmetry is imposed, the spinors transform as

ψ → eiα(x)ψ, (2.5.5)

which in turn transforms the free Dirac Lagrangian to

L → ψe−iα(x)
(
i/∂ −m

)
eiα(x)ψ = L − ψγµψ∂µα(x). (2.5.6)

The last term in the above equation is not generally zero. Thus, the free Dirac
Lagrangian is not invariant under a gauged U(1) symmetry. The culprit is the derivative
operator, as it also acts on the field variation to create an extra term. To compensate for
this extra term, a new form of the derivative is introduced; the covariant derivative. From
general relativity, the covariant derivative is defined as a way to account for movement
along trajectories on a curved space with a defined metric. The gravitational covariant
derivative is defined in terms of the metric through the Christoffel symbols which are
combinations of metric derivatives.

Although U(1) constitutes a Lie group, which as discussed in Section 2.3 can be
considered a differentiable manifold, it is not defined with respect to a metric. Regardless
of approach, the gauge covariant derivative for U(1) is given as

Dµ ≡ ∂µ − igAµ, (2.5.7)

for some real number g called a coupling constant, and a vector field Aµ. This vector
field will soon be identified as the photon field. A standard result from classical electro-
dynamics is that the equations of motion (Maxwell’s equations) are invariant under the
following gauge transformation of the four potential

A′
µ → A′

µ + ∂µα
′(x), (2.5.8)

where α′(x) is a smooth function with spacetime dependence. If one makes the following
identification:

A′ = A (2.5.9)

α′ =
α

g
, (2.5.10)
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then the problematic derivative term, which sparked this whole conversation, transforms
under the combined gauge transformation of ψ and Aµ as

Dµψ = (∂µ − igAµ)ψ → (∂µ − igAµ − iα(x)) eiα(x)ψ = eiα(x)Dµψ. (2.5.11)

This is remarkable, by demanding gauge invariance of the free Dirac Lagrangian, the
spinors acquired an interaction with the photon field! Bosons introduced by demanding
gauge invariance are often called gauge bosons. Adding a kinetic term for the photon
and relabeling the coupling constant g to the familiar electric charge, the Lagrangian
describing quantum electrodynamics (QED) is given as

LQED = ψ
(
i /D −m

)
ψ − 1

4
FµνF

µν . (2.5.12)

The QED Lagrangian can be split into two parts: free and interacting. The free
part is just the sum of the free Dirac Lagrangian and the photon kinetic term, while the
interacting Lagrangian governs dynamics and is given as

Lint
QED = eψAµγ

µψ. (2.5.13)

Invoking Noether’s theorem on the U(1) symmetry yields the conserved current

Jµ
QED =

∂LQED

∂(∂µψ)

δψ

δα
= −eψγµψ, (2.5.14)

which has conserved charge

Q =

∫
d3~x J0

QED = −e
∫
d3~x ψ†ψ. (2.5.15)

Given that the current description of electromagnetism is correct, then electric charge
must be conserved. This appears to be the case as there are currently no observations
indicating that the conservation of electric charge is violated. The strongest bound on
conservation of electric charge is from non-observations of the process

e→ νe + γ, (2.5.16)

which has a lifetime of τ > 6.6× 1028 years [17].

2.5.2 The strong interaction SU(3)

After discussing the electromagnetic interaction and its inception from demanding gauge
invariance under U(1), the next natural step is to consider the strong interaction. The
strong interaction governs how nuclei are held together, amongst other things. The parti-
cles charged under the strong force are the quarks; fermionic fields which are additionally
charged under electromagnetism. Experiments can deduce that quarks come in three col-
ors, however colour is not a direct observable. Hence, when constructing a theory for the
strong interaction, this has to be respected. As quarks are fermionic fields with three de-
grees of freedom, i.e. the three colour charges, they are described by the three-component
spinor

ψ =
(
ψr ψg ψb

)T
. (2.5.17)
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The subscript refers to the colour charges red, green and blue, respectively. The free quark
Lagrangian has the same form as the free QED Lagrangian, the only difference being the
dimension of the spinors. As ψ is a three-component object, transformations acting on it
are represented by 3×3 matrices. The matrix group describing strong interactions SU(3).
The special unitary group SU(N) depends on N2− 1 generators, which for N = 3 means
that SU(3) is generated by eight matrices. These generators are called the Gell-Mann
matrices. They are denoted by λj and they satisfy the commutation relation (2.3.7). An
explicit form for these can be found in any textbook on QFT. The theory follows largely
from QED, so in the spirit of gauge invariance, the logical next step is to gauge SU(3).
In doing so, coloured spinors transform as

ψ → ψeiT
jα′

j(x) ≡ ψeigsλ
jαj(x)/2, (2.5.18)

where the eight real functions α′
j(x) are rescaled in terms of the strong coupling constant

gs. The one-half in the second exponent is a conventional construct relating the generators
Tj to the Gell-Mann matrices λj. Under the gauge transformation (2.5.18), the free Quark
Lagrangian written in terms of the partial derivative ∂µ will not stay invariant. The
reasoning is the same as for QED; the derivative will hit the exponent of the transformed
field resulting in new terms which are generally not zero. In a similar fashion to QED,
the SU(3) covariant derivative is introduced as

Dµ ≡ ∂µ −
i

2
gsλ

jAjµ, (2.5.19)

for eight real vector fields Ajµ, labeled by j = 1, 2, . . . , 8. The covariant derivative couples
spinors to vector fields through the interacting Lagrangian

Lint
QCD =

1

2
gsψγ

µAjµλ
jψ, (2.5.20)

which is a sum of 4× 8 = 32 terms. The fact that SU(3) is non-Abelian, as opposed to
QED which is Abelian, makes creating a kinetic term for the vectors fields a bit more
tedious. The vectors fields of QCD are called gluon fields. The usual field strength
tensor contraction FµνiF

µνi is not gauge invariant when applied to the gluon fields. To
compensate, an additional term must be added to the field strength tensor, now defined
as [18]

Giµν ≡ Fiµν + gsfijkAjµAkµ, (2.5.21)

where fijk are the structure constants of su(3) defined in (2.3.7). The non-Abelian nature
of SU(3) also affects how the gluon fields transform under infinitesimal gauge transfor-
mations

Aiµ → Aiµ − ∂µαi − gsfijkαjAkµ. (2.5.22)

By adding the quark and gluon terms, the QCD Lagrangian is given by

LQCD = ψ
(
i /D −m

)
ψ − 1

4
GiµνG

iµν . (2.5.23)

From Noether’s theorem, the SU(3) symmetry imposed on the QCD Lagrangian leads
to eight conserved currents. Up to a constant multiple, the eight conserved currents in
the quark sector are given as

21



J iµ
QCD = ψγµλiψ, (2.5.24)

which in turn, yields the conserved charges

Qi
QCD =

∫
d3~x ψ†λiψ. (2.5.25)

Quark colour is a conserved charge, but the Gell-Mann matrices are not all diagonal.
This has important consequences for the nature of the quark sector. In non-diagonal
interactions, quark colour is exchanged between quarks through interactions with gluons,
which inevitably implies that the gluons themselves are charged under QCD; gluons have
colour charge. The fact that gluons have colour means that they interact in-between
themselves, leading to cubic and quartic gluon-gluon interactions. Any theory based on
SU(N) with N ≥ 2 leads to such boson-boson interactions. It is at this point one starts
to appreciate the simplicity of QED. There are no boson-boson interactions in QED as
the photon is electrically neutral and hence does not couple to itself.

2.5.3 The weak interaction SU(2)

A long-standing principle in physics is that of parity: the universe should look the same if
all spatial directions are reversed, i.e. physics in the mirror universe should be identical to
the physics in the universe where this thesis is written. Until the 1950’s parity was taken
more or less like an axiom of physics, how could such a seemingly obvious statement be
wrong? New things are discovered when inconsistencies with existing models are found,
when fundamental ideas and assumptions need to be revisited and challenged. The theory
of weak interactions is one such example. In 1956, Wu and collaborators found that parity
is indeed violated in nuclear decay by studying the interaction [19]

60
27Co → 60

28Ni + e− + νe + 2γ. (2.5.26)

The experiment was set up such that the end state photons should be emitted in an
isotropic way if parity was conserved. This was not the case, the photons had a preferred
direction in space, a mismatch between left and right. On that day parity fell, which
shook the world of physics to the core. Related to the study of parity two important
quantities are introduced, helicity and chirality. Helicity is defined as the projection of
the spin operator along the direction of motion given by

~S · ~p
|s~p|

ψ = ±ψ, (2.5.27)

where the spin operator is given by ~S = ~σ/2 with eigenvalues s = ±1/2. In macroscopic
terms, one can visualize helicity as the rotation of an object relative to the direction of
motion. Chirality on the other hand, as briefly touched upon in the section on fermionic
fields, is defined as a particular representation of the Lorentz group. The chiral projection
operators are defined as

PL/R ≡ 1

2
(1∓ γ5), (2.5.28)

which act on Dirac spinors to project out the chiral Weyl spinors
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PLψ ≡ ψL =

(
ψW
L

0

)
, PRψ ≡ ψR =

(
0
ψW
R

)
. (2.5.29)

It can be shown that in the massless case, the helicity operator and the chiral projec-
tion operator coincide. For massive particles, they are equal up to a correction of order
m/E. In the case of neutrinos, which is the main topic of the thesis, the approximation
will hold to an excellent degree for neutrinos energetic enough to be of experimental in-
terest. The theory of weak interactions is introduced as a chiral theory, in which only
left-handed fields can interact. In gauge theory language, this implies that there should
exist different gauge transformations for the different chiral fields. In standard termi-
nology, the left-handed fermions are grouped into two-component fields, called doublets,
with the respective fermion from the same generation. The lepton doublet is introduced
as

ΨL
l =

(
ψL
νl

ψL
l

)
, (2.5.30)

where l labels the generations, l = {e, µ, τ}. The quark doublets are introduced in a sim-
ilar fashion. The left-handed doublets are the fundamental building blocks of the weak
interaction. The observed parity violation is imposed by the following gauge transforma-
tions

ΨL
l → eigσ

jαj(x)/2ΨL
l (2.5.31)

ψR
l → ψR

l (2.5.32)
ψR
νl
→ ψR

νl
. (2.5.33)

The lepton doublet gauge transformation will inevitably introduce three gauge bosons,
identified as W± and Z. All gauge bosons are inherently massless when created by gauge
invariance, however, this is not what experiments show. Furthermore, when imposing
asymmetric gauge transformations for the different chiral fields, the Dirac mass term is
no longer gauge invariant. To showcase why this is, recall that the mass term appearing
in the Dirac Lagrangian is the bilinear combination

L = mψψ = m
(
ψ

L
+ ψ

R
) (
ψL + ψR

)
= m

(
ψ

R
ψL + ψ

L
ψR
)
, (2.5.34)

where the L-L and R-R terms vanish due to

ψ
L
ψL = PLψPLψ = ψPRPLψ = 0, (2.5.35)

and similar for R-R. Under the chiral SU(2) gauge transformations, the R−L structure
of the Dirac mass terms will not be invariant due to the different transformations of the
chiral fields. This is opposed to QED and QCD, which do not differentiate between chiral
fields and hence these theories are non-chiral. These issues need to be circumvented to
obtain a gauge-invariant Lagrangian accounting for massive particles. The way forth is
two-fold, first electroweak (EW) theory is introduced and then finally the EW symmetry
is broken to yield particles masses through the BEH mechanism.
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2.5.4 Electroweak theory SU(2)L ⊗ U(1)Y

In the late ’60s following the work of Glashow, Salam and Weinberg, the theory of elec-
troweak interactions was created. The theory is based on the combined gauge symmetry
SU(2)L⊗U(1)Y as a high-energy unification of the weak and electromagnetic interaction
into a combined symmetry group. Electroweak unification occurred in the hot, early
universe at temperatures T ∼ 200GeV. The combined EW gauge transformations acting
on chiral leptons are given by

ΨL
l → exp(igσjαj(x)/2 + ig′Y β(x)/2)ΨL

l , (2.5.36)
ψR
l/νl

→ exp(ig′Y β(x)/2)ψR
l/νl
, (2.5.37)

where ψl/νl is shorthand notation for the right chiral leptons lR and νRl . Here g is the
coupling to SU(2)L, g′ the coupling to U(1)Y and Y is the hypercharge; a real number.
Furthermore, in standard gauge theory language, αj(x) and β(x) are arbitrary differen-
tiable functions of spacetime. The Lagrangian is still that of Dirac, albeit written such
to reflect the chiral structure of the weak interaction. The kinetic terms are

L = Ψ
L

l i/∂Ψ
L
l + ψ

R

l/νl
i/∂ψR

l/νl
. (2.5.38)

Imposing the EW gauge transformations leads to a variation δL in the Lagrangian given
as

δL = −1

2
Ψ

L

l γ
µ
(
gσj∂µαj(x) + g′Y ∂µβ(x)

)
ΨL

l − 1

2
ψ

R

l/νl
γµg′Y ∂µβ(x)ψ

R
l/νl
. (2.5.39)

As usual in gauge theories, which the reader should have some familiarity with by
now, the next step is to introduce the covariant derivatives, defined by how they act on
the different fields by

DµΨ
L
l =

(
∂µ − igσjWjµ/2− ig′Y Bµ/2

)
ΨL

l , (2.5.40)
Dµψ

R
l/νl

= (∂µ − ig′Y Bµ/2)ψ
R
l/νl
, (2.5.41)

for four real vector fields Wjµ and Bµ. The conserved weak isospin currents for SU(2)L
are found from Noether’s theorem, which up to a constant are given as

J jµ
WIS =

1

2
ΨγµσjΨ, (2.5.42)

with corresponding conserved charges, called weak isospin, given by

IjW =

∫
d3~x J j0

WIS =
1

2

∫
d3~x ΨL†

l σ
jΨL

l . (2.5.43)

These currents are however not the ones that belong to the weak bosons, rather the
physical currents are defined as linear combinations of the weak isospin currents given as

Jµ
CC = 2

(
J1µ

WIS − iJ2µ
WIS
)
= ψ

L

l γ
µ(1− γ5)ψ

L
νl
, (2.5.44)

Jµ†
CC = 2

(
J1µ

WIS + iJ2µ
WIS
)
= ψ

L

νl
γµ(1− γ5)ψ

L
l , (2.5.45)

Jµ
NC =

1

2
Ψ

L

l γ
µσ3ΨL

l = −1

2

(
ψ

L

νl
γµψL

νl
− ψ

L

l γ
µψL

l

)
. (2.5.46)
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The first two currents couple charged leptons to their respective electrically neu-
tral neutrinos, hence the currents themselves must be electrically charged. Thus, these
currents are called charged-currents and the exchange boson is W±. The third current,
however, cannot have any electric charge as it either couples two neutrinos or two charged
leptons, promoting the name neutral-current. The exchange boson here is Z. Observe
that the neutral current interaction includes the electromagnetic interaction up to a con-
stant multiple of the electric charge.

In the electroweak gauge, the hypercharge is introduced as the charge of U(1)Y as is
given by

Y ≡ Q/e− I3W . (2.5.47)

Hypercharge is conserved as both electric charge and the third component of weak isospin
are conserved. From this definition, the hypercharges of the various lepton fields are given
as

YΨL
l = −1

2
ΨL

l , Y ψR
l = −1ψR

l , Y ψR
νl
= 0. (2.5.48)

A striking consequence of how hypercharge is defined is that the right chiral neutrino
fields are uncharged under every gauge group discussed so far. For this exact reason, the
right-handed neutrinos are not included in the original Standard Model, as there was no
a priori reason to include them. A direct consequence of the exclusion of right-handed
neutrinos is that neutrinos in the SM are massless. This is due to the lack of a right-
handed field to construct the right-left Dirac mass. Experiments reveal that neutrinos do
have mass, which is the first direct observational evidence for physics beyond the SM. A
much more thorough review of neutrino physics can be found in Section 3 and will play
a key role in this thesis.

As a last point of discussion, it is worth mentioning that the EW gauge fields are
given as linear combinations of the generators of SU(2)L, much akin to how the physical
currents were defined. The familiar W± are given in terms of the first two SU(2)L gauge
fields as the linear combinations

W±
µ =

1√
2
(W1µ ± iW2µ) , (2.5.49)

while the neutral gauge fields can be viewed as a rotation in the two dimensional W3µ−Bµ

space through the Weinberg angle θW(
Aµ

Zµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
Bµ

W3µ

)
. (2.5.50)

A more comprehensive introduction to electroweak theory can be found in most text-
books on QFT.

2.5.5 Electroweak symmetry breaking SU(2)L ⊗ U(1)Y → U(1)em

The final ingredient which is needed to create the Standard Model is the complex Higgs
doublet H. The Higgs doublet has hypercharge Y = 1/2, meaning that the EW covariant
derivative acting on H is given by

DµH = ∂µH − igWjµσ
jH − 1

2
ig′BµH, (2.5.51)
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whereWjµ and Bµ are the SU(2)L⊗U(1)Y gauge bosons. The most general renormalizable
Lagrangian one can construct using only the Higgs doublet and its covariant derivative
is

LH = (DµH)†(DµH) +m2(H†H)− λ(H†H)2, (2.5.52)

where m2 and λ are real numbers. The ”wrong” sign for the mass term allows for some
interesting physics, namely a non-zero vacuum state.

A non-zero vacuum state is rather odd, it means that the universe is in a state of
lower energy for a non-zero value of the field, as opposed to the standard ground state
of no field excitation. The ground state is found by taking the derivative of the Higgs
potential and setting that zero

∂V (H)

∂(H†H)
= m2 − 2λH†H = 0. (2.5.53)

The solution is straightforward to compute and is given as

H†H = |H1|2 + |H2|2 =
m√
2λ
, (2.5.54)

which in unitary gauge, can be chosen such that H1 is zero and H2 is real. In choosing
unitary gauge, the vacuum is spontaneously broken from a symmetric state, i.e. when the
minimum value of the potential is for H = 0, into a non-zero ground state. The chosen
ground state is only one of a continuum of ground states, which can be rotated into one
another by an arbitrary phase. This arbitrariness allows for this phase to be set to zero as
it is merely a matter of convenience, allowing for easier computations. Expanding about
the ground state with a real scalar field h8 leads to the spontaneously broken theory in
which the Higgs doublet is written as

H =
1√
2

(
0

v + h

)
, v ≡ m√

λ
, (2.5.55)

where v is the vacuum expectation value (vev)

v = 246GeV (2.5.56)

True to its name, the vev is the expectation value of the Higgs doublet in the vacuum
state, leading to the alternative notation v ≡ 〈H〉. Only scalar fields may acquire a vev as
fields transforming non-trivially under Lorentz transformations cannot be chosen to have
a constant vev everywhere. In choosing unitary gauge, the degrees of freedom (d.o.f) of
the Higgs doublet reduced from four to one, but these cannot simply vanish. To see where
these seemingly lost degrees of freedom went, one can return to the Higgs Lagrangian
and write out the term with the covariant derivatives. Written out, the relevant terms
are

(DµH)†(DµH) =
g2v2

8

(
W1µW

µ
1 +W2µW

µ
2 + (

g′

g
Bµ −W3µ)(

g′

g
Bµ −W µ

3 )

)
, (2.5.57)

8Little h is what physicists usually mean when talking about the Higgs field. Of course, as with
everything else, this may be subject to change depending on the text at hand.
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which are three mass terms. From equation (2.5.50), the last term in the above equation
is the mass term for the Z boson. Writing out the masses for W µ

i in terms of the weak
gauge fields W±, the resulting Lagrangian obtains new mass terms, one for each of the
weak gauge fields, but importantly, none for the photon. By turning massive, vector fields
obtain a new d.o.f; longitudinal polarization. To summarize, when the Higgs doublet is
spontaneously broken, its degrees of freedom transfer to the gauge bosons, which in turn
makes them massive. This is the BEH mechanism, which yielded their creators the 2013
Nobel Prize following the discovery of the Higgs boson at CERN. Note that the BEH
mechanism does not have to include SU(2)L ⊗ U(1)Y , any Yang-Mills theory can be
broken in a similar fashion. With that said, the discussion on gauge symmetries is finally
complete.

2.6 Fermion masses
At this point, electroweak symmetry breaking yields masses for the weak gauge bosons
through the BEH mechanism, what about the fermions? In the unbroken phase, one can
construct gauge-invariant trilinear terms with chiral spinors and the Higgs doublet as e.g.

LY = −Y ij
l Ψ

L

liHψ
R
lj + h.c, (2.6.1)

where Y ij
l is a matrix of generally complex numbers. When H acquires a vev, the La-

grangian will produce Dirac mass terms for the charged leptons. By convention, the
broken Higgs doublet is non-zero in its lower component so the above expression does
not yield neutrino masses. This is usually not an issue as right chiral neutrinos have
not been observed, but as neutrinos do have mass, a general theory needs to account for
this. Although interesting in their own right, quarks are not important for this thesis
and henceforth only leptons will be considered. It is nevertheless worth mentioning that
the content of this section is similarly applicable to the quark sector.

Essentially, to get neutrino masses from the Lagrangian in (2.6.1) a modified Higgs
term must be used to move the vev into the upper component, while the overall trilinear
term is left gauge invariant. The term

H̃ ≡ iσ2H∗, (2.6.2)

which can be shown to transform under SU(2)L such that the overall trilinear is invariant,
will suffice. In unitary gauge, after symmetry breaking, it is straightforward to show that

H̃ =
1√
2

(
v + h
0

)
, (2.6.3)

which is suitable to construct Dirac mass terms for neutrinos. The Lagrangian encapsu-
lating lepton masses is given by

LY = −Y ij
l Ψ

L

liHψ
R
lj − Y ij

ν Ψ
L

liH̃ψ
R
νlj

+ h.c, (2.6.4)

where Y ij
ν is another generally complex matrix. These matrices are called Yukawa-

matrices and their matrix elements are called Yukawa couplings. Historically, Yukawa
interactions were introduced to study the strong force via the exchange of mesons, from
which Hideki Yukawa was awarded the 1949 Nobel Prize after their discovery. The inter-
actions take form as trilinear combinations of two spinor fields and one (pseudo)-scalar
which, are the same form as the terms in the above Lagrangian.
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The Standard Model was created when neutrinos were assumed massless. If neutrino
masses are SM phenomena or not is subject to debate. Some will claim that the SM is the
theory created when neutrinos were assumed massless. The addition of neutrino masses
requires the existence of right-chiral neutrinos, which are gauge-singlets. As neutrino
masses exist and right-chiral neutrinos can be used to create them, a modern view of the
SM is to include neutrino masses, as the required ingredients are already available. This
is the view of the SM which will be used and referred to throughout the rest of the thesis.
The addition of right-chiral neutrinos does however open up the possibility of Majorana
masses, which will be discussed in Section 3.5.

Particles masses are real, positive numbers, yet the mass terms introduced in the La-
grangian (2.6.4) depend on linear combinations of complex numbers. One might ask why
one cannot just demand real, diagonal Yukawa matrices and skip this whole discussion
entirely. This is an important question and will be answered in a later section when
neutrino physics is discussed and the answer involves neutrino mixing and the nature of
right-handed neutrinos.

2.7 The Standard Model
With the discussion on fermion masses complete, it is worthwhile to take a step back
and review the whole Standard Model. The SM is the foundation of how the known
fundamental particles interact with one another and its building blocks are fermions and
bosons. The SM describes how the universe at small scales can be viewed as the Yang-
Mills theory SU(3)C⊗SU(2)L⊗U(1)Y , which is spontaneously broken to SU(3)C⊗U(1)em
at low-energy. The theory is governed by a Lagrangian, which is the sum of all possible
terms which are

1. Lorentz Invariant

2. Gauge Invariant

3. Renormalizable

the former two being discussed in detail already. The last criteria; renormalizability,
requires more discussion than this thesis can provide to understand and appreciate. For
this thesis, a renormalizable term has energy dimension, dimension for short, less than or
equal to four. All terms in the SM have dimension four, which is evident from dimensional
analysis of the action

[S] = [

∫
Ω

d4x L] = E−4[L], (2.7.1)

which reveals that the dimension of the Lagrangian needs to be four. A direct consequence
of [L] = E4 is that fermion fields have fractional energy dimension [ψ] = E

3
2 , while bosonic

fields have unit energy dimension [φ] = E.
From the three guiding principles on constructing the Lagrangian, the SM more or

less follows9. As one might expect, there are a lot of terms and writing all of them down
explicitly is not recommended. Especially all the boson-boson interactions take up quite
a lot of ink. Luckily, in applications, this is never needed, as one is rarely concerned with

9Writing out the Standard Model Lagrangian is left as an exercise for the reader
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more than a few terms. As a leading example, when considering neutrinos, QCD effects
are irrelevant and vice versa.

Putting this whole section together, the Standard Model Lagrangian can be written
as some variation of

L =
∑

Fermions

iΨ /DΨ− 1

4
FµνjF

µνj − (Y ijΨL
i Hψ

R
j + h.c) + (DµH)†(DµH)− V (H), (2.7.2)

where Fµνj is the collection of all bosonic field strength tensors, V (H) is the Higgs po-
tential and the sum is taken over all 12 (six quarks, three charged leptons and three
neutrinos) fermionic fields. Do not take this equation too seriously, as it is meant to
showcase how one can combine every interaction in the SM into a single line. This equa-
tion can be put on a coffee mug or printed on a t-shirt, however, it is not of much practical
use. However, with that being said, the groundwork is laid and the way forth is to apply
the developed theory to investigate the universe.

2.8 Problems with the Standard Model
As with every physical theory so far, also the SM has its flaws. It is certainly not wrong
per se, as some of the predictions it makes are among the best tested and verified in all of
science. In particular, the magnetic moment of the electron is the best-measured quantity
in all of science, accurate to 0.28 parts per trillion [20], which is truly outstanding. How-
ever, the measured magnetic moment of the muon introduces a strong tension between
the theoretically calculated value and the observed value. There are several problems
with the SM, some are rather subtle and others very clear. An incomplete list of some of
these problems are:

1. Energy content of the universe: Observations of the universe at large scales
reveal that only about 4% of the matter in the universe is baryonic i.e. made of
Standard Model particles. The remaining 96% can be categorized into roughly 26%
dark matter and about 70% dark energy. The SM has no explanation for this.

2. Gravity: Simply put, the SM does not include gravity.

3. Dirac vs Majorana neutrinos: Neutrinos may acquire both a Dirac mass term
and a Majorana mass term. The question of the origin of neutrino masses is still
unknown.

4. Free parameters: The SM has 19 free parameters which cannot be deduced from
theory; they have to be measured. Many physicists would like a theory with fewer
free parameters like string theory, which has one; the string length. However, string
theory can give rise to ∼ 10723 Standard Models [21]. This is the landscape problem.

5. Muon g-2: Although the revered 5σ signal has not been confirmed yet, there
is a 4.2σ tension between the experimental and theoretical value of the magnetic
moment of the muon [22].

This should, however, not be taken as a defeat, but rather an opportunity to discover
new physics beyond the SM.
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3 Neutrino physics

3.1 The discovery of neutrino oscillations
In the late 1960s, the first hint towards neutrino masses came with the discovery of solar
neutrinos and the solar neutrino problem (SNP) from the Homestake experiment which
monitored the solar flux for 24 years. The solar flux is the collection of all particles
emitted by the sun, of which neutrinos constitute a respectable portion. The Homestake
experiment was a neutrino capture experiment where a medium rich in chlorine awaits
the incoming solar neutrino flux. The nuclear reaction in this case is

37Cl + νe → 37Ar + e−. (3.1.1)

The sun provides the solar system with energy through constant thermonuclear fusion
in its core, which radiates outwards and heats the solar system. In the core of the sun, the
most prominent method of converting mass into energy is the proton-proton (pp) chain,
which converts hydrogen into heavier elements and radiation through nuclear fusion. The
whole process releases 26.73MeV worth of energy, which neutrinos obtain a few percent
of depending on the step of the chain [23]. The inevitable first step is the fusion reaction

p+ p→ 2H + e+ + νe, (3.1.2)

where the neutrino escapes the reaction with an energy O(MeV). Hence, the sun is an
extremely powerful source of electron neutrinos, which propagate approximately freely
until detected at Earth with a neutrino flux at Earth of Φν ∼ 6 × 1010cm−2s−1. The
solar neutrino problem was the observed deficit of νe in the observed solar neutrino flux
in contrast to theoretical predictions.

Over the next decades with experiments such as (Super)-Kamiokande, GALLEX,
SNO and more, the SNP was resolved with the advent of neutrino oscillations. More
specifically, a significant fraction of the νe produced in the sun are converted to νµ and
ντ during propagation from the core of the sun to the awaiting detector at Earth. Due
to this conversion, there is necessarily a deficit in the number of events one would expect
from the nuclear reaction (3.1.1) without the possibility of neutrino oscillations. Note
that mixing and oscillatory phenomena are not unique to the neutrino sector, quarks can
mix between flavours, through the non-diagonal Cabibbo–Kobayashi–Maskawa (CKM)
matrix. While neutral mesons, bound states of quark-antiquark pairs, can oscillate into
their respective antiparticles.

3.2 Neutrino mixing
To see how adding right-chiral neutrinos to the SM results in neutrino oscillations and
neutrino mixing, recall from equation (2.6.4) that the lepton Yukawa Lagrangian is given
by

LY = −Y ij
l Ψ

L

liHψ
l
Rj − Y ij

ν Ψ
L

liH̃ψ
νl
RJ + h.c, (3.2.1)

which after the Higgs doublet acquires a vev, yields the leptonic mass terms

LM = − v√
2
lLYllR − v√

2
νLYννR + h.c. (3.2.2)
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The previous notation (ΨL
li) etc. is a bit tedious, so to avoid a notational nightmare,

the three-component vectors lL/R and νL/R are introduced as

lL/R ≡ (eL/R µL/R τL/R)
T , νL/R ≡ (νeL/R

νµL/R
ντL/R

)T . (3.2.3)

Physical particles have real masses, which means that the above Lagrangian is defined
in some other basis. The basis in which the SM is usually written, which is the basis
implicitly used in constructing the SM, is called the flavour basis. The SM is formulated
in terms of interactions, particles are created and destroyed in interactions with other
particles. The basis where these interactions are diagonal is called the flavour basis. As
an example, neutrinos are produced as eigenstates of the weak interactions, so-called
weak eigenstates. That is, neutrinos are produced in a definite flavour, not as a linear
combination of flavours. The easiest option is if the flavour basis coincides with the basis
in which the mass matrix is diagonal, the so-called mass basis. Physics is of course basis
independent, but some bases are much easier to work with than others. For example, it
is rather convoluted and unintuitive to describe a propagating particle in a non-diagonal
mass basis. On the other hand, describing interactions in a non-diagonal flavour basis is
similarly ambiguous.

Out of all the SM fermions, only the charged leptons have a shared mass and flavour
basis; charged leptons do not mix. That is, a muon will not appear in a pure electron
beam. This is however not clear from the formulation of Yukawa couplings. The charged
lepton Yukawa interactions share the same form as neutrino Yukawa interactions; a tri-
linear coupling of left and right-handed fields contracted with the Higgs doublet times
some complex matrix of Yukawa couplings.

To understand why charged leptons do not oscillate, quoting [24] “Flavour oscillations
of charged leptons are not possible, because the flavour of a charged lepton is defined
by its mass, which is the only property that distinguishes between differently charged
leptons.” For charged leptons, this means that flavour is measured through mass, Y ij

l =
diag(y1l , y

2
l , y

3
l ) for real, positive numbers yil . The shared mass and flavour basis for the

charged leptons means that their mixing matrices, without any loss of generality, can be
taken as the identity matrix.

The mass and flavour bases are two bases of the same vector space. Thus, starting
from one basis, the other one is obtained by a basis transformation. Consider the following
unitary basis transformations

νL → ULνL, νR → URνR, UL/R ∈ U(3), (3.2.4)

which rotates the flavour basis into the mass basis

LM → − v√
2
lLYllR − v

2
νLU

†
LYνURνR + h.c, (3.2.5)

where

U †
LYνUR = diag(y1ν , y

2
ν , y

3
ν), yiν ≥ 0. (3.2.6)

Mathematically, this amounts to diagonalizing a complex matrix by a bi-unitary trans-
formation, for a proof that this can be done see [25]. In rotating the neutrino basis, the
terms in the Lagrangian will generally change. Neutrinos enter interactions only through
the charged and neutral current interactions (2.5.44)-(2.5.46). Under the neutrino basis
change (3.2.4), the neutral current (NC) transforms as
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Jµ
NC → −1

2

(
νLU

†
Lγ

µULνL − lLγ
µlL

)
= Jµ

NC. (3.2.7)

As UL is unitary, the NC interaction does not change under neutrino basis transforma-
tions, and to be general, it does not change under any unitary lepton basis transformation.
This is due to the NC connecting charged leptons to charged leptons and neutrinos to
neutrinos. The only physical imprint neutrino basis transformations can have is on the
charged current (CC) interaction. The CC interaction is the contraction of the charged
current (2.5.44) with the electroweak gauge boson W , given as

LCC = − g

2
√
2
Jµ†
CCWµ + h.c. = − g

2
√
2
νLγ

µWµlL + h.c, (3.2.8)

which under the neutrino basis change, transforms as

LCC → − g

2
√
2
νLU

†
Lγ

µWµlL + h.c. (3.2.9)

This expression is not generally diagonal as UL is a general unitary matrix. The
fact that the charged current is sensitive to a basis change reveals that neutrinos mix,
and that effects of neutrino mixing can be attributed to a single unitary mixing matrix
U †
L ≡ UPMNS called the Pontecorvo-Maki–Nakagawa–Sakata (PMNS) matrix. The mix-

ing matrix is conventionally defined by acting on the mass basis to yield the flavour basis
through νeνµ

ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1ν2
ν3

 . (3.2.10)

The elements of the PMNS matrix should be interpreted as measures of how much a
flavour neutrino couples to a given mass eigenstate, e.g. |Ue3| is a measure of how much
the electron neutrino couples to the third mass eigenstate. Measurements of the PMNS
matrix elements are powerful tests of the SM, as deviations from unitarity are direct
violations and hence acts as a probe to physics beyond the SM, so-called BSM physics.
As the PMNS matrix is a member of U(3) it has nine degrees of freedom. However,
many of these degrees of freedom are unphysical. It is also worth mentioning that the
parameterization of the PMNS matrix is identical to the CKM matrix up to Majorana
phases. These claims will be justified in Section 3.7

3.3 Neutrino oscillations
The fact that neutrinos mix implies that neutrinos may oscillate into different flavours as
they propagate through spacetime. It is of interest to deduce a formula that quantifies the
probability that a given flavour neutrino will oscillate into some other flavour neutrino.
There are several approaches to obtaining the transition probability, one might treat it
quantum-mechanically, either through a plane wave or a wave packet treatment. It is also
possible to treat this in QFT, although significantly more involved. These approaches
will generally lead to different transition probabilities, e.g. the QM approach is less
complete than the QFT approach. In general, these approaches lead to different results.
However, accounting for the sensitivity and energy threshold of detectors, they converge
to the same observed transition probability [24]. For this reason, the simple quantum
mechanical, plane wave treatment is presented.
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3.3.1 N-dimensional oscillations

Although the SM picture concerns only three active neutrinos, which mix through three
mass eigenstates, one can generalize the discussion to include oscillations between N
flavour neutrinos mixing with N massive states. An active neutrino is defined as an
eigenstate of the weak interaction, while flavour neutrino is enlarged to include both the
three active neutrinos as well as possible sterile states. Sterile states are used as an
umbrella for neutrinos which are non-trivial eigenstates of the weak interaction and does
not interact directly with the SM. Sterile states are eigenstates of the weak interaction
with vanishing coupling, i.e. sterile states are not produced in the weak interaction.
Consider now the case of N massive neutrinos, all of which can be treated as ultra-
relativistic and which are related to the flavour states by a unitary matrix U . The
eigenstates of the Hamiltonian acting on the massive states are given by

Ĥ|νi〉 = Ei|νi〉, (3.3.1)

where the energy of each massive state is approximated as

Ei =
√
~p2 +m2

i ≈ |~p|+ m2
i

2|~p|
≈ E +

m2
i

2E
. (3.3.2)

In general, the group velocities of each massive state will be different leading to
different momenta. However, in a more complete approach [26], the dependence of the
different momenta cancels out in the final transition probability. The massive states
evolve according to the Schrödinger equation (1.3.2), and they are freely propagating.
Therefore, they can be described by plane waves

|νi(t)〉 = e−iEit|νi〉. (3.3.3)

Active neutrinos are produced in weak interactions as pure flavour states, say |να〉
for α ∈ {e, µ, τ}, at some initial time t = 0. In terms of the massive states, the flavour
neutrino evolves in time as the superposition

|να(t)〉 =
N∑
i=1

Uαi e
−iEit|νi〉. (3.3.4)

After some time t > 0, the neutrino is no longer in a pure flavour state and the
transition amplitude of observing the neutrino in some other flavour state |νβ〉 where
β ∈ {e, µ, τ, s1, . . . , sN−3}, is the projection of that state onto the original state, given as
the inner product

A(να → νβ; t) = 〈νβ|να(t)〉 =
N∑

i,j=1

U∗
βiUαj e

−iEjt〈νi|νj〉. (3.3.5)

Using an orthonormal basis for the massive states, their inner product is the Kronecker
delta, which yields the transition amplitude as the single sum

A(να → νβ; t) =
N∑
i=1

U∗
βiUαi e

−iEit. (3.3.6)

The transition probability is given as the square modulus of the transition amplitude
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P (να → νβ; t) =
N∑

i,j=1

U∗
αjUβjU

∗
βiUαi e

−i(Ei−Ej)t. (3.3.7)

Rewriting this expression in terms of the different neutrino masses and using the ultra-
relativistic approximation t = L, as the time since a neutrino was created is not something
which is measured, one obtains the master formula for neutrino oscillation probabilities

P (να → νβ; t) =
N∑

i,j=1

U∗
αjUβjU

∗
βiUαi exp

(
−i

∆m2
ijL

2E

)
. (3.3.8)

The mass squared difference ∆m2
ij is defined as

∆m2
ij ≡ m2

i −m2
j . (3.3.9)

Although not obvious from the expression for the oscillation probability, neutrino
oscillations in vacuum are not sensitive to the sign of the exponent. That is, a neutrino
oscillation experiment performed using the vacuum approximation, cannot determine the
sign of the mass squared difference.

The elements of the mixing matrix are constants, meaning that the dynamics of
neutrino oscillations can be attributed entirely to the term in the exponent. This is
rather useful as the neutrino energy E is determined from the nuclear reaction which
produced it, and the baseline L is easily measurable given a neutrino produced in say,
the sun or some nuclear reactor. Knowing these variables, one can deduce the mass
squared differences between the massive neutrino states. The main neutrino oscillation
experiments and their characteristic parameters are listed in Table 3.1.

Experiment L(m) E(MeV ) ∆m2(eV 2)
Reactor SBL 102 1 10−2

Reactor LBL 103 1 10−3

Accelerator SBL 103 103 1
Accelerator LBL 106 103 10−3

Atmospheric 107 103 10−4

Solar 1011 1 10−11

Table 3.1: Order of magnitude estimations for observable mass squared splittings probed
in different experiments. These values are not representative for all experiments, but
rather serve to illustrate the generic values of neutrino oscillation parameters. The values
are taken from [27].

A detectable10 neutrino is necessarily a weak eigenstate, which means that both the
produced and the detected neutrino are active. Remarkably, corrections due to oscilla-
tions into sterile states are still present in the expression for the transition probability as
the sum is taken over the columns corresponding to the initial and final state neutrinos.
Hence, deviations from the SM picture of neutrino oscillations, i.e. non-unitarity of the
PMNS matrix, requires BSM physics.

10Detectable in the sense that an experiment can deduce that a neutrino interacted by measuring the
end product of the interaction.
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3.3.2 Recovering Standard Model oscillations

The previous section introduced the transition probability in the case ofN ultra-relativistic,
oscillating, massive neutrinos. To recover the SM picture of neutrino oscillations one can
either put N = 3 or consider some peculiar forms of the mixing matrix. The simplest,
non-trivial case is when the top left block is identified as the PMNS matrix, the remaining
diagonal elements are ones, and the rest of the entries are zero. Too see this explicitly,
consider oscillations where both the initial and final state neutrinos are active, say |να〉
oscillates into |νγ〉 for (α, γ) ∈ {e, µ, τ}. The structure imposed on the mixing matrix
results in the transition probability

P (να → νγ; t) =
3∑

i,j=1

U∗
αjUγjU

∗
γiUαi exp

(
−i

∆m2
ijL

2E

)
, (3.3.10)

which is precisely the SM picture of neutrino oscillations as the sum is restricted to
(i, j) ∈ (1, 2, 3). This expression relied on the assumption that the except for the PMNS
block, the rest of the mixing matrix were ones on the diagonal and zeros elsewhere. This
assumption can in fact be relaxed and still provide the SM result. Consider the block
structure of the mixing matrix given as

U =

(
UPMNS 03×(N−3)

0(N−3)×3 UDark

)
, (3.3.11)

where 0A×B is the zero matrix with A rows and B columns and UDark is a unitary (N −
3)× (N −3) matrix. The terminology, dark, is used to emphasize that regardless of what
UDark is, the physics that produced it is insensitive to neutrino oscillation experiments.
The transition probability of active neutrinos is blind to UDark, hence the name. Matrices
on the form (3.3.11) are called decoupled as the dynamics of the different sectors are
decoupled from each other.

3.4 Experimental values of neutrino observables
The previous sections illustrated how massive neutrinos can mix through the PMNS
matrix and the general formula for neutrino oscillations was introduced. The measurable
neutrino parameters introduced are the magnitudes of the PMNS matrix elements and
the neutrino mass splittings, not the actual masses themselves. Oscillation data are fitted
using two mass splittings, the solar mass splitting, defined as

∆m2
sol ≡ ∆m2

21 = m2
2 −m2

1, (3.4.1)

which as the name suggests, is measured from solar neutrinos. The sign of the solar mass
splitting is known due to the effects of neutrino oscillations in matter, which constitute
an effective potential due to interactions with charged leptons. This is known as the
Mikheyev–Smirnov–Wolfenstein (MSW) effect [28, 29]. When solar neutrinos propagate
through the sun they are subject to matter effects, enabling the determination of the sign
of the solar mass splitting through the MSW effect. The second mass splitting is the
atmospheric mass splitting, defined as

∆m2
atm ≡ |∆m2

31| = |m2
3 −m2

1|, (3.4.2)
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where the sign is currently unknown. The source of atmospheric neutrinos is cosmic
rays impacting the atmosphere. When these cosmic rays interact with particles in the
atmosphere, they may produce charged pions. These charged pions almost exclusively
decay to muons, which further decays into two neutrinos and an electron through the
charged current interaction. A consequence of the undetermined sign of the atmospheric
mass splitting is that it leaves the mass hierarchy of neutrinos undetermined. There are
two possibilities; neutrinos may follow a normal hierarchy (NO)

NO : m1 < m2 < m3, (3.4.3)

or they may follow an inverted hierarchy (IO)

IO : m3 < m1 < m2. (3.4.4)

An illustration of the two hierarchies is given in Figure 3.1 which also reveals the scale
of the mass splittings.

Figure 3.1: Illustration of the two mass hierarchies taken from [30]. The figures plot the
relative difference between the mass splittings versus increasing mass squared for both
hierarchies. The colours on horizontal bars represents the probability of observing of a
given flavour in the corresponding mass eigenstate.

NO(3σ) IO(3σ)
∆m2

21 = 6.82− 8.04× 10−5eV 2 ∆m2
21 = 6.82− 8.04× 10−5eV 2

∆m2
31 = 2.431− 2.598× 10−3eV 2 ∆m2

31 = (−2.583)− (−2.412)× 10−3eV 2

Table 3.2: Table showcasing the 3σ ranges of neutrino mass splittings from a 2020 global
analysis [31]. The value of the atmospheric mass splitting is positive in NO while negative
in IO, which is due to the undermined nature of neutrino masses.

The 3σ ranges of the neutrino mass splittings from a 2020 global analysis are given
in Table 3.2. Remark that even though two neutrinos are massive, the lightest neutrino
mass may still be vanishing, i.e. zero. This case only requires the addition of two right-
handed neutrinos to provide the necessary neutrino masses. However, as this scenario
is far from general it will not be pursued. Orthogonal to the constraints from neutrino
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oscillations, cosmological data from the Planck collaboration [32] constrains the sum of
active neutrino masses to ∑

i

mi < 0.12 eV (95%C.L). (3.4.5)

For fixed values of the solar and atmospheric mass splittings, the sum of neutrino masses
depends only on the value of one of the mass eigenstates. Conventionally, the independent
mass eigenstate is taken as the lightest one. In NO the lightest massive state is m1,
yielding the sum of neutrino masses∑

i

mi(m1) = m1 +
√

∆m2
21 +m2

1 +
√
∆m2

31 +m2
1, (3.4.6)

while in IO, where m3 is the lightest mass eigenstate, the formula is slightly modified∑
i

mi(m3) = m3 +
√
m2

3 −∆m2
31 +

√
m2

3 −∆m2
31 +∆m2

21. (3.4.7)

A plot of the sum of active neutrino masses versus the lightest mass eigenstate in both
hierarchies is illustrated in Figure 3.2. From the figure, it is evident that NO allows for
larger values of the lightest neutrino mass (m1) within the cosmological bound on the sum
of neutrino masses. The width between lines of equal colour is also narrower in NO, which
is a direct consequence of the magnitude difference between the scale and uncertainty of
atmospheric and solar neutrino mass splittings. Moreover, there are clear bounds on the
mass of the lightest mass eigenstate, m1 < 3× 10−2 eV in NO and m3 < 2× 10−2 eV in
IO.

Figure 3.2: Plot of the sum of active neutrino masses versus the lightest mass eigenstate in
both hierarchies. The nearly vanishing width of the graphs represent the 2σ uncertainties
from measurements of the neutrino mass splittings. The horizontal, dashed, red line is
the 2σ bound on neutrino masses from cosmological observations.

On the other side of neutrino oscillations, the magnitudes of PMNS matrix elements
are also measured. The values of mixing matrix elements are obtained from the same 2020
global fit [31], which is under the critical assumption that the PMNS matrix is unitary.
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The latter refers to the fact that the matrix elements are not independent; changing one
affects the others due to unitarity U †U = I. The 3σ regions of the PMNS matrix are
given as

|UPMNS|3σ =

 0.801 → 0.845 0.513 → 0.579 0.143 → 0.156
0.233 → 0.507 0.461 → 0.694 0.631 → 0.778
0.261 → 0.526 0.471 → 0.701 0.611 → 0.761

 . (3.4.8)

Evident from the PMNS matrix, neutrino mixing cannot be modelled as small pertur-
bations from the unit matrix. In particular, some off-diagonal elements are comparable
or even larger than some of the diagonal elements, further showcasing that neutrinos mix
quite significantly. For reference, this is in contrast to the quark sector, in which mixing is
not too prevalent. The largest quark mixing, which is between first and second-generation
quarks, is of order |Vus| ≈ |Vcd| = O(0.2) [33].

3.5 Majorana masses
After spontaneous symmetry breaking, all fermions of the Standard Model share the
same Dirac mass term; a bilinear term connecting left and right chiral spinors. There is,
however, another way a chiral fermion may acquire a mass term, which is by obtaining a
Majorana mass. Recall that the infinitesimal Lorentz boosts of right chiral Weyl spinors
(2.4.4) are given by

δψW
R =

1

2

(
iθj + βj

)
σjψ

W
R , (3.5.1)

for rotation and boost angles θj and βj, respectively. The Pauli matrices σj are given as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3.5.2)

and they satisfy the anti-commutator

{σi, σj} = 2δij. (3.5.3)

The Majorana mass term is given as the bilinear (up to constants)

LMajorana = −ψWT

σ2ψ
W , (3.5.4)

which is a mass term given in terms of a single Weyl spinor. This is in contrast to the
Dirac mass term which requires two Weyl spinors. To show that the Majorana mass term
is Lorentz invariant, consider an infinitesimal Lorentz boost of the bilinear Majorana
mass term

δ(ψWT

R σ2ψ
W
R ) =

1

2

(
iθj + βj

) (
ψWT

R σT
j σ2 + ψWT

R σ2σjψ
W
R

)
. (3.5.5)

Due to the anti-commutator (3.5.3) and the Pauli matrix relation σT
j σ2 = −σ2σj, the

Majorana term can be written as

δ(ψWT

R σ2ψ
W
R ) =

1

2

(
iθj + βj

) (
−ψWT

R σ2σjψ
W
R + ψWT

R σ2σjψ
W
R

)
= 0. (3.5.6)
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The Majorana mass term is Lorentz invariant! There is, however, a caveat in the con-
struction of the Majorana mass term; particles described by a Majorana mass term cannot
be charged under any gauge group. This means that particles described by a Majorana
mass term, so-called Majorana particles, must be their own antiparticle. To showcase
that Majorana particles must be uncharged under all gauge groups, consider a generic
gauge transformation

ϕ→ X(x)ϕ = exp
(
−iT kαk(x)

)
ϕ, X†(x) = X−1(x), (3.5.7)

where T k are a set of generators and αk(x) are differentiable functions of spacetime. For
a field with a Majorana mass, the above gauge transformation transforms the Majorana
mass term

− LMajorana = ϕTσ2ϕ→ ϕTXT (x)σX(x)ϕ = −LMajoranaX(2x), (3.5.8)

which is clearly not invariant. Thus, Majorana particles must be uncharged in order to
respect gauge invariance. In standard nomenclature, particles which do not transform
under gauge transformation are called singlets. Out of all known particles, only right-
chiral neutrinos can have Majorana masses, as all other particles are charged under a
subgroup of the SM symmetry group. A consequence of their nature is that Majorana
particles are not constrained to any mass scale, as the other charged particles are. In
particular, the SM mass scale is the vacuum expectation value of the Higgs doublet
v = 246GeV, as all particle masses in the SM are directly proportional to it.

To avoid cluttered notation, the superscript on Weyl spinors is dropped and the
distinction between Weyl and Dirac spinors should be clear from context. The Lagrangian
for a single Weyl spinor with a Majorana mass term, conveniently taken as the right-chiral
Weyl spinor, is given by [15]

LWeyl + Maj = iψ†
Rσ

µ∂µψR + i
m

2

(
ψ†
Rσ

2ψ∗
R − ψT

Rσ
2ψR

)
, (3.5.9)

where σµ(σµ) are introduced as

σµ ≡ (1, σi), σµ ≡ (1,−σi). (3.5.10)

The new σµ will be useful later when introducing the Weyl representation of the
gamma matrices. Fermions described by this Lagrangian are called Majorana fermions.
It is useful to embed the Weyl spinor into a Dirac spinor, which for Majorana fermions
is given by

ψ =

(
iσ2ψ∗

R

ψR

)
. (3.5.11)

The first entry of ψ is a left-handed field written in terms of a right-handed one. Using the
newly constructed Dirac spinor, it is possible to write the Majorana mass term concisely
as

m

2
ψψ =

m

2

(
ψ†
Riσ

2ψ∗
R − ψT

Riσ
2ψR + ψ†

RψR + ψT
Rψ

∗
R

)
, (3.5.12)

where the last two terms cancel due to anti-commutativity of fermions. In the Weyl
representation, the gamma matrices are given in block form as
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γµ =

(
0 σµ

σµ 0

)
, γ5 =

(
−I 0
0 I

)
. (3.5.13)

Majorana fermions described in terms of Dirac spinors satisfy

iγ2ψ∗ = ψ, (3.5.14)

which is called the Majorana condition. Closely related to the Majorana condition is
charge conjugation, in fact the operation

C : ψ → iγ2ψ∗ ≡ ψc, C : ψ → iψTγ2γ0 ≡ ψc, (3.5.15)

is defined as the charge conjugation operator (in the Weyl basis). The effects of charge
conjugation are best showcased when acting on the Dirac equation in an electromagnetic
field, where charge conjugation flips the sign of the electric charge. Charge conjugation
yields equations of motion for antiparticles and as Majorana particles do not transform
under charge conjugation they must be gauge singlets. In summary: Majorana masses
only require a Weyl spinor to construct a mass term, which makes them simpler to
envision than Dirac masses, which require two independent Weyl spinors to construct
a mass term. However, simplicity comes at a great cost in gauge theories; Majorana
particles must be singlets under any gauge group. The effect of right-chiral neutrinos
obtaining Majorana mass terms will be discussed in the next section.

3.6 The duality of neutrino masses
The previous section illustrated that neutral particles such as right-chiral neutrinos may
obtain two separate mass terms. To explore the effects of the Majorana mass term, it is
convenient to introduce some new notation. The vector of right-chiral states is introduced
as

N =
(
N1 . . . NN

)T ≡
(
ψR1 . . . ψR1

)T
, (3.6.1)

which is aN -dimensional vector in flavour space. Although the number of active neutrinos
is constrained by the invisible decay of the Z boson, the number of right-chiral neutrinos
is unconstrained. Hence, one generally includes N (the number) such states. The general
neutrino Yukawa Lagrangian is given as

LYukawa = −
N∑
i=1

3∑
j=1

(
Y ij
ν N iH̃

†Lj

)
− 1

2

N∑
i,k=1

(
M ik

R N
c
iNk

)
+ h.c, (3.6.2)

where M ik
R are the components of the Majorana mass matrix. After spontaneous sym-

metry breaking the Lagrangian acquires the following mass terms

LMass = − v√
2
NY νL − 1

2
N cMRN + h.c, (3.6.3)

where νL ≡ ν is the defined as the vector of left-chiral states

ν ≡
(
νe νµ ντ

)T
. (3.6.4)

Proceeding in standard convention, the Dirac mass matrix is defined as
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MD ≡ v√
2
Yν , (3.6.5)

which reflects how Dirac mass term appears in the SM; as bilinear terms between left
and right chiral fields. To obtain a single matrix term in the mass Lagrangian, which can
then be diagonalized to yield physical masses, the vector Ψ is defined as the collection of
all left-handed neutrinos

Ψ ≡
(
ν N c

)T
. (3.6.6)

In addition, the enlarged mass matrix M̃ is introduced as

M̃ ≡
(

0 MT
D

MD MR

)
, (3.6.7)

which enables the mass Lagrangian to be expressed compactly as

LMass = −1

2
ΨcM̃Ψ+ h.c. (3.6.8)

Remarkably, in the general case of both Majorana and Dirac masses, the combined
mass term is a Majorana mass. The nature of neutrino masses is an open question in
physics and there are observable differences between Dirac and Majorana neutrinos. A
peculiar effect of Majorana neutrinos is that lepton number is no longer conserved as the
global U(1) symmetry corresponding to lepton number

νl → eiθνl, N → eiθN, (3.6.9)

is violated by the Majorana mass term by two units. This means that Majorana masses
can produce interactions where the overall number of leptons is changed by two. Thus,
by searching for lepton number violating interactions one can deduce if neutrinos are
Majorana or Dirac. In particular, the search for neutrino-less double beta decays (2β0ν)
is of great interest as a positive signal would resolve this discussion. However 2β0ν is
second order in the weak interaction, which in turn yields a very low cross-section, see
e.g. [34,35] for reviews on the status and importance of 2β0ν. The leading order Feynman
diagram for 2β0ν is illustrated in 3.3.

Figure 3.3: Feynman diagram showcasing neutrino-less double beta decay. The illustra-
tion is taken from [35].
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3.6.1 Dirac neutrinos

If neutrinos are Dirac particles, then there is only one term in the mass Lagrangian.
As illustrated in Section 3.4, cosmological data confine the sum of neutrino masses to∑

imi < 0.12eV. On the other hand, atmospheric data suggest that at least one of the
active neutrinos has a mass that is bounded from below by

mheavy ≥
√

|∆m2
atm| ' 0.05eV. (3.6.10)

As Dirac masses are given as products of Yukawa couplings with the Higgs vev, the scale
of neutrino Yukawa couplings is confined to

yν . 10−12. (3.6.11)

This is a very small number. To understand which Yukawa couplings are considered
small, it is instructive to consider the perturbative limit. A perturbative theory is one in
which higher-order terms, originating from loops in QFT, can be treated as corrections.
To obtain a perturbative theory, neutral couplings like Yukawa couplings are required to
satisfy the perturbative bound

|y|
4π

< 1. (3.6.12)

The idea that a free parameter of a theory takes on such an abysmal value compared
to the perturbative range may be experienced as quite unsettling. Created in a Dirac
way, the neutrino Yukawa couplings are at least six orders of magnitude lower than the
electron Yukawa coupling, which is the lightest Standard Model fermion. This unnatural
small value of a free parameter has led physicists to alternative methods of neutrino mass
generation. On the other hand, the electron Yukawa coupling ye = O(10−6) is also a very
small number in comparison to 4π. These issues are so-called smallness problems. The
working definition of a smallness problem is for this thesis defined as a free parameter
whose value is low in comparison to the range it is confined to.

3.6.2 Majorana neutrinos and the see-saw mechanism

Dirac neutrinos suffer a severe smallness problem to explain neutrino masses. If instead,
neutrinos are Majorana particles, then the Lagrangian is given by (3.6.8). The see-saw
mechanism can provide a natural explanation for the smallness of neutrino masses on
the condition that all eigenvalues of the Dirac mass matrix are much smaller than all
eigenvalues of the Majorana mass matrix. The see-saw story goes as follows. Consider
the block-diagonalization of the enlarged mass matrix

BTM̃B = M =

(
Mlight 0

0 Mheavy

)
(3.6.13)

which separates the light, active neutrinos from the heavy singlets. The see-saw mecha-
nism decouples the light sector from the heavy sector, which enables one to work in an
effective theory where the singlets are mere heavy degrees of freedom with no dynamics.
The diagonalization matrix B is given in block form as

B =

(
I M †

DM
−1†
R

−M−1
R MD I

)
, (3.6.14)
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which is approximately unitary

B†B = I +O(MDM
−1
R )2. (3.6.15)

The fact that the block diagonalization matrix B is not unitary means that the working
theory is an effective theory. In particular, the non-unitarity should be explainable by
the physics which UV-completes the theory. Block-diagonalizing yields the light neutrino
mass matrix

Mlight = −MT
DM

−1
R MD, (3.6.16)

where neutrino masses are suppressed by the singlet mass matrix. The see-saw can
mechanism avoids unnaturally small Yukawa couplings under the assumption that the
singlet mass scale is much larger than the EW scale. When doing numerical work, the
negative sign in the light mass matrix can be ignored. The correct sign can then be
reconciled either by field definitions, or an overall phase of the Dirac mass matrix (MD →
iMD). In the see-saw picture, neutrino masses are small as an algebraic byproduct of
physics at vastly different scales. The heavy mass matrix, on the other hand, is nearly
unchanged from the singlet mass matrix

Mheavy =MR +O(M2
DM

−1
R ) 'MR. (3.6.17)

The see-saw mechanism is widely used in high-energy theories, especially grand-
unified-theory (GUT) models, as by choosing Yukawa couplings y = O(1) and using
mν = 0.1eV, leads to singlet masses

MR =
v2

mν

∼ 1014GeV, (3.6.18)

which is just below the GUT-scale, Λ ∼ 1016GeV . A peculiar phenomenon in QFT is
that the couplings ”constants” are not constant, they obtain an energy dependence. The
GUT-scale is the scale at which the running couplings constants converge to the same
strength. At this point it is possible to describe the three quantized forces by a single
Lie group, the most common being SO(10). Although the GUT-scale mass is the most
common place to assign the singlet masses, all singlet masses are technically natural as
a symmetry (lepton number) is restored in the limit of vanishing singlet masses. This
definition of naturalness is credited to ’t Hooft [36]. The see-saw mechanism has an
astoundingly large range as

(MDM
−1
R )ij � 1, (3.6.19)

is satisfied automatically for singlet eigenvalues larger than about 10TeV. The see-saw
limit is defined as the limit where (3.6.19) holds and the dynamics of light neutrinos
can be decoupled from the heavy singlet masses. In this limit, the effective Lagrangian
describing neutrino masses is given as

LMass = −1

2
νcMlightν + h.c. (3.6.20)

This Lagrangian describes three active, Majorana neutrinos in the flavour basis. To
obtain physical masses, a basis transformation from the flavour basis to the mass basis is
required. Consider the following unitary basis transformation which rotates the flavour
basis
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νc → νcUT
L , ν → ULν. (3.6.21)

In turn, the Lagrangian transforms as

LMass → −1

2
νcUT

LMlightULν + h.c, (3.6.22)

for the diagonalized light mass matrix

UT
LMlightUL = Mdiag = diag(m1,m2,m3), mi ≥ 0. (3.6.23)

Before proceeding, it is worth remarking that singlet masses can be smaller than
104GeV if either the Yukawa couplings are small, or there are strong cancellations imposed
on the Yukawa couplings. Although the latter requires fine-tuning, the possibility of it
should not be completely discarded. These ”accidentally” small neutrino masses obtained
from cancellations of Yukawa couplings can translate to singlet masses within the reach
of detectors such as large hadron collider (LHC). If singlet masses are lighter than the
Higgs boson, then the decay channel Γ(H → Nνα) is possible and potentially detectable
given large enough active-singlet mixing [37, 38].

Before ending this section, it is worth noting that neutrino masses can be generated
within the SM without invoking the need for right-chiral neutrinos if non-renormalizable
terms are included. The most prevalent is the dimension five term credited to Weinberg
[39], which considering one generation for simplicity, is given by

LWeinberg = − g∗

Λ∗ (LH̃)(H̃Lc)† + h.c. (3.6.24)

Here g∗ is a dimensionless coupling constant and Λ∗ is some energy cutoff-scale. After
symmetry breaking, the Weinberg Lagrangian yields neutrino masses

mν =
g∗v2

2Λ∗ , (3.6.25)

which is identical to the see-saw relation for one generation of neutrinos. In the picture,
neutrino masses are obtained by tuning the value g∗/Λ∗ to fit observations. However, to
obtain a renormalizable theory the see-saw mechanism will be pursued instead.

To summarize this section: Majorana masses can provide an elegant solution to the
smallness problems introduced by Dirac neutrinos. However, this comes at a cost, Majo-
rana masses violate lepton number, whereas Dirac masses do not. For further reference,
the case where neutrinos obtain their masses through Dirac bilinears is defined as an
SM phenomenon for the following reason: The ingredients required to construct neutrino
masses are already there, it only requires the addition of gauge-singlets to do so.

3.7 Parametrization of mixing matrices
The previous sections illustrate how fermion mixing and oscillations are described in terms
of unitary matrices acting on either the flavour basis or the mass basis to produce the
other one. Often, it is convenient to have an explicit parametrization of these matrices.
The most illustrative being the ”consecutive rotations” parametrization. If the mixing
matrices are real, then the three-dimensional bases can be rotated into each other by
the product of three real rotations performed in succession. In general, if Rij is a real
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rotation in the i−j plane of a N -dimensional, Euclidean vector space, then any combined
rotation can be written as the product

R =
∏
i<j

Rij(θij), RT = R−1. (3.7.1)

The rotation matrices Rij(θij) are dependent on single parameter; the angle θij in the
i− j plane. The order in which rotations are taken is irrelevant, but the parametrization
will look different depending on the order. This fact is useful, as experiments are seldom
sensitive to all elements of the mixing matrix. Hence, a parametrization that simplifies
the row(s) and/or column(s) of interest is practical. As an example of the explicit form
of rotation matrices, consider a four-dimensional space. A rotation in the 2− 3 plane of
that space is given by

R23 =


1 0 0 0
0 c23 −s23 0
0 s23 c23 0
0 0 0 1

 , (3.7.2)

where in standard convention, the shorthand notations for the trigonometric functions
are defined as

cij ≡ cos θij, sij ≡ sin θij. (3.7.3)

Unfortunately, the interesting mixing matrices are complex and unitary, instead of
real and orthogonal. Nevertheless, unitary matrices share a lot of the same structure
that orthogonal matrices do as unitary matrices can be viewed as the complex analogue
of ordinary, real rotations. In particular, any member of U(N) can be written in terms
of

N(N − 1)

2
mixing angles and N(N + 1)

2
phases, (3.7.4)

for a total on N2 degrees of freedom. The number of mixing angles coincides with the
number of independent rotations one can perform in a N -dimensional space, hence they
represent the usual rotation part. The phases on the other hand, are constructs which
do not share the same illustrative description as the mixing angles. A general unitary
matrix can be constructed in a similar fashion to the general rotation matrix introduced
in equation (3.7.1), i.e. as the product of consecutive unitary matrices confined to the
complex i − j planes. Denote unitary matrices acting on the complex i − j plane as
Wij(θij, ηij) for angles θij and phases ηij, whose components are given as [24, 40]

(Wij(θij, ηij))rs = δrs + (cij − 1) (δriδsi + δrjδsj) + sij
(
eiηijδriδsj − e−iηijδrjδsi

)
. (3.7.5)

To illustrate the structure of unitary matrices given by the above definition, consider a
three-dimensional complex space. The unitary matrix W13(θ13, η13) in this space is given
by

W13(θ13, η13) =

 c13 0 s13e
−iη13

0 1 0
−s13eiη13 0 c13

 . (3.7.6)
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This matrix is the source of the CP phase in the CKM and PMNS matrices. Conven-
tionally, the phase η13 is relabeled to δ or δ13. Informally, the parametrization (3.7.5)
yields rotation matrices where the phase is coupled to the terms with the sine of the
mixing angle. A direct consequence of this is that for small mixing angles, the CP phases
will challenging to observe. In particular, for possible sterile states, the mixing angle is
required to be small. Hence, the CP phases corresponding to sterile states will be very
elusive.

A general member of U(N) is parametrized as the product of these matrices along
with a diagonal matrix of phases, given as

W = D(ϕ)
∏
i<j

Wij(θij, ηij), (3.7.7)

where

D(ϕ) = diag
(
eiϕ1 , . . . , eiϕN

)
. (3.7.8)

When the phase of a unitary matrix Wij is zero, the matrix reduces to a real rotation
matrix

Wij(θij, ηij = 0) = Rij(θij). (3.7.9)

The unitary mixing matrix appearing in the CC interaction can be parametrized by
(3.7.7). However, the physical mixing matrix is not dependent on all phases appearing in
the general parametrization, some phases are unphysical, here is why. Consider neutrinos
as Dirac particles, i.e. the Lagrangian with no lepton number violating Majorana mass
term. The Lagrangian exhibits a global U(1)6 symmetry in the lepton sector, which can
be used to perform the following field redefinitions

lα → eiθαlα, νβ → eiϕβνβ, (α, β) ∈ (e, µ, τ), (3.7.10)

which leaves the Lagrangian unchanged. These phases are arbitrary. In the mass basis,
the CC interaction (3.2.9) transformed by the inclusion of a unitary matrix UL, which is
the PMNS matrix. In general, before arriving at the PMNS matrix, the matrix appearing
in the CC interaction is a general unitary matrix with nine d.o.f. Call this matrix W .
Under the leptonic field redefinitions, the CC Lagrangian changes to

LCC ⊃ − g

2
√
2
Wµ

∑
α,β

νβe
−iϕβγµWαβe

iθαlα + h.c. (3.7.11)

By factoring an arbitrary phase difference outside the sum, the Lagrangian can be written
as

LCC ⊃ − g

2
√
2
e−i(ϕ1−θ1)

∑
α,β

νβe
−i(ϕβ−ϕ1)γµWαβe

i(θα−θ1)lα + h.c. (3.7.12)

There are a total of five arbitrary phase differences in this Lagrangian. These can be
used to remove five phases from the unitary matrix W , resulting in the familiar PMNS
matrix. An equivalent approach is used in the quark sector to arrive at the CKM matrix.
This is why the CKM and PMNS matrices have only one physical phase. The lepton field
redefinitions (3.7.10) are possible whenever the only mass term in the Lagrangian is a
Dirac term. This is a given for quarks and charged leptons. Neutrinos on the other hand
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may acquire a Majorana mass term, which violates the global neutrino U(1) symmetry.
The phases due to Majorana masses can be factored to the right of the Dirac-type mixing
matrix. Let UD be the Dirac mixing matrix; an umbrella for the matrix containing mixing
angles and the Dirac phase(s), and UM is the diagonal matrix of Majorana phases, then
the full mixing matrix can be written as

U = UDUM . (3.7.13)

In addition, one can show that one of the Majorana phases can be redefined away [40].
In the N = 3 case, for which both the CKM and the PMNS matrix reside, their standard
parametrization is given as U = R23W13R12 times a possible matrix of Majorana phases
for neutrinos. Written out explicitly yields

U =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13

1 0 0
0 eiφ1 0
0 0 eiφ2

 .

(3.7.14)
One can show that under the combined Charge-Parity (CP) symmetry, the Lagrangian

changes unless U∗ = U , that is U must be real to avoid CP-violation. Hence, any CP
violation in the weak sector is equivalent to non-zero values of the physical phases. For
Dirac particles, there is only one such phase. For Majorana particles, there are three; one
Dirac phase and two Majorana phases.

A consequence of the fact that Majorana phases can be factored to the right of the
mixing matrix has important implications for neutrino oscillations. Recall that the neu-
trino transition probability (3.3.8) is dependent on the quartic product

Aαβ =
3∑

i,j=1

U∗
αjUβjU

∗
βiUαi, (3.7.15)

and that elements of the PMNS matrix are products of Dirac terms and Majorana terms,
given as

Uαj =
3∑

k=1

(UD)αk(UM)kj = (UD)αj(UM)jj. (3.7.16)

The sum reduced to a single term as UM is diagonal. When PMNS matrix elements
are separated into Dirac and Majorana terms like in the above equation, then the quartic
product can be expressed as

Aαβ =
3∑

i,j=1

(UD)
∗
αj(UM)∗jj(UD)βj(UM)jj(UD)

∗
βi(UM)∗ii(UD)αi(UM)ii. (3.7.17)

From this equation it is clear that all Majorana phases cancel out; neutrino oscil-
lations are insensitive to whether neutrinos are Dirac or Majorana particles! Hence,
oscillation experiments cannot provide any hints towards the nature of how neutrinos
masses originate.

This outlined approach has been suited to the standard case of three active neutrinos
mixing with three singlets. With the inclusion of sterile neutrinos, non-trivial eigenstates
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of the weak interaction, the situation is more complicated. In the presence of NS sterile
states, the number of Dirac phases is [24]

ND = 1 + 2NS, (3.7.18)

while the number of Majorana phases is

NM = 2 +NS. (3.7.19)

Sterile neutrinos will be discussed in later sections.

4 Physics beyond the Standard Model
The discussion on the Standard Model ended with a foreshadowing of physics which is not
explainable by the SM, an outlook for phenomena that require additional, new physics
to explain. This section is devoted to the intriguing physics which must lay beyond the
Standard Model and how such physics can be probed.

4.1 Dark sectors
The journey so far reveals that the particles of the universe are to our best understanding
described by the Standard Model of particle physics; a gauge theory under which all
particles are charged. But is that all there is to it? The best way to start this section
may be to ask the simple question: When we point our telescopes to the sky, what do we
see?

The simplified answer is: Not what we expected. If general relativity and the current
understanding of gravity is right, then the universe is filled with non-luminous matter,
i.e. matter which does not interact electromagnetically. This provides the descriptive
name, dark matter (DM). dark matter does not interact electromagnetically, leaves only
the neutrinos as SM candidates to explain dark matter. Without venturing too far into
cosmology, neutrinos are generally disfavoured as they simply have too little mass to
account for DM. The general framework for particle cosmology is the ΛCDM model
where CDM stands for cold dark matter. In cosmological terminology, neutrinos are
considered hot, which although hot dark matter models exist, the majority of research
into DM assumes more massive particles. If dark matter can be described in terms of
particles, then how do they fit into the picture and how can they be probed? Correctly
answering either one of these questions is a guaranteed Nobel Prize.

From the point of view of the SM, all particles are charged under the SM symmetry
group, but there is no reason why every particle in existence should be charged under the
SM gauge group

GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (4.1.1)

An example of particles that are not charged under this group are the right-chiral
neutrinos, which poses the question: can there be more? In the gauge theory description,
the answer is simply, yes. All SM particles arise from singlet contractions of fields which
can be fit into a Lagrangian. A singlet contraction is defined as a term in the Lagrangian
which is both Lorentz and gauge invariant, of which there are a lot. Imposing a new
symmetry on the Lagrangian leads to the possibility of new particles and interactions,
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which given the right one, can account for DM. The SM group is then extended to a
larger symmetry group

G = GSM ⊗GDark, (4.1.2)

where GDark is some symmetry group whose particle content does not interact electromag-
netically. Physics that is unaffected by electromagnetism are bestowed their own sector,
the dark sector. The new gauge group may be a single group or the product of several
groups. If the gauge-theoretic picture of particles is correct, then the particle content of
the universe should be contained in G. The obvious problem, however, is that there are
no clues for what GDark is. In particular, it would be extremely obnoxious if, for example,
the dark sector is described in terms of the symmetry group

GDark = SU(100), (4.1.3)

as the 1002 − 1 = 9999 generators would imply 9999 gauge bosons and some rather long
sums. Although entirely possible that the dark sector is described by a high-dimensional
group, any sensible person would start by exploring the simple solutions, the familiar
U(1)’s and the SU(2)’s. The former sentence may be thought of as a group-theoretic
version of Occam’s Razor: “Entities should not be multiplied without necessity”. I.e. the
simplest solution is often the best.

For a dark sector to be of interest, it must somehow yield predictions that are ob-
servable through the physics of the SM. If not, then the only footprint it leaves on the
universe is gravitational, which cannot be used to probe quantum properties of the par-
ticles inhabiting the dark sectors. In the following discussion, DM is used as a collective
measure for all particles belonging to dark sectors. In a particle physics setting, inter-
actions between dark sectors and the SM can be visualized through various Feynman
diagrams. Depending on the particle content of the dark sector, several of the following
pseudo-Feynman graphs illustrated in Figures 4.1, 4.2, 4.3 may be used to detect DM. In
all Feynman graphs, time is taken to move from left to right.

DM

SM DM

SM

Figure 4.1: Scattering

DM

DM SM

SM

Figure 4.2: Indirect

SM

SM DM

DM

Figure 4.3: Collider method

Figure 4.1 illustrates the most straightforward method of discovering dark physics, it
represents scattering of a DM particle with a SM particle; direct observation. Apart from
the apparent simplicity of direct searches, they suffer two main drawbacks. First, the
lack of direct observations of DM restricts the coupling to the SM to be small; DM needs
to be weakly interacting. Secondly, it requires a region of the universe that is dense in
DM, something the solar system is not. Hence, direct searches require cosmological data,
which are famously plagued with large uncertainties. This is due to the large number of
interactions that take place from a particles inception in some far-away galaxy until it
interacts in a detector at Earth. However, the precision is only getting better.
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Figure 4.2 illustrates indirect searches. If DM is charged under some symmetry group
it can interact with itself and hence annihilate. If the particle created in a DM annihilation
can further decay into SM particles, then these may be detected and studied to reveal the
invariant mass of the decaying particle. If the invariant mass is incompatible with SM
particles, a discovery is made. However, this method suffers from the same drawbacks as
direct searches.

Figure 4.3 illustrates how DM can be probed in detectors. From a precision stand-
point, the collider method is greatly preferred for the simple reason that the environment
can be controlled. Colliders provide vast amounts of data from experiments, in which the
key to understanding DM may already lay. Of course, reality is more complicated than
summarized in the previous sentences, and all experimental data require proper analysis
subject to a model, which yields statistical confidence of varying degree bases upon the
data provided. This is why a large subset of papers on particle physics is titled as a
permutation of “Search for X at experiment Y at energies Z”. Here, X is a signal, a
collective measure of either a particle or a prediction from theory. There is, however,
a fundamental drawback to collider searches; the centre-of-mass energy. At the time of
writing this thesis, the largest centre-of-mass energy achieved is 13TeV at the LHC at
CERN. The problem is apparent, if the masses of DM particles are larger than the energy
scale of colliders, it cannot be probed as pictured in the last Feynman diagram Figure
4.3. The non-observation of DM may indicate that the DM mass scale is beyond present
collider energies, in this case, the only way to probe DM is through cosmological events,
or larger accelerators. Limited to Earth, however, the latter may not be realistic.

These arguments are general and apply to all generic DM models, as they rely on
model-independent arguments. Dark sectors do not, however, have to be high-energy
phenomena. As will be clear from the next section, there is a low-energy phenomenon in
the neutrino sector which may hint towards dark sectors.

4.2 Short baseline neutrino anomalies
Recall that the neutrino flavour transition amplitude (3.3.6) is oscillating with frequencies

Φij =
∆m2

ijL

2E
. (4.2.1)

For oscillations to occur, the oscillation frequency must be comparable to unity or
larger. For smaller values, oscillations are essentially frozen in place as they have not had
enough time to develop. Thus, the baselines for which solar and atmospheric oscillations
are relevant are of order

Lsol &
E

∆m2
sol

≈ 50km
E

MeV
, Latm &

E

∆m2
atm

≈ 1km
E

MeV
. (4.2.2)

For shorter distances than these, any deviations in neutrino beams cannot be solved by
solar and/or atmospheric neutrino oscillations. A convenient location to place a detector
to measure properties of neutrinos is, well, right beside a source. Limited to Earth, these
sources are mainly nuclear power plants and particle colliders, as converting mass to
energy in a power plant releases a large flux of neutrinos through beta decay of heavy
nuclei. For colliders, a smart choice to place a neutrino detector is besides a potent muon
beam. Neutrinos produced in power plants are called reactor neutrinos and they typically
lay either a couple of meters away from the core up to some kilometres.
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4.2.1 The liquid scintillator appearance anomaly

The liquid neutrino detector (LSND) at Los Alamos National Laboratory was an experi-
ment measuring the anti-neutrino oscillations νµ → νe and they detected an excess in the
number of electron anti-neutrinos in the muon anti-neutrino beam [41] at 3.8σ. Today
this is known as the LSND anti-neutrino anomaly, LSND anomaly for short. To follow
up on the LSND anomaly, the MiniBooNE short-baseline (SBL) [32,42] experiment mea-
sured neutrino fluxes at comparable baselines. They also found an excess in anti-electron
neutrinos with respect to the standard three flavour predictions at 4.8σ. Seeing that these
experiments are in strict tension with ordinary oscillation predictions, the anomalies can
be remarkably well solved with the addition of a new, independent mass splitting

∆m2
SBL ∼ 1eV2, (4.2.3)

which is much larger than both the solar and the atmospheric mass splittings. Hence,
the SBL mass splitting requires a fourth mass eigenstate at the eV-scale! There is a
subtlety to this new eigenstate, it cannot be an active state due to constraints from the
invisible decay of the Z boson, which is only compatible with three active neutrinos [43].
Therefore, the fourth eigenstate implies that the fourth flavour neutrino is sterile, i.e. a
SM singlet. Models which consider an additional sterile neutrino are collectively called
3 + 1 active-sterile neutrino models, or simply 3 + 1 models. Calling the fourth neutrino
sterile is slightly wrong, as it does interact with the other neutrinos through oscillations.
Thus, some papers may refer to the fourth neutrino as mostly-sterile or some variation
thereof. However, this thesis will refer to the fourth flavour neutrino as sterile when no
particular model of the fourth neutrino is considered.

4.2.2 The reactor disappearance anomalies

Neutrino experiments rely on counting the number of neutrinos that hit the detector per
time unit and comparing that number to the expected number. This expected number
is called the neutrino flux and is a construct of many quantities; baseline, energy, the
efficiency of the detector, cross-sections, decay rates and more. The latter two are de-
pendent on the specific interactions between the heavy nuclei used in the reactor, which
is usually isotopes of uranium and plutonium, which requires knowledge of the nuclear
matrix element. This is notoriously difficult and leads to moderate theoretical uncertain-
ties. The reactor antineutrino anomaly [44] was unearthed in 2011 following the updated
Huber-Mueller flux calculation [45, 46] of the νe flux from nuclear reactors. Before the
Huber-Mueller prediction, the measured flux was within that of earlier theoretical predic-
tions. However, the Huber-Mueller calculation showed that the predicted flux should be
3% larger than previously assumed. Hence, from the point of the Huber-Mueller calcula-
tion, there is a deficit to the number density of νe emitted from reactors, which cannot
be attributed to active-active neutrino oscillations. The observed deficit can, however, be
explained by νe oscillating into a sterile state while propagating from the nuclear reactor
to the detector. Tangential to the reactor antineutrino anomaly, the Gallium anomaly [47]
is the observed deficit in the flux of νe measured from radioactive Gallium sources. These
phenomena may be attributed to the disappearance of νe due to oscillations into sterile
states. For an overview of the Gallium anomaly in terms of 3 + 1 active-sterile oscil-
lations see [48], in which they conclude that the deficit is compatible with an eV-scale
sterile neutrino.
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4.2.3 The SBL transition probability

The LSND, MiniBooNE and the reactor anomalies are collectively referred to as short
baseline experiments. The first two constitute SBL appearance experiments, while the
reactor anomalies govern SBL disappearance experiments. This distinction will be made
clear shortly.

Having discussed the SBL anomalies, it is of interest to derive an expression for the
transition probability subject to the SBL condition

Φ4j ∼ 1, Φij � 1, (i, j) ∈ (1, 2, 3). (4.2.4)

This states that for short baselines, the oscillatory phases corresponding to active-active
neutrino oscillations have not yet developed. Due to the hierarchy of oscillation frequen-
cies, it is possible to approximate all active-sterile frequencies as equal, that is

Φ41 ≈ Φ42 ≈ Φ43 ≡ Φ, (4.2.5)

which enables the transition probability (3.3.6) to be expressed as

PSBL (να → νβ) =

∣∣∣∣∣∑
k≤3

U∗
αkUβke

−iΦk1 + U∗
α4Uβ4e

−iΦ

∣∣∣∣∣
2

. (4.2.6)

Following the assumption that the active-sterile oscillation frequencies are frozen at
the relevant baselines and using unitary of the mixing matrix

∑
k U

∗
αkUβk = δαβ, the

effective SBL transition probability reads

PSBL (να → νβ) '
∣∣δαβ − U∗

α4Uβ4 + U∗
α4Uβ4e

−iΦ
∣∣2 . (4.2.7)

Expanding the square modulus, the SBL transition probability yields

PSBL (να → νβ) = δαβ − δαβUα4U
∗
β4

(
1− eiΦ

)
− δαβU

∗
α4Uβ4

(
1− e−iΦ

)
+|Uα4|2|Uβ4|2

(
eiΦ − 1

) (
e−iΦ − 1

)
.

(4.2.8)

Neutrino oscillation experiments are classified into two classes:

1. Appearance experiments: These are experiments where the goal is to observe
a different flavoured neutrino than originally produced, e.g. the appearance of
electron neutrinos in a muon neutrino beam. Appearance experiments require να →
νβ : α 6= β.

2. Disappearance experiments: This type of experiment searches for deficits in the
number density of a neutrino flux as a function of propagation distance. It is a
measure of the likelihood that a given flavour neutrino will oscillate into the same
flavour, hence disappearance experiments require να → να.

In the former case, observing a different flavour neutrino means that all terms propor-
tional to the Kronecker delta vanish. Using elementary properties of complex numbers
and some trigonometric relations, the SBL appearance transition amplitude can be writ-
ten as
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PApp
SBL (να → νβ) = 4|Uα4|2|Uβ4|2 sin2

(
Φ

2

)
= 4|Uα4|2|Uβ4|2 sin2

(
∆m2

41L

4E

)
. (4.2.9)

For disappearance experiments, it is similarly straightforward to show that the tran-
sition amplitude is given by

PDis
SBL (να → να) = 1− 4|Uα4|2

(
1− |Uα4|2

)
sin2

(
∆m2

41L

4E

)
. (4.2.10)

It is noteworthy that the constant term in both of these expressions relies solely on
the elements of the last column of the mixing matrix. That is, the amplitude of SBL
oscillations are fully determined by how much the flavour states couple to the fourth mass
eigenstate. Furthermore, only the square modulus of mixing matrix elements enter the
transition probabilities. Thus, SBL transition probabilities are insensitive to any possible
CP violation in the neutrino sector, both Dirac and Majorana phases. For completeness,
it is worth remarking that the coefficients in front of the oscillatory terms are often
interpreted as effective mixing angles, conventionally defined as

sin2 2θαβ ≡ 4|Uα4|2|Uβ4|2, sin2 2θαα ≡ 4|Uα4|2
(
1− |Uα4|2

)
. (4.2.11)

The SBL transition amplitudes were derived under the assumption that only one
mass splitting is relevant while the others can be approximated as static. Following the
same steps as outlined in this section, one can apply these arguments to the three flavour
scenario. In this case, there is a hierarchical mass splitting

|∆m21| � |∆m31| ≈ |∆m32|, (4.2.12)

which for oscillation frequencies

Φ31 ≈ Φ32 ∼ 1, Φ21 � 1, (4.2.13)

yield the atmospheric baseline transition probabilities

PApp
Atm (να → νβ) = 4|Uα3|2|Uβ3|2 sin2

(
∆m2

31L

4E

)
. (4.2.14)

Similar modifications yield the atmospheric disappearance transition probability. Again,
the transition probabilities are only dependent on the last column (now the 3× 3 matrix
PMNS matrix), which are measures of the flavour eigenstates couplings to the third mass
eigenstate.

4.2.4 Appearance-disappearance tension

The eV-scale sterile neutrino needed to account for the short baseline anomalies neces-
sarily imply that other experiments should be seeing the effects of the sterile neutrino as
well. In particular, the active-sterile mixing angles needed to account for the appearance
experiments are in strict tension with non-observations of disappearance experiments [49].
With more data, the overlapping regions between appearance and disappearance exper-
iments have shrunk and the trend points towards alternative explanations for the SBL
anomalies. However, the current situation is evolving and will remain unclear until more
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experiments are performed and more data is collected. In particular, until future experi-
ments have been conducted with similar parameters as the LSND and MiniBooNE, the
final word is left unspoken.

If the appearance signals cannot be reconstructed by future experiments, the 3+1
model will be excluded as a solution to the SBL anomaly, but not as a theory of its
own. In that case, one could always say that the active-sterile mixing angle is small, and
therefore it has not been discovered yet. Either way, the only way forth is to continue
searching and continuously testing the model. Even though the 3+1 model may not
suffice for SBL anomalies, the theory can certainly be adapted to other problems. In
particular, the methods devised in the rest of the thesis apply to dark sectors where the
neutrino portal is open. This will be discussed in Section 5.3.

4.3 Mixing in general 3+1 neutrino models
The recently introduced SBL anomaly has sparked great interest in neutrino physics and
sterile neutrinos, which naturally has led to several different models on sterile neutrinos.
Before delving into a specific model, it is important to cover the accessible parameter space
which a general 3+1 model provides. That is, to put model-independent constraints on
3+1 mixing. First of all, a fourth neutrino necessarily implies that the 3×3 PMNS matrix
is no longer unitary, as the mixing matrix is now a 4× 4 matrix, which generally implies
active-sterile neutrino mixing. In the 3+1 model, flavour eigenstates are now related to
the massive states by 

νe
νµ
ντ
νs

 =


Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us1 Us3 Us4



ν1
ν2
ν3
ν4

 , (4.3.1)

where νs is the fourth flavour neutrino, the subscript refers to it being sterile. The
elements of the last column of the mixing matrix are measures of how much the flavour
neutrinos couple to the fourth eigenstate. General considerations of the success of three
flavour neutrino oscillations yields the generic bounds

|Uα4| . 0.1, |Us4| ≈ 1, α ∈ (e, µ, τ). (4.3.2)

From unitarity of U it also follows that the sterile neutrino is mostly composed of the
fourth mass eigenstate. Theoretically, there is, however, no reason to restrain neutrino
mixing to only one sterile state. The arguments above apply identically when ns sterile
states are included. However, by adding ns sterile states, the number of elements of
the mixing matrix scales as n2

s. Therefore, recalling Occam’s Razor, the 3 + 1 case is
the main focus of both this thesis and most papers on active-sterile neutrino mixing.
Furthermore, although the SBL anomaly hints towards eV-scale sterile neutrinos, the
mixing matrix is oblivious to the masses of sterile neutrinos, it is just a mathematical
relation. Hence, adding a new sterile neutrino to the mix does not fix a certain mass
scale of the new massive state. The mass scale is rather an auxiliary constrain to the
model at hand. Having said that, the SBL mass scale is of the largest phenomenological
interest. The umbrella of models which consider either SBL mass scales or somewhat
larger ones are called light sterile neutrino models. As a general rule in physics, the
definition of an adjective such as e.g. light or high, are vague at best and is better used
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as a relative measure within given models11. For a comprehensive review on the recent
status of eV-scale neutrinos in the 3 + 1 model, the reader is referred to [50].

5 Sterile neutrinos from a dark sector
The SBL anomaly is a powerful probe towards BSM physics and possible dark sectors. If
the 3+1 neutrino hypothesis is correct, a mechanism for the creation of the sterile neutrino
is required. The simplest solution is that at least one of the right-chiral neutrinos has
a mass at the eV-scale, which is still sufficiently heavy enough to generate light, active
neutrinos through the see-saw mechanism [51]. Although this is the most straightforward
approach, nominating a right-chiral neutrino to serve as the eV-scale sterile neutrino
requires a large hierarchy within both the Dirac mass matrix and the singlet mass matrix.
Take the Dirac mass matrix which is generated by the BEH mechanism as an example,
to respect constraints on active-sterile mixing within the aforementioned model, elements
of the Dirac mass matrix span over ten orders of magnitude [51]. The large hierarchy
between neutrino Yukawa couplings and the rest of the SM Yukawa couplings is the
reason why Majorana masses are considered in the first place, so even though 3 + 1
mixing can be explained this way, it does not answer the question of why the neutrino
Yukawa couplings are so small.

Another method of constructing eV-scale sterile neutrinos is to conjecture that their
origin is attributed to a dark sector. If the dark sector is capable of generating particle
masses and does not directly couple to the SM, then the fermions of the dark sector may
be responsible for the SBL anomaly through neutrino mixing and hence act as a portal
to new physics!

5.1 The particle content of a minimal, Abelian, dark sector
Consider an Abelian dark sector U(1)X , where X is the charge of the new group. The
group is endowed with a fermion νs and a mediator X, which is a vector field. To yield
particle masses, the group contains a complex scalar ϕ, inhabiting a Higgs-like potential
which is spontaneously broken below a critical temperature. Lastly, to obtain a non-
anomalous theory, a secondary fermion ν ′s with opposite U(1)X charge of νs is added.
The terminology of dark neutrinos and dark fermions is reserved for the new fermions.
The former will mainly be used. These newly introduced particles are defined to transform
as singlets under the SM symmetry group, while SM particles are taken to transform as
singlets under U(1)X . The right-chiral neutrinos are taken as gauge-singlets under both
groups. The enlarged symmetry group of interest is given by

G ≡ GSM ⊗ U(1)X . (5.1.1)

Particles that do not transform under G are defined as singlets. Let the charge of U(1)X
in units of X be denoted gx, the charges of all relevant particles are given in Table 5.1

The remaining unspecified field content in Table 5.1 is the following; Li are the lepton
doublets, eRi are the right-chiral charged leptons, N i are the right-chiral neutrinos and

11In general relativity, the gravitational field of the Sun is weak, which of course in the grand picture,
it is. But to e.g. someone learning the subject for the first time, it appears as a somewhat obscure
statement.
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Li eRi N i νs ν ′s ϕ H
SU(2)L 2 1 1 1 1 1 2
U(1)Y −1/2 -1 0 0 0 0 1/2
U(1)X 0 0 0 1 -1 -1 0

Table 5.1: Table of charges for the selected particles under the relevant symmetry groups.
All particles listed in this table transform as singlets under SU(3)C .

H is the Higgs doublet. The assumption that the new particles are massive is realized
by considering the scalar potential

V (ϕ) = −µ2
ϕϕ

†ϕ+ λϕ(ϕ
†ϕ)2, (µ2

ϕ, λϕ) > 0, (5.1.2)

which has a non-zero vacuum expectation value

vϕ ≡ 〈ϕ〉 =

√
µ2
ϕ

λϕ
. (5.1.3)

The relevant Lagrangian can be split into three parts; the kinetic terms, the interaction
terms and the mass terms. The latter one is defined as the terms which, after symmetry
breaking, includes the mass terms. The kinetic Lagrangian is given by

L ⊃ iνs/∂νs + iν ′s/∂ν
′
s + iN /∂N − 1

4
XµνX

µν + (∂µϕ)
†(∂µϕ), (5.1.4)

where Xµν is the bosonic field strength tensor. Qualitatively, these kinetic terms describe
the motion of free fermions, a vector boson and a scalar boson.

5.2 The bosonic portals
The interaction terms include both the dark scalar potential and the Higgs potential along
with the rest of the relevant interactions, which are given by the interaction Lagrangian

−L ⊃ V (ϕ)+V (H)+gxνsXµγ
µνs−gxν ′sXµγ

µν ′s+λϕH(ϕ
†ϕ)(H†H)+

ε

2
XµνB

µν . (5.2.1)

The last two terms in this Lagrangian couple U(1)X to the SM and are called portals.
Noteworthy, scalar mixing inevitably mixes the Higgs doublet with the dark scalar which
opens up the Higgs portal, a gateway to dark physics enabled by the Higgs doublet. To
respect the observed decay channels of the Higgs, the portal must be somehow suppressed.
As discussed in [52], low mixing can be achieved if there is a large hierarchy between the
induced vevs. In particular, if the Higgs vev is taken to be much larger than the dark vev

〈H〉 � 〈ϕ〉, (5.2.2)

then [52] predicts that constraints from LHC data should be well within the model capa-
bilities. The last term in the interaction Lagrangian is called kinetic mixing, which allows
the hypercharge boson Bµ to mix with the dark scalar Xµ. The hypercharge boson is
related to the photon and Z through the Weinberg angle. Thus, kinetic mixing acts as a
portal to the dark sector, proportional to the dimensionless coupling ε. A large value of ε
would open the decay channel Z → XX, which is constrained by the invisible decay of Z,
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on the condition that it is kinematically accessible. Therefore, the kinetic mixing needs to
be suppressed, similar to the Higgs portal mentioned previously. A subtle consequence of
kinetic mixing is that particles charged under U(1)X with zero electric charge (Qe = 0),
will acquire a minuscule effective electric charge [53]

QEff
EM = −εgx

e
Qx. (5.2.3)

Both the dark scalar and the dark neutrinos will obtain such an effective electric
charge due to kinetic mixing. If ε is a large number (ε ∼ 1), then the dark sector would
not be as dark as required from non-observations of additional dark sectors. Therefore,
the kinetic mixing coefficient ε is required to be small, hence the terminology minuscule.
From cosmological observations of effective minuscule charges, one can deduce an upper
bound on kinetic mixing from a broken U(1), given as [53]

ε . 10−14 e

gx
, for mX . 10keV. (5.2.4)

Such a small number for a dimensionless coupling is unnatural and hints towards
additional new physics to describe the apparent smallness, see e.g. [54] for a discussion
on how to suppress kinetic mixing. The bound on kinetic mixing and more precisely, the
bound on the mediator mass coincides nicely with the hierarchy of vacuum expectation
values 〈ϕ〉 � 〈H〉. To showcase this, consider the mass Lagrangian

− L ⊃ g2xϕ
†ϕX†

µX
µ + YνNH̃

†LL + YsNϕνs + Y ′
sNϕ

†ν ′s +
1

2
MRNN

c + h.c, (5.2.5)

where Yν is the matrix of active Yukawa couplings, Ys and Y ′
s are vectors of dark Yukawa

couplings, and MR is the Majorana mass matrix. After both EW and U(1)X symmetry
breaking, the following mass terms appear in the Lagrangian

−L ⊃ 1

2
g2x〈ϕ〉2X†

µX
µ +

1√
2
〈H〉YνNνL +

1√
2
〈ϕ〉YsNνs +

1√
2
〈ϕ〉Y ′

sNν
′
s +

1

2
MRNN

c + h, .

(5.2.6)
from which the dark vector boson mass is given by

mX = gx〈ϕ〉. (5.2.7)

If the dark sector is broken at the MeV-scale and gx . O(10−2), then both the bosonic
portals are suppressed, leaving the sector as dark as required by observations.

5.3 The neutrino portal
There is a third way to peek into the physics of the dark sector; the neutrino portal.
This portal is enabled by the non-diagonal matrix structure of the enlarged mass term
M̃, constructed by combining all neutrino mass terms into a single matrix. The Yukawa
Lagrangian consists of three Dirac terms (Yν〈H〉, Ys〈ϕ〉 and Y ′

s 〈ϕ〉) and one Majorana
term MR, the latter can be shown to be symmetric, while the Dirac terms do not share this
feature. In general, the number of singlets is unconstrained, but for numerical simplicity,
the number of singlets is chosen equal to the number of light neutrinos. In doing so the
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mass matrices are square. In analogue to the discussion on Majorana masses, the mass
terms can be combined into a single 10× 10 matrix M̃, acting on the vector

ΨT ≡
(
νe νµ ντ νs ν ′s N c

1 N c
2 N c

3 N c
4 N c

5

)
, (5.3.1)

to yield the combined Majorana mass Lagrangian

LMass = −1

2
ΨcM̃Ψ+ h.c. (5.3.2)

The enlarged mass matrix is given in terms of 5× 5 blocks as

M̃ =

(
0 MT

D

MD MR

)
, (5.3.3)

where the Dirac mass matrix is extended to include both the SM term as well as the dark
sector Dirac terms, explicitly

MD =
1√
2


ye1〈H〉 yµ1〈H〉 yτ1〈H〉 ys1〈ϕ〉 ys′1〈ϕ〉
ye2〈H〉 yµ2〈H〉 yτ2〈H〉 ys2〈ϕ〉 ys′2〈ϕ〉
ye3〈H〉 yµ3〈H〉 yτ3〈H〉 ys3〈ϕ〉 ys′3〈ϕ〉
ye4〈H〉 yµ4〈H〉 yτ4〈H〉 ys4〈ϕ〉 ys′4〈ϕ〉
ye5〈H〉 yµ5〈H〉 yτ5〈H〉 ys5〈ϕ〉 ys′5〈ϕ〉

 . (5.3.4)

The Dirac matrix is constructed such that each column is a measure of each light
neutrinos (να, νs, ν

′
s) coupling strength to each singlet. Conversely, the rows of the Dirac

matrix are measures of how much each singlet couples to the light neutrinos. To constrain
the Higgs portal and kinetic mixing to be compatible with observations, a hierarchy on
the vevs had to be imposed. As the Higgs vev is much larger than the dark scalar vev,
the Dirac matrix will generally take on a hierarchical form, where elements of the last two
columns are much smaller than elements of the other columns, given that the Yukawa
couplings are not too different. The combined mass matrix can be block diagonalized
completely analogous to the three-neutrino case, by the see-saw mechanism. The goal is
to deduce the structure of neutrino mixing and masses, which amounts to solving for the
eigenvalues of a complex 10× 10 matrix, where all entries are unknown. At first glance,
this is a total of 200 free parameters. However, this number is much less due to symmetry
arguments, but still rather large.

5.4 Parameter filtering
To restrict the number of parameters, one of the dark neutrinos is assumed to be decou-
pled from the remaining light spectra. This can be motivated by the following arguments;
the vast majority of active-sterile oscillation studies are limited to a 3+1 mixing scenario
as the addition of several sterile neutrinos (3+Ns) have the same qualitative effects [55].
See e.g. [56] for a comparison between a 3+1 and a 3+2 global fit. It also boils down to
what the desired outcome is: For example, nothing is preventing the newly added U(1) to
include N pairs of dark fermions. If all of these are massive, then then the Dirac matrix
is (3 +Ns +NN)

2 dimensional, where Ns is the number of dark fermions and NN is the
number of singlets. However, this is too general to be of use. Invoking Occam’s razor, the
number of dark neutrinos is taken to be a single pair, where half of this particle duo, say
ν ′s, is assumed to have negligible mixing with the active neutrinos. There are two ways
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to make this happen. The mass of ν ′s can be significantly larger than the eV-scale, which
would make it unable to account for the SBL mass splitting. If that is the case, it may be
integrated out. The other possibility is that it simply does not mix much with the rest
of the light neutrinos. The extreme case of this latter statement occurs whenever ν ′s is
decoupled from the other light neutrinos, equivalent to the following Dirac mass matrix
structure

MD =
1√
2


ye1〈H〉 yµ1〈H〉 yτ1〈H〉 ys1〈ϕ〉 0
ye2〈H〉 yµ2〈H〉 yτ2〈H〉 ys2〈ϕ〉 0
ye3〈H〉 yµ3〈H〉 yτ3〈H〉 ys3〈ϕ〉 0
ye4〈H〉 yµ4〈H〉 yτ4〈H〉 ys4〈ϕ〉 0

0 0 0 0 ys′5〈ϕ〉

 . (5.4.1)

This matrix structure describes four light neutrinos coupling and mixing with four sin-
glets. In addition, there is a light neutrino, decoupled from the rest of the light neutrinos,
which only couples to one singlet. The working scenario for this thesis will assume that
the fifth light neutrino can be ignored.

With the second dark neutrino out of the picture, the combined mass matrix is now
an 8× 8 complex matrix. The low-energy observables constitute six mixing angles, four
masses, three Dirac phases and three Majorana phases for a total of 16 observables.
Therefore, there is bound to be a large degree of redundancy if all 128 parameters are
to be applied, whether in a parameter scan or some other procedure. Fortunately, this
number can be severely reduced. From the block structure of the symmetric mass matrix
M̃, the two upper blocks add no new information, which cuts the number of parameters
in half. Furthermore, the symmetric, singlet Majorana matrix MR can be chosen real and
diagonal without any loss of generality. To prove this, note that any symmetric, complex
matrix can be diagonalized by a unitary matrix W

W TM̃RW =MR = diag(M1, . . . ,MN), (5.4.2)

where Mi are real and positive. In field theory language, such a diagonalization amounts
to a basis rotation of N

N → WN, N → NW †, N c → N cW T , (5.4.3)

where the latter two follow directly from the first. Basis transformations are only physical
if the Lagrangian changes under the transformation. The only term in the Lagrangian
sensitive to choosing a real, diagonal singlet basis, is the singlet kinetic term, which
transforms as

L ⊃ iN /∂N → iNW †/∂WN = iN /∂N. (5.4.4)

As the Lagrangian is unchanged under the singlet basis transformation, one can there-
fore consider a real, diagonal singlet matrix without any loss of generality. Note that by
performing the above basis rotation, there is no more freedom left in the singlet basis.
Recounting free parameters in M̃, there are 32 from the Dirac matrix and four from
the singlet Majorana matrix, for a total of 36, which is more than enough. In complete
generality, this is the minimum number of parameters needed to describe the neutrino
mixing at hand. However, the anomaly which sparked the discussion on sterile neutri-
nos, leading to introducing dark neutrinos, were the SBL anomalies. Recall that the
SBL transition amplitude only depends on the magnitude of mixing matrix elements, e.g.
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|Ue4|2. As SBL experiments cannot probe possible CP-violating phases, it is justifiable to
consider real, orthogonal mixing matrices, which implies that Yukawa couplings can be
taken as real numbers. To illustrate this point, recall that the light neutrino mass matrix
is diagonalized by the mixing matrix

UTMlightU = −1

2
UTMT

DM
−1
R MDU = diag(m1,m2,m3,m4), mi ≥ 0, (5.4.5)

where, by assumption, U and MR are real. Pathologically, there might be some extreme
level of cancellation which removes all possible complex numbers arising from the Dirac
matrix when summed through in the matrix product. However, this seems very unlikely
and would require significant fine-tuning. Therefore, the choice of a real mixing matrix
coincides with restricting the spectrum of Yukawa couplings to real numbers. These
assumptions will be used in upcoming sections discussing the impact of dark neutrinos
on neutrino mixing and neutrino masses.

6 1+1 Active-sterile neutrino mixing

6.1 Explicit expressions for 1+1 mixing
The simplest case showcasing qualitative effects of neutrino mixing is the 1 + 1 mixing
scenario, interpreted as mixing one active neutrino with the dark neutrino. There is still
the ambiguity of how many singlets to include, as the number of singlets is unconstrained.
Therefore, it is useful to define the terminology 2νnN mixing as the mixing configuration
including one active neutrino, one dark neutrino and n singlets. The first step is to
consider 2ν1N , which is the simplest configuration in which the see-saw mechanism can
be applied. In the basis (να, νs, N1), the mass matrix is given by

M̃ =

 0 0 yα〈H〉
0 0 ys〈ϕ〉

yα〈H〉 ys〈ϕ〉 M1

 , (6.1.1)

which up to trivial field redefinitions to account for the possible wrong signs, is given by
the see-saw formula yields the light neutrino mass matrix

Mlight = −MT
DM

−1
R MD =

1

2M1

(
y2α〈H〉2 yαys〈ϕ〉〈H〉

yαys〈ϕ〉〈H〉 y2s〈ϕ〉2
)
. (6.1.2)

The eigenvalues of this matrix are straightforward to compute using the characteristic
equation, and since the square of the off-diagonal elements equals the product of the
diagonal elements, the eigenvalues are given as

λ1 = m1 = 0, λ2 = m2 = Tr(Mlight). (6.1.3)

The fact that one of the masses is vanishing means that 2ν1N cannot be used as an
effective model of neutrino mixing unless applied to the special case in which the lightest
active neutrino is massless. Proceeding, the next natural step is to consider 2ν2N , which
has the following mass matrix (in the (να, νs, N1, N2) basis)
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M̃ =


0 0 yα1〈H〉 yα2〈H〉
0 0 ys1〈ϕ〉 ys2〈ϕ〉

yα1〈H〉 ys1〈ϕ〉 M1 0
yα2〈H〉 ys2〈ϕ〉 0 M2

 , (6.1.4)

which by the see-saw formula yields the light neutrino mass matrix

Mlight =
−1

2M1M2

(
y2α1〈H〉2M2 + y2α2〈H〉2M1 yα1ys1〈ϕ〉〈H〉M2 + yα2ys2〈ϕ〉〈H〉M1

yα1ys1〈ϕ〉〈H〉M2 + yα2ys2〈ϕ〉〈H〉M1 y2s1〈ϕ〉2M2 + ys2〈ϕ〉2M1

)
.

(6.1.5)
This matrix is real and symmetric. Therefore, it can be diagonalized by an orthogonal
matrix U ∈ O(2), parametrized in terms of a single mixing angle θ, by the following
matrix

U =

(
cos θ sin θ
− sin θ cos θ

)
. (6.1.6)

In cases where the light mixing matrix is a simple, symmetric, two-dimensional matrix,
one can obtain an explicit expression for the mixing angle. In particular, by writing out
the matrix product UTMlightU and demanding zero off-diagonal elements, the mixing
angle can be expressed as (the superscript on the light mass matrix refers to components
of the matrix)

tan 2θ =
2M12

light

M22
light −M11

light
=

2yα1ys1〈ϕ〉〈H〉M2 + 2yα2ys2〈ϕ〉〈H〉M1

y2s1〈ϕ〉2M2 + y2s2〈ϕ〉2M1 − y2α1〈H〉2M2 + y2α2〈H〉2M1

.

(6.1.7)
The mass eigenstates are the diagonal entries of UTMlightU , given in terms of the

mixing angle as the linear combinations as

m1 = cos2 θM11
light − 2 sin θ cos θM12

light + sin2 θM22
light

m2 = sin2 θM11
light + 2 sin θ cos θM12

light + cos2 θM22
light

(6.1.8)

6.2 Small active-sterile mixing
From the vev hierarchy, it is not hard to see that for Yukawa couplings of the same order
(yαi ∼ ysi), that the term which is quadratic in the Higgs vev is dominant. In fact, under
this assumption, the mixing angle reduces to

tan 2θ ≈ 2θ ≈ −2〈ϕ〉
〈H〉

, 〈ϕ〉 � 〈H〉, (6.2.1)

which is just the ratio of the vevs. This is the “vanilla” case of active-sterile neutrino
oscillation and applications of this to other models involving a broken U(1) is discussed
briefly Section 6.5 Noteworthy, the singlet mass dependence cancels under the assumption
that Yukawa couplings are similar. Thus, this result will hold for any configuration of
the singlet mass scales when Yukawa couplings are similar. As the dark sector is broken
at a much lower scale than the EW sector, the mixing is very small. The active-sterile
neutrino transition probability is quadratic in the mixing angle, which means that the
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effects are unobservable. For numerical purposes, consider the recurring example where
the dark sector is broken at the MeV-scale (〈ϕ〉 = 1MeV), then the transition probability
is proportional to

P (να → νs) ∝
(
〈ϕ〉
〈H〉

)2

< 10−10. (6.2.2)

Although the numerical value obtained here is model specific, the ratio of the EW
vev and the vev of a broken dark sector is a fundamental quantity. The vev ratio defines
the ratio between the SM and the dark sector mass scales, as all particle masses are
directly proportional to these vevs. Interestingly enough, by first assuming that there is
some singlet mass scale that is much larger than both the EW scale and the dark scale,
and then assuming there is a hierarchy between these, a double see-saw mechanism is
realized [57]. To see this more explicitly, performing a first-order expansion of the mixing
matrix in the small angle θ yields

U =

(
1 θ
−θ 1

)
+O(θ2) '

(
1 − 〈ϕ〉

〈H〉
〈ϕ〉
〈H〉 1

)
+O

(
〈ϕ〉
〈H〉

)2

, (6.2.3)

which up to an irrelevant sign on the off-diagonal, is the see-saw matrix B from (3.6.14)

B =

(
1 MT

DM
−1
R

−M−1
D MD 1

)
, MD ∝ 〈ϕ〉〈H〉, MR ∝ 〈H〉2. (6.2.4)

If for some reason the Yukawa couplings to the dark sector are much larger than the
Yukawa couplings to the SM, then the relevant ratio

R =
ys〈ϕ〉
yα〈H〉

, (6.2.5)

might not be small, invalidating the above approach. A schematic visualization of the
double see-saw mechanism is given in Figure 6.1.
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Mass

να

νs

N

Figure 6.1: Illustration of the double see-saw mechanism. Note that mass increases
downwards. N is meant to denote the singlet mass scale which by the standard see-saw
mechanism provides small masses to the light neutrinos. At low-energy where the singlets
are integrated out, a secondary see-saw mechanism is applied as the SM scale is much
larger than the dark scale. If the dark scale is broken at a much higher energy than the
SM scale, then the active and sterile neutrino would switch places on the upper see-saw.
The latter is often used if sterile neutrinos are modeled as a DM candidate.

6.3 Large active-sterile mixing
Having seen that Yukawa couplings of the same order cannot accommodate large mixing
due to the large hierarchy between the vevs, it is of interest to probe the Yukawa struc-
ture needed for large active-sterile neutrino mixing. Large mixing occurs whenever the
denominator in the expression for the mixing angle (6.1.7) is small, which is whenever
the vev-Yukawa ratio R = O(1). To see this, consider maximal mixing, i.e. when the
denominator of (6.1.7) vanishes

M11
light = M22

light. (6.3.1)

In the case of maximal mixing, the masses (6.1.8) reduce to

m2,1 = M11
light ±M12

light. (6.3.2)

If the off-diagonal elements are comparable to the diagonal elements, then this approach
will yield m1 close to zero and m2 similar to two times each matrix element, comparable
to the case of (2ν, 1N) mixing. Due to the structure of the light mass matrix, maximal
mixing can only occur if

ys ∼
〈H〉
〈ϕ〉

yα. (6.3.3)

The finer structure between mass and mixing is determined by the interplay between the
Yukawa couplings.
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To further probe the structure of active-sterile mixing, a Monte-Carlo Markow-Chain
(MCMC) parameter scan is performed. The MCMC method of choice is the Metropolis-
Hastings algorithm (MHA), which is explained in the Appendix. The scan is performed
in the four-dimensional Yukawa space Y = span{yα1, yα2, ys1, ys2} for fixed values of the
singlet masses. That is, the singlet mass scale is taken as a scaling factor to obtain the
desired values of light neutrino masses. For simplicity, the largest active neutrino mass is
chosen, as it constrained by both the atmospheric mass splitting and the sum of neutrino
masses. In the following discussion, let mα be the mass of the active neutrino. Rewriting
the expression for the sum of neutrino masses in terms of the lightest mass (3.4.6) in NO
as a function of the heaviest mass, yields an upper bound on the heaviest mass eigenstate
at mα ≤ 0.0584eV. The lower bound on the heaviest mass eigenstate is obtained through
the atmospheric mass splitting (3.4.2), mα ≥

√
∆m2

atm = 0.050eV.
Furthermore, as large mixing is of interest, the probability distribution function (PDF)

imposed on the mixing angle is chosen as a monotonic function of the absolute value of
the mixing angle. Lastly, although the generic SBL transition amplitude requires a new
mass splitting of one eV2 [50], global fits of active-sterile mixing prefer slightly larger
values. The best-fit value of the SBL mass splitting from two 2019 global analyses is
∆m2

sα = 1.3eV2 [49, 58]. For this reason, a PDF skewed to the right of the generic
eV2-scale mass splitting is considered.

In slight notational violation, the different PDF’s are distinguished based on their
argument. Furthermore, as the Metropolis-Hastings algorithm concerns only the ratio of
PDF’s, normalization constants are irrelevant as they cancel out when taking the ratio.
Therefore, the following PDF’s will not include any normalization factors. The PDF’s
used for the parameter scan are given as

P (mα) =


ε, for mα <

√
∆m2

atm,

1, for
√

∆m2
atm ≤ mα ≤ 0.058eV,

ε, for mα > 0.058eV,

, (6.3.4)

where ε 6= 0 is a small number taken positive to prevent dividing by zero when taking
the ratio of PDF’s. At first, the edges of the PDF for the active mass was taken as
decaying Gaussian distributions. However, when normalizing these to be compatible
with the 2σ uncertainties from global fits of the atmospheric mass splitting and the sum
of neutrino masses, the standard deviation of the Gaussians were of order σ2 ∼ 4× 106.
This resulted is an extremely narrow distribution, which accounting for the step size of
the random walk, is therefore approximated by the sharp cut-off imposed in (6.3.4). As
convergence of the active mass was not an issue, a more elaborate PDF was not chosen.
Proceeding, the PDF for the SBL mass squared difference is given as a skewed Gaussian
distribution

P (∆m2
sα) = G(∆m2

sα;µ, σ)Φ(∆m
2
sα;α), α, µ, σ ∈ R, (6.3.5)

where µ is the mean, σ is the standard deviation and α is the skewness of the distribution.
Further, Φ(∆m2

sα;α) is the cumulative distribution function (CDF) of the Gaussian,
skewed to either the side of the mean by a non-zero value of the skewness parameter α.
A more detailed discussion on skewed Gaussian distributions is given in the Appendix.
Lastly, the PDF for the mixing angle is taken as a linear function in the mixing angle

P (θ) = |θ|. (6.3.6)
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The parameter scan is performed in the subspace defined by the parameter values
defined in the following Tables.

Parameter Range
yα1 10−6 − 10−8

yα2 10−6 − 10−8

ys1 100 − 10−2

ys2 100 − 10−2

Table 6.1: Ranges of
scanned parameters

Parameter Value
α 4
σ 1
µ 1
ε 10−10

Table 6.2: Values of PDF
parameters

Parameter Value
〈H〉 246GeV
〈ϕ〉 10−3GeV
M1 103GeV
M2 103GeV

Table 6.3: Values of phys-
ical parameters

The two observables in SBL experiments are the active-sterile mixing angle and the
mass squared difference. For each successful step of the random walk, the value of the
observables are appended and their posterior distributions are illustrated in Figures 6.2
and 6.3.

Figure 6.2: Histogram of the active-sterile mixing angle θ from the parameter scan.
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Figure 6.3: Histogram of the SBL mass squared difference ∆m2
21 = ∆m2

sα from the
parameter scan.

From Figure 6.2 it is evident that the posterior distribution of the mixing angle is
a Gaussian about a mean value of about 30◦. Notably, the posterior distribution does
not resemble the proposed, linear prior. The posterior distributions are not required to
be equal to the proposed, prior distributions. The prior distributions should rather be
thought of as input, which the MCMC algorithm tries to replicate, if possible. Further,
the PDF imposed on the mixing angle is not particularly strict, that is, for a slight
increase in the mixing angle, the acceptance ratio only slightly increases. If the same
step which increased the mixing moves the SBL difference12 away from the mean, then as
the PDF for the SBL difference is a Gaussian, the acceptance ratio will greatly decrease.
It can be fruitful to think of the strict PDF as the dominant contribution to determining
if a step is taken, and once the strict PDF has settled into a high-density region, then
the less strict PDF’s are allowed to dictate where the walk will continue.

Large mixing is due to the chosen regions of the Yukawa parameters, which include
parts of parameter space where mixing can be maximal. Although a small subset of
the sampled points corresponds to maximal mixing, the scan does not prefer maximal
mixing. This is due to maximal mixing leaving the lightest mass eigenstate zero. Figure
6.3 illustrates that the posterior distribution of the SBL mass squared difference follows
approximately the same skewed Gaussian distribution imposed on the prior distribution
(6.3.5). However, the peak of the posterior distribution is shifted somewhat to the right,
which indicates that the allowed parameter space prefers a slightly larger value of the
SBL mass splitting. The remaining scan specific parameters can be found in Table 6.4.

Steps proposed (n) 50000
Steps accepted 11827

Efficiency 23.7%
Proposal distribution width 0.05

Burn-in period (b) 430

Table 6.4: Scan specific parameters
12The SBL mass squared difference will sometimes be abbreviated by the SBL difference.
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The efficiency of any random walk is inversely proportional to the width of the pro-
posal distribution and the latter should be seen as parameter tuned to reach a particular
efficiency. After reaching the target distribution, the theoretically desired efficiency for
an N-dimensional Gaussian converges to about 23% [59]. The probability distributions
used are not N-dimensional Gaussian, but seeing that there are no other such bounds on
the efficiency on random walks, a 23% efficiency was deemed reasonable. On the note
of convergence, it brings up the last parameter listed in the Table 6.4. A burn-in period
is the removal of the first b elements of the posterior distribution. A burn-in is required
as the random walk is initialized at a random point in the parameter space, which may
not reflect the desired model features. The random walk will eventually reach the target,
but it will take some time before doing so. The sampled points corresponding to the
low-density regions the walk has to traverse to arrive at the target does not encode any
important information. Therefore, these points are removed from the posterior distribu-
tion to obtain better statistics and to remove any unwanted parameter values. There are
no concrete rules for how long the burn-in process is, only general considerations. This
is unless there is a way to figure out when the target distribution is reached. Luckily, for
this particular scan, there is a way to obtain the burn-in length, b. Although not an SBL
observable, the solution to burn-in length can be obtained from the active neutrino mass.
Trace-plots of the active mass versus the number of successful iterations is illustrated in
Figures 6.4 and 6.5.

Figure 6.4: Trace-plot of the active
neutrino mass versus number of suc-
cessful iterations

Figure 6.5: Snippet of the same
trace-plot as Figure 6.4 in the in-
teresting region.

Figures 6.4 and 6.5 illustrate the importance of burn-in periods when dealing with
MCMC algorithms. The first 430 accepted points do not correspond to local maxima
of the distribution. Hence, the burn-in period is taken as b = 430. The mixing angle
enters the transition probability (4.2.8) as sin2 2θ. Hence, the final illustration from this
parameter scan is the scatter plot of this mixing term versus the SBL mass squared
difference, which is illustrated in Figure 6.6.
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Figure 6.6: Scatter plot of the sin2 2θ −∆m2
21 plane from the parameter scan.

From Figure 6.6 one can conclude that there is no particular trend between mixing
and the SBL mass squared difference in the selected part of the Yukawa parameter space.
There seems, however, to be a lower bound on the mixing angle, sin2 2θ & 0.3. Large
mixing is obtained as the parameter space was set up in the vicinity of points where the
vev-Yukawa ratio is of order unity. From the get-go, large mixing was obvious due to
the parameter space boundaries, but that the right masses were also obtainable was not
obvious. This parameter scan illustrates how the model can incorporate potential large,
observable mixing while confining the SBL mass squared difference to the eV2-scale and
the active neutrino within experimental bounds. That is, regions were found where all
observables were within their desired ranges.

6.4 Moderate active-sterile mixing
The former parameter scan illustrated how one could go about locating regions of param-
eter space with large mixing, which is the most interesting scenario. However, regardless
of how interesting a physical theory is, the most important quality a theory can inhabit
is experimental support. To create a bridge between the unobservable, tiny mixing intro-
duced by choosing all Yukawa couplings similar, and the experimentally rejected case of
large, almost maximal mixing, a region somewhere in between these two extremes is of
interest to locate. There are several methods to obtain such a region, but the simplest
in respect to the recently introduced parameter scan is to alter the PDF for the mixing
angle. The previous parameter scan was all about searching for regions of large mixing,
which was attributed to a monotonic PDF in the mixing angle. If instead, the PDF is
chosen as say a Gaussian, then the posterior distribution should be different than the
one from the previous scan. The PDF’s for the mass squared difference and the active
neutrino mass are given by (6.3.5) and (6.3.4), respectively. Consider the following PDF
for the mixing angle, given in degrees for easier visualization,

P (θ) = G(θ;µ = 10, σ = 2). (6.4.1)

In terms of the active-sterile mixing matrix element, this corresponds to |Uα2| = 0.17,
which is comparable to the lowest active-active mixing element |Ue3| = 0.15. The posterior
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distributions subject to burn-in are illustrated in Figures 6.7 and 6.8

Figure 6.7: Histogram of the active-sterile mixing angle from the parameter scan opting
to moderate the mixing angle.

Figure 6.8: Histogram of the SBL mass squared difference from the parameter scan opting
to moderate the mixing angle.

From Figure 6.7 it is clear that the parameter space is too narrow to include mixing
of 10◦. Imposing the Gaussian (6.4.1) has served a qualitative purpose of illustrating
how (slightly over) moderate mixing can be achieved when the parameter space Y is
unchanged. From Figure 6.8, the SBL difference is also shifted slightly to the left with
respect to the prior distribution, although still in approximate agreement. This is likely
due to the boundaries imposed on the parameter space as it was implicitly designed for
large mixing and the singlet masses were chosen based on back-of-the-envelope calcula-
tions for eV-scale sterile neutrinos under the assumption of maximal mixing. A scatter
plot of the mixing versus the SBL difference is illustrated in Figure 6.9.
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Figure 6.9: Scatter plot of the sin2 2θ −∆m2
21 plane from the parameter scan opting for

a moderate mixing.

From Figure 6.9, a new feature is that the mixing is necessarily suppressed to smaller
values due to the PDF imposed on it. Apart from the shift, there is no particular trend
to this scatter plot. There is, however, a confirmation on the lower bound on the mixing
angle obtained from the parameter scan for large mixing. That is, sin2 2θ & 0.25 which
is approximately 15 degrees.

Although a simplification of full 3 + 1 mixing, this section has illustrated several
qualitative features of active-sterile neutrino mixing, which will hold also in the context
of full mixing. The most important is the hierarchical structure of the Yukawa couplings.

6.5 Applications to other models
The elusive dark matter has long troubled the physics community and the particle content
of the dark sector from which dark matter possibly originates is a mystery. Theorists have
been at work devising models and experimentalists have been searching, however, neither
has been successful. In trying to grasp dark matter or to study dark sectors as a whole,
a vast number of models have been constructed. In particular, if the model at hand has
quantum charges, such that the neutrino portal is open, then the general expressions
outlined in this section should be applicable. A common feature of high-energy models
is to assume Yukawa couplings of order unity such that the vev-Yukawa ratio R (6.2.5)
reduces to the ratio of vevs. To put this into context, the detection of the unexplained
3.5keV X-ray line from the EM spectrum of several galaxy clusters [60,61] is compatible
with the decay of a sterile neutrino with mass ms = 7keV. Following this observation,
there have been several papers discussing the origin of this mysterious signal as a possible
DM candidate. An interesting approach to explain the 3.5keV line is to assume there is a
broken U(1) symmetry from which these the keV-scale sterile neutrinos originate. Albeit
from a supersymmetric standpoint, one can show that if the new symmetry is broken at
the PeV scale, then the see-saw mechanism can both yield light active neutrinos and a
keV-GeV sterile neutrino [62, 63]. Besides the technicalities of supersymmetry (SUSY),
the relevant part of the super-potential, which is responsible for the see-saw mechanism,
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includes two hierarchical terms which together form a non-diagonal mass matrix13. This
matrix is then diagonalized equivalently as discussed at the start of this section. For
additional examples showcasing how the neutrino sector can be used to probe hidden
sectors through the (inverse) see-saw mechanism, see e.g. [64–66].

7 3+1 Active-sterile neutrino mixing
In the full picture of active-sterile oscillations, three active neutrinos mix with one dark
neutrino and an unconstrained number of singlets, taken to be four for numerical pur-
poses. In similar notation to 1 + 1 mixing, the mixing configuration is 4ν4N . The Dirac
mass matrix in the ν = (νe, νµ, ντ , νs) basis is given by (5.3.4) and the mixing matrix is
given by (4.3.1).

7.1 The Casas-Ibarra parametrization
The simplicity of 1 + 1 mixing does not carry over to the 3 + 1 case. In particular,
the matrix relations between observables and Yukawa couplings is somewhat tedious.
A simple method of relating the unobservable Yukawa couplings to the observables of
the theory is with the use of the Casas-Ibarra parametrization. Recall that the see-saw
mechanism yields the following mass term in the Lagrangian

L ⊃ −1

2
νcMlightν + h.c, (7.1.1)

where as usual, the light mass matrix is given by Mlight = −MT
DM

−1
R MD. The mixing

matrix U is by definition the matrix which diagonalizes the light mass matrix into a
diagonal matrix of physical masses

UTMlightU = Dm = diag(m1,m2,m3,m4), mi ≥ 0. (7.1.2)

Up to field redefinition’s to account for possible wrong signs of the light neutrino masses,
the matrix structure which yields light neutrino masses is

Dm = UTMDD
−1/2
M D

−1/2
M MDU, DM =MR. (7.1.3)

As the singlet mass matrix is diagonal, it can be decomposed as DM = D
1/2
M D

1/2
M , where

the square root is applied to each element of the diagonal. The above expression can be
turned into an expression for the identity matrix by right-left multiplying by D−1/2

m . This
leads to

I =
(
D

−1/2
M MDUD

−1/2
m

)T (
D

−1/2
M MDUD

−1/2
m

)
= RTR, (7.1.4)

for some generally complex matrix R. Rewriting in terms of the Dirac mass matrix, the
Casas-Ibarra parametrization [67] is realized

MD = D
1/2
M RD1/2

m U †. (7.1.5)
13A quick and rather effective method of deducing if a paper is written in a supersymmetric framework

is to scout for excessive use of calligraphic symbols.
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In their original paper [67], the parametrization is given in terms of the Yukawa matrix
as only the three active neutrinos are considered. This means that the common vev can
be divided upon. In the dark neutrino model, there are two vevs, hence dividing away the
Higgs vev is of little use. This is, however, just a technicality and does not affect physics
in any way. The Casas-Ibarra parametrization is useful as it relates the unobservable
Yukawa couplings to the observables of the theory (light masses and mixing angles) up
to singlet masses and the newly introduced matrix R. The price to pay for using this
parametrization is that R is unconstrained apart from RTR = I. In component form,
this relation reads

∑
k RkiRkj = δij, which for i = j translates to the inequality

|δii| = 1 = |
∑
k

RkiRki| ≤
∑
k

|RkiRki| =
∑
k

∣∣R2
ki

∣∣ , Rij ∈ C. (7.1.6)

For complex numbers, this means unconstrained matrix elements, as the square of a
complex number can be negative, which may lead to an arbitrary degree of cancellation.
If R is constrained to real numbers, then the above inequality would reduce to an equality.
For this reason, and to be consistent with the previous assumptions of real Yukawa
couplings, the matrix R is chosen to be real. In doing so, R is promoted to an orthogonal
matrix, R ∈ O(4).

Although R is some unknown matrix, it is also orthogonal. Therefore, it should not
alter the magnitude of the matrices on which it acts, barring the possibility of cancel-
lations. A particularly simple orthogonal matrix is the identity matrix, and choosing
R = I is equivalent to the simultaneous diagonalization of the Dirac and the singlet mass
matrices. To see this, recall that the Dirac term in the Lagrangian, where the freedom in
rotating the singlet basis is used up by choosing a real and diagonal singlet mass matrix,
is

L ⊃ −NMDν + h.c. (7.1.7)

Written out with Casas-Ibarra parametrization for R = I, this reads

L ⊃ −ND1/2
M D1/2

m U †ν + h.c. (7.1.8)

By rotating the light neutrino basis with the mixing matrix (ν → Uν), the diagonal
Lagrangian is realized

L ⊃ −ND1/2
M D1/2

m U †Uν + h.c = −ND1/2
M D1/2

m ν + h.c. (7.1.9)

Hence, choosing R = I simultaneously diagonalizes the Dirac and singlet mass matrices.
In general, the choice of using a diagonal singlet basis and a non-diagonal Dirac basis, as
opposed to the contrary, is a matter of choice and leads to the same physical predictions.
This latter statement is true as physics is basis-independent.

7.2 Bounds on singlet masses
Choosing R = I and using a diagonal singlet basis is not general, but it can be used to
figure out different scales of the interesting matrices. In particular, from the perturba-
tive bound on neutral couplings (3.6.12), the Casas-Ibarra parametrization provides an
approximate upper bound on singlet masses through (R = I)

(MD)ij =
√
MimiU

∗
ji. (7.2.1)
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There is no sum over indices as both DM and Dm are diagonal. A dark vev at the
MeV-scale, severely limits how large singlet masses can be. The last column of the Dirac
matrix and in particular the last element of that column is the crux to the bound on singlet
masses. This is due to the sterile-sterile mixing matrix element being of order one, while
the active-sterile mixing elements are much lower. To illustrate the approximate bound
on the singlet mass scale, writing out |(MD)44| yields

|(MD)44| = |ys4〈ϕ〉| = |
√
M4m4U

∗
44| →M4 =

|ys4|2〈ϕ〉2

m4|U44|2
. (7.2.2)

Using generic values; m1 = 1eV, |U44| = 1, 〈ϕ〉 = 1MeV and |ys4| ≤ 4π yields the bound

M4 . 16π2 × 103GeV = 1.58× 105GeV. (7.2.3)

Although this bound is generally violated for R 6= I, the singlet scale will not change too
dramatically. To show this, consider a general, orthogonal matrix R. In this case, the
elements of the Dirac mass matrix are given as the sum

(MD)ij =
∑
l

(D
1/2
M )iiRil(D

1/2
m )llU

∗
jl. (7.2.4)

In the following discussion and the rest of the thesis, the mixing matrix is taken to be real
because SBL experiments cannot probe any CP structure related to complex numbers.
As in the case of R = I, the bound on singlet masses arise from the elements of the last
column on the Dirac matrix (as opposed to the last entry of the last column for R = I)

(MD)k4 = ysk〈ϕ〉 =
√
Mk

∑
l

Rkl

√
mlU4l, k ∈ (1, 2, 3, 4). (7.2.5)

The last term of the sum will dominate unless Rk4 is a small number. To get an estimate
of how small, the last term will no longer dominate once it is proportional to the other
terms in the sum, which occurs whenever

Rk4 '
√
mk′

m4

Uk′4

U44

, k′ ∈ (1, 2, 3). (7.2.6)

For generic values of neutrino masses and constraints on active-sterile mixing elements,
this above equation is realized for Rk4 ' 0.03. This can be realized by handpicking for
three out of four Rk4, but at least one of these has to be comparable to unity, as Rk4

are elements of a column of an orthogonal matrix. Hence, it is hence subject to the
orthogonality condition

∑
k R

2
k4 = 1. Therefore, at least one of the singlet masses is

constrained by the bound obtained in (7.2.3).
To obtain knowledge about some unknown set of parameters, some statistical proce-

dure is often employed, say R is sampled from a set of orthogonal matrices. The expec-
tation value of random numbers ai, subject to the constraint

∑4
i=1 a

2
i = 1, is ai = ±0.5,

which is what one would expect from the columns of an orthogonal matrix. Therefore,
the bound given in (7.2.3) should apply to all singlets. A consequence of the bound on
singlet masses is that active Yukawa couplings yαi are confined to scales much below the
dark Yukawa couplings ysi. This complements the results obtained in 1 + 1 mixing.
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7.3 Parametrization of 3+1 neutrino mixing
The full active-sterile mixing matrix is a four by four unitary matrix U , given in terms
of six mixing angles, three Dirac phases and three Majorana phases. As with the three-
dimensional PMNS/CKM matrices, it is useful to parametrize the four-dimensional mix-
ing matrix also in terms of consecutive rotations in the (complex) four-dimensional flavour
space. As discussed in Section 3.7, it is irrelevant which order the rotations are taken
in, but a sequence of rotations that leaves νe mixing simple is usually preferred. This
is particularly useful when it comes to SBL anomalies as these are dependent only on
the νe − νs and νµ − νs mixing angles, and their respective antiparticle counterparts.
The latter mixing is only relevant when considering appearance experiments such as the
LSND experiment, while reactor SBL anomalies are only sensitive to the former. As SBL
experiments are insensitive to CP violation, the results obtained in this section will apply
equally well to particles and antiparticles alike. The row corresponding to ντ mixing
is usually left as the most convoluted as there are no good ντ sources, leaving scarce
information on the elusive ντ − νs mixing angle. Further, it is also conventional to let
the new rotations act on the PMNS matrix, which up to Majorana phases is given by
UPMNS = R23W13R12. The mixing matrix parametrization used is the following unitary
matrix

U = W34R24W14R23W13R12D(ϕ), (7.3.1)
where D(ϕ) is a diagonal matrix of three Majorana phases. As discussed, SBL experi-
ments cannot probe and CP structure, so only the real, rotation part of the above mixing
matrix is relevant. Therefore, the mixing parametrization reduces to the orthogonal
matrix

U = R34R24R14R23R13R12, UT = U−1, (7.3.2)
determined completely by the six mixing angles. The (somewhat) explicit form is given
as

U =


c12c13c14 c13c14s12 c14s13 s14
. . . . . . . . . c14s24
. . . . . . . . . c14c24s34
. . . . . . . . . c14c24c34

 , (7.3.3)

where the dots refer to long and convoluted expression of trigonometric functions. Using
the parametrization given in (7.3.1), yields simple expressions for the νe mixing with the
mass eigenstates. It also provides a simple form of the last column, which is the coupling
of the flavour neutrinos to the fourth eigenstate. In particular, the mixing between νe
and νs is given by a single term, Ue4 = sin θ14.

In the 1 + 1 mixing scenario, both the masses and the mixing angle could be derived
in terms of simple functions, as the mixing matrix was composed of a single rotation in
a two-dimensional, flavour space. This does not generalize to larger mixing scenarios.
Although, RT

12MlightR12 does set (Mlight)12 and (Mlight)21 zero for a particular value of
tan 2θ12, this zero will become nonzero when the rest of the rotation matrices act on it.
This hinders any attempts at an analytical approach for obtaining mixing angles in terms
of light mass matrix elements. That is, mixing angles and light mass matrix elements are
treated as independent quantities. A caveat to this, is that parameter scans are generally
ineffective as there are no dependencies to exploit in say an MCMC approach.
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7.4 3+1 global reactor fits
Having introduced both the Casas-Ibarra parametrization of the Dirac mass matrix, as
well as the standard 3 + 1 parametrization of the mixing matrix, it is time to verify the
3 + 1 model in light of global fits. As eV-scale sterile neutrinos are characterised by
SBL experiments, it is natural to consider fits from said experiments. In particular, the
3+1 global fit of reactor disappearance data [68] from 2019 is used. In their analysis [68],
they used data from the Karlsruhe Tritium Neutrino (KATRIN) experiment, which is the
leading experiment on direct observation of neutrino masses from a sensitivity standpoint.
KATRIN is sensitive to effective neutrino masses νβ down to the eV-scale [69], which
is the range where eV-scale sterile neutrino enter. The KATRIN experiment relies on
measurements of the spectrum of electron energies from tritium decay

3H →3 He+ + e− + νe, (7.4.1)

in which the neutrino observable is the effective νe mass, given in the 3+1 scenario as

m2
β =

3∑
k=1

|Uek|2

1− |Ue4|2
m2

k. (7.4.2)

Note that to return to the three neutrino picture, simply set Ue4 = 0. Additionally,
as the masses mk are not known, the above expression has to be rewritten in terms of the
neutrino mass splittings whose 2020 values are listed in Table 3.2. In their analysis [68],
they used the 2019 best-fit values of the mass splittings, but the difference between the
2019 and 2020 values are marginal. In addition, they show that while accounting for
the sensitivity of KATRIN, the effective neutrino mass reduces to m2

β ' m2
1. Therefore,

any marginal update on the BF values of neutrino mass splittings is irrelevant. The
contours corresponding to overlapping regions from various reactor experiments subject
to KATRIN data are illustrated in Figure 7.1. Reactor anomalies are disappearance
experiments P (νe → νe), and the notation used in [68] is the same as introduced in
(4.2.11) on effective mixing angles. Using the parametrization of the mixing matrix
introduced in (7.3.3) the relation between the effective mixing angle and the angle θ14 is
trivial, sin2 2θee = sin2 2θ14.
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Figure 7.1: Contours of 2σ regions in the sin2 2θee − ∆m2
41 space from a collection of

reactor spectral measurements, taken from [68]. The best-fit point is indicated by the
black cross.

From Figure 7.1 there are three regions which are both to the left of the Bugey3
and PROSPECT exclusion curves and within the overlapping contours of NEOS and
DANSS. The best-fit point is indicated with a black cross and corresponds to the pair
of best-fit values ∆m2

41 = 1.3eV2 and sin2 2θee = 0.026. The other two regions lay
approximately on the same vertical line, i.e. they have the same mixing, but for mass
splittings, ∆m2

41 ≈ 0.4eV2 and ∆m2
41 ≈ 3eV2 for the lower and upper region, respectively.

Seeing that the orthogonal matrix R from the Casas-Ibarra is unknown, at first, to
compare Dirac matrix elements corresponding to each of these overlapping regions, R
is taken as the identity matrix. As R is orthogonal, this particular choice should not
change the overall scale. Furthermore, as reactor SBL experiments are insensitive to
θµ4 and θτ4, these are taken to zero. It will become clear later that regardless of what
these mixing angles are, the overall scale does not change. As usual, the singlet basis
in unknown up to the approximate bound of 105GeV, but to get a numeric value, the
basis M1 = 103GeV,M2 = M3 = M4 = 104GeV is chosen. Choosing M1 a magnitude
lower than the other singlet masses is arbitrary, but serves as an important technicality
for leptogenesis bounds, which will be discussed in Section 8.3. Lastly, the independent
mass eigenvalue m1 is taken to be maximal m1 = 3×10−2eV. This value is obtained from
the cosmological bound on the sum of neutrino masses in NO. Again, this is a particular
value of a particular hierarchy, but varying the independent active mass eigenstate and
changing hierarchies does not affect the scale, as these are marginal. The Dirac mass
matrix corresponding to the best-fit values from [68] is
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MD

〈ϕ〉
=


0.14 −0.08 0.06 −0.01
0.30 0.27 −0.38 −0.02
0.11 0.57 0.49 −0.009
0.27 0 0 3.37

 , (7.4.3)

while for the other two regions, the results are very similar and hence not shown. The
matrix is divided by the dark vev such that the dark Yukawa couplings can be read
straight from the last column. As expected, when R = I, the issue is the last entry of the
Dirac matrix, is closing in on the perturbative bound. The two zeros in the last row are
constructs of choosing θµ4 and θτ4 zero. Furthermore, the first three entries of the fourth
column are small, as the fourth flavour neutrino couples only scarcely to the first three
mass eigenstates. This is reflected by the PMNS matrix being approximately unitary,
leaving only room for small |Usk|, k ∈ (1, 2, 3). The numerical values of active Yukawa
couplings are found by multiplying the first three columns of the Dirac matrix with the
vev ratio 〈ϕ〉/〈H〉. This is quantitatively the same result as obtained from 1 + 1 mixing;
due to the large difference in vevs, the Yukawa structure has to compensate by taking
on a hierarchical structure. Furthermore, in the case of R = I, which as shown earlier
is equivalent to the simultaneous diagonalization of both the singlet and the Dirac mass
matrices, the Yukawa couplings satisfy the following hierarchy

|yαi| � |ysj| � |ys4|, i ∈ (1, 2, 3, 4), j ∈ (1, 2, 3) (7.4.4)

In the more general case of an orthogonal matrix R, the dominant term responsible for
the large Dirac matrix element (MD)44, will mix into the last column of the Dirac matrix.
Thus, turning all dark sector Yukawa couplings similar. It is instructive to consider an
example of the effects of a randomly generated orthogonal matrix R. For a numerical
example, consider R drawn from a set of orthogonal matrices

R =


0.52 −0.56 −0.51 0.38
0.16 0.72 −0.12 0.66
0.81 0.29 0.16 −0.48
0.19 −0.29 0.83 0.43

 ,
MD

〈ϕ〉
=


0.04 −0.13 0.07 0.52
0.50 0.36 −0.04 2.73
0.31 −0.23 −0.08 −2.00
0.23 0.53 0.73 1.67

 ,

(7.4.5)
which makes it clear that introducing an orthogonal matrix washes away the dark Yukawa
hierarchy defined in (7.4.4). By including a non-diagonal R, the zeros of (7.4.3) become
nonzero, further smoothing out the structure of the Dirac matrix. Although the elements
of the Dirac matrix are rather uniform, elements of the last column will generally be
slightly larger than the other columns due to them obtaining a term (MD)k4 ∝

√
m4U44,

which will always dominate. Although some of the active-active mixing angles are large,
e.g. |Ue1| ≈ 0.8, they appear alongside active neutrino masses as shown in (7.2.4), which
are much smaller than m4. Therefore, the general structure of the Dirac mass matrix is
somewhat uniform, while promoting slightly larger values for the last column.

7.5 Structure of the mass matrices
As mentioned in the previous section, changing the mixing angles and light neutrino
masses does not alter the structure of the Dirac matrix much. The only parameters
which can significantly change the Dirac matrix are the singlet masses, but they change
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the overall scale and cannot be tuned to only increase the active Yukawa couplings. The
last resort to obtain larger active Yukawa couplings is to attempt to fine-tune the values
of the last column of the Dirac matrix, such that the singlet masses can be taken large
enough to provide large active Yukawa couplings. However as discussed in Section 7.2,
this is not possible as it requires that all elements of an orthonormal column are small
(� 1), something orthogonal matrices cannot do. Therefore, the structure of Yukawa
couplings and the Dirac matrix elements are required to satisfy

yαk .
〈ϕ〉
〈H〉

ysk, (MD)ij . (MD)k4, j ∈ (1, 2, 3), i, k ∈ (1, 2, 3, 4), (7.5.1)

regardless of chosen mass squared difference hierarchy. Furthermore, as mentioned earlier,
the dark Yukawa couplings have to overcompensate past the vev ratio to yield the desired
light neutrino masses. An observation related to this result is that there is some dominant
term arising from the dark sector, which washes away any structure, a kind of inverse
fine-tuning, as it dominates regardless of how tuned the whole sector is.

This section has shed light on the structure of the Dirac mass matrix by using bounds
on singlet masses, experimental bounds on mixing angles and active neutrino masses, and
finally using the SBL mass squared difference to yield the sterile neutrino mass. The last
piece of study is the symmetric, light mass matrix Mlight. Given in terms of the mixing
matrix and the diagonal matrix of light neutrino masses Mdiag, the light mass matrix
can be expressed as

Mlight = UMdiagU
T , (Mlight)ij =

∑
k

UikmkUjk, (7.5.2)

where mk are the mass eigenstates. Note that each element of the light mass matrix
acquires a term which is proportional to the fourth mass eigenstate. In particular, the
active part of the light mass matrix, which is the upper 3×3 block, will each obtain a term
(Mlight)ij ⊃ Ui4m4Uj4. Although this is quadratically suppressed in terms of active-sterile
mixing elements, it is also directly proportional to the heaviest mass eigenvalue.

To double down on the earlier statement, that there is a term arising from the dark
sector which dominates the structure of the light mass matrix, and to prove that there
is not any fine-tuning in the light sector, a scan of fine-tuning is performed. An added
benefit of checking for fine-tuning is that the bound on singlet masses from leptogenesis,
which will be given in Section 8.3 is valid. Informally, a fine-tuned parameter is very small
relative to its constituents. Say an observable B is the sum of some terms B =

∑
iBi,

then a working definition of fine-tuning is defined as

FT (B) ≡ max(|Bi|)
|B|

. (7.5.3)

More elaborate approaches to fine-tuning may be defined in terms of how changing
model parameters change the mass of the Z boson using Bayesian interference, but this
is beyond the scope of this thesis. The interested reader is referred to [70]. Regardless of
the approach, a large value of the fine-tuning parameter is generally considered undesired.

To obtain graphs, some model parameter has to be chosen as the evolution parameter.
In this case, a natural choice is m1 for the following reason: Given the value of the
lightest mass eigenstate, the others follow. In particular, given a value of m1 assuming
normal ordering, then m2 and m3 follow from the solar and atmospheric mass splittings,
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respectively. In addition, m4 follows from the SBL mass splitting. Hence, m1 is chosen
as the evolution parameter of fine-tuning for components of the light matrix. The solar
and atmospheric mass splittings are varied in their 3σ ranges given in Table 3.2.

This approach, however, means that the mixing angles have to be chosen. A reason-
able choice is to simply use best-fit values of the PMNS angles, while for θ14, the best-fit
value from the global fit is chosen. This leaves the two remaining active-sterile angles.
Two cases are chosen, the first in which these angles are zero, and in the second case they
are taken to their maximum values, corresponding to |Uµ4| = |Uτ4| = 0.1. As the light
mass matrix Mlight is symmetric, it has ten independent entries. To avoid messy plots,
only the three worst offenders of the fine-tuning measure are included, i.e. the largest
values of FT. In the following, let FT (Mij) ≡ FTij.

Figure 7.2: The largest fine-tuning versus m1 for Uµ4 = Uτ4 = 0.

Figure 7.3: The largest fine-tuning versus m1 for |Uµ4| = |Uτ4| = 0.1.

From the above figures, it is evident that there is no fine-tuning in the light sector.
There is a difference in the overall scale when active-sterile mixing is turned on as illus-
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trated in these figures. This is expected, as the active-sterile mixing angles couple to the
large fourth mass eigenstate. The fact that there is no tuning in the light mass matrix
means that light neutrino masses are not accidentally small due to cancellations from a
higher scale.

This section has shown that the mass matrices needed to explain the SBL anomaly
are rather bland, i.e. they do not have a very detailed structure apart from the last
column on the Dirac matrix obtaining slightly larger values. The Yukawa matrix is
necessarily hierarchical to account for the hierarchical vev structure, but when combined
the hierarchies cancel out. Furthermore, there is no tuning in the sector, which means
that everything acts as one would expect.

8 The role of right-handed neutrinos

8.1 A biased universe
The discovery of neutrino oscillations and neutrino masses is without a doubt the clearest
hint towards new physics, as it is a direct violation of the Standard Model. Neutrino
masses and their smallness can be elegantly explained by the see-saw mechanism, which
has been the assumption throughout this thesis. A large part of the discussion has been
on the mixing between active and dark neutrinos, where the singlets have merely acted
as bystanders, a scale factor with no dynamics. Generally, singlets are much too heavy
to explain the apparent SBL anomalies, but their large mass may hold the key to a
more fundamental question; Why does the universe prefer matter over antimatter? From
cosmological observations, it is clear that the universe we live in is composed of matter.
Stars, galaxies, cluster of galaxies, all made of matter, not antimatter. Why this is, is
a peculiar question, to which there is no answer, yet. A conventional measure of the
matter-antimatter asymmetry in the universe is the asymmetry parameter [71] defined
as

ηB ≡ nB − nB

nγ

= (6.12± 0.04)× 10−10. (8.1.1)

One might ask, what if the universe simply started with more matter than antimatter
i.e. the observed baryon asymmetry is merely a consequence of an initial condition. The
answer to this is, no [72,73]! Another seemingly plausible solution to baryon asymmetry
is to assume that we are in a patch of the universe made of matter, and that outside
our patch, there are patches composed of antimatter, where someone may be writing this
very anti-thesis. However, if this was the case, then at the boundary between regions of
matter and antimatter, a significant amount of radiation would be released when matter
annihilates with antimatter. Cosmological observations exclude this possibility.

Models which set their eyes on describing the baryon asymmetry are collectively called
models of baryogenesis. Leptogenesis models [74] are subsets of baryogenesis models,
where the asymmetry is generated by the addition of lepton number violation, right-
chiral neutrinos, which can decay into leptons and antileptons.

A physical theory is deemed good based on the number of predictions it can make.
Therefore, if the addition of right-chiral neutrinos can solve both the origin of neutrino
masses and explain why the observed universe is matter-dominated, then that model
should be pursued over models which can explain only one of the mentioned problems.
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The goal is thus to figure out how the introduction of a dark sector interplay with lepto-
genesis through the singlets. Now it is time for the dark sector to play a supporting role,
to spectate how the dynamics of singlets in the hot, early universe can yield the observed
universe we see today.

Figure 8.1: The Cosmic Microwave Background (CMB); the first light created in the
universe after it became transparent 3.8 × 105 years ago. The temperature fluctuations
of the CMB, according to the theory of inflation, are macroscopic reflections of quantum
fluctuations that occurred when the universe was less than 10−32 seconds old. This image
is taken from the Planck Collaboration [75]

8.2 The Sakharov conditions
In his seminal paper [76], Sakharov proposed three conditions a theory would need to
exhibit to explain the observed baryon asymmetry of the universe:

1. Baryon number violation.

2. C and CP violation.

3. A departure from thermal equilibrium.

These are known as the Sakharov conditions. Baryon number violation is obvious, as,
without it, there would be no baryon asymmetry. C and CP violation is needed such that
the sum of all interactions produce more matter than antimatter, which is not washed
away by opposite interactions. The last condition of a departure from thermal equilibrium
is imposed to prevent CPT from washing away any matter-antimatter imbalance.

All of these conditions are met by the Standard Model. Baryon number is violated by
the chiral anomaly, C and CP are violated by e.g. the phase in the CKM matrix. Finally,
a departure from thermal equilibrium can be realized by EW symmetry breaking while
the universe cools. EW symmetry breaking is a phase transition where matter-antimatter
symmetry can be generated. Lengthy calculations show, however, that the SM does not
violate baryon number enough, and the EW phase transition is not strong enough to
generate the observed matter-antimatter asymmetry.
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8.3 The singlet masses required
As stated earlier, leptogenesis is a model of baryogenesis where the asymmetry originates
from the lepton sector. To obtain a baryon asymmetry starting from a lepton asymmetry,
there must be some process that converts leptons to baryons. It is known within the
Standard Model that both lepton and baryon number are violated by the chiral anomaly.
Let B be baryon number and L be lepton number, then the corresponding non-conserved
currents related to U(1)B and U(1)L are given as [77]

∂µJ
µ
B = ∂µJ

µ
L =

ngg
2

32π2
εµναβW a

µνW
aαβ, (8.3.1)

where ng = 3 is the number of generations and εµναβ is the Levi-Civita tensor. Al-
though both B and L are violated by the anomaly, their difference B − L vanishes. The
conservation of B − L is broken by the Majorana mass term, which violated L by two
units, but preserves B. A possibility is that B − L is a symmetry of its own, and that it
is broken at the GUT -scale and that right-chiral neutrinos obtain their mass from this
broken symmetry. The addition of a gauged U(1)B−L is considered in e.g. [78], while the
detectability the particles arising from this group can be found in [79].

The lepton number violation created by right-chiral neutrinos can be translated into
a baryon number violation in terms of a B−L conserving, but B+L violating sphaleron
processes. A sphaleron process is the conversion of three baryons into antileptons or three
antibaryons into leptons, however, this requires temperatures of order TSph ∼ mW/αW to
become relevant. For sphaleron processes to produce the observed baryon asymmetry of
the universe, there must have been a lepton asymmetry at temperatures T ∼ TSph. This
can occur if the decay channels of right-chiral neutrinos are CP-violating following the
Sakharov conditions. Outside thermal equilibrium, a lepton asymmetry may be formed,
directly proportional to the CP parameter

εi =
Γ(Ni → lH)− Γ(Ni → lH†)

Γ(Ni → lH) + Γ(Ni → lH†)
, (8.3.2)

which is the difference of decays into particles versus antiparticles, normalized to the
total decay width. For a hierarchical spectrum of singlet masses, say M1 � M2, . . .MN ,
one can using standard values of the CP parameter, show that the lightest singlet mass
required for leptogenesis is M1 & 3× 109GeV. This is under the assumption that there is
no fine-tuning in the light sector [80]. The condition of no fine-tuning in the light sector
was shown in Section 7.5, hence the bound can be applied. Following the upper bound
on singlet masses derived in (7.2.3), which was related to the perturbative upper limit
on Yukawa couplings, it is clear that the lightest singlet mass is not sufficiently heavy
enough.

The former, standard approach is based on the assumption that singlet masses are
hierarchical. If instead, at least two of the singlet masses are nearly degenerate (M1 +
M2)/|M1 − M2| � 1, then the regime is called resonant leptogenesis [81, 82], and the
singlet masses required for leptogenesis drops significantly to M1 ' M2 = O(TeV) [82].
The price to pay for TeV-scale singlet masses is the inevitable tuning of the singlet sector.
Coincidentally, singlet masses of order 1TeV is the scale needed to produce dark Yukawa
couplings ysi = O(1), see e.g. (7.2.4). From the discussion of the bound on singlet mass
scale in Section 7.2, only an upper bound is achieved. Following the discussion in that
section, one might consider much lower singlet masses, but the price to pay for lowering
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the singlet masses is a more severe smallness problem in the Yukawa sector. Although
this is possible, it is certainly not an attractive feature of the model. Therefore, it is
refreshing that resonant leptogenesis can provide a lower bound on singlet masses, hence
confining the singlet mass scale to

1TeV .Mi . 102TeV. (8.3.3)

This bound justifies the chosen, numerical values used in the parameter scans in Sec-
tions 6.3 and 6.4, and in reproducing the global fit using in Section 7.4. Furthermore, this
bound necessarily confines the dark Yukawa couplings to large values ysi & 1, while the
active Yukawa couplings are suppressed with respect to the vev ratio yαi ∼ ysi〈ϕ〉/〈H〉.

8.4 The 3+1 global fit revisited
With the addition of leptogenesis to the theory, singlet masses are confined to a narrow
range. This fixes the last free parameters of the theory, barring the Yukawa couplings
and the orthogonal matrix R, see e.g. (7.1.4). In light of the new constraint on the singlet
scale, the Yukawa parameter space is now sufficiently small to be scanned. However, as
the Yukawa couplings are not observables, no PDF’s are chosen for them. Hence, the
scan is blind. The scan is performed using the Casas-Ibarra parametrization given in
(7.1.5), where singlet masses are confined to the range (8.3.3). In particular, the two
lightest singlet masses, say M1 and M2 are taken degenerate. The scan is performed in
normal ordering where m1 is the lightest neutrino mass and is drawn from the uniform
distribution

m1 = U(0, 3× 10−2)eV. (8.4.1)

The remaining active neutrino masses are expressed from m1 with the use of the ob-
served mass splittings within the 3σ listed in Table 3.2. The fourth mass eigenstate and
the active-sterile angle θe4 are taken as the best-fit values of the global fit [68]. Further-
more, the PMNS angles are taken within their respective 3σ regions (3.4.8), while the re-
maining two active-sterile angles are taken to respect the generic bounds |Uµ4|, |Uτ4| ≤ 0.1.
Lastly, R is drawn from a set of random orthogonal matrices.

The Yukawa couplings form a 16-dimensional space, a bit large to project onto a
two-dimensional paper/screen. In addition, the Yukawa couplings may be of both signs.
Therefore, the averages of the absolute values of Yukawa couplings are introduced

〈yα〉 =
1

12

4∑
i=1

3∑
j=1

|Yij|, 〈ys〉 =
1

4

4∑
k=1

|Yk4|. (8.4.2)

In addition, the ratio of the vevs is defined as

β ≡ 〈H〉
〈ϕ〉

= 2.46× 105. (8.4.3)

The scan is performed by considering 104 draws from the distributions in the outlined
regions discussed above. The results from two example scans for different singlet mass
configurations are illustrated in Figures 8.2 and 8.3.
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Figure 8.2: The parameter space of 3+1 global mixing illustrated in the 〈ys〉 − 〈yα〉
plane. The dashed lines represent lines of symmetry related to how the distribution
varies relative to the vev ratio β. This scan is performed with M3 = M4 = 100TeV and
M1 =M2 = U(1, 100)TeV

From this figure, it is evident that the parameter space of 3 + 1 mixing, subject to
the global fit is once again hierarchical. From the symmetry lines, one can observe that
the parameter space is approximately symmetric about the red line, which means that
the dark Yukawa couplings overcompensate by a factor of four relative to the vev ratio
β. This is due to the fourth mass eigenstate outweighing the other mass eigenstates by a
good margin. This parameter scan included the maximal values obtained from the bound
on singlet masses (8.3.3) and is in good agreement with the perturbative upper bound on
Yukawa couplings (3.6.12). As Yukawa couplings are monotonic in singlet masses, Figure
8.2 provides the largest Yukawa couplings allowed by 3 + 1 active-mixing.
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Figure 8.3: The parameter space of 3+1 global mixing illustrated in the 〈ys〉 − 〈yα〉
plane. The dashed lines represent lines of symmetry related to how the distribution varies
relative to the vev ratio β. This scan is performed with M3 = 10TeV, M4 = 100TeV and
M1 =M2 = U(1, 10)TeV

The above figure is taken for M3 = 10TeV as opposed to Figure 8.2 which was taken
for M3 = 100GeV. The figures are qualitatively similar, the only difference is the overall
lower Yukawa scale. As discussed, this is due to Yukawa couplings being monotonic in the
singlet masses. Hence, for a lower singlet scale, the Yukawa couplings (and their absolute
averages) are lower. These plots were obtained in assuming a normal hierarchy between
the active neutrino mass eigenvalues. One can do the same thing using an inverted
hierarchy. This was done, but the distributions were very similar to those obtained using
a normal hierarchy, and are hence not plotted. The reasoning for their similarity is that
changing mass hierarchy only marginally changes the light mass eigenvalues. That is,
these plots are hardly sensitive to variations of active masses, which are at the 10−2eV-
scale. Therefore, it is safe to conclude that for the recreation of the global fit, the Yukawa
structure is hierarchical, where the dark Yukawa couplings overcompensate relative to the
vev ratio β by a factor of about four. Due to the properties of the orthogonal matrix R
in the Casas-Ibarra parametrization (7.1.5), there is no amount of fine-tuning which can
change the hierarchical structure of Yukawa coupling with the addition of a fourth mass
eigenstate at the eV-scale.

9 Conclusions and outlook

9.1 Conclusions
In this thesis, the effects of dark sector interactions on active-sterile neutrino mixing
were discussed and analyzed. To perform the analysis, a thorough introduction into
the properties of neutrinos, in and beyond, the standard picture was given. Majorana
neutrinos and their peculiar properties were also discussed. Dark neutrinos are introduced
by the addition of a minimal dark Abelian gauge, broken at the MeV-scale. These dark
neutrinos were allowed to mix with the active neutrinos through non-diagonal Yukawa
interactions with right-handed neutrinos, resulting in active-sterile neutrino mixing and
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oscillations. The particle content of the added dark sector was discussed, and their masses
and couplings were constrained based on observations. The mass scale of the dark sector
was deduced based on the suppression of bosonic portals. This suppression is necessary,
otherwise, the section would not be “dark”.

The neutrino portal and the parameters it contains were studied. For a minimal
dark sector, the low-energy observables (light masses and mixing angles) were formulated
in terms of the Dirac mass matrix and the singlet mass matrix through the see-saw
mechanism. These matrices had a large degree of redundancy which was removed based
on the physics of SBL neutrino oscillation observables.

The model was first applied to a simplified version of neutrino oscillations, namely
1+1 active-sterile mixing. Three parameter regions corresponding to increasing active-
sterile mixing were found using simple parameter scans. Large active-sterile mixing was
found to require a hierarchical spectrum of Yukawa couplings. The addition of a fourth
mass eigenstate at the eV-scale required at least one dark Yukawa coupling to be much
larger than the active neutrino Yukawa couplings. This was argued to be due to the
MeV-scale at which the dark sector was broken.

The model was then applied to 3+1 neutrino mixing. The Casas-Ibarra parametriza-
tion was used to obtain expressions for the Yukawa structure. This led to an upper bound
on the singlet scale. The model was then used to replicate results from a global fit. The
resulting Yukawa structure was found to be equivalent to the 1+1 mixing case. The
reasoning was argued to be similar to that of 1+1 mixing. Due to the properties of the
matrices occurring in the Casas-Ibarra parametrization, fine-tuning arguments cannot
be used to flatten the hierarchical Yukawa structure. The general structure of the mass
matrices was also discussed in light of the global fit.

The singlet masses were constrained from leptogenesis bounds. In particular, the
model cannot accommodate singlet masses to account for standard thermal leptogenesis.
The resonant regime had to be invoked. In light of resonant leptogenesis, the singlet
masses were confined to the 1TeV − 100TeV scale. Lastly, the Yukawa parameter space,
subject to these bounds, were scanned. The results indicate that the dark sector Yukawa
couplings have to overcompensate the vev-ratio 〈H〉〈ϕ〉−1 by a factor of about 4. The
overcompensation relative to the vev-ratio was expected due to the fourth mass eigenstate
being much larger than the three others. In conclusion, the model can provide explana-
tions for the SBL anomalies and resonant leptogenesis, while staying within experimental
limits. The condition is that Yukawa couplings are hierarchical.

By studying active-sterile neutrino mixing, the tools developed can be applied more
generally to neutrino oscillations with arbitrarily broken sectors. As an optimistic, yet
possible example, if the particle content of dark matter allows for the construction of non-
diagonal mass terms for dark fermions, then they might be probed in neutrino oscillation
experiments. This could enlighten some of the mysteries surrounding the elusive dark
matter, thus possibly provide a clue towards the largest mystery in all of spacetime.

9.2 Outlook
The main topic of this thesis is active-sterile neutrino mixing, enabled by the addition of a
dark sector to the Standard Model. As discussed in Section 5.2, two additional portals can
be used to connect the dark sector with the Standard Model, kinetic and scalar mixing.
For future work, it would be interesting to analyze these portals and the physics within
them. This would provide a greater understanding of the model, as the bosonic portals
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could impose new constraints, thus leading to a more refined set of model parameters.
Furthermore, studying the bosonic portals may provide a better understanding of how
an arbitrary dark sector can be probed. This is important knowledge for further studies,
of say, dark matter.

For future work, it could also be of interest to perform more sophisticated scans of
the parameter space this model provides, either Bayesian methods or machine learning.
Lastly, it would be interesting to consider the cosmological effect of the model and how
the model fits into the current description of the expanding universe.
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A Parameter scans
When constructing a particular model of, well anything, more often than not, there
will necessarily be some unknown constant quantities, which the model relies on. These
unknown constants are known as parameters. The space of all parameters from a given
model is known as the parameter space of the model, which may range everywhere from
a one-dimensional space to an infinite-dimensional space. Let yi be a model parameter,
which is a component of the vector y ∈ Y , where Y is the parameter space. If all
parameters are independent, then Y is a flat vector space, an assumption that is used
throughout. For a model to be physical, it must be able to provide observable predictions.
That is, there should some measurable quantity, which can be expressed as a function of
the model parameters. Denote any observable quantity by O. The fact that a physical
model is required to make at least one physical prediction can be expressed by O = O(y).

If the parameter space of a given model is small, say one or two-dimensional and the
parameters are constrained in some fashion, e.g. y1 ∈ (a, b), then the brute force method
of simply dividing the space into chunks of equal spacing, and computing the observables
at each lattice point can be viable. This method suffers from two main drawbacks. First,
if the parameter space is large, then the number of computations needed to scan the
lattice grows exponentially: Consider an n-dimensional parameter space which is divided
into p equally spaced lattice points along each axis. At each lattice point, q number
of calculations is done to extract the relevant observables and store them. The total
number of calculations needed to scan the lattice is then N = qpn. For a fine scan of
a large parameter space, this method is computationally infeasible. The second issue is
that this method is ignorant of any structure hidden between lattice points. For example,
a sharp, local maxima may occur in the middle of two lattice points. If the maxima are
sharp enough, the underlying distribution will appear as the background at the evaluated
lattice points.

To circumvent these issues, Monte-Carlo methods are used. Monte-Carlo methods/al-
gorithms are fundamentally stochastic, which means that in choosing to use Monte-Carlo
algorithms, determinism is lost. Regardless, the stochastic approach is invaluable when
dealing with large spaces where deterministic approaches become inefficient. In this the-
sis, the MCMC algorithm of choice is the Metropolis-Hastings algorithm (MHA). The
goal of the MHA is to find optimal regions of parameter space, which are defined by the
desired qualities of the model. For example, consider a model of neutrino mixing where
the masses are constrained, but the mixing angle is not. If large mixing is desirable, then
the optimal regions(s) of parameter space are those such that the mixing is large, while
the masses satisfy experimental constraints. It is then of interest to figure out which
combinations of model parameters yields these optimal regions. To do this, probability
distribution functions are constructed for the model observables O in terms of model
parameters y. A standard choice is to model observables in terms of the symmetric,
two-parameter Gaussian distribution

G(x;µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 , (A.0.1)

where µ ∈ R is the mean and σ > 0 is the standard deviation. In standard statistical
notation, P (x; a, b, . . .) should be read as: P (x) given a, b, . . .. The Gaussian distribution
is widely used as measurements of physical quantities often follow a Gaussian distribution.
The cumulative Gaussian distribution is defined as

88



Φ(x;µ, σ) =

∫ x

−∞
G(t;µ, σ)dt. (A.0.2)

The product of these distributions yields the skewed-Gaussian distribution

F (x;µ, σ, α) = 2G(x;µ, σ)Φ(αx;µ, σ). (A.0.3)

A positive(negative) value of α skews F (x;µ, σ, α) to the right(left). In the case
where the skewness parameter α is zero, the skewed Gaussian distribution reduces to the
ordinary Gaussian distribution. Figure A.1 illustrates three examples of skewed Gaussian
distributions.

Figure A.1: Graphs of the example skewed Gaussian distributions. All graphs have a
standard deviation of one and a mean at zero.

Another PDF that is commonly used is the uniform distribution U(a, b), b > a, which
returns a point between a and b with equal probability. The uniform distribution is used
whenever there is no reason to choose a particular point in a range over another. As an
example of applicability, the uniform distribution can be used when a variable is confined
within some range, but no more information is given.

The MHA can be understood as the following sequence of steps:

1. Pick an initial point y ∈ Y , either randomly or by hand and set n = 0.

2. Propose a new point y′, obtained from the previous point through some PDF
Q(y′; yt), where the proposal PDF is usually taken to be a Gaussian.

3. Evaluate the acceptance ratio R = P (y′)/P (yt) and generate a random number
u ∈ U(0, 1). If R ≥ u, take the step by setting y′ = yn+1. Else, reject the step by
setting yn+1 = yn.

4. Repeat n times.

As each step is only dependent on the previous point, this sequence will form a
Markow chain. The fact that the MHA constitutes a Markow chain means that the formal
properties of Markow chains can be applied to the MHA. These include e.g. ergodicity,
which means that every point reached by the chain will, at some later point, be reached
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again. This is equivalent to stating that the system has a finite recurrence time. Another
important property of Markow chains is coverage. This means that every point which can
be reached from a series of steps with non-zero probability will be reached given enough
time(steps). These two fundamental properties are a consequence of the acceptance
criteria R ≥ u. If on the contrary, the acceptance criterium was R ≥ 1, then the walk
would remain inert once either the global maxima is reached, or more dangerously, if a
local maxima is reached. Such local maxima are called islands of high density, which
refers to the fact that once the walk has landed on one of these islands, it is stranded. A
region of high density is defined as a region in which a respectable portion of the PDF is
located, it does not necessarily have to be the bulk of the PDF. To show the dangers of
local maxima, consider the twin Gaussian distribution

K(x;µ, σ) = K1G(x;−µ, σ) +K2G(x;µ, σ), K1 +K2 = 1. (A.0.4)

An example plot of this distribution is illustrated in Figure A.2.

Figure A.2: The twin Gaussian distribution for K1 = 0.4 and K2 = 0.6.

Figure A.2 illustrates why the acceptance criterium is taken such to allow possible
steps away from a local maxima. Additionally, there is also the issue with a small step
size. As an example, if the random walk has reached the local maxima corresponding to
the left peak of the twin Gaussian distribution in Figure A.2, and the step size is too low,
then although by the properties of Markow chains, it is guaranteed to reach the global
maxima (the right peak), it may take a very long time (longer than the programs runs).
If the proposal distribution is Gaussian, then the step size is identified with the standard
deviation. If the chosen distribution is of a high dimension, then distinguishing a local
maxima from a global one can be difficult, if for some reason, after some repeated scans,
the random walk ends at the local maxima each time. For optimization purposes, this is
not ideal. However, if the local maxima satisfy the desired model features, then the local
maxima can be deemed a sufficiently good region. This latter sentence can be identified
with the question: Can the model do X?. X is interpreted as some condition(s). If the
local maxima can satisfy X, then the model is valid. Which of these two approaches is
chosen is based on the problem at hand.

In the Metropolis-Hastings algorithm, each accepted point is appended to some list
along with the value of the observables at that point. Generally, not all of these sampled
points correspond to regions of high density. If the walk is initialized in a region of low

90



density, e.g. far to the right of the right peak in twin Gaussian in Figure A.2, then the
first sampled points will be unrepresentative of the target distribution. Therefore, in any
MCMC algorithm, the first b sampled points are removed from consideration in a process
known as burn-in. This number depends on how large the average step size is, but there
is no consensus on how long the burn-in period should be. This is a disadvantage of
MCMC algorithms, as to obtain good statistics, a large number of sampled points needs
to be discarded.

On the note of step size, once the target is reached, the acceptance ratio should
be 50% for a one-dimensional Gaussian distribution and decaying down to about 23%
for a N -dimensional Gaussian distribution [59]. This proof does not generalize to other
distributions, however, there is a general idea of how the acceptance should be for an
arbitrary distribution, which is related to step size. At the target distribution, if the
acceptance is large (almost one), then the step size is too small as it only reaches points
that have approximately the same probability. This reflects the fact that every continuous
space is locally flat. On the contrary, if the acceptance is too low (almost zero) then the
step size is too large, as a large step away from, say a global maxima, will most likely
result in a region of much lower density, i.e. the step is rarely taken.

The last technicality regarding parameter scans is the sampling near the edges of the
space. This occurs only if there are some boundaries to the space under consideration.
Consider a model parameter that is confined to x ∈ (0, 1), where the proposal distribution
is a Gaussian. As Gaussian distributions have compact support on the whole real line,
there is a possibility that the proposed step will be outside the allowed region. To com-
pensate for the possibility of such run-away parameters, one option is to simply reflect the
runaway point back onto the allowed range. However, this is only a good approximation
if the width of the proposal distribution is small, i.e. the proposal distribution is narrow.
The reflection method is only analytic if the proposal distribution is a Dirac delta, which
is rather boring, to say the least, or the sampled point is exactly on the boundary. If the
sampled point is close to the boundary and has a large width, then the area outside the
boundary is not representative of the area within the boundary and the reflection method
is a bad approximation. To illustrate this point, three Gaussian proposal distributions
are plotted near the right boundary of the model parameter.

Figure A.3: Gaussian distributions near the boundary of a one-dimensional parameter
space. The boundary is illustrated by the vertical, black line.

From Figure A.3 it is clear that for the narrow distributions, reflection at the edge
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is a valid approximation. The rightmost, narrow distribution (blue) is almost symmetric
about the boundary, which means that any reflected point is representative of the bulk
of the distribution. For the leftmost narrow distribution (green), due to the sharp peak,
there is only a small tail of the distribution which is outside the boundary. On the
contrary, for the wide distribution (orange), there is a considerable bulk outside the
boundary, while the peak is relatively far from the boundary. Hence, narrow proposal
distributions are required whenever there is a boundary to parameter space, which is
dealt with by the reflection method. A more sophisticated approach to the boundary
issue would be to renormalize the distribution relative to the boundaries.
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