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Abstract

Mild Cognitive Impairment (MCI) is a diagnostic entity including a heterogeneous
group of patients. For some, MCI represents a trajectory towards a neurodegenerative
disease, while others will remain stable or improve over time. Early identification of a
neurodegenerative process is essential to provide treatment before the disease is well es-
tablished in the brain. This motivated the current study to use longitudinal data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) to investigate two groups of patients
defined with an amnestic type MCI (aMCI) at a baseline examination: one remaining stable
(sMCI) and one converting to Alzheimer’s disease (cAD). Variables, selected to represent
a proxy to an ordinary clinical examination, included measures of memory and execu-
tive function, depressive symptoms, intellectual function, hippocampus volume and ApoE
genotype. There were significant differences between the two groups, with the sSMCI group
showing better performance on tests of memory and executive function, larger volume of
hippocampus and fewer ApoE-£4 positive subjects. We then asked how well a trajectory
towards AD could be predicted from the selected variables using a Random Forest (RF)
machine learning framework. When evaluated on a test set, the RF model showed a clas-
sification accuracy of 68.3%. Computations of feature importance indicated immediate
and delayed memory, hippocampus volume and executive function to be most important
for this prediction, and partial dependency plots showed cut-off values for increasing risk
of conversion. Results are discussed from a clinical, theoretical, and analytic perspective,
arguing for their relevance in the context of precision medicine.

Keywords: Mild Cognitive Impairment; Alzheimer’s disease; Neurocognition, Ran-

dom Forest; Alzheimer Neuroimaging Initiative; Precision medicine.
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Sammendrag

Mild Kognitv Svikt (MKS) er en diagnostisk kategori som beskriver en heterogen
gruppe pasienter. For noen representerer MKS et tidlig tegn pa en nevrodegenerativ syk-
dom, mens andre forbli stabile eller forbedrer seg over tid. Tidlig identifisering av nevrode-
generasjon er svert viktig for a kunne pabegynne behandling fgr sykdommen allerede har
forarsaket store skader i hjernen. Dette motiverte den aktuelle studien, der longitudinelle
data fra Alzheimer’s Disease Neuroimaging Initiative (ADNI) benyttes for a undersgke to
grupper av pasienter som ved baseline viste MKS av den amnestiske typen (aMKS): en
gruppe som forble stabile over tid (sSMKS) og en gruppe som etterhvert fikk diagnosen
Alzheimer’s sykdom (cMKS). Det ble valgt ut variabler som gjerne inngar i en klinisk
undersgkelse av pasienter med aMKS. Disse omfatter mal pa hukommelses- og ekseku-
tiv funksjon, depresive symptomer, intellektuell funksjon, hippocampusvolum og genotype
(ApoE). Resultatene viste bedre resultater pa tester av hukommelse og eksekutiv funksjon,
stgrre hippocampusvolum, og ferre individer med ApoE-£4 i sMKS enn cMKS gruppen.
Vi undersgkte deretter hvor godt et utviklingsforlgp mot AD kunne predikeres basert pa de
utvalgte variablene ved a benytte en Random Forest (RF) modell. Evaluering av modellens
ngyaktighet i et testset viste en ngyaktighet pa 68.3%. Beregninger av de ulike variablenes
betydning for klassifikasjonen viste at den var sterkest for mal pa hukommelse, hippocam-
pusvolum og eksekutiv funksjon. Partial dependency plots viste terskelverdier som gker
sannsynligheten for a klassifiseres i cMKS gruppen. Resultatene diskuteres fra et klinisk,
teoretisk og analytisk perspektiv, med vekt pa studiens relevans for en fremtidsrettet pre-
sisjonsmedisin.

Nokkelord: Mild Kognitiv Svikt; Alzheimer’s sykdom; Nevrokognisjon; Random

Forest; Alzheimer Neuroimaging Initiative; Presisjonsmedisin.
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1 Theoretical Background

Impaired cognitive function, and especially problems related to memory, is com-
monly reported by older adults. When the impairment gets medical attention, the person
will in many cases be referred to a memory clinic for a risk evaluation of a neurodegenera-
tive disorder. At the clinic, neuropsychological tests are commonly used to assess function
within different cognitive domains (e.g. memory, executive function, and language), and
for some, the examination will be extended to include an MRI examination and a blood
sample for genetic analysis. The diagnostic label Mild Cognitive Impairment (MCI) will
be used if the person shows a cognitive decline that is more severe than expected from
her/his age and education level, but still not sufficiently severe to warrant a diagnosis of

dementia (Petersen |[2004a; Gauthier et al., 2006]).

If the phenotypic profile of an MCI patient is defined by a primary memory impair-
ment, it is referred to as an amnestic MCI (aMCI). It is empirically well-established that
people with aMCI have a ten-fold increased risk of Alzheimer’s disease (AD). However,
the cohort of MCI individuals meeting the criteria for this diagnostic entity is immensely
heterogeneous both with respect to clinical phenotypes, underlying etiology, and prognos-
tics. Therefore, even though many individuals with aMCI may be on a trajectory towards
AD, a substantial proportion of those individuals do not have an underlying neurodegener-
ative process leading to this disorder, and may never progress to any disorder characterized
by dementia. Their symptoms may rather be caused by common treatable conditions like
depression, cardiovascular disease, inflammation, and hormone dysregulation (Panza et al.,

2018)).

Being able to differentiate MCI subjects on a trajectory towards AD from those
who remain stable over time or show remission, is a paramount goal in the research field,

and for precision medicine more generally. In addition to the obvious clinical importance,
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identifying which individuals are on an AD trajectory is of great importance to the success
of clinical drug trials. Imagine for instance that a proposed drug in reality is an effective
agent in preventing or stagnating progression of AD. The clinical trial of this very drug
may nevertheless fail if the study includes a substantial proportion of participants who do
not have AD pathology.

To our knowledge, few studies have investigated how well data obtained at the time
a patient was first diagnosed with MCI can predict whether this patient will convert to
AD. This motivated the present study to investigate characteristics of a group of patients
with MCI in an open longitudinal dataset; the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. Two MCI subgroups will be defined based on longitudinal diagnostic
status; one including subjects remaining stable with an MCI diagnosis (sMCI) and one
group including subjects converting to AD (cAD) throughout their participation in ADNI.
The following research questions are raised: Do the two groups differ on selected variables
already at an early assessment (baseline), i.e. years before knowing that one of the groups
convert to AD? If yes, can this information be used to predict whether an individual will
show a sMCI or cAD trajectory, and would it give the clinician knowledge about how to
put weight on the different features and their values already at an early visit? To that end,
explorative analyses of group differences will be extended by a machine learning approach
to investigate the predictions.

Before presenting the methods and results from the empirical study, a theoretical
background for the selection of themes, variables, and statistical approaches will be pre-

sented in the following section.

1.1 From normal to pathological aging

Questions related to how aging affects brain function have interested scientists for

decades. Many elderly will experience minor glitches in memory. While some will let
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them slide thinking that they are "just part of getting old", for others these same glitches
may lead to concerns that heavily impair daily life functioning. Today there is a broad
consensus among experts in the field that some cognitive abilities, such as verbal knowl-
edge and semantic memory increases across the lifespan, whereas other abilities including
processing speed, working memory and episodic memory consistently show decline with
age (Park et al., 2002; Oh et al., 2012).

We see, however, that the cognitive changes associated with aging are character-
ized by diversity in phenotype, with respect to both pace and severity. This diversity is
a result of the several biological and lifestyle-dependent factors influencing an individual
throughout the lifespan (Walhovd et al., 2014, Nyberg, 2019). Individuals who preserve
their cognitive function into old age are found at the one end of a continuum of cognitive
aging, including elderly referred to as "superagers" (Rogalski et al., 2013)). At the other
end, we have individuals who may experience cognitive decline at a much younger age
due to neurodegenerative disease (Petersen et al., 2006). Along this wide dimension of
cognitive function, it becomes difficult to define the fine distinction between normal and
pathological aging, and to predict a trajectory towards a neurodegenerative disorder from
clinical signs at an early stage of the disease. In the present thesis, the focus will be on the
trajectory from such early signs of impairment towards Alzheimer’s disease (AD), one of

the many disorders associated with dementia.

1.1.1 Alzheimer’s disease (AD)

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder estimated to
cause around 60-90% of all cases of dementia (Huang et al., [2020; American Psychiatric
Association [APA], [2013). The disease is typically divided into early- and late-onset AD,
distinguished by age at onset with 65 years old being the cut-off (Reitz et al., 2020). To ob-

tain a diagnosis of AD, the cognitive impairment should have an insidious onset, and be se-
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vere enough to interfere with functions of daily living (APA, 2013)). Impairment of episodic
memory function is the most common initial symptom of the disorder. This typically man-
ifests as forgetting recent events and conversations, as well as problems with learning new
information. Then follows progressive decline within other cognitive domains, often ac-
companied by alternations in emotional control, motivation and social behavior. As the
disease advances, the patient will gradually lose his/her ability to complete basic daily life
activities such as eating, dressing and personal care. As of today, there are no treatments
available to revert or cure the disease, and the average duration of dementia due to AD is
estimated to 7-10 years with death as an inevitable endpoint (Holtzman et al.,|2011]).

AD is posing a major challenge in todays society and it is recognized as a major
epidemic (Hampel et al., 2011; Sperling et al., 2011)). With increased longevity, the elderly
proportion of the population grows, and with age being the primary risk factor for AD,
the global community is facing great challenges related to the disease in the coming years
(Winblad et al., 2016)). Alongside the devastating personal consequences a diagnosis of AD
has on those affected and their caregivers, the economical costs are massive. In a report
published in 2019, the current economical costs associated with AD in Norway were esti-
mated to constitute 62 billion NOK (Menon Economics, 2020, p. 19). The report further
outlines a prospective analysis concluding that without new and effective treatments to cure
or stagnate the progression of AD, the costs related to the disease will almost triple (esti-
mated to 180 billion NOK) within the year 2040. Comparable estimates are foreshadowed
globally (Prince et al., 2015).

Effective treatment for AD is therefore strongly called for. Today, the field is chal-
lenged by problems related to early detection. It is well established that the degenerative
process of AD starts decades before the clinical signs. When these signs are severe enough
to get medical attention, extensive neural degeneration is already well established in the

brain (Braak & Braak, 1991)). This fact has lead to intensive research in the field focusing
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on predementia stages of neurodegenerative diseases. As already stated, memory problems
are reliable signs of AD. These signs are, however, difficult to distinguish from memory
problems frequently reported by older adults. An extensive examination should therefore
be conducted to identify prodromal signs of AD, with specific memory tests to identify
‘true’ AD-related memory impairment, in addition to tests assessing other cognitive do-
mains (Dubois et al., [2009)).

Taken together, longitudinal studies identifying cognitive changes associated with
different steps from normal cognitive aging to AD and other neurodegenerative disorders
are indeed called for. They are important to enable early identification and treatment, but
also to identify characteristics of changes experienced by a patient along a trajectory with
a given outcome. As a response to this call, Petersen and colleagues (1999) introduced
the diagnostic construct of MCI to describe the transitional stage between normal cognitive
function and dementia. Individuals falling within this diagnostic category have a cognitive
decline greater than what is expected for normal aging, but the impairment is still not
severe enough to warrant a diagnosis of dementia (i.e. activities of daily living are mainly

preserved) (see Figure[I).

1.1.2 Mild Cognitive Impairment (MCI)

The first official criteria for MCI was formulated by a group of researchers at the
Mayo Clinic and was originally intended to capture individuals with prodromal AD (Pe-
tersen et al., |1999). To obtain a diagnosis of MCI according to these original criteria,
the patient had to have memory complaints which could also be corroborated by objec-
tive deficits on tests of episodic memory. Importantly however, impairments should not
be severe enough to warrant a diagnosis of dementia. With an increasing amount of stud-
ies employing these MCl-criteria being published, it soon became clear that a substantial

proportion of patients defined as MCI never progressed to AD. It was therefore decided
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Figure 1

Model of the clinical continuum of Alzheimer’s disease. Illustration of cognitive de-
cline as a function of normal (solid line) and pathological (dotted line) aging. Figure
adapted from Sperling et al. (2011).
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that the diagnostic construct of MCI needed to be broadened to encompass this heterogene-
ity. On an international consensus conference held in 2003, the original criteria from the
Mayo Clinic were thus expanded to encompass cognitive impairments affecting cognitive

domains other than memory (Winblad et al., [2004).

In 2011, a working group from the (American) National Institute on Aging and
Alzheimer’s Association met to discuss the criteria for the symptomatic predementia phase
of AD. At that meeting, they proposed a more specific definition of ‘MCI due to AD’ (Jack
et al., 2011). According to their diagnostic guidelines, four core clinical criteria should be
fulfilled for a patient to receive a diagnosis of MCI to be obtained: 1) a subjective concern
regarding change of cognition reported either by the patient, an informant who knows the
person well, or a clinician; ii) objective impairment in one or more cognitive domains; iii)
generally preserved independent function of daily living; and lastly iv) the patients should

not meet the criteria for a diagnosis of dementia.

Despite extensive research and several revisions of diagnostic criteria over the last
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two decades, the MCI construct remains a topic for discussion. The persistent lack of con-
sensus is illustrated by changes incorporated into the fifth edition of the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5) published in 2013 (APA, [2013). In this
newest version, the diagnostic category previously referred to as dementia was replaced by
a chapter entitled ‘Neurocognitive Disorders’ (NCD). The chapter is further differentiated
into ‘minor’ and ‘major’ NCD, two grades of severity distinguished by whether or not the
cognitive decline is severe enough to compromise daily function. Whereas major NCD,
when etiology is known, is coded as subtypes (e.g. due to AD, Lewy-body or frontotempo-
ral), etiology for minor NCD is not coded. The inclusion of minor NCD is meant to capture
those in a predementia state. It is clearly overlapping with the construct of MCI, with an

intent to reflect the emerging literature on this topic (Blazer, [2013)).

As research on the MCI cohort has developed, awareness of the heterogeneity
characterizing the diagnostic entity of MCI has improved. It has become evident that
for some patients, treatment of other diseases may revert the MCI symptoms, others
will remain stable over time, and the rest will experience a trajectory towards a neu-
rodegenerative disorder. An initial attempt to tackle this heterogeneity was made by
Petersen (2004a) almost 20 years ago, when the first comprehensive clinical stratification
of MCI subtypes was presented. Following this nosology, an important distinction is
made between amnestic (aMCI) and non-amnestic (na-MCI) subjects with MCI, in which
the former group primarily presents with memory impairments whereas the latter group
is characterized by an impairment within cognitive domains other than memory. These
two groups are further divided into single- or multi-domain types, based on whether
the patient’s impairment is isolated to one cognitive domain or whether several domains
are affected (See Figure [2). According to this stratification, a person with a clinical
picture characterized by memory deficits accompanied by preserved cognition in other

domains are classified as “single-domain aMCI", whereas a person with intact memory,
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but impaired executive function and language problems is classified as “multi-domain

na-MCI”.

Figure 2

Algorithm for stratification of MCI subtypes. Figure adapted from Petersen (2004D).
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Among the aforementioned subtypes, patients in the non-aMCI subgroup are more likely to
progress to a non-AD neurodegenerative disease, like dementia due to Lewy bodies, fron-
totemporal dementia, or vascular dementia (Peterson, 2004b; Molano et al., 2009), whereas
the aMCI type is associated with the highest risk of progression to AD. The estimated rate
of progression among these patients is estimated to 10-15% per year, which is considerably
higher than in the general population of older adults, progressing at a rate of 1-2% per year
(Liu et al., 2013). aMCI is, however, also frequently found among patients with neuropsy-
chiatric disorders like depression as well as other somatic diseases. Although these patients
tend to be more stable than the ones progressing to AD, it is often difficult to differentiate
between these two groups.

In the present thesis, the focus will be on patients defined as aMCI. It is therefore
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important to emphasize that more recent research has uncovered substantial heterogene-
ity both in cognitive profiles and patterns of atrophy even within this amnestic subgroup.
This was for instance illustrated by a study conducting a cluster analysis including 825 in-
dividuals defined as aMCI from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Edmonds et al., 2014)). Based on subjects’ performance on neuropsychological tests cover-
ing three domains of cognition (memory, attention/executive function, and language), four
empirically derived subtypes were identified. The four subtypes were named: Dysnomic;
Dysexecutive, Amnestic, and Cluster-Derived Normal. The last group was especially sur-
prising in that individuals in this group performed within normal limits on the cognitive
tests, despite being defined as aMCI patients by the conventional diagnostic criteria used
in ADNI. This "misclassification" was found in more than one-third (34%) of the aMCI
sample.

The authors drew two main conclusions from this finding. Firstly, they argue that
the empirically derived identification of MCI subtypes within this group of aMCI demon-
strates a heterogeneity in the cognitive profiles of aMCI patients and that this diversity is not
captured by conventional diagnostic criteria. Secondly, they claim that their study indicates
a weakness with the conventional diagnostic criteria used for aMCI, with vulnerability to
false positives. A follow-up study (Edmonds et al., 2016)) on the same cohort further illus-
trated that the Cluster-Derived Normal subgroup had normal cortical thickness at baseline
despite being defined as aMCI. They further found that subjects in this subgroup continued
to show normal cognition and minimal cortical atrophy over the next 3 years.

Another similar study identified four atrophy subtypes in an AD sample and retro-
spectively illustrated that these subtypes could be detected already in the prodromal phase
(ten Kate et al.,|2018). They further robustly replicated their findings across three indepen-
dent data sets, giving additional confidence in that the findings indeed reflect true patho-

physiological subtypes of AD and its prodromal stage. Findings such as these underscore
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the importance of more detailed investigations of predictors for conversion from aMCI to
AD type dementia, including both information about cognitive function and biomarkers

characterizing patients with aMCI.

1.1.3 Biomarkers of MCI and AD

The pathological confirmation of AD requires presence of amyloid beta (Af) de-
position in plaques along with evidence of tau tangles (Albert et al, 2011)), and it is this
characteristic proteinaceous pathology that differentiates AD from other forms of dementia
including, but not limited to, dementia due to Lewy Bodies, frontotemporal dementia, and
vascular dementia.

Historically, a definite diagnosis of AD required post-mortem inspection of brain
tissue to confirm evidence of AD pathology. Today measures of such biomarkers can be
used to increase certainty about etiology and underlying pathology, and as such guide dif-
ferential diagnosis in living patients. If a patient fulfills the clinical criteria for dementia
and the presence of AD biomarkers is confirmed, a probable or possible diagnosis of de-
mentia is given, depending on the degree of certainty (APA, 2013 Gutches, [2019). There
is a consensus among most experts in the field of AD that the pathology associated with
AD exists on a continuum resulted from a process evolving several decades prior to the
manifestation of clinical symptoms (Petersen et al., [2009). As illustrated in Figure [3| AD
pathology should thus also be present in individuals with MCI who are on a trajectory
towards AD.

Even though the exact mechanisms and order by which the pathology manifests, as
well as how it relates to cognitive impairments, are still largely unknown (Jack & Holtz-
man, 2013), both senile plaques of Af and neurofibrillary tau tangles are known to interact
and alter synaptic plasticity, leading to synaptic loss, dysfunctional neural network, and

eventually neuronal loss (Ricciarelli & Fedele, 2017). A thorough review of the cellular
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Figure 3

The graph demonstrates a model for the temporal changes of biomarkers along the
cognitive continuum from healthy to Alzheimer’s disease. Illustration adapted from ADNI,
n.d., (http://adni.loni.usc.edu/study-design/).
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mechanisms involved in these processes is beyond the scope of this thesis (see Calabro et
al., , but a general overview and how it relates to the biomarkers used in this study will
be provided in the following.

Amyloid beta plaque and neurofibrillary tau tangles. To understand the patho-
physiology associated with abnormalities in amyloid beta (Af3), it is necessary to under-
stand normal function. The neuronal cell membrane consists of numerous proteins, in-
cluding a protein called amyloid precursor protein (APP). APP plays an important role in
neuronal growth and repair after injury, and as with all proteins in the body, it eventually
needs to be recycled and resynthesized. This breakdown happens mainly through two path-

ways; the non-amyloidogenic pathway and the amyloidogenic pathway (Rhaman et al.,

2020) (see Figure ).


http://adni.loni.usc.edu/study-design/
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Figure 4

lllustration of the amyloidogenic and non-amyloidogenic pathway for cleavage of
amyloid precursor protein (APP). Illustration adapted from Rahman et al. (2020).
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Through the former pathway, APP is broken down by the enzymes alfa-secretase
(a-secretase) and gamma-secretase (y-secretase), which results in the formation of smaller,
soluble peptides which are further metabolised and cleared from the extracellular space. In
the amyloidogenic pathway however, another enzyme called beta-secretase (3-secretase)
works with y-secretase to cleave APP. Through this pathway, the cleavage happens at an-
other location of APP, which results in slightly different peptides called A8 monomers.
Due to the biochemical properties of A3 monomers, they are insoluble and therefore harder
to clear from the extracellular space. Instead, many of these monomers will aggregate in the
synaptic junction, initially forming amyloid oligomers, which further aggregates to form

senile plaques of Af.

The other pathological hallmark characterizing AD is neurofibrillary tangles of the
tau protein. The primary physiological function of tau proteins is to stabilize the axonal

microtubule, an important part of the cell’s cytoskeleton (Calabro et al., [n.d.). The micro-
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tubule extends from soma to the axon terminal, giving the neuron it’s structure and facili-
tates transport of molecules. In AD, an abnormally large proportion of tau proteins become
phosphorylated. In this phosphorylated state, the tau proteins detach from the microtubule
and instead cluster together forming neurofibrillary tangles, resulting in the breakdown of
microtubules (Igbal et al., [2005). The intracellular tau tangles disrupt neuronal signal-
ing and eventually lead to cell death causing the neural degeneration characteristic of AD.
At the microscopic level, the degeneration is characterized by neuronal loss and at the
macroscopic level, it is observed as atrophy (i.e. loss of brain tissue) (Jack & Holtzman,
2013). Consistent with impairments in episodic memory being the initial clinical presen-
tation of typical AD, the spatio-temporal pattern of progression for neurofibrillary tangles
in AD subjects start in the transentorhinal cortex, spreads to the hippocampus, and then
progresses to cover the cerebral cortex in later stages (Braak & Braak,|1991; Serrano-Pozo

et al.,2011) (Figure[5).

The ApoE gene. The ApoE gene is identified as the main genetic risk factor for
developing late-onset AD (Liu et al, 2013; Berkowitz et al., 2018]), estimated to account
for 27.3% of the risk of developing the disease (Van Cauwenberghe et al., |2015). The
gene is closely related to the aggregation of A and the tau-related pathology associated
with AD (Butt et al, 2021), and information about this gene is therefore included in the
present study as a proxy for the biomarkers mentioned above. The ApoE gene codes for
Apolipoprotein E, a protein playing a pivotal role in the transport and metabolism of plasma
proteins, including APP. There are three isoforms of the ApoE gene; €2, €3, and €4, and it
is well-established through both animal (Castellano et al., 2011) and human studies (Roda
et al., 2019) that the different isoforms differentially affect both production and clearance
of AB (Liu et al., 2013). In general, carriers of ApoE-£4 tend to show lower performance
on cognitive tests than non-carriers (Wisdom et al., 2011)), and several studies have doc-

umented a high prevalence of €4 alleles among individuals with MCI (Tervo et al., 2004;
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Kryscio et al., 2006). Studies assessing ApoE status in relation to fluctuations from MCI
to cognitively normal have found the presence of at least one €4 allele to be negatively as-
sociated with reversion to normal cognition (Koepsell & Monsell, 2012). It is also widely
shown that individuals with MCI who are carriers of the €4 allele are at increased risk for
progressing to AD-type dementia (Xu et al., 2012; Samaranch et al., 2011).

Brain atrophy and hippocampal volume. Although it is well known that the brain
changes as we get older, the course of the aging brain is still very much an enigma. The
last 30 years of neuroimaging research using Magnetic Resonance Imaging (MRI) has,
however, significantly improved our understanding of how the brain changes as we age.
Morphometrical studies of the aging brain, e.g. frontal lobe atrophy, hippocampal shrink-
age, cortical thinning, ventricular enlargement, can be described as the first ‘imaging era’
in this field. After the introduction of diffusion tensor MR imaging came the loss of white
matter integrity approach to aging, and BOLD fMRI with and without-a-task has enabled
assessment of functional aspects of the aging brain. And recently, combining these tech-
niques into brain connectivity mapping has moved the field towards a system approach to
brain aging (Raz & Kennedy, 2009).

In the present thesis, information about the brain is restricted to a measure of the
hippocampus, a brain structure part of the limbic system located in the medial temporal
lobe. This measure is still regarded as an early hallmark predicting progression from MCI
to dementia in a clinical setting (Petersen, 2011; Caillaud et al.,|2019). Substantial volume
loss in patients with MCI and AD has been confirmed by several cross-sectional and lon-
gitudinal studies (see e.g. Apostolova et al., [2012; Franko & Joly, 2013; Gorbach et al.,
2020), and more generally, this brain structure is particularly vulnerable to the process of
aging (Zheng et al., 2018), with an accelerating volume loss in the middle age (Nobis et al.,
2019).

The critical role of the hippocampus in learning and memory function (Zeidman
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& Maguire, is another argument for including this volume measure in the present
study. Several studies have confirmed that atrophy of the hippocampal structure correlates
strongly with cognitive decline (Petersen et al., 2000). For instance, a community-based
study found that among individuals with aMCI, those with volumetric measurements falling
at or below the 25th percentile for their age and sex had two to three times as a high risk
of progressing to dementia over a 2-year follow up compared to those whose hippocampal
volume were at or above the 75th percentile (Jack et al., . Taken together, these studies
show the importance of including measures of hippocampal volumes when predicting a

trajectory from MCI to AD.
Figure 5§
Atrophy of a healthy individual (A) compared to an individual with Mild Cognitive

Impairment (B) and Alzheimer’s disease (C). As illustrated by the arrow, cell loss causes
shrinkage of the hippocampus. Illustration adapted from Petersen (201 ).

1.1.4 Depression in MCI and AD

Depression is one of the most common neuropsychiatric symptoms in the elderly
population, with community-based studies reporting symptoms of depression in 20% of
the elderly population (Lyketsos et al.,[2002). It is well described as a cardinal symptom of

some of the main neurodegenerative disorders (e.g. Parkinson’s disease and Huntington’s
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disease) (APA, 2013, p. 181). Recently, there has also been an increased awareness of how
depressive symptoms can be an early sign of AD and can cause as much and sometimes
more distress than the cognitive symptoms (APA, 2013). The importance of assessing
symptoms of depression in patients with MCI is further underscored by a recent meta-
analysis of neuropsychiatric symptoms in this patient group (Martin & Velayudhan, |[2020).
They referred to studies showing prevalence rates up to 83% in clinic-based samples of
aMCI (Rozzini et al., 2007). Symptoms of depression may therefore be the first to get
medical attention in a patient with early signs of AD.

Still, the significance of this high prevalence of depression observed in MCI is
currently not clear, and findings from studies examining the role of depression in relation
to the risk of progressing to AD tend to be inconclusive. Although one study found that
among patients with aMCI, 85% of those with depression progressed to AD, compared to
only 32% of non-depressed individuals (Modrego & Ferrandez, [2004), other studies show
no increased risk of progressing to AD associated with depression in aMCI patients (Palmer
etal.,2010). Conflicting results are probably related to the ambiguous relationship between
symptoms of depression and cognition, where depression can be considered secondary or
concomitant to cognitive decline (Sachs-Ericsson & Blazer, 2014). Taken together, it is
important to take depression into account when predicting a trajectory from MCI to AD, but

awareness should be given its close link to the cognitive characteristics of these disorders.

1.1.5 Cognitive Reserve and Brain Maintenance

Even though the presence of AD pathology in most cases leads to the clinical syn-
drome characterizing AD, there is a significant proportion of elderly who remain cogni-
tively normal despite having a high load of Af3 plaques and tau tangles. This is well estab-
lished through several studies finding amounts of pathology sufficient to fulfill the patho-

logical criteria for AD in individuals with normal cognition (Crystal et al., |1988};, Moris et
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al., |1996; Neuropathology Group, 2001). The disconnect between the degree of pathology
and cognition has been recognized for a long time, and there has been a great interest in un-
derstanding potential resilience factors. Several concepts have been used to describe such
resilience factors against normal and pathological age-related changes, including cognitive

reserve and brain maintenance.

In this context, the cognitive reserve hypothesis has been among the most studies
(Arenaza-Urquijo & Vemuri, 2018). This hypothesis posits that having greater cognitive
reserves may allow for more flexible strategies in solving tasks and as such provides re-
silience against brain pathology (Tucker & Stern, 2011). Two individuals that seem to
have similar neuropathological load can thus present with very different clinical outcomes.
Brain maintenance is a concept used to describe a complementary concept to cognitive
reserve (Habeck et al., 2016). It was first introduced by Nyberg and colleagues (Nyberg
2012). They referred to brain maintenance as ‘hardware’ and described cognitive reserve
as ‘software’, meaning that it explains functions far beyond what can be explained by brain
structure. By this distinction, the trajectory from normal cognitive performance, through
MCI to AD, is an example of poor brain maintenance. The trajectory is, however, modu-
lated by several resilience factors. With both these processes being dimensional, measures
of brain volume, as well as cognitive function in samples of older adults, should always
be evaluated in the context of heterogeneity. Whereas numerous studies have investigated
the role of cognitive reserve and brain maintenance for the observed pathology-cognition
disconnect in cognitively unimpaired individuals with AD pathology, fewer studies have
assessed their relative influence specifically on MCl-individuals risk of progressing to AD
(Varatharajah et al.,|2019). One such study used the Japanese version of the National Adult
Reading Test (NART) as an index of cognitive reserves and found that MCI subjects con-
verting to dementia had lower premorbid intelligence compared to those who reverted. This

finding indicates that cognitive reserve may be an important factor to consider when trying
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to identify which individuals are on a trajectory towards AD.

Taken together, the heterogeneity of cognitive function in older adults can be ex-
plained by a wide range of unknown factors. This includes biological and genetic factors,
as well as the many life events and lifestyle factors influencing an individual throughout
a lifetime (Wahlhovd et al., [2014; Nyberg 2019). This gave the present study on trajec-
tories from MCI to AD arguments for applying a comprehensive data-driven framework,

including analyses of feature importance, within a machine learning approach.

1.2 Machine Learning

Machine learning (ML) is a branch of Artificial Intelligence in which statistical
methods are used by computers to find patterns in high dimensional data. It is closely
related to the field of cognitive psychology, where learning can be defined as "the combined
effect of all encoding, storage, and retrieval in gradually enhancing the performance on a
particular task" (Purves et al., 2013} p. 574), and this conceptualization of learning can
be extended to the context of ML. As explained by El Naqa et al. (2015, p. 4), an ML
algorithm is a computational process created to complete a specific task, and it does so by
learning from input data without being explicitly programmed to do this (i.e., not ‘hard
coded’). An ML algorithm should rather be described as ‘soft coded’ because the goal is
that it learns from experience (input data) to increase its performance. The ‘learning’ part is
referred to as the training of the model. The goal is to obtain a predictive model that works
on new data, i.e. data not used to train the model. To avoid that the model is overfitted to
the data on which it is trained, several means can be taken. To detect whether the model is
overfitting the full dataset is typically split into two parts; one part for training the model
(training set) and one part used for a final validation (test set) of the model’s performance.
If the model performs well on the test set which contains data previously unseen by the

model, this indicates that the model performance can be generalized also to new data. If
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the model has poor generalization ability it is often either overfitted, in which case one
would use various so-called regularization techniques, or underfitted, in which case one
would attempt to increase the capacity of the model by e.g. enlarging the set of parameters
or switch to another, higher-capacity model. It may also happen that the training data set
distribution is too dissimilar to the test set data distribution, indicating that one must be

more careful when selecting the data instances that form the test set.

Broadly, there are three types of ML algorithms: 1) supervised, ii) unsupervised,
and 1i1) reinforcement learning. Supervised learning are theoretically driven top-down ap-
proaches, in which the algorithm is trained by the use of labeled data. In classification
settings, each observation in the dataset is paired to one ‘true’ label or class, and the algo-
rithm tries to classify an outcome based on selected features (input data). Because the true
labels for each observation are known to the algorithm, it can validate whether the class
predicted was correct or not, and adjust accordingly. For regression models, the predicted
values are continuous numbers that can be compared to the "true" values using various dis-
tance measures, for example mean squared distance between the predicted values and the
true values. In contrast, unsupervised learning algorithms are empirically driven bottom-up
approaches, where the input data contain no such true labels (i.e. no ground truth). Thus
there are no error or reward signals to base an evaluation on, so instead, the algorithm’s task
is to uncover meaningful patterns in the data. This can for instance be by defining clusters
of observations sharing properties in the high dimensional space of multiple input features.
The last type, reinforcement learning, is the most dynamic form of ML. Here, the algorithm
is an agent learning from its environment to maximize reward based on the feedback it gets
from its actions. For each of these three broad categories there are numerous different ML
models available, and which approach is most suitable depends on the research question
at hand. In the context of this thesis, a supervised classification model was deemed ap-

propriate as we wanted to investigate how well a model could classify MCI subjects as
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stable or converters (true labels). Properties of Random Forest (RF), the specific super-
vised classifier used in this study, will be described in the next section. ML approaches, as
compared to traditional statistical methods more commonly used, have been found suitable
when trying to reveal the complex interplay between a large number of predictors (Car-
reiro et al., 2015). Over the past decades we have witnessed a boost in the emergence of
ML approaches applied to medical research, and this is true also for the research field of
AD (Dallora et al., 2017). In line with this, several studies employing ML frameworks
have proven such methods to be powerful tools for predicting disease trajectories of MCI
patients (Battista et al., |2017; Moradi et al, 2015; Amorosa et al., [2018)). Nevertheless,
despite the apparent utility of such frameworks, they have mainly been applied to studies
including neuroimaging and genetic data, and fewer studies have assessed cognitive, be-
havioral, and daily-life functional data (Battista et al., [2017). Studies investigating these
aspects in relation to MCI and AD have to a greater extent relied on traditional statistical
methods (Pereira et al., 2018)). One plausible reason for this relative lack of ML frameworks
being extended to neuropsychological data might be that the inherent high-dimensionality
of both imaging and genetic data has created a more pressing demand for novel methods of
analyzing such data. Further, ML is inherently a multidisciplinary field drawing on knowl-
edge from several different domains such as statistics, computer science, and engineering,
as well as domain knowledge from experts in the specific topic being studied. We therefore
speculate if fewer studies employing ML frameworks on neuropsychological data may be
due to greater disciplinary distance, and hence less interdisciplinary cooperation between
computer scientists and clinical neuropsychologists compared to the field of imaging and
genetics.

There are, however, several reasons why ML frameworks should also be extended
in this context. Cognitive impairments are cardinal symptoms of both MCI and AD, and

the core part of the clinical picture first meeting the clinician. In the ‘real world” we do
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not screen the population for AD pathology, and the initial cognitive symptoms of MCI
may therefore be the first chance to capture individuals at a predementia stage. Neuropsy-
chological tests are therefore widely used in the clinical setting (compared to more ex-
pensive and/or invasive biological markers such as structural or functional MRI imaging,
PET scans, or cerebrospinal fluid). Due to restricted time, clinicians may find it difficult to
select which neuropsychological tests, among the countless tests available, are most impor-
tant for prognostic prediction. This gives arguments for the need for data-driven approaches
to identify feature importance when investigating the relationship between subject-specific

information at baseline and disease trajectory.

1.2.1 Random Forest

Random Forest (RF) is a commonly used supervised ML model introduced by
Breiman (2001a). This is an ensemble model in which multiple decision trees are built,
from which each tree in the ensemble casts a vote on class belonging. As illustrated in Fig-
ure[6] the final prediction of class belonging is decided based on majority voting, meaning
that the predicted class of a given observation is the one that the majority of trees voted
for. When constructing trees in an RF, the concept for maximizing information gain in
each split is done in the same way as when creating a single decision tree. That is, the goal
is to optimize information gain (i.e. decreasing impurity of the split) at each node in the
tree. This is done by selecting the most informative feature, as well as the most optimal
value of this, to split on. An advantage of RFs is thus that they harness’ the simplicity
associated with decision trees. However, they introduce some randomness, which typically
results in better predictions as each predictor in the ensemble has a different decision logic.
The randomness is introduced mainly in two ways. Firstly, each tree in the forest is grown
based on drawing a bootstrapped dataset from the full training data. Creating bootstrapped

samples means drawing only a random subset of observations (i.e. subjects) from the orig-
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Figure 6

lllustration of Random Forest.
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inal training data with replacement. An important aspect of bootstrapping is that the same
observation can be selected several times, hence each of the bootstrapped samples will con-
tain the same number of observations as the original training data, while not being identical
due to duplicate entries being allowed (Hastie et al., 2009, p. 249). For each bootstrapped
sample, there will also be observations not selected. These are called Out-Of-Bag samples
and are run down the constructed tree to provide an estimated accuracy of the tree. Sec-
ondly, each tree in the ensemble only gets access to a random sample of the features in the
data set.

Evaluating how well an ML algorithm performs in a classification task is an im-
portant part of the process. Several approaches and metrics for evaluating classification
models exist, and which are most informative in a given case is closely related to both
the research question and characteristics of data used in model construction. One cen-
tral metric of model performance that will be reported in the present study is accuracy,

namely the percentage of correctly classified subjects. However, as argued by Japkowicz
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& Shah (2009), the use of additional metrics is often necessary to get a nuanced assess-
ment of a model’s strengths and weaknesses. This is for instance true in cases where data
is unbalanced with respect to classes, in which accuracy can be a poor indicator of model
performance. Therefore the F1-score, which is a harmonic mean between positive and neg-
ative predictive value, will also be reported. Additionally, sensitivity and specificity, two
performance metrics central in medical classification problems, will be reported. Sensi-
tivity gives information about the proportion of positive cases that are correctly identified
(i.e. true positive rate), and conversely, specificity gives information about the proportion

of negative cases that are correctly identified (i.e. true negative rate).

1.3 Problem Formulation and Objectives

Based on the discussion above it should be clear that MCI is a heterogeneous di-
agnostic construct with an uncertain course of development on an individual basis. Being
able to identify individuals at increased risk for developing AD is of great importance in the
context of precision medicine. Taken together, this motivated the current thesis to explore

the following three research questions:

RQ1: Is there a group difference in the clinical phenotype of MCI subjects remaining sta-

ble (sMCI), compared to MCI subjects converting to AD (cAD), already at baseline?
RQ2: How well can a Random Forest machine learning algorithm trained on baseline data
perform in the binary problem of classifying MCI subjects into those who will remain

stable (sMCI) and those who will convert to AD (cAD)?

RQ3: What features are weighted highest in making this prediction?
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2 Methods

2.1 ADNI database

All data for the current study was obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI), one of the world’s leading projects within research on MCI
and AD. This is an ongoing longitudinal study initiated in 2004 as the result of collabora-
tion between several academic institutions and private companies. It is a non-randomized
natural history study where participants do not receive any treatment but their health data is
being collected longitudinally to understand the natural developmental trajectory from nor-
mal cognition to AD. One of the project’s main objectives is to develop markers for early
detection and monitoring of people who are on a trajectory towards AD. To achieve this,
clinical, genetic, brain imaging, and biological data in the form of cerebrospinal fluid and
blood samples have been collected longitudinally from participants at 59 different research
centers in the United States and Canada.

Originally, ADNI was meant to last for five years (ADNI 1 from 2004-2009), but
before the first study wave was completed, the project received funding to be extended
for three subsequent phases: ADNI-GO (2009-2011), ADNI-2 (2011-2016) and ADNI-3
(2016-2021). To date, these four protocols have recruited over 2000 elderly with 1) normal
cognition, ii) early or late MCI and iii) people with early AD.

Many of the subjects originally enrolled in ADNI 1 are also followed in subsequent
study waves, and new subjects have been enrolled in each of the subsequent phases. An
aim of ADNI was to keep the study protocols similar across the different study phases, but
certain updates and modifications have been found necessary due to improved knowledge
and technological advances. This has challenged longitudinal studies exploiting data from
the ADNI database because subjects with complete data from one study phase in many

cases miss data points from another phase. This challenge is also valid for the present
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study. Much time and effort were therefore put in the first step of data preparation, with an
aim to include as many participants as possible across all four phases.

To be enrolled in the ADNI study, all subjects had to pass a screening in which the
following inclusion criteria had to be met: i) age between 55-90; ii) Hachinski Ischemic
Score less than or equal to 4; iii) Geriatric Depression Scale less than 6; iv) study partner
with a minimum of 10 hours contact per week either in person or telephone, who also could
accompany to study visits; v) visual and auditory acuity adequate for neuropsychological
testing; vi) good general health with no diseases prior to enrollment; vii) women had to
be sterile or two years past childbearing potential; viii) being willing and able to complete
a 3 year imaging study (2 years for AD subjects); ix) having a minimum of 6 grades of
education or work history equivalent to this; x) being fluent in either English or Spanish;
xi) commitment to Neuroimaging and no medical contraindications to MRI; xii) agree to
provide DNA for ApoE testing and banking of genetic material, as well as blood and urine
for biomarkers; and xiii) not presently being enrolled in other trials or studies.

Further, all subjects had to be stable on permitted medications for at least 4
weeks prior to screening. For subjects with MCI and AD permitted medications included
Cholinesterase inhibitors and Memantine. For all participants, estrogen, and estrogen-like
compounds, as well as vitamin E substitutions, were permitted (see http://adni.loni.usc.edu/

methods/documents for full list of permitted medications).

2.2 Participants included in the present study

For the present study we included subjects across all four study phases of ADNI
who according to ADNI’s criteria were defined as MCI at their baseline (first) assessment.
Data were downloaded on November 9th 2020, and the study is thus restricted to subjects
whose data was uploaded to the ADNI database before this date.

ADNI defined a subject with MCI if; 1) s/he or her/his partner reported concern due
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to impaired memory function; ii) s/he obtained a Mini Mental State Examination (MMSE)
score between 24 and 30; iii) a Clinical Dementia Rating Scale (CDR) score = 0.5; iv) a
score lower than expected (adjusted for years of education) on the Wechsler Memory Scale
Logical Memory II (WMS-II); and v) had preserved function of daily living. From this
group of MCI subject we selected subjects who met the additional criteria of having at
least three study visits (e.g. baseline visit and at least two additional visits) and who had
undergone a minimum of three MRI examinations.

These MCI subjects were further divided into two subgroups defined according
to their longitudinal diagnostic status. One subgroup was defined as stable MCI (sMCI),
meaning that they met the applied ADNI criteria for MCI on all study visits (n=381, age
range at baseline = 55-91). The other group was defined as converters to AD (cAD) and
included subjects who initially were diagnosed with MCI, but converted to AD at a later
study wave (n=327, age range at baseline = 55-88). ADNI defined AD by the following cri-
teria: i) an MMSE score between 20-26 (inclusive), ii) a score = 0.5 or 1.0 on CDR, and iii)
when they met the National Institute of Neurological and Communication Disorders and
Stroke/Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) crite-
ria for probable AD (McKhann et al., |1984)). To ensure uniform application of diagnostic
criteria across the over 59 different study cites involved, a Central Review Committee ver-
ified each individual subject’s conversion to AD. Figure [7illustrates the process of subject

selection and creation of subgroups.

2.3 Neurocognitive Measures

When selecting participants for the present study, we aimed to include as many as
possible with data on validated neuropsychological tests known to be affected in patients
with MCI and AD. Due to the aforementioned challenges related to differing study pro-

tocols across the four ADNI phases, there was however a trade-off between sample size
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Figure 7

Flowchart illustrating the process of selecting subjects and creating MCI subgroups.
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and tests to be included. In the end, the Rey Auditory Verbal Learning Test (RAVLT) was
included to assess main aspects of the process of memory function: immediate recall, de-
layed recall and delayed recognition, and different aspects of attention/executive function
were assessed by the performances on the Trail Making Test part A and B and a semantic
fluency test. In addition, we included two more global measures: the short form of the
Geriatric Depression Scale (GDS), and the American National Reading Test (ANART) to
assess symptoms of depression and intellectual function, respectively. All included tests
are commonly used clinically, and all examinations were conducted by certified personnel.
Each of the selected neurocognitive tests and the individual scores derived will be described

in the paragraphs below.



TRAJECTORIES FROM MCI TO AD 35

2.3.1 Rey Auditory Verbal Learning Test (RAVLT)

RAVLT (Rey, 1964) is a list learning task included as a measure of different aspects
of verbal learning and memory function. In the first learning trial, a list of 15 nouns is
read aloud by the test administrator at a rate of one word per second. Immediately after the
first presentation, the subject is asked to freely recall as many of these 15 words as possible.
This procedure, with reading and recall of the same list, is repeated for 4 more trials. A total
score for immediate recall [ ‘RAVLT immediate’] was calculated by adding the number of
words correctly recalled across all five trials. After a 30-minutes delay period filled with
testing unrelated to the verbal content of RAVLT, the subject is again asked to recall the
15 words from the original list, and the number of correct responses is used as a measure
of delayed recall [ ‘RAVLT delayed’]. Immediately following this, a list including the 15
targeted words intermixed with 15 distractor words is presented to the subject who is asked
to circle the words s/he recognizes. From this, a recognition score was derived from the

sum of correct answers [ ‘RAVLT recognition’].

2.3.2 Trail Making Test (TMT)

TMT (Reitan, 1958)) was included as a measure of processing speed and executive
function. This assessment consists of two parts, TMT-A and TMT-B, which both depend
on visuomotor and perceptual-scanning skills and tempo, but where part B adds a load on
the cognitive flexibility part of the executive function.

In part A, a sheet of paper with the numbers 1-25 printed on it is presented to the
subject. The subject is then instructed to use a pen to connect the numbers in ascending
order, encouraged to work as fast as they can. Part B is similar, but here the numbers
(1-13) are intermixed with letters (A-L), and the subject is instructed to connect these by
switching between the ascending numerical and alphabetical order (i.e. 1 to A, A to 2, 2 to

B). If an error is made during the test session, the examiner stops the subject and redirects
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him/her back to the last correct response. The total number of seconds used to complete
the tasks was given separately for part A [‘Trail Making A’] and B [‘Trail Making
B’]. Maximum (worst) scores are 150 and 300 for part A and B, respectively, as the subject
was stopped if these time limits were exceeded. In the present study the time spent to
complete TMT-B is used as a measure of executive function, although we are well aware
that the performance is dependent on several cognitive abilities such as processing speed,

sequencing, mental flexibility, and visual-motor skills (Bowie & Harvey, |[2000).

2.3.3 Category Fluency Test (CFT)

CFT (Butters et al., [1987) assess verbal fluency. In CFT, the subject is asked to
generate as many exemplars as possible of words belonging to a given semantic category
(animals) within a testing period of 1 minute. A primary performance measure [ ‘Category
Fluency’] was calculated based on number the of correct, unique examples generated.
The validity of CFT to assess verbal ability, and more specifically lexical access ability,
has been confirmed in several studies (Lezak et al., 2012, p. 693; Shao et al., [2014).
However, the task does not only tap into the domain of language but it is also heavily
dependent on executive function (Baldo & Shimamura, [1998; Schwartz & Baldo [2001).
This is because in addition to accessing their mental lexicons, the subjects must focus on
the task at hand, select words meeting the condition of belonging to the semantic category,

and inhibit repetitive responses.

2.3.4 Geriatric Depression Scale (GDS)

The short form of the GDS (Yesavage & Sheikh, 1986) is a self-report questionnaire
designed to identify symptoms of depression, specifically in an elderly population. The
form includes 15 items to which the subjects answer by circling "yes" or "no" based on

how they felt the past week. Ten questions are positively oriented for depression (e.g. "Do
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you feel that your life is empty?") and the remaining five questions are negatively oriented
(e.g. "Are you basically satisfied with your life?"). All questions are weighted equally,
with one point given for each answer indicative of depression (maximum 15 points). As
participants obtaining a total GDS score [ ‘GDS’ ] between 6-15 were already excluded from
the ADNI sample, the total GDS scores in our selected sample range between 0-5. The
score in individual participants are still used to assess severity level, as even symptoms

below diagnostic threshold may affect cognitive function (Brevik et al., 2013

2.3.5 American National Adult Reading Test (ANART)

ANART (Nelson & O’Connell, 1978) estimates intellectual function by asking sub-
jects to read a list of 50 words that are printed on a sheet of paper. All words are irregular in
that they do not follow rules of phonography and orthography, and they are graded in terms
of difficulty of correct pronunciation. Because of this irregularity, correct pronunciation
can not be achieved by applying common grammatical rules, but rather depends on pre-
vious familiarity with the words. Performance is assessed according to phonetic accuracy
in pronunciation of each word, and a total score [  ANART’] was calculated in terms of the

total number of committed errors.

2.4 MRI acquisition and Brain Segmentation

Acquisition of 1.5 T MRI (for ADNI 1) and 3.0 T MRI (for ADNI GO/2/3) data at
each of the multiple ADNI sites followed a described standardized protocol developed by
ADNI. See http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition for
sequence details.

To extract reliable hippocampus volume estimates, T1-weighted MRI images
were automatically processed with the longitudinal stream (Reuter et al., 2012) in

FreeSurfer v.7.1.1. Specifically, an unbiased within-subject template space and image
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(Reuter & Fischl, 2011) is created using robust, inverse consistent registration (Reuter et
al., 2010). Several processing steps, such as skull stripping, Talairach transforms, atlas
registration as well as spherical surface maps and parcellations are then initialized with
common information from the within-subject template, significantly increasing reliabil-
ity and statistical power (Reuter et al., 2012). ADNI data were originally processed with
two different versions of FreeSurfer (v.4.3 and v.4.1). As shown in previous work from
colleagues (Mofrad et al., 2021)), the use of various versions of FresSurfer may lead to
larger discrepancy in the atrophy estimations. Thus, all included MRI images were re-
processed applying the same version of FreeSurfer (v.7.1.1) by collaborators at the Mohn
Medical Imaging and Visualization Centre. A measure of total the hippocampus volume
[ ‘Hippocampus’] was derived by combining the volume of the left and right hippocampi.
To reduce the effect of individual and gender differences in brain sizes, the volumes were

normalized using a total intracranial volume measure estimated (eTIV) by Freesurfer.

2.5 ApoE Status

Blood samples were collected at baseline for ApoE genotyping. Samples were
transported from each study site by overnight transport to the University of Pennsylvania
Alzheimer’s Disease Biomarker Laboratory where the genotyping was carried out. In the
present study, ApoE-£4 status was divided into a binary variable [ ‘ApoE 4’] of subjects
having no €4 alleles (ApoE negative) and subjects having at least one €4 allele (ApoE

positive).

2.6 Analytic Approach

The exploratory statistical analysis was performed using IBM SPSS Statistics for
Macintosh, Version 27.0. The supervised data-driven machine learning analysis was im-

plemented in Jupyter Notebooks using Python (3.5.4), Numpy (1.20.1), Pandas (1.2.4),
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Statsmodels (0.8), Scikit-learn (0.19), Scipy (1.6.2), Seaborn (0.11) and ELi5 (0.11.0).
The packages Matplotlib (3.3.4) and Pdpbox (0.2.1) were applied for producing figures.
Relevant Jupyter Notebooks are available on the project’s GitHub repository (https:

//github.com/ingryy/mci_subgrups.git).

2.6.1 Explorative data analysis

A core objective of the current study was to provide a broad phenotypic characteri-
zation of the two MCI subgroups (i.e. the cAD and sMCI groups) at baseline, and compare
the groups on these characteristics. The groups were therefore checked for similarities
and differences with respect to all demographic and clinical measures. Student’s t test for
independent samples was used for continuous variables, and Pearson Chi-Square test for
nominal variables. Statistical analysis of the fourteen included variables were Bonferroni
corrected for multiple comparisons, with an alpha level of .004 (0tsereq = -05/14 = .004,
rounded) considered to be statistically significant. To check pairwise correlations between
the cognitive measures, Pearson correlations were calculated and presented separately for

the SMCI and cAD groups in a comprehensive generalized pairs plot.

2.6.2 Prediction of MCI subgroups

Prior to constructing the RF model, we found the quantity of missing data to be less
than 5% and used descriptive statistics to identify potential distributional outliers. In total,
30 subjects had missing values on one or more features included in the RF model, and these
were removed from the dataset prior to model construction. This resulted in a sample of
678 subjects.

We used a Random Forest (RF) classifier as implemented in Scikit-1learn to pre-
dict class y; € {sMCI, cAD} from a feature vector x; = (Age;, gender;, RAVLT-immediate;,
RAVLT-delayed;, RAVLT-recognition;, Trail-Making-A;, Trail-Making-B;, Category-
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Fluency;, GDS;, ANART;, Apoe-4;, Hippocampus-volume;) where i € {1,...,678} denote
participant number i. A detailed description of the specific classifier used is found in
the Scikit-learn Package’s own documentation: https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestClassifier.html and the refer-
ences therein. Because the dataset was relatively well balanced with respect to percentage
of subjects belonging to each class (sSMCI 53.7%; 47.3% cAD), the accuracy metric was
used to assess model performance during development and selection of hyperparameters
(explained below).

It is well known that learning the parameters of a classification function and testing
it on the same data is a methodological mistake (Lundervold & Lundervold, 2019). Such
a model would learn (i.e. memorize) the labels of the sample it was trained on, leading
to a perfect score on this data, while potentially failing to predict anything useful when
tested on unseen data. This is, as previously explained, known as overfitting, and can lead
to a lack of generalization abilities. To avoid this, we split the complete sample (n = 678)
into a training set comprising 80% (n = 539) used for training the mode, while a test set
comprising 20% (n = 139) was held aside to be used for a final evaluation. This was done
to assess how well the model performs on unseen data. The training and test sets were
carefully stratified with respect to age, gender and class belonging. Exploratory analysis

revealed no significant differences on any of the features included, nor length of follow-up.

2.6.3 Tuning model hyperparameters using grid search

The RF algorithm has several hyperparameters that can be adjusted in order to opti-
mize the classifier. Therefore, to improve model performance, we conducted tuning of the
algorithm’s hyperparameters. This was done by utilizing the GridSearchCV available from
Scikit-learn (http://scikit-learn.org). Through this method, all possible combina-

tions of the parameter values within a defined space to search are evaluated to identify
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Table 1

The table presents the defined range on which grid search was conducted for each of the
hyperparameters. The rightmost column presents the optimized values for each parameter.

Parameter Defined search range Selected values
n_estimators [100, 200, 300, 450, 470, 480, 490, 500, 550, 800, 1000] 480
max_features [1,2,3,4,5] 4
min_samples_split [1,2,3,4,5] 2

max_depth [1,2,3,4,5] 4
min_samples_leaf [L,2,3,4,5] 1

bootstrapping [True, False] True

which combination of hyperparameter values results in the greatest model accuracy. In the
current study, exhaustive grid searches were conducted on the following six parameters: 1)
number of trees in the forest (n_estimators); ii) number of features to consider at each
split (max_features); iii) maximum number of levels in each tree (max_depth); iv) min-
imum number of subjects placed in a node before it can be split (min_samples_split);
v) minimum number of subjects allowed in a (min_samples_leaf); and vi) whether boot-
strapping should be employed (bootstrap). Before grid search was conducted, the accu-
racy we obtained was 65.1% and this increased to 73.3% after implementing optimal values
for all six parameters. Table[I| presents the search space defined as well as the selected val-

ues for each of the six parameters.

2.6.4 Evaluation using K-fold cross validation

Evaluation of different parameter settings for optimizing a model can provide bi-
ased performance measures during the grid search, as the performance has to be checked
against a held-out validation data set that may not be a good representation of the real data
distribution. Each parameter setting in the grid search was therefore evaluated multiple

times on different subsets of the training data set using K-fold cross validation.
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This was achieved by dividing the training set into K equally sized folds, from
which data from K-1 folds were used for training the algorithm, with the remaining Kth
fold being used for validation (see Figure[§)). In this study, we stratified the training set into
ten folds (K=10) by preserving the same ratio of the two classes in each fold.

Figure 8

Illustration of the K-fold cross validation algorithm.
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2.6.5 Feature importance

After establishing how well the RF model performs on classifying the two sub-
groups of MCI, we further assessed the prediction importance of the 12 features included
in the model. Tree-based models for feature importance, including RFs, investigate to

which degree each feature decreases impurity at a splitting node. However, as pointed out
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by Strobe et al. (2007 |2008), this method tends to artificially inflate the importance of
features if predictor variables vary in measurement scales and/or number of categories.
We therefore added permutation testing when assessing feature importance, a tech-
nique introduced by Breiman (2001aj; 2001b). Here, the effect of each feature on model
accuracy is quantified by randomly reshuffling each predictor variable (one at the time),
while assessing how this affects model performance. As random shuffling breaks the true
relationship between a given feature and the outcome, model accuracy will decrease when
a feature with true predictive power is permuted, whereas permuting a non-informative

feature will likely render model performance unchanged, or even improved.

3 Results

3.1 Exploratory Analysis

A total of 708 subjects defined as MCI at baseline met our inclusion criteria and
were included in the current study. From this sample, 381 were labeled sMCI and 327 were
labeled cAD based on whether they remained stable at MCI or converted to AD during their

participation in ADNI.

3.1.1 Demographic characteristics by subgroups

As shown in Table[2] there was no statistically significant difference in age between
the two groups, with both groups having a mean of approximately 73 years at baseline.
Further, mean education was almost 16 years and the percentage of females approximately
40% 1in both groups. None of these differences in demographics were statistically signif-

icant. Subjects defined as sMCI had a significantly shorter follow-up time than the cAD

group.
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Table 2

Descriptive and Comparative Statistics for demographic and clinical data. Analysis
conducted with Student’s t test for for independent samples (x* test for the categorical
variables Gender and Apoe 4).

sMCI cAD
(n=381) (n=327)
Mean = SD Mean = SD £ (df) / 2 (df) p value Effect size

Demographics

Age 73.0+7.51 73.9+7.07 1.59 (706) 113 0.12

Education 15.90 +£2.90 15.90£2.76 0.0461 (706) 963 <0.01

Female, % 40.4 394 0.0691 (1) 793 0.01

Length of follow-up, y 453+272 5.07+2.72 2.58 (706) 010 0.20
Memory

RAVLT immediate 36.7+10.6 293 +7.74 10.4 (706) <.001 0.78

RAVLT delayed 4.88 +3.90 2.02 +2.66 11.2 (706) <.001 0.85

RAVLT recognition 11.3+3.15 9.39 +3.57 7.47 (705) <.001 0.56
Executive function

Trail Making A 394+156 44.6+21.3 3.78 (706) <.001 0.29

Trail Making B 109 + 58.6 133+ 73.7 4.74 (696) <.001 0.36

Category Fluency 17.8 +£5.19 15.8+4.73 5.12 (706) <.001 0.39
Global measures

GDS 1.73 +£1.45 1.66 +1.39 0.698 (706) 486 0.05

ANART 13.10 +£9.48 13.20+9.62 0.244 (700) 807 0.02
Biomarkers

Apoe 4 postive, % 423 64.2 34.0(1) <.001 0.22

Hippocampus 0.00452 + 7.56+10* 0.00398 + 6.80+10 9.81 (692) <.001 0.75

Note. Effect sizes are reported as Cohen's d for continuous variables and Cramer's ¢ for categorical variables.
Abbreviations: sMCI = stable Mild Cognitive Impairment; cAD = converted to Alzheimer's disease; RAVLT =
Rey Auditory Verbal Learning Test; GDS = Geriatric Depression Scale; ANART = National Adult Reading Test.

3.1.2 Global measures

The group means for American National Reading Scale (ANART) and Geriatric
Depression Scale (GDS) are shown in Table [2] Group comparisons showed no statistically

significant differences on any of the two measures.

3.1.3 Memory function and attention/executive function

The means in performance on measures of memory function and executive function
are shown in Table 2] Compared to the cAD group, the SMCI group showed higher per-
formance on all the selected neurocognitive tests. All these differences were statistically

significant at an alpha-level less than 0.001. For all three memory tests the associated effect
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sizes were medium to large, whereas the effect sizes were weaker for the tests of executive
function.

Figure [J)illustrates the distributions and pairwise correlations between all included
scores on the neurocognitive tests, marked in separate colors for the cAD and sMCI groups.
As expected, the strongest correlations were found between the measures of memory func-
tion from the RAVLT, and between the A and B version of the Trail Making Test. The cAD
group showed weaker correlations compared to the sMCI group for all measures. All corre-
lations were statistically significant at a Bonferroni adjusted alpha level (0,4 Jjusted = .008).
Figure 9
Fairs plot illustrating the pairwise relationship between the six measures of cogni-

tive function plotted by subgroup. Statistical significance at a Bonferroni adjusted alpha
level is indicated by asterisks.
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3.1.4 Biomarkers

A chi-square test of independence revealed that the presence of ApoE-£4 alleles
differed significantly across the two groups, with 64.2% of cAD subjects being carriers of at
least one €4 allele, compared to 42.3% of the SMCI group. The volume of the hippocampus
also varied across the two subgroups, with cAD subjects on average having significantly
smaller volume compared to the sMCI. This difference was accompanied by a large effect

size, suggesting a high practical significance for this latter difference.

3.2 Random Forest Prediction Model

Results of the model performance from the cross validation procedure and evalua-
tion on the test set are presented in Table [3] Figure [I0]illustrates the accuracy of our RF
classifier on the test set (red) and mean of the 10 cross validation sets (green) compared to
three different ‘dummy-models’ (blue). The figure illustrates that the model we constructed

had better accuracy than all three null-models.

Table 3

Table depicting features included in the RF classifier model and performance metrics from
cross validation procedure and the test set. Scores from cross validation are reported as
mean and standard deviation across the ten folds.

FEATURES INCLUDED MODEL PERFORMANCE
Cognitive Demographic Global Biomarkers Cross validation, M (SD) Test set
Memory Age GDS Hippocampus Accuracy: 0.725 (0.86) Accuracy: 0.683
RAVLT immediate ~ Gender ANART ApoE 4 F1:0.721 (0.96) F1:0.667
RAVLT delayed Sensitivity: 0.758 Sensitivity: 0.677
RAVLT Specificity: 0.696 Specificity: 0.657
recognition

Executive Function
Trail Making A
Trail Making B
Category Fluency

When the model was applied to the test set, we achieved an overall classification



TRAJECTORIES FROM MCI TO AD 47

Figure 10

Bar plot illustrating accuracy score in percentage for the Random Forest predictor
on the test set (red) and the mean of the cross validation procedure (green), compared to
three dummy predictors (blue). "Uniform" predicts with equal probability that a subject
will/will not convert, the "Constant sMCI" always predicts sMCI (majority class), and
conversely the "Constant cAD" always predicts cAD (minority class).
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accuracy of 68.3%. The 2 x 2 confusion matrix (Figure[TT) is computed to illustrate the true
labels versus the labels returned from the RF model. The model correctly classified % of
cAD subjects and % of sSMCI subjects, resulting in a sensitivity of 67.7% and a specificity
of 68.9%. The model misclassified 23 stable subjects as converters and 21 converters as
stable, resulting in an F1-score (harmonic mean) of 66.7%.

Figure [13] and [T2] illustrate the ranking of feature importance with respect to their
importance in predicting class belonging from the cross validation (mean across 10 folds)

and test procedures, respectively. In both plots, we find that the four features ranked highest
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include hippocampus volume, the immediate and delayed recall subtests from RAVLT, and
the B-part of the Trail Making Test.

Figure 11

The blue cells represent correctly classified subjects and the grey cells represent
misclassifications. The number of occurrences in each cell is given as number of subjects
and percentage of the total data set for test and train, respectively.
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(a) 2x2 confusion matrix computed for the
SMCI and cAD labels returned from pre-
diction on test set compared with the co-
occurrences of the observed outcome.

PREDICTED OUTCOME

(b) 2x2 confusion matrix computed for the
sMCI and cAD labels returned from predic-
tion on the 10-fold cross validation com-
pared with the co-occurrences of the ob-
served outcome.

A model agnostic permutation importance test was added to check the results by
using an algorithm where each feature is shuffled many times, with different permutations,
while all the other features are kept constant. Figure [[4] shows the output of this test,
with positive values meaning poorer predictions on shuffled data compared to real data,
indicating the feature to be more important. Here, like in the feature importance calculated
based on information gain, ‘hippocampus’, ‘RAVLT immediate’ and ‘Trail Making B’ are
ranked among the top four. In contrast, permutation testing indicates ‘RAVLT delayed’ to
be ranked with low importance, assumed to be due to its strong correlation with the RAVLT

immediate score, making the latter explain the contribution of both features.
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Figure 12

Feature importance calculated by decrease in impurity from evaluation on test set.
The 12 features included are displayed on the y-axis while the x-axis shows their relative
importance.
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Partial dependence plots (PDP) were created for the three features ranked as highly
important by both methods for calculating importance. These plots show the marginal
effect of single features on the predicted outcome of cAD in the RF model. As such,
PDPs capture the relationship between a single feature and the outcome (cAD), and are
therefore informative in terms of assessing the nature of the relationship (e.g. linear or
more complex). The PDP for RAVLT immediate (Figure [I5) indicates that in general,
remembering more words lowers the risk of converting to AD. There is a steep decline from
33 to 40 words, after which the graph stabilizes. This indicates that remembering more
than 40 does not have a large impact on conversion. From the PDP of the hippocampus
volume (eTIV-normalized) (Figure [I6]), we see that larger volume tends to decrease the
risk of converting to AD. A strong trend for this is observed up to about 0.005 mm?>, after
which the graph stabilizes, indicating that increased volume after this value does not further

lower the risk of conversion. The graph in PDP of Trail Making B (Figure [I7) indicates a
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Figure 13

Feature importance calculated by decrease in impurity reported as mean of the
cross validation procedure. The black error bars indicate a 95% confidence interval.
The 12 features included are displayed on the y-axis while the x-axis shows their relative
importance.
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roughly linear relationship indicating that using more time on the test increases probability

of converting. The steepest decline is observed from 0-75 seconds.
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Figure 14

51

The figure shows feature importance calculated by permutation. The features ranked as
most important are at the top, whereas those at the bottom were ranked as less important.
‘Weight’ shows the average effect (and standard deviation) on model accuracy from the
random shuffling. The hippocampus volume, followed by RAVLT immediate and Trail
Making B were rated highest. RAVLT delayed and GDS have negative values, indicating
that predictions from the shuffled data were more accurate than predictions from real data.
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Figure 15

PDP of RAVLT immediate. The plot indicates that remembering more words lowers
the risk of converting to AD. There is a steep decline from 33 to 40 words, after which the
graph stabilizes at 40 words. This indicates that remembering more than 40 words does
not have a large effect on conversion.

A
RAVLT immediate
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Figure 16

PDP of hippocampus volume (eTIV-normalized). The plot shows that larger volume
tends to decrease the risk of converting to AD up until 0.005 mm3. After this value,

the graph stabilizes indicating that increased volume does not further lower the risk of
progression.
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Figure 17

PDP of the Trail Making B. In general, the graph indicates a roughly linear rela-
tionship indicating that using more time on the test increases probability of converting.
The steepest decline is observed from 0-75 seconds.
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4 Discussion

The present study drew attention to two key challenges in clinical research on cog-
nitive aging: identifying early signs of a neurodegenerative disorder and predict trajectories
for individual patients showing such signs. Clinical phenotypes from an early assessment
of two subgroups of aMCI patients were explored; those remaining stable (sMCI) versus
those converting to AD (cAD) over time. Group differences in cognitive function could
be identified already at baseline, with the sMCI group consistently performing better on
included tests, compared to the cAD group. Furthermore, the cAD group showed smaller
total hippocampal volume and higher frequency of ApoE positive subjects than the sMCI
group, while the two groups were similar on global measures of depressive symptoms and
intellectual function. We then asked how well a Random Forest machine learning algorithm
trained on baseline data would perform in the binary problem of classifying individuals into
these two aMCI groups, and estimated the weights of the features included in the predic-
tive model. The group belongings were predicted with an accuracy much better than chance
level (68.3%). The heaviest weights were given to features measuring immediate and de-
layed memory function, the total hippocampus volume, and performance on a test included

as a measure of executive function, the TMT-B.

The neuropsychological data illustrated a pattern of deficits coherent with the early
clinical presentation of AD described in previous studies. Even though the cAD group
performed significantly worse than the stable group on all cognitive tests at baseline, our
results showed that the memory tests tapping more directly into episodic memory (e.g.
RAVLT immediate and RAVLT delayed) were considered most important for predicting
future conversion. Although the recognition part of RAVLT relies on episodic memory, this
measure was not selected among the features with the strongest weight. One hypothesis

is related to the facilitating effect of familiarity in a recognition procedure, but there is
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still a controversy regarding the pattern of impairments related to this memory process in
MCI and AD (see for instance Yonelinas et al., 2010). In the current study, a score for
recognition memory was derived from the number of targets identified. However, some
studies have suggested differing neuropsychological correlates for remembering ‘targets’
versus ‘false alarms’ (i.e. identifying distractor words as targets), with the primer relying
more heavily on medial temporal lobe functioning, and the latter more on frontal lobe
functioning (McCabe et al.,|2009). Based on this, it would be interesting for future studies
to look more specifically into this difference by including an additional recognition measure
for ‘false alarm’. This could potentially give new insights into whether recognition memory
show differential patterns of impairments in MCI subjects remaining stable versus those
converting to AD. Further investigation of this could be regarded as especially relevant
when considering that the other subtests of RAVLT are important predictors of conversion,
and hence make this test a good candidate for a clinical tool assessing memory function.
As such, the additional information gained from administering the RAVLT test could be

considered a bonus in that it would not demand much extra effort in the clinical assessment.

Part B of the TMT was selected as a strong feature after those assessing memory
function. This test was used as a measure of executive function (EF) in the present study.
Executive dysfunction is primarily associated with an early stage of non-amnesic MCI.
Over the last years, however, there has been an increased awareness that this dysfunction
may be present in an early stage of AD (Guarino et al., 2019). The present study thus
gives arguments for including EF tests as part of a baseline clinical examination of pa-
tients with aMCI. The importance of including a test like TMT-B is also substantiated by
its dependence on other abilities known to be affected in an early stage of a neurodegener-
ative disease, like processing speed, sequencing, mental flexibility and visual-motor skills
(Bowie & Harvey, 2006). More detailed studies should therefore map out what constitutes

the more salient aspects of this and other EF tests (see e.g. Adolfsdottir et al., 2017). As
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expected from previous literature, the group of converters performed worse than the sMCI
group on the CFT. As well as reflecting EF, this test relies heavily on the integrity of seman-
tic memory. Thus, the finding that this feature was not ranked among the most important
features could potentially reflect that, as opposed to episodic memory, semantic memory
relies more on anterior parts of the temporal lobe, which to a larger degree is spared until
the later stages of AD (Galton et al., [2001; Braak & Braak, 1991)). As such, the CFT may
not be among the most sensitive predictors in the early stages of MCI, but may still be
informative later in the disease process, and in studies aiming to identify characteristics of
different neurodegenerative disorders.

As immediate and delayed recall are measures of short- and long-term episodic
memory, respectively, performance on these tests relies heavily on the integrity of medial
temporal lobe structures, such as the hippocampus. This was supported by the present
study, showing that all algorithms used to rank feature importance identified the hippocam-
pus volume to be among the most important features for predicting future conversion to
AD. This finding is not unexpected, as a reduction in hippocampus volume may manifest
several decades prior to symptoms of impaired memory function. At the time an aMCI
diagnosis is established, alertness should therefore be given to changes in memory func-
tion as well as hippocampus volume, as they probably together give important information
about the risk of progressing towards AD (Mofrad et al., 2021,

In the present study we included a total volume measure of the left and right hip-
pocampus combined. Hippocampus does, however, consist of several interconnected, but
functionally and structurally distinct subfields. Recently, several studies have demonstrated
atrophy in specific hippocampal subregions to be more sensitive predictors of conversion
to AD. For instance, one study found that combined subfield volumes and presubiculum
volume were more accurate than total hippocampal volume (Khan et al., 2014)). Another

study showed that the subiculum and presubiculum together have higher specificity than
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the whole hippocampus in distinguishing MCI subjects who remained stable from those
who converted to AD (Vasta et al. 2016). However, because manual segmentation of
hippocampal substructures is a laborious and time-consuming task, the inclusion of sub-
structure specific atrophy has predominantly been restricted to research settings. With the
recent development and proven validity (see e.g. Brown et al., 2020) of fully automated
techniques for hippocampus segmentation (e.g. FreeSurfer), such biomarkers could poten-

tially be applied in clinical settings in the not too distant future.

In line with previous research, we found a significantly higher number of ApoE-£4
positive subjects among those who converted, compared to those remaining stable. Despite
this, ApoE status was not among the most important features for the RF model’s predic-
tion of class belonging. There are several plausible explanations for this finding. Unlike
the monogenic etiology of Mendelian diseases (including some forms of early-onset AD),
complex diseases such as late-onset AD, are influenced by multiple genetic and environ-
mental factors. Heritability for late-onset AD is estimated to be up to 80% (Berkowitz et
al., 2018]), of which the €4 of ApoE is estimated to account for 27.3% (Cauwenberghe et
al.,[2015). Thus, although ApoE-£4 is associated with an increased risk of conversion from
MCI to AD, numerous other risk genes have also been identified (Sims et al., 2020). To
make genetic predictions, one should take polygenic risk scores (PRS) into account, i.e. the
additive effect of a large number of genetic variants that each may have a weak effect on the
phenotype of an individual (Chasioti et al., [2019). Today, several studies with sufficiently
powered genome-wide datasets are conducted to shed light on the complex polygenic in-
terplay, for instance through studies investigating how non-ApoE PRS interacts with ApoE
status. One recent study found that PRS modified age for AD onset in individuals with the
€4, but not among non-carriers, indicating an especially detrimental effect of non-ApoE
risk factors in younger ApoE positive individuals (Fulton-Howard et al., 2021). Another

study found that €3/€3 carriers (i.e. individuals with low ApoeE-related risk) who were
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classified as having the highest PRS could progress to AD a decade earlier than €3/€3 car-
riers classified to have the lowest PRS (Desikan et al., [2017). Even though ApoE is the
major genetic risk factor, these studies highlight the complex and multifactorial nature of
AD. Future studies are thus needed to fully untangle this complexity of the various mecha-
nisms underlying different stages and potential subtypes of AD and its prodromal phase.

None of the two global measures of depressive symptom and premorbid intelli-
gence, as indexed by ANART, appeared to be of importance in discriminating between the
stable MCI group and the converters to AD. For the depressive symptoms, this could be re-
lated to the exclusion of participants with symptoms indicating a diagnosis of depression,
but it has been shown that even less severe symptoms of depression are clinically relevant in
older adults (Brevik et al. 2013). As previously discussed, the concept of ‘reserve’ in neu-
roscience of aging holds that aspects of brain structure and function can modulate the effect
of neuropathology, so that individuals with greater reserves requires more severe pathology
to reach the clinical threshold for cognitive impairment (Nyberg et al., 2012; Nyberg &
Pudas, 2019). Knowing that both depression and intellectual function can have a mediat-
ing effect on cognitive aging, it is important to note that there is no univocal relationship
between brain damage and cognitive impairment at an individual level. One can for in-
stance hypothesize that some of the subjects that in the current study were misclassified as
stable, were so due to high levels of cognitive reserves compensating for impairments. Or
conversely that some of the subjects misclassified as converters showed impaired cognitive
function due to depressive symptoms. It is thus possible that these two features can give
valuable information about disease trajectories, but that the pattern was too unsystematic
for the current machine learning framework to pick up on. Future studies should indeed
look more closely into the characteristics of misclassified subjects.

The rationale and motivation behind the selection of features in the present study

was closely related to the aim of keeping it clinically relevant and as a proxy of the initial
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clinical assessment a person with memory concern would receive. Firstly, we restricted
features to twelve theoretically motivated variables known to be involved in the process
from normal cognitive aging, through MCI to a neurodegenerative disease. Secondly, we
aimed to create an algorithm that potentially could be used as a tool aiding clinicians in
identifying individuals at elevated risk for progression and increase knowledge about ex-
pected developmental trajectory. We are aware that including other features available in the
ADNI database, such as more direct measures of amyloid load or subfields of hippocam-
pus, could have improved the model’s predictive power. Nevertheless, as this information is
time-consuming, expensive, and/or invasive to obtain, it is typically not available to health
professionals making diagnostic and prognostic decisions. The inclusion of such features
would hence increase predictive accuracy at the expense of clinical relevance. We could
also have included a broader range of neurocognitive tests. However, with time commonly
being a limited resource in a "real-world" assessment at the doctor’s office or in a mem-
ory clinic, we decided to restrict the inclusion of cognitive assessments to relatively brief

sample of tests commonly used in a clinical setting.

The main contribution of the present study is due to the inclusion of predictive
classification models. Here we showed that the RF model performed slightly better on
the cross validation procedure compared to the evaluation on the unseen test set. The
discrepancy of 4.2% should nevertheless be considered relatively small, which strengthens
the importance of our study by lending us confidence that the model’s performance was
not due to being overfitted to the data it was trained on, but rather that it generalizes to
new, unseen data. Further, by bringing the data into the current predictive machine learning
framework, the results we obtained could be applied at a single case level and could as such
be regarded as an important contribution to the clinical field of AD. Moreover, the finding
that feature importances were rated quite similar by different computational algorithms

gives us additional confidence in the result’s validity. We will argue that this is also true



TRAJECTORIES FROM MCI TO AD 60

for the permutation test. Here, the immediate memory test was given a much stronger
weight than the delayed subtest. We assume that this is explained by the strong correlation
between the two test measures, leaving only a small contribution from the delayed subtest
when the immediate memory function was selected as the primary feature. Taken together,
the feature importance results underscore the importance of using methods with different

algorithms when inspecting and interpreting data for feature importance.

Despite the apparent clinical utility of being able to differentiate MCI converters
from non-converters, it is important to be mindful of ethical issues. Dubois and colleagues
(2009) make the argument that the AD-label should encompass the full spectrum of clinical
expression, including the predementia stages. They further claim that there is "no reason to
wait until the patients reach the threshold of full blown dementia for making the diagnosis
of Alzheimer’s disease" (p. 136). It is however important to note that even for patients
with aMClI, the outcome is uncertain and many will never develop AD. This was indeed
illustrated by the confusion matrix (Figure in the present study, showing that around
15% of the participants observed as stable MCI were misclassified as converters to AD.
It is important to consider that receiving a diagnosis of MCI may represent an unneces-
sary psychological stressor. If a patient with aMCI is described as being in a ‘prodromal
stage of Alzheimer’s disease’ or as having ‘MCI due to Alzheimer’s disease’, she and her
relatives may immediately fear and probably also plan for a future with severe symptoms
of dementia. Considering the uncertainty related to who will show a progressive decline
on an individual basis, as well as the current lack of effective treatments, it is of utmost
importance to carefully consider how to communicate information about risk, as well as
resilience factors and coping strategies. As shown in the present study, aMCI at an early

stage is not always synonymous with a trajectory towards AD.
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4.1 Strengths and Limitations

There are several strengths of the present study. The results were made possible by
including a large cohort of elderly with aMCI from the open ADNI dataset, by using lon-
gitudinal diagnostic labels to identify the two MCI subgroups, and by an analytic approach
within a machine learning framework. This strength was dependent on a substantial effort
put into data preparation before conducting the statistical analyses. Despite one main ob-
jective of the ADNI project to make their data openly available, the structure of the ADNI
database makes it challenging to select subsets of longitudinal data. This is related to, but
not restricted to, their inclusion of the four different study phases, each with somewhat dif-
ferent schedules of visits and study protocols. As a consequence, data for subjects in one
phase is stored under one file name, while equivalent data for subjects from other phases
are stored in another file, often with different naming conventions for the same variables.
A substantial proportion of studies employing ADNI data have therefore either 1) restricted
inclusion of subjects to one or two study phases, ii) used ADNI’s pre-prepared data set
(ADNIMERGE. csv), which is more easily accessible at the cost of having a restricted selec-
tion of variables, or iii) dealt with a high number of missing values. By the effort put into
data preparation in the present study, we enabled inclusion of a relatively large sample size
with few missing values on a set of clinically relevant cognitive, genetic, and MRI data.
As such, we obtained a sample size large enough to set aside a test set for final evaluation,
while still preserving a sufficiently high number of participants (i.e. enough data) for the
model to be trained on. Furthermore, selecting participants with a long follow-up time de-
creased the chance of wrongfully labeling individuals who would have progressed to AD,
given more time passing, as stable MCI. Finally, the effort to re-analyze MRI data with
the most recent version of FreeSurfer, rather than using the older FreeSurfer outputs made

available as part of the ADNI dataset, should also be mentioned as an important strength.
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Some limitations must nevertheless be stated. First and foremost our sample con-
sisted of subjects who in ADNI received a baseline diagnosis of MCI. As the cognitive
decline related to MCI typically has an insidious onset with no fixed events defining its
start, it is often challenging to temporally anchor the point of transition. The baseline as-
sessment was used as a proxy for the initial examination a person in the ‘real world” would
receive if reporting concerns about cognitive dysfunction. Nevertheless, having MCI at
the baseline visit of ADNI does not necessarily mean that subjects were cognitively non-
impaired prior to enrollment. One way of being sure to exclusively capture the initial
phases of the MCI stage could be to include subjects who had normal cognition at the time
of enrollment, and subsequently converted to MCI. Then, the visit in which the subject was
first characterized as MCI could be used as baseline. This would however result in drastic
reduction of the sample size. The homogeneous sample included in the ADNI dataset is
another limitation. The sample mainly includes highly educated and motivated volunteers
geographically restricted to North-America. Given this, additional studies relying on other
samples are required to assess how the findings of the current study generalises to other

populations.

4.2 Future Research

MCI is a multidetermined diagnostic entity, where several interacting environmen-
tal and biological factors contribute to individual differences in clinical outcome. This
variability suggests the existence of underlying subphenotypes driven by different patho-
physiological mechanisms leading to a similar clinical outcome, referred to as equifinality
by Fezcko and colleagues (2019). Several studies have tried to untangle the heterogeneity
by the use of hypothesis-driven designs (see for instance Byun et al.,|2015; Risacher et al.,
2017|for studies employing ADNI data). Such approaches can reveal important information

on specific characteristics of these subtypes, but they are nevertheless restricted to a priori
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definitions. More recently, empirically driven studies have illustrated that there may be
great heterogeneity even within the aMCI subgroup, both with respect to cognitive profiles
(Edmonds et al., 2014) and patterns of cortical atrophy (Edmonds et al., [2016). To more
directly address this heterogeneity, future studies should build on the current framework
by incorporating the functional Random Forest model proposed by Fezcko and colleagues
(2020). Through this hybrid approach, the supervised RF is followed by an unsupervised
community detection algorithm used to identify putative subgroups in the MCI population.
The subsequent employment of this unsupervised method means that no assumptions re-
garding the number or nature of subgroups have to be made a priori. This is important in
the context of precision medicine, as it could potentially yield valuable new insights about
subgroups of individuals on a trajectory towards AD. Plans for such a study are already
established, and the author of this thesis has presented these plans in a poster presented at
a National conference (Rye et al.,2020). In future studies, a wider range of features should
also be included to cover both risk and resilience factors. Furthermore, information about
longitudinal change should be taken into account in the analytic model, as the rate of de-
cline is expected to be more dramatic as the patient is closer to a definite neurodegenerative

disease.
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5 Conclusion

AD is a fatal disorder with a huge impact on the lives of those affected and their
caregivers. In addition to personal consequences, the economical costs related to the dis-
ease are massive. With increased longevity, and age being the primary risk factor for de-
veloping AD, the world is facing what has been described as an epidemic related to this
neurodegenerative disease in the coming years. The need for new and effective treatments
therefore calls for immediate action. Nevertheless, the continuous lack of successful drug
trials indicates that novel approaches are needed, and a pressing issue related to this is the

early and reliable identification of MCI subjects who are on a trajectory towards AD.

This thesis has contributed to this in several ways. Firstly, by illustrating that dif-
ferences in both biological markers and clinical phenotype between aMCI subjects who
remain stable and those converting to AD could be identified already at a baseline assess-
ment. Secondly, by constructing a Random Forest machine learning algorithm trained on
baseline data, we predicted conversion with an accuracy much better than chance level.
Lastly, we extended this latter contribution by ‘looking inside the machine learning black
box’ to identify what specific features were most important for making this prediction, as

well as how specific values of these features affected risk of conversion.

Importantly, this thesis has also shed light on the heterogeneity and complexity
characterizing the MCI construct, including a variety of etiologically and neuropatho-
logically distinct conditions resulting in differing patterns of cognitive impairments and
developmental trajectories. For early identification and effective treatment of AD, each
individual risk profile should be taken into account. To achieve this, large amounts of
high-dimensional data from several modalities needs to be considered. As it is extremely
challenging for the human mind (i.e. health professionals) to identify patterns in such high

dimensional data, we strongly believe that interdisciplinary cooperation combining clinical
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and computational expertise is extremely valuable. The current study is one small contri-
bution to this, showing that we seem to be right in the middle of a paradigm shift in the way
we conceptualize, diagnose and treat AD; moving away from a "one-size-fits-all" towards

a precision medicine approach.
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