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Abstract 

Recent models view the brain as a Bayesian probabilistic inference machine using free-energy 

principles to update internal models about its surroundings. This implies that top-down learning 

functions in the brain are caused by internal predictions about outcomes during tasks and that 

learning is a product of model updates based on errors in these predictions. This has given rise 

to Bayesian learning models like the Hierarchical Gaussian Filter that are able to efficiently 

model learning at an individual level and predict responses better compared to older models 

like the Rescorla Wagner. We modelled learning rates during an EEG Attentional Blink (AB) 

task where participants had no prior meditation training (N = 32). We compared learning rates 

between genders for two meditation types: Open Monitoring Meditation (OMM) and Fixed 

Attention Meditation (FAM). We assumed that responses to the second AB target within- versus 

outside-blink responses Target 2 would generate prediction errors, yielding an implicit learning 

effect. We found that females in the FAM group showed a higher ω levels for volatility 

estimates (third level), implying that they perceived a higher environmental changeability. 

Participants in the OMM group scored higher on T2 accuracy, and that this effect was mainly 

driven by the female participants. EEG data support this conclusion, showing that females in 

the OMM group exhibited higher ERP amplitudes of the P300 component for outside-AB trials. 

This indicates that females are instantly affected by mindfulness meditation during selective 

attention tasks, and that this effect can be explained through volatility estimates. 

Keywords: Bayesian learning models, HGF, EEG, Meditation, Gender  
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Sammendrag  

Nyere modeller anser hjernen som en Bayesiansk probabilistisk inferensmaskin som bruker fri-

energiprinsipper til å oppdatere internaliserte modeller om omgivelsene. Dette impliserer at top-

down læringsfunksjoner i hjernen blir forårsaket av interne prediksjoner om utfallet av en 

situasjon, og at læring er et produkt av oppdaterte modeller basert på prediksjonsfeil. Dette gav 

opphav til Bayesianske læringsmodeller som ‘Hierarchical Gaussian Filter’. Disse er i stand til 

å mer effektivt modellere læring på individnivå, og predikere adferd når de sammenlignes med 

eldre modeller som Rescorla Wagner. Vi modellerte oppnådd læring i en EEG Attentional Blink 

(AB) oppgave for deltakerne uten tidligere meditasjonstrening (N = 32). Vi sammenlignet grad 

av læring mellom kjønn for to meditasjonstyper: «Open Monitoring Meditation» (OMM) og 

«Focused Attention Meditation» (FAM). Vi antok at responser til det andre AB-målet, i innen- 

versus utenfor-AB svar ‘Target 2’, ville generere prediksjonsfeil som fører til en implisitt 

læringseffekt. Vi fant at kvinner i FAM-gruppen viste høyere ω nivåer for ‘volatility’-estimater 

(tredje nivå), noe som antydet at de oppfattet en høyere endringsrate i miljøet. Deltakere i 

OMM-gruppen scoret høyere på T2-treffsikkerhet, og denne effekten var hovedsakelig 

forårsaket av kvinnelige deltagere. EEG-data støtter denne konklusjonen, og viser at kvinner i 

OMM-gruppen viste høyere ERP-amplituder av P300-komponenten for utenfor-AB-

gjennomføringer. Dette indikerer at kvinner blir raskt påvirket av ‘mindfulness’-meditasjon 

under selektive oppmerksomhetsoppgaver, og at denne effekten kan forklares gjennom 

antagelser om hvor stabile omgivelsene er. 

 Nøkkelord: Bayesianske læringsmodeller, HGF, EEG, Meditasjon, Kjønn 
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Contemporary Models of Learning 

Learning through the prism of contemporary models is an active process based on top-

down predictions, not a passive storage device. Indeed, there is increasing evidence that the 

brain works as a Bayesian predictive learner and hypothesis tester, with information being 

processed at several hierarchical levels where the salience of a stimulus and the uncertainty of 

the environment are subject to change. These changes are dependent on each other and form a 

top-down predictive system, where each level affects the size and effect of perceived prediction 

errors (Behrens, Woolrich, Walton & Rushworth, 2007; Wacongne, Labyt, van Wassenhove, 

Bekinschtein, Naccache, & Dehaene, 2011). This goes against older behaviourist theories of 

learning that viewed learning as a passive process based on associative strengths between 

stimuli and responses (Chance, 2003, Siegel & Allan, 1996; Skinner, 1985; 1987). However, 

behaviourism has brought about a strong focus on observable and measurable responses to 

perceptual stimuli instead of the internal states of the learner. This led to the development of 

various models, often using mathematical formulas to predict behaviour. In this way, 

psychology became aligned with the core values of modern science that demands solvable 

problems, predictive hypotheses, and predicting the outcomes of hypotheses in accord with 

demarcation and falsification (Kruschke, 2003; Pigliucci & Boudry, 2013 Resnik, 2000).  

A criticism to the behaviourist learning paradigm, however, is that it ignores the learner 

as an agent with intent (Danks, 2003; Mathys, Daunizeau & Stephan, 2011). To overcome this 

issue, more recent models tend to view the human brain not simply as a response-giver, but as 

a hypothesis generator that uses Bayesian statistical probability judgements to continuously 

update its own predictions based on inferences of the environment. It updates information and 

generates internal models of the world, models that it then uses to predict the future on a 

situation-basis, and learning is a product of errors in our generated predictions. This gives a 
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model of the brain that allows for hidden states of the mind such as learning rates, uncertainty, 

and estimates of the environment (Behrens et al., 2007). Given that the brain is a hypothesis 

tester, and that learning is the process where hypotheses are tested and corrected against the 

perceived outcomes, learning can be reduced to updates of an internal model based on 

prediction errors. (Diaconescu et al, 2014; Schultz & Dickinson, 2000).  

A prediction error occurs when the current hypothesis for a specific outcome is 

disproven. This will generate a response, which will in turn readjust the overlying hypothesis 

to better fit the environment. If an observed response happens exactly as predicted, there is no 

need to update the hypothesis, since it can explain the outcome in a particular situation. In 

contrast, if facts go against the original hypothesis, the learner needs to revise and adjust their 

expectations. This readjustment of expectations to the observed environment may be viewed as 

the foundation of learning. (Behrens et al., 2007; Jones & Love, 2011; Mathys et al., 2011; 

McKiernan, 2017; Seligman, Railton, Baumeister & Sripada, 2013). By mapping estimations 

onto inferences and by adjusting predictions based on expectations of environment 

changeability, one can generate precision weighted prediction errors (pwPE). Weighing the 

prediction errors reduces the net surprise of the learner, which will in turn reduce the cognitive 

strain required to keep the learner’s model updated about their environment.  This is in accord 

with the principle of ‘free energy’, sometimes also known as ‘active inference’. This principle 

states that learning agents minimize the difference between observations and an internal model 

of the world. Learners close this gap through updates to the model whenever prediction errors 

occur by either adapting to the surroundings or by optimizing the surroundings themselves to 

better suit the preferred outcomes (Friston 2009; 2011). 

Iglesias and colleagues (2013) compared learning occurring at a high level with learning 

occurring at a low level by drawing a distinction between responses to reward directed 

prediction errors and more subtle and general updates to the predictions made. The latter 
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happened based on updating and improving expectations about the environment. Prediction 

errors resulting in reward were associated with basal forebrain activation that impacted 

inferences about the reward, whereas the midbrain encoded prediction errors independently of 

the other system on more abstract probabilities concerning the outcomes. This formed the 

foundation of a meta-Bayesian principle, where a dichotomous system performed different 

forms of learning, which was further taken as evidence that learning happens at several 

hierarchical levels, with one system monitoring the other (Iglesias et al., 2013). The levels help 

maintain an internal overview of both variance and volatility and generate prediction errors 

about the two systems independently. The more familiar frequentist statistics might not be able 

to properly model the implied view of the brain as a hypothesis tester that employs 

environmental statistical cues to model expectations about outcomes based on prediction errors. 

Frequentist versus Bayesian statistics 

There has been an increasing need for psychology as a field to embrace ecologically 

valid experimental settings to better capture the organic interactions happening beyond a 

traditional laboratory. Although statistical competency has increased over the last decades, it is 

still impossible to apply complex processes without grasping the complex dynamics underlying 

them (Dempster & McCorry, 2009; Smaldino, 2021). 

Frequentist statistics. The most common way of using statistics is through the frequentist 

method. This method works well for many forms of analyses and requires a relatively low 

amount of computational effort (Eddy, 2004). The idea behind the frequentist method is to 

generate a hypothesis, and then calculate the probability of getting a certain result in a specific 

number of trials. These trials will not be dependent on each other, hence the result of one trial 

will not influence the next. In other words, in the frequentist method the parameters explored 

will not be subject to change based on the observed responses or data across trials. An example 

here could be a psychological experiment where a number of participants are assigned a novel 
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task with conditions that are based on a prior hypothesis. Each participant completes the task 

with a certain accuracy. With a sufficiently large sample of participants, the researcher can 

calculate a mean distribution, a standard deviation of the mean, perhaps also a probability value 

of whether different groups of participants are similar or not. In other words, the frequentist 

method gives a probability estimate of outcomes in future trials based on the data from trials 

already completed. It does not assign a probability to the hypothesis itself (Anderson, 2020; 

Nickerson, 2000). Earlier models of learning like the Rescorla Wagner Response-Learning 

model (RW) were able to generate good predictions starting from these premises. Learning 

happened based on the observed outcomes of stimulus conditions, and the model was altered 

each time the expected outcome did not match the observed outcome. If no information was 

observed contradicting the data, net learning would be “old expectations minus new 

expectations”, which amounts to zero. If someone were to observe a confirming outcome, that 

would represent zero net gain for the observer. This only makes sense if learning happens as a 

bottom-up process that reorients the agent towards a specific goal, where learning happens 

purely at the observational level. (Siegel & Allan, 1996). The RW model was originally applied 

in animal studies, such as those involving Pavlovian learning, and has had a widespread and 

strong impact on theories of learning overall (Cools, Clark, Owen, & Robbins, 2002; Siegel & 

Allan; 1996). An important feature of the Rescorla Wagner model is the assumption of constant 

learning parameters with incremental changes towards the desired behaviour. This effort is 

made by the agent in order to achieve their goal, which can be defined through a measurable 

stimulus. This stimulus needs to be salient, and there needs to be an opportunity for the agent 

to adjust their behaviour. Formally, this can be rendered through a set of equations: 
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𝛥𝑉௫
௡ାଵ = 𝛼𝛽(𝜆 − 𝑉௧௢௧)       (1) 

And then 

𝑉௫
௡ାଵ = 𝑉௫

௡ + 𝛥𝑉௫
௡ାଵ        (2) 

In equation (1), the change (Δ) represents how well a stimulus (Vx) keeps a predictive 

value at a future point (n+1) and equals the learning rate (α) towards the stimulus multiplied 

with the salience of the stimulus (β), dependent on the level of surprise. Surprise is defined as 

the difference between what is happening (λ) minus what is expected (Vtot). This formula is 

essentially a prediction of how the expectancy of a stimulus or experience will be altered by 

exposure to it. Equation (2) states that future learning (𝑉௫
௡ାଵ ) is the sum of the present 

understanding (𝑉௫
௡) and the altered expectancy (𝑉௫

௡ାଵ). For the behaviourist, this gives a solid 

formula for learning, which can predict future behaviour (Boehme et al., 2015). It also 

circumvents the learner’s internal states apart from a learning value (β) that is based on the 

salience of the stimulus and the amount of influence this value has on the change in behaviour 

(α). While these parameters represent the learner’s internal states, they are fixed throughout the 

learning experience. This means that the model moves away from the learner as a hypothesis 

tester that makes predictions, and towards the learner as a passive input receiver for information 

through errors in predictions and through updates (Danks, 2003; Siegel & Allan, 1996).  

Frequentist statistics is a very robust method. With fixed parameters, there is high 

certainty that the observed measures are due to independent variables rather than to the 

environment, and it works well with most types of analyses. A particularly well-known analysis 

is the null-hypothesis-probability test (NHPT), used to determine the likelihood of the data 

observed given the hypothesis. Interestingly, while this is the most common way to report 

significant results within psychology and social studies, over 80% of the researchers, including 

methods instructors answered wrong on at least one assumption regarding what one can and 
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cannot know about the hypothesis given a frequentist NHPT (Anderson, 2020; Zimprich, 2012). 

This was taken as further proof of the brain being a Bayesian learner, since participants 

intuitively consider the likelihood of the hypothesis given the data instead of the likelihood of 

the data given the hypothesis. In other words, the intuitive choice is based on Bayesian 

probability estimates and not on parametric frequentist logic, which further supports the idea of 

the brain as a Bayesian problem solver rather than as a frequentist hypothesis tester (Haller & 

Krauss, 2002). 

While frequentist statistics does not translate well the intuitions of the human mind, it 

is less computationally demanding than Bayesian statistics. Thus, while both forms of statistics 

have been around for a long while, the discrepancy in processing demands has made 

frequentism more viable because it operates with fewer unknown variables. However, more 

powerful modern computers are increasingly able to handle free variables and a greater 

workload, creating less of a bottleneck for researchers who want to employ Bayesian statistics 

(Eddy, 2004). Within the field of learning, this means that new models without rigidly set 

parameters can be used to model inferences of hidden states in the environment (Behrens 2007; 

Mathys et al., 2011; 2014). However, other limitations may arise that must be taken into account. 

Lab settings, for instance, usually fail to factor in the volatility of natural situations, and this 

could result in bad data unless the research questions and methods are well fitted to the 

environment (Stauffer, 2007). As briefly mentioned above, the RW model could not account 

for learning that occurs following a confirmatory prediction that is, for cases where prediction 

errors do not occur. However, later versions of the models tried to compensate for it by 

including additional steps and parameters (Danks, 2003). They introduced the idea of 

equilibrium, such that learning would not simply be a product of behavioural change from 

prediction error, but a function of an equilibrium between occurring and non-occurring stimuli. 

The equilibrium would shift, depending on how many targets are present or absent, resulting in 
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a change in behaviour based on the sum of observed effects. These principles help RW models 

account for an environment where there is variance and outcome uncertainty (Behrens 2007; 

Rushworth & Behrens 2008). 

Nowadays, precision, variance, and volatility are terms most commonly used in finance 

analysis, where they indicate the likelihood and consequences of prediction errors during choice 

and judgement (Fleming, Kirby & Ostdiek, 2003). Yet these terms can be used in much the 

same way within the field of learning. Precision works as an inversion of variance (precision = 

1 – variance), which is the squared standard deviation from the mean in a distribution. An 

example could be a scenario where there are two outcomes, a green or a red light, where 

variance would be the measure of how often the light is estimated to flash either red or green, 

and how much it varies. The precision would be the certainty or assumption of how often it will 

not vary. Volatility is an estimation of how often changes in variance distribution occur. At this 

point, a hierarchical trend emerges, where estimations of precision are impacted by estimations 

of volatility, and beliefs about stimulus outcome are weighted by precision estimates (Wacogne, 

Labyt, van Wassenhove, Bekinschtein, Naccache, & Dehaene, 2011). With the emergence of 

this hierarchical trend, the RW model hit a wall, as its algorithmic nature could not cope with 

the changing parameters that represent internal values. In contrast, Bayesian statistics is 

particularly well-suited for explaining changes in assumptions, as the inference machine 

grounded in brain processes uses prediction errors to adjust an internal model of the world 

(Friston, 2009).  

Bayesian statistics. The clearest way in which Bayesian statistics differs from frequentist 

statistics is in the use of the word ‘probability’. While for the frequentist the word refers to the 

likelihood of groups being different given the underlying hypothesis, Bayesian statistics is 

based on the probability of the hypothesis being correct given the observed dataset. The formula 

capturing the Bayesian theorem is the following: 
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𝑃(𝐴|𝐵) =
௉(஻|஺)⋅௉(஺)

௉(஻)
         (3) 

where A and B are events, P(A|B) is the probability of event A given that event B is true, 

P(B|A) is the probability of event B given that event A is true, and P(A) and P(B) are 

independent probabilities of A and B respectively. The formula includes prior knowledge of 

conditions associated with the event (Austin, Brunner & Hux, 2002; Joyce, 2003). This prior 

knowledge is simply referred to as ‘priors’, representing the posterior assumptions based on 

previous observation (Behrens, 2007). So, rather than having several independent occurrences 

of a simple hypothesis that is repeated a number of times, each observation in the dataset 

changes the underlying hypothesis to better fit the situation observed. As noted by Haller and 

Krauss (2002), Bayesian probability is a more intuitive way to observe the world. When 

observing frequentist statements, humans are prone to generate Bayesian conclusions despite 

lacking any formal training, which is one of the reasons why the Bayesian brain has gotten so 

much traction. 

Attention and learning  

The concept of attention covers several task-dependent categories. These include 

subcategories like focused attention, where heightened attentional resources are used over a 

longer time, divided attention, where more than one salient target is present, and selective 

attention, where distractors need to be ignored in favour of the salient stimulus (Cohen, 2014; 

Dayan, Kakade, & Montague, 2000; Posner & Peterson, 1990).  

Attention stands central to most learning theories. In behaviourist models, attention 

depends on the salience of the stimulus, which in turn depends on the perceived reward (Miller, 

Barnet & Grahame, 1995; Chance, 2013). In predictive coding models, an attended stimulus 

generates the strongest prediction errors. However, some researchers argue that less salient 

updates in the environment might also induce learning effects, implying that information is also 
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gained from unattended stimulus (Iglesias et al., 2013). In these cases, precision updates are 

generated to readjust general information about the world rather than to achieve a fixed goal, 

as a function of the free energy principle. According to Friston (2009), attention is viewed as a 

synaptic gain control that optimizes the relative precision of top-down priors and bottom-up 

sensory observations. This is particularly important in hierarchical inference models because it 

controls the extent to which prior expectations will influence different levels. In other words, 

attention is a means through which the brain optimizes the precision of generated inferences. 

Thus, instead of merely selecting sensory channels, attention becomes a property of predictions 

themselves, such that higher-precision prediction-errors enjoy greater gain in attentive 

resources (Desimone, 1996; Friston, 2009; Schroeder, Mehta, & Foxe, 2001).  

A recent study looked at difficulties in learning by individuls with autism spectrum 

disorder (ASD) and reported a connection between expectations from the environment and 

learning rate (Lawson, Mathys & Rees, 2017). The authors used pupillometry and behavioural 

measures (RT, accuracy) to measure how well those with ASD handled an uncertain 

environment compared to controls. They found that ASD was correlated with a higher 

assumption of environmental volatility, which was argued to cause a more challenging learning 

environment due to improper weighing of prediction errors when generating pwPEs. 

Level of attention is a strong factor in determining whether stimuli are registered on a 

conscious level, and therefore many different tests have explored the phenomenon. In our study, 

we investigated a well-known phenomenon where one of the target stimuli is not registered, 

despite the participant being engaged in focused selective attention. 

The attentional blink. We explored a common selective-attention effect known as the 

‘attentional blink’ (AB), which is a term coined by Shapiro, Arnell and Raymond as late as 

1997. While it is hard to determine exactly when the AB was first discovered, one of the earliest 

reports of the phenomenon was given by Broadbent in 1987 (Broadbent & Broadbent, 1987). 
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The effect is observed when two target stimuli, T1 and T2, appear one after the other in a rapid 

serial visual presentation (RSVP) task. If T2 occurs within 250-500 millisecond after T1, most 

people are unable to report it (Dux & Marois, 2009). However, if T2 appears before 200 ms, it 

will usually be detected, barring cases where T1 and T2 are presented at different locations 

from each other.  This phenomenon is known as “lag1 sparing”.  

The AB could happen within as well as across perceptual modalities, usually auditory 

or visual (Arnell & Jolicoeur, 1999). Several theories have been put forward to explain its nature. 

Thus, early studies concluded that it must result from depleted attentional resources, as the brain 

is still engaged in processing T1 by the time T2 is presented. Attention-depletion theories 

include the inhibition/interference models proposed by Raymond, Shapiro, and Arnell (1992; 

1994) and the bottleneck models proposed by Chun and Porter (1995). The inhibition and the 

inference models were cognitive system theories incorporating working memory, where AB 

was considered the result of optimization of the first stimulus at the expense of the second. In 

order to ensure correct encoding of T1, a gating mechanism would keep out further salient 

stimuli until the process is complete. Further, lag1 sparing would be due to the proximity in 

time of T1 and T2, which would be insufficient for the gate to close. 

Well-known bottleneck models are two-stage process models, where a stimulus quickly 

activates the conceptual representations of information from an RSVP sequence stored in long 

term memory. The information is volatile however, and prone to overwriting and decay. To 

prevent stimuli from being overwritten, they are again processed at stage two, which operates 

on a limited capacity and serves to encode information into working memory. In brief, at stage 

one, stimuli are chosen based on feature identification, whereas at stage two AB occurs due to 

capacity limitations. Here again, the sparing effect is assumed to result from the temporal 

proximity of T1 and T2 (Raymond, Shapiro & Arnell, 1992; Shapiro, Raymond & Arnell, 1994; 

Chun & Porter, 1995). While a great deal of further formal and informal theories have been 
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proposed (see Dux & Marois, 2009 for a full review), most of them revolve around the idea of 

attention as a resource-limited faculty and often refer to the two-systems model of attention first 

presented by Broadbent in 1958 (Broadbent, 2013) and later expanded on by Chun and Porter 

(1995). Two-stage models have gained strong support from neuroimaging studies such as the 

one by Gross and colleagues (2004). This study reported that activity associated to processing 

both targets had been observed in visual areas, but that activity associated to attention allocation 

in parietal-frontal regions occurred selectively in response to T2 depending on whether it 

happened inside or outside the AB. More specifically, the authors investigated within-AB and 

outside-AB effects on connections in the fronto-parieto-temporal network. Target visual stimuli 

resulted in strong activation across the network, whereas non-target stimuli resulted in a weaker, 

more widespread activation in recognition-relevant locations. Outside-AB activity across 

connections was significantly stronger, but within-AB there was increased sensitivity to 

distractors that worked as noise masking the T2 (Gross et al., 2004).  

Gender differences in attention. Bayliss and colleagues (2005) ran a study comparing male 

and female participants both on exogenous and on endogenous attention cues. No differences 

were found for exogenous attention, but there was evidence suggesting that males respond to 

non-informative cues differently than females do in a Posner task. Thus, females were more 

sensitive to information from eye-direction as well as from central arrows. These findings were 

echoed in another study by Feng and colleagues (2011) using a similar methodology. They 

found differences between genders, where larger ERP component amplitudes were elicited in 

female participants compared to male participants. The stimuli were pictures of faces with eyes 

glancing either to the left or to the right, followed by a target stimulus appearing either on the 

correctly cued side or on the wrongly cued side. The authors argued that the increase in 

amplitude was due to more intensive use of resources during the task for directing attention to 

cued information. A third study using the Posner cuing task found similar results (Merritt, 
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Hirshman, Wharton, Stangl, Devlin, & Lenz, 2007). Thus, male participants were overall less 

inclined to use cues during the task, which resulted in higher accuracy for female participants 

during helpful-cue trials, while male participants did better in nonhelpful-cue trials.  

In brief, there are many factors, both external and internal, that might impact the level 

of attention, from distractors and noise to stimulants and wakefulness (Alhola & Polo-Kantola, 

2007; Gilbert, Dibb, Plath, & Hiyane, 2000). Our study aimed to examine how meditation 

impacts attentive resource allocation in a selective attention task. 

Meditation and attention 

Meditation is a widely used source of relaxation and stress-reduction. Recent studies 

have found that practicing meditation extensively or for short periods of time can have a strong 

impact on attention (Braboszcz, Cahn, Balkrishnan, Maturi, Grandchamp & Delorme, 2013), 

which is likely to be related to changes in the level of attention resources.  

Behavioural findings indicate that meditation can increase both selective attention and 

sustained attention and also has the potential of improving cognitive flexibility in automatic 

responding and faster reallocation of attentional resources (Valentine & Sweet, 1999; Carter et 

al., 2005; Cahn & Polich, 2006; Slagter et al., 2007). Most meditation types require attention to 

shift away from distractors and/or towards a focus, thus drawing on executive functions. This 

could include monitoring and conflict resolution among thoughts, feelings and mental plans 

/Braboszcz et al., 2013). In addition, meditation is thought to help the selection of information 

from a flow of sensory inputs (Hodgins & Adair, 2010) and can lead to long lasting neuronal 

and attentional plasticity (Colzato, Sellaro, Samara, Baas & Hommel, 2015). More specifically, 

meditation impacts the way people perceive and process their physical and social environment, 

and the way they regulate their attention and emotional response (Slagter et al., 2007). In sum, 

meditation appears to have a robust effect on attention, with the possibility of affecting top-

down processing during a learning process, which often underlies cognitive tasks.  
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Most meditation practices are classified along a continuum, according to the level of 

attentional engagement required, from mindfulness to focused attention. Depending on where 

on this continuum a specific meditation practice taps into, it can have different effects on 

attention tasks. Lippelt and colleagues (2014) provided an succint review of the literature 

dedicated to two main meditation types, focused attention meditation (FAM) and open 

monitoring meditation (OMM), which exert distinct effect on attentional control by 

differentially affording local versus global processing (Braboszcz, 2013). The FAM technique 

requires sustained attention on a selected internal or external object of awareness. Isha Yoga is 

one form of FAM, which requires constant monitoring of attention to maintain focus on a 

specific place or event, which could be anything from a candle flame to a breathing rhythm, or 

the feeling of the air moving through the nose (Manna et al., 2010). In a local/global processing 

task, intensive training in Isha Yoga resulted in practitioners developing a preference for local 

processing, which confirms earlier results (Van Leeuwen et al 2012), thus suggesting that Isha 

Yoga meditation enhances concentration abilities. In contrast, the OMM technique, which 

relates to mindfulness meditation, Vipassana, and open awareness, involves adopting an 

attentive and non-elaborative perspective on anything that occurs in the present moment, 

without favoring future or past events and without focusing on anything specific. It is a meta-

cognitive state where a situation is observed without a specific purpose. The goal is to 

experience the situation as it is, as a form of directing one’s focus to their own consciousness, 

to what, why, and where one is conscious of. FAM and OMM have been associated with 

different effects on cognition and attention, especially when target stimuli are unexpected. 

OMM participants had a significantly better performance during a sustained attention task 

compared to FAM participants (Valentine & Sweet, 1999), but there were no significant 

differences in performance between the two groups when faced with expected stimulus. Overall, 

both OMM and FAM participants performed better than non-meditators. 
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Yet another study found evidence that Zen meditators trained in both FAM and OMM 

had faster reaction times to all types of stimuli and a decreased bias towards global attention 

when compared to controls. Contrasting this result, a group of practitioners who primarily had 

experience in FAM alone showed a stronger local attention bias, which is the more common 

bias. Thus, practice of OMM was found to reduce this bias to some degree. These effects can 

be explained by the FAM practice sustaining a bias towards local features and the OMM 

practice leading to a reduction of both local and global biases (Van Leeuwen et al., 2012). 

The two meditation types also have different effects on cognitive-control styles (Lippelt 

et al., 2014). FAM promotes processing through a single-channel that strengthens top-down 

support for information relevant to the task and increases competition between information that 

are relevant and non-relevant on a local level. OMM, in contrast, creates a stronger parallel 

processing effect, which reduces efficiency of top-down support as well as local competition.  

In a study by Slagter et al. (2007), AB magnitude was impacted by intensive OMM sessions. 

In addition, there was a reduced T1-elicited P3b, which is an ERP component that indexes 

allocation of attentional resources. The authors argued that improved T2 could be a result of 

improved deployment of T1 attentional resources and that meditation and other forms of mental 

training impact resource allocation through practice. Thus, meditation may improve upon 

learning effects such as those involving mental noise reduction and plasticity/adaptation.  

Gender differences in meditation. Considering the differences in attention between genders 

already mentioned, especially with regard to noise suppression and distractor salience in 

selective attention tasks, we aimed to take a closer look at the impact of gender on meditation 

effects. As far as we can tell, there has to date been no study assessing gender differences in 

meditation effects on attention and learning tasks.  

One pioneering study by Rojiani and colleagues (2017) compared female and male 

participants through self-report on mindfulness and self-compassion after a 12-week OMM 
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course. They found that female participants showed a high decrease in negative affect.  

Responses were also correlated with improved skills in mindfulness and self-compassion. 

Contrasting this, male participants showed a non-significant increase in negative affect. The 

authors concluded that women tend to respond more favourably to guided meditation training. 

Katz and Toner (2012) conducted a review of articles exploring the impact of meditation on 

drug and alcohol dependency. Gender differences were mainly absent, but in one of the studies 

reviewed, females who completed a mindfulness-based meditation intervention showed a 

temporary decrease in substance use. This contrasted to control males and females, who showed 

uninterrupted increase in substance use. (Britton et al. 2010). Further, a study by Simpson et al 

(2007) found that, when looking at inmates with severe PTSD and substance abuse, both 

genders benefited from a 10-day OMM course and reported reduced substance use after 

completion, with females more likely to seek out meditation-related help.  

Measuring brain activity in our study 

 We used Electroencephalography (EEG), and in particular event-related potentials 

(ERP) to measure brain activity. ERPs measure the evoked electrical potential in the 

extracellular environment around the pyramidal cells of the active cortex. One can read this 

activity due to dipolar activity generated by the ion channels present in each neuron while they 

are active (Light et al., 2010). Electrodes placed at specific locations around the scalp can pick 

up slight changes in electric current, which are sent to an amplifier. The voltage is measured 

continuously as a single wave representing changes in amplitude. EEG can be used when 

screening for neurological conditions that affect activation patterns in the brain such as epilepsy 

and sleep disorders. Furthermore, states of wakefulness (Purves et al., 2008) or other well-

defined theoretical topics have also been researched (da Silva, 2013; Engel Jr, 1984; Schaul, 

1998).  
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While it is possible to gain some knowledge about the neural source of activations, by 

far the best advantage of EEG is its temporal resolution. By allowing us to measure the 

environment around the neurons and the changes occurring as a result of neuronal activity, EEG 

can encode time-based data down to milliseconds after stimulus onset, fast outperforming the 

temporal specificity of functional Magnetic Resonance Imaging fMRI (Näätänen, 1975). By 

mapping the recorded activity using timestamps relative to stimulus onset, one can gain precise 

temporal references of neural activity for all stimuli in a sequence. Various software packages 

can be used to carve out events and calculate average evoked activation for trials across 

experimental conditions and allow for the identification of ERP components, among which 

those associated to cognitive and perceptual tasks: the N400, the Mismatch Negativity, and the 

P300 (Brown & Hagoort, 1993; Polich & Kok, 1995).  

ERP components: the P300. In our study, we focused on the P300 component. As the name 

suggests, it is associated with a positive increase in amplitude near the 300ms mark post 

stimulus onset, peaking between 300 and 400 ms or beyond, before returning to baseline at 

around 600 ms. Several studies have associated this component with working memory, labelling 

it as a cognitive component. It is often elicited during stimulus discrimination, and is assumed 

to capture basic attention allocation, information processing, and immediate memory (Polich & 

Kok, 1995). Given that the P300 and the AB both happen at similar times post stimulus onset, 

the authors hypothesised that AB could be caused either by inhibitory processes such as the 

closure of the attentional gate or by prolonged inhibition (McArthur, Budd & Michie, 1999). 

Evidence for extended reaction times and smaller startle reflexes at peak P300 amplitude would 

suggest that inhibition of neural networks unrelated to processing significant events might be 

at stake, rather than increased processing. The authors concluded that the AB and the P300 were 

likely related, possibly as a by-product of wide-spread inhibition of cortical networks, which in 

turn would signal optimization of local processing.  
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Measuring learning rates: the HGF family of models 

For our AB task, we used EEG as well as predictive models of humans behavior to map 

subjects’ continuous learning rates. Indeed, predictive models are an important part of current 

psychological research, as they need to be tested empirically and subsequently be either 

confirmed or falsified. By doing so, they affording a top-down approach, which some argue 

would be the foundation of modern research (Stanovich & Stanovich, 2013), instead of the 

usual bottom-up experimental approach.  

We contrasted two perceptual models of learning: the Rescorla Wagner (Siegel & Allan 

1996) (RW) and the Hierarchical Gaussian Filter (HGF) (Mathys et al., 2011) to track the 

participants’ updates in beliefs regarding the structure of the task in the process of learning the 

spatial and temporal distribution of the stimuli (i.e., within- versus outside the AB). HGF 

operates with a perceptual model and a response model. The perceptual model can be based on 

a generative model of participants’ environmental states based on Bayesian principles or on the 

frequentist RW model. The function of the perceptual model is to describe the values and states 

that determine observed responses probabilistically, and model the learner’s assumptions about 

the hidden states of the world such as volatility and variance. (Mathys et al., 2011; 2014). It is 

a reinforcement learning algorithm that tracks participants’ understanding and learning of the 

task’s structure, thus explaining how learning occurs and which parameters shape the learning 

rates. The response model, also known as the ‘decision model’, describes how data generated 

by the perceptual model map onto actual responses given by participants on a trial-wise basis. 

While the perceptual model generates a representation of the internal states of the learning agent, 

the response model uses this representation to map predicted responses onto actual responses 

by making assumptions about task noise and other factors impacting the learning rate. An 

example of a response model is the linear log-RT model developed by Marshall and colleagues 

(2016). The model uses  response times changes as variables when mapping data, starting from 
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the assumption that increased learning also increases response speed (Marshall et al., 2016). 

This is actually what happens when high attentional resources need to be deployed to salient 

targets, thereby impacting response times (Jonides & Mack, 1984). When analysing our 

behavioral data, we used the log-RT model further modified by Diaconescu for the AB task to 

map participants’ beliefs onto their responses, as well as a version of the Broyden-Fletcher-

Goldfarb-Shanno Algorithm (BFGS), a quasi-newton optimization algorithm to smooth the data 

and generate parameters measuring learning rates and model fitness. 

Getting the HGF model to work. Earlier models of Bayesian inferential statistics involve 

cumbersome numerical calculations, which explains why they are not the alternative of choice 

for explaining ongoing learning. Moreover, early models are hard to generalize and often 

require algorithms to be tailored to specific tasks. These arguments plead against the 

probabilistic learner and against the Bayesian brain in general (Mathys, Daunizeau and Stephan, 

2011). In contrast, HGF is well fitted for the task at hand. 

Figure 1 below is a schematic representation of how HGF models work. Data generated 

by known inputs and observed responses return parameters for selected models capturing the 

agent’s assumptions about hidden states. These assumptions are then weighed by the response 

model, generating precision weighted prediction errors pwPE through the parameters ζ and β. 

Of the two, ζ is the weighing parameter and determines the degree to which the agent uses their 

observations when updating their models of the world, whereas β is a parameter that determines 

how tightly choices are mapped onto beliefs and is usually affected by decision noise. Using 

these parameters, an agent can generate new posterior belief estimates from an event, which in 

turn become the new priors for the next observation. In this way, they help shape the internal 

assumptions about volatility and predict the next prediction of the learning agent (Marshall et 

al., 2016). An optimization algorithm determines maximum-a-posteriori (MAP) estimates both 

for the perceptual parameters and for the decision model parameters. The function of the 
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optimization algorithm is to calculate unnormalized log-posteriors for these parameters as a 

function of finding the optimum solution or at least a satisfactory solution (for further review 

of these steps, see Mathys and colleagues, 2011; 2014).  

HGF is usually deployed over three levels (X1, X2, X3). X1 is the perceptual level, 

where the learner observes stimuli across trials or observations. At this point, there is no learning 

happening, as the subject merely observes the environment. An example would be a light flashing 

either green or red, or two buttons that one could press in order to receive a reward or a non-

reward. In other words, here prediction is either correct or wrong. The second level X2 is the 

learner’s assumption of the result of X1. Over time, the learner will get a probabilistic overview 

of the likelihood of the light flashing green or red, or of the selected choice yielding reward or 

not (e.g., 70% chance of green light and 30% chance of red light). The third level, X3 is an 

estimate of phasic volatility. A pattern emerges while creating estimates of stimulus likelihood, 

and X2 will start to generate stronger predictions for the outcome of X1. If the environment is 

stable, it will foster a strong predictive model. If the environment is volatile, it will foster 

uncertainty, which is explained by X3. If, for example, the probability of getting a red light 

suddenly changes from 30% to 90%, the distribution of X2 estimates needs to be updated. X3 is 

the estimate of how likely it is for the environment to change, which affects the rate of X2 

switching (Mathys et al., 2011; Mathys, 2014; Marshall et al., 2016). 
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Figure 1. Perceptual model and response model fitted onto data. By knowing inputs (u) 

and observing responses (y), we can generate parameters for the two models (χ and ζ). We can 

then use these parameters to make assumptions about the inferred hidden states (λ) via the 

perceptual model and generate predictions about current/future responses. The true hidden 

states (x) are not known to the learner and consist of the volatility and variance of the task or 

environment. 

 

The top-down nature of HGF implies that X3 impacts X2, which in turn generates 

predictions for X1. These predictions are manifested through Gaussian random walks. A random 

walk is defined as a stochastic process with a succession of steps, usually forming an integer line. 

Thus, one could start at zero and then either move to +1 or -1 completely at random, and then 
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take another step, again at random. A Gaussian distribution of these steps determines step sizes. 

In HGF, random walk step sizes are determined by the parameter ω (for X2), which indicates 

beliefs about variance independent of volatility, and by the parameter ϑ (for X3), which indicates 

meta-volatility, or how quickly volatility estimates are updated (Reiter, Diaconescu, Eppinger & 

Li, 2021). In other words, the generative model is determined at the third level by a random walk 

that uses a constant step size of ϑ. This affects the X2 level through the coupling parameter k, 

which together with ω helps determine the step size of the Gaussian random walk. If we were to 

add further levels to the HGF, the ϑ parameter would be influenced by the step higher up, and so 

on. (Mathys et al, 2011). Below is an output of the Tapas HGF toolbox describing the three 

different stages of learning. 

 

Figure 2. An example of HGF output (demo dataset of the TAPAS toolbox). The 

lowest level shows inputs received and responses given (y, u, s(mu2)), overlayed by the 

distribution of posterior expectations of the agent regarding the outcome. The second level 

up shows the assumptions of the agent about the variance defined by μ2 and changing with 

a step size of ω 2. The upper level shows how stable these assumptions of variance are and 



Meditation and Gender Affect the Attentional Blink  29 
 

illustrates the agent’s expectancy that sudden changes to the task will happen, defined by μ3 

and ϑ. 

An important feature of the HGF model is its generalizability. Unlike early models 

of Bayesian learning, it is versatile and can be applied to each learning task due to variable 

priors for mapping prediction updates. Eliminating the cognitive strain generated by 

performing a true Bayesian analysis during model update also sits well with the idea of the 

brain as an energy conserver. The HGF ensures generalizability by using the principle of 

‘sufficient statistics’ (Foley & Marjoram, 2017; Mathys, 2014). Thus, the learner generates 

close enough approximations of the actual parameters to generate prediction errors, while at 

the same time keeping them loose enough to be easily computable. An added advantage of 

being a hierarchical model is that HGF allows for more generalisation and fits many learning 

paradigms. The model can then also account for individuality between learning agents, hence 

for different learning rates across participants based on behavioural responses. This makes it 

a better fit for real-life application, as learning rates may differ greatly across participants 

(Diaconescu, Litvak, Mathys, Kasper, Friston, & Stephan, 2017; Mathys et al., 2011; 2014).  

HGF and the AB task. Our use of the HGF model assumed that variances in our experimental 

procedure would impact participants as volatility of their environment, and that modelling of 

the environment would happen for changes in lag during the AB task that is, changes in the 

interval at which T2 appears after T1, for example one slide apart (lag 1) or three slides apart 

(lag 3). More specifically, we expected that, based on the principles of free energy and the view 

of the brain as a probabilistic inference machine (Friston, 2008; 2009; 2010), assumptions 

would be generated about whether the target would appear early on in a string of stimuli (within-

AB), thus having a small chance of being detected, or later on (outside-AB), thus having a 

higher chance of being detected. These assumptions would, in turn, generate pwPEs that 

optimize participants’ adaptation, allowing them to alter the level of attentional resources they 
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can dedicate to the task (Friston, 2009). In order to determine how well the two models eHGF 

and RW performed when predicting behaviour, comparisons were made using the output 

generated by the optimization algorthim. These values were then run through a Bayesian Model 

Selection (BMS) module to compare the models against each other. The model selection uses 

the LME of the candidate models to assesses the relative goodness of fit, as well as to quantify 

the degree of heterogeneity in the studied sample. (Pitt & Myung, 2002; Rigoux, Stephan, 

Friston, & Daunizeau, 2014; Stephan, Penny, Daunizeau, Moran, & Friston, 2009; Zeugner, 

2010; Vossel et al., 2013). 

Given the previously reported different effects of FAM and OMM meditation on top-

down processing and attentional control, we further expected them to impact the efficiency of 

the weighing of precision errors, and thereby the learning outcomes observed through 

differences in parameter estimates. (Deserno et al., 2020; Hein, de Fockert, & Ruiz, 2021). 

Further, given that gender differences have been shown to alter attention resources in selective 

visual attention tasks such as the visual cuing task (Feng et al., 2011), we also expected gender 

differences in the AB task. As far as we can tell, no study to date has compared genders in an 

AB RSVP task, despite previous research showing differences in P300 ERP amplitude 

associated to selective attention (Conroy & Polich, 2007). 
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Hypotheses of our study 

1. Different brief meditation type will create a difference in the ability to efficiently perceive 

salient stimulus among distractors during the RSVP task. 

2. Different brief meditation type will create a difference in learning rate when adapting to 

a stimulus location placement during the RSVP task through difference in top-down 

efficiency.  

3. We would be able to model this difference in learning rate, and there will be significant 

differences when comparing parameters for gender and Lag. 

4. Based on previous research, the HGF model is likely to have a significant advantage over 

the RW model when fitting the behavioural data. 

Methods 

Participants 

A total of 38 participants were recruited (22 male) through fliers, social media, and word 

of mouth. Ages was between 20 and 38 years old (M = 24.70, SD = 2.64). All participants were 

right-handed, free of psychological and neurological disabilities, and not taking any medication. 

Furthermore, participants declared not having practiced for a long period of time any form of 

meditation previously. Six participants were excluded based on these criteria, for technical 

reasons, or for providing clear outlier responses. The remaining 32 participants (16 male,  M = 

24,39, SD = 3,61) engaged in the meditation session and subsequent AB task. 

Ethics approval 

This study was approved by the Regional committee for medical and health research 

ethics (REK-case 60748/2020), and the university of Bergen. Participants signed an informed 

consent form before they were allowed to start the study, in accordance with the declaration of 

Helsinki. At the end of the study, participants were given a gift card of 200 NOK to compensate 

for travel expenses. 
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Equipment 

The equipment used to record the EEG data was a Brainamp DC BrainProducts 

Amplifier, Powerpack BrainProducts and a 64 Channel Brain products Electrode Imput Box. 

The monitor was a 24 inches ThinkVision with the model number T24-D10. Resolution was 

1080p (1920 x 1080). It had a 60 Hz refresh rate with a 32-bit color depth. The hardware used 

to record the data was a Microsoft Windows XP 2002 stationary computer with an Intel(R) 

Core (TM)2 CPU 6400 2.13GHz. The software used to create and display the experiment was 

E-prime 2.0. The software used to record the EEG data was EEG Brainvision Recorder, and the 

software used to analyse was EEG Brainvision Analyser. EEG comparisons were performed 

using the EEGlab (v.2021) package for Matlab (Delorme & Makeig, 2004). Data from the 

statistical models (HGF, RW) were obtained through the open-source resource ‘Translational 

Algorithms for Psychiatry-Advancing Science’ (TAPAS) toolbox for Matlab 

(https://www.tnu.ethz.ch/de/software/tapas). 

Stimuli 

For the FAM and OMM meditation sessions, two audio recordings were made by a male 

native speaker of Norwegian following scripts translated from Dutch to Norwegian (cf. Colzato 

et al. 2015). The recordings had an average duration of 17 minutes.  

For the AB task, we prepared 18 practice trials followed by 288 trials, equally distributed 

between three conditions: Lag 1 (T2 immediately followed T1), Lag 3 (T2 followed T1 after 

one distractor), and Lag 8 (T2 followed T1 after 6 distractors). Distractors were letters of the 

alphabet A to Z, with the exclusion of I, O, Q and S. Targets were single digit numbers from 2 

to 9. T1 appeared either as slide 5 or slide 7. The T2 lag components will be referred to as Lag 

1, Lag 3 and Lag 8 respectively. T2 appeared among distractors on slide 6, 8, 13 or 15. 

Furthermore, at each lag, T2 appeared in the central position, 1.5 degrees to the left, or 

1.5 degrees to the right, in equal proportion. Given the 60 cm distance from the screen this 
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would keep the participants from having to make ocular saccades to observe the stimulus 

(Bergerbest et al, 2017). The resulting experimental design was 2 (Group: FAM vs. OMM) x 3 

(Lag: 1 vs. 3 vs. 8) x 3 (Location: Center vs. Left vs. Right). 

Procedure 

We conducted this study at the EEG laboratory of the Institute for Biological and 

Medical Psychology at the University of Bergen. Upon entering the lab, the participants were 

asked to fill out a consent form detailing the goal of the experiment and their rights as volunteers. 

They were then directed into the testing area which was a faraday caged room containing the 

EEG equipment, monitor, and keyboard. A camera was placed in the corner for us to monitor 

the situation, should anything happen, or should the participant fall asleep.  

The preparation of the EEG cap took between 40 and 70 minutes per participant. Our 

aim was to keep the prep time below 60 minutes. Passive electrodes were applied to a 

standardized 64-placement cap. A total of 59 electrode were placed on the scalp, in addition to 

two lateral and two horizontal eye electrodes, one reference on either mastoid, and one ground 

at the nape of the neck. Scalp electrodes were fastened to the cap, and then treated with Abralyt 

conductive gel to both increase contact with the scalp, and to scrub away dead cell matter and 

other layers on the scalp itself. All of this was done to reduce the impedance (how much the 

electric current is opposed or restricted) as much as possible.  

Once all electrodes were at a level below 10 µΩ (micro-ohm), the participant was 

installed in front of the monitor at a pre-marked spot 60 cm away. Participants were both given 

on-screen visual instructions and oral instructions from the experiment assistants prior to 

experiment-onset on how to operate the equipment and how the experiment would proceed. 

They were also instructed to keep as still as possible and avoid excessive blinking or facial 

movements during experimental trials. All instructions appeared on the monitor in front of them. 

Participants were randomly assigned to either the FAM or the OMM group and were asked to 
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relax and listened to the guided meditation instructions. Following the meditation session, the 

participants rested for one minute before starting the AB task. 

Each trial began with a fixation cross lasting 516 ms, followed by 18 slides each shown 

for 66 ms, with an inter stimulus interval of 33 ms. The task was to accurately report the 

observed target after each trial using a numpad in front of them followed by ENTER. If 

participants were unable to answer, they were instructed to respond by pressing ‘0’ followed 

by the ENTER key. Participants initiated each trial by pressing the SPACE key, allowing them 

to rest and prepare before each RSVP sequence. From start to completion the AB task took an 

average of 30 minutes. For an example of the RSVP task see figure 3. Participants were 

debriefed after completing the task. 
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Figure 3 shows a typical trial. Here, the RSVP features T2 at Lag 3. 
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Analyses 

Data modelling. Both RW and the eHGF modelling were performed on Matlab R2020a and 

the TAPAS toolbox running the enhanced hierarchial Gaussian filter eHGF model. Accuracy 

data (‘1’ for hits and ‘0’ for misses) were re-converted into binary values and entered as inputs 

of the perceptual model. The within- versus outside-AB condition was also converted into 

binary (0 and 1) values, and was coded as responses in the perceptual model. The eHGF is 

identical to the HGF in every practical term with the only difference being that it adds an extra 

parameter Kappa1, which scales the first level with respect to the second. In our study, we kept 

this parameter fixed to 1, resulting in the classical HGF model. The reason for using the eHGF 

then is that it can handle more forms of data without running into exceedance errors.  The eHGF 

and RW response models were modified by A. Diaconescu specifically for this experiment. 

Subsequently, we compared model fit for the two candidate models using the SPM BMS 

function (Ashburner et al., 2014). 

EEG data. The raw data from the EEG were first controlled by eye, and labels were added 

showing timestamps for both T1 and T2 onset, including lag type and lateralization. The DC 

offset was then removed, and a Finite Impulse Response (FIR) filter was added for basic 

cleanup. Then data were again inspected by eye for obvious artefacts and excessive noise. 

Usually, this would be the point where bad channels were also removed, but there was none 

apparent in the current study. After initial pruning, the data were decomposed through an 

Independent Component Analysis (ICA) in order to remap activity onto recurring components. 

Subsequently, components were evaluated by eye and removed if clearly not brain related 

(Delorme & Makeig, 2004). The data were then re-referenced to the mastoid electrodes, and 

epoched following target timestamps. The range was set between -200 and 1000 ms, with a 

baseline set between -200 and 0. Group comparisons were based on ERPs using both meditation 

groups and lag (within- and outside-AB). 
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Results 

Accuracy 

The analysis yielded a main effect lag, F (2, 56) = 82.13, p < 0.001, hP2 = 0.746. 

Bonferroni-adjusted paired comparisons revealed significantly higher scores for lag 8 (M = 

0.904) compared to both lag 1 (M = 0.709) and lag 3 (M = 0.792), and also higher scores for 

lag 3 compared to lag 1, F (2, 27) = 100.04, p < 0.001, hP2 = 0.881. Response accuracy was 

higher for participants in the OMM group compared to participants in the FAM group, F (1, 28) 

= 4.42, p = 0.045, hP2 = 0.136. However, there was no significant difference in responses 

between male and female participants, p = 0.776. 

RT 

When comparing reaction time scores for T2 across lags, with Group and Gender as 

between factors, we obtained no significant results (all p-values > 0.05). 

Next, we compared accuracy scores between males and females after averaging across 

within-AB trials (lags 1 and 3) and contrasting the means with outside-AB trials (lag 8) in a 

one-way ANOVA for each meditation group. A robust test of equality of means (Welch) 

revealed higher response accuracy for females than for males in the OMM group only, 

F 1, 8.206 = 6.47, p = 0.034. No significant differences were found for response time 

across genders. 
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Figure 4 shows distribution of behavioural data across meditation, lag and gender for 

accuracy  

 

Figure 5 shows distribution of behavioural data across meditation, lag and gender for 

RT 



Meditation and Gender Affect the Attentional Blink  39 
 

HFG Modelling Results 

Comparison of parameters between meditation types. When Comparing the parameters 

between the two models we found no significant differences between the Meditation groups 

when comparing for within- and outside-AB respones on their own (p>0.05) When taking 

gender into account however there was a significant difference between males and females on 

the third level ϑ values t(30) = -2.74, p = 0.01 d=0.96. The β3 parameter was also significantly 

different, at t(30) = 2.09, p = 0,045, d=0.74. When comparing for the FAM group specifically 

we found that again there was a significant difference between males and females both for the 

ϑ level and for the β3 level. t(14) = -2.67,  p = 0.02, d = 1.34 and t(14) = 2.23, p = 0.043, d = 

1.12 respectively. 

Figure 6 shows the output from one of the participants.  The black line is the overall 

learning rate, and while this individual has a comparatively high ω 2 level compared to other 

participants, the projected learning rate is still consistent with the rest in that it shows an effect 

of learning at first, before evening out as the learning agent becomes increasingly certain about 

the distribution of responses. 
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Figure 6. Output generated from the eHGF perceptual model and the LogRT response 

model. The lowest level (y, u, s(mu2)) shows inputs received and responses given, overlayed by 

the distribution of posterior expectations of the agent regarding the outcome. The second level 

shows the assumptions of the agent about the variance defined by μ2 and changing with a step 

size of ω2. The upper level shows how stable these assumptions of variance are and illustrates 

the agent’s expectancy of sudden changes in the task, defined by μ3 and ϑ.   

Model fit comparison. The LME for the RW model had a mean of -301.35 (SD: 75.89) across 

participants, while the eHGF reached a total of -291.45 (SD: 85.5). Using the SPM BMS 

function, we determined that the HGF with LogRT had an xp advantage of 0.64 to 0.36 over 

the RW LogRT, indicating that the HGF was a better fit for the data. There was however a 

Bayesian Omnibus Risk (BOR) factor of 0.81, indicating that there is a considerable risk of 

confounding factors. The more robust protected_xp result yields an xp value of 0.53 versus 0.47, 

which still indicates an advantage. 
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Model type Mean LME  

(higher is better) 

SD: Xp Protected_Xp Bor 

eHGF -291.45 85.5 0.64 0.53 0.81 

RW -301.35 75.89 0.36 0.47 0.81 

 

Table 1: LME and XP values when comparing the eHGF and the RW model.  

EEG results 

Figure 7 shows significant differences based on permutations using a FDR filter with a 

threshold level of p = 0.05 measured across the entire scalp at all three lags around the P300 

timestamp (300-500ms). The spectral map suggests stronger differences at Lag 8 when 

comparing the FAM male, FAM female, OMM male, and OMM female groups. The effect 

extends over the frontal, occipital and right-parietal area, suggesting that female participants in 

the OMM group had the highest neural activity. Figure 7 and 8 further present topographic 

maps illustrating main effects and marginal means.  
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Figure 7. Average topographical map over electrode placements and recorded activity. 

Red dots mark loci of significant main effects in a 4 x 3 ANOVA with the four groups (FAM 

males, FAM females, OMM males, and OMM females) crossed with three lags (1, 3, and 8) at 

p<0.05, FDR corrected. The time range corresponds to the P300 component (300-500 ms after 

T2 onset). 

Figure 8 shows significant differences between genders and lag within the P300 window 

at Lag 1 and 8. The former implies a left-hemispheric effect, with the spectral map showing 

increased activity mainly for the female OMM participants. A slightly weaker effect is apparent 

for female FAM participants. At Lag 8, a pattern of frontoparietal activity emerges that extends 

to the occipital area and the left temporal lobe. Again, the spectral map confirms that the main 

effect is driven by the female OMM group, as shown more clearly in the topographic map across 
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groups: there was significant activation across the entire scalp, with maxima towards the left 

frontoparietal areas.  

 

 

Figure 8. Average topographical map over electrode placements and recorded activity.  

Red dots mark significant main effects in a 4 x 3 ANOVA with the four groups (FAM males, 

FAM females, OMM males, and OMM females) crossed with three lags (1, 3, and 8) at p<0.05, 

FDR corrected. The time range is 300-500 ms after T2 onset. 

Figure 9 shows a marked difference in amplitude between lags, highest for the female 

OMM participants. The effect peaks by the P300 component, with a max amplitude of 12.74µV 

compared to the baseline at 418ms. The average activation of the FAM female group reaches a 

peak of 8.02µV at 440ms. For male participants in the FAM and the OMM groups, peaks have 
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lower amplitude and occur somewhat later, 5.5µV at 475ms. There also appears to be a 

sustained P3b effect moving up until the 600ms mark.  

 

 

Figure 9. Average T2 amplitude for the four groups (FAM males, FAM females, OMM 

males, and OMM females) across lags. Amplitude is measured in microvolt, time is measured 

in milliseconds ranging between -200 ms before T2 onset up til 800 ms after T2 onset.  
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Discussion 

Meditation Impact on AB Accuracy  

Previous studies have found various types of meditation to impact attention in a number 

of ways (Bergerbest et al., 2017; Carter et al., 2005; Colzato et al., 2015; Slagter et al., 2007; 

Valentine & Sweet, 1999; Van Leeuwen et al., 2012). Importantly, with the exception of 

Colzato et al. (2015), these studies have explored the behavioral performance of well-versed 

meditators and have not looked at EEG correlates of performance in brief meditation sessions 

or attempted to model their effect on the AB. Our study found that participants in the OMM 

group scored significantly higher than those in the FAM group for T2 accuracy. These results 

support the findings of a previous study where OMM was shown to increase performance more 

than FAM in a sustained attention task with unexpected stimuli (Valentine & Sweet, 1999). The 

results can also be interpreted from the perspective of learning as an update of environmental 

models of the world using pwPEs, because increased volatility is associated with reduced 

learning (Behrens, 2007; Friston, 2009). We found that the FAM group also scored higher on 

estimates about volatility in the experimental environment.   

Previous studies comparing genders in a selective attention cuing task also found a 

significant difference in response times between male and female participants (Merritt et al., 

2007). We found no such difference in our AB task, which may be due to non-specific 

instructions given to participants. Specifically, we did not ask them to respond as fast as 

possible, which might explain the lack of differences found. However, we allowed participants 

to take a rest between trials as often as they wished to. This measure, together with the overall 

fast pace of stimuli presentation, prevented participants from entering responses in a leisurely 

fashion. Moreover, the fact that RT coupled with accuracy was entered into the logrt model 
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yielding significant differences between males and females suggests the existence of a trend 

differentiating participants by gender. 

Meditation effects on attention. Previous studies found attentional amplitude difference 

between genders (Conroy & Polich, 2007; Feng 2011), and so did our study, with female groups 

showing increased amplitude both within and outside the AB. This effect helped distinguish 

between meditation types, with brief OMM sessions affording stronger attentional resources 

than brief FAM sessions. Interestingly, the difference between participants was almost 

negligible in the male population across all lags, and the effect between meditation groups 

seems to be driven by females in the OMM group, as shown in average topographical maps. 

This differentiation between male and female responses was observed by a number of studies 

with the Posner task (Bayliss et al, 2005; Feng et al., 2011), but in these instances it was argued 

to be because of responsiveness to explicit cuing, where males were found to be consistently 

less willing to accept the cued advice, and showed weaker ERPs as a result of less cognitive 

appraisal during the task. The gender differences in our non-cued task suggests that these 

differences might move beyond gender specific attention to explicit direction cues and might 

also extend into more abstract updates about the environment in general through the improved 

efficiency of model updates.  

During our AB task, participants received no explicit information about the structure of 

the task. Thus, they relied solely on individual learning and internal inferences on the 

experimental environment. Despite this absence of cues, male participants still had consistently 

lower ERP amplitudes. Interestingly, female OMM participants scored higher than male OMM 

and female FAM participants on accuracy during the Lag 8 trial, which was the one least 

impacted by the AB. An interpretation here could be that when female participants, especially 

those in the FAM group, were outside of the attentive scope of the AB, were able to deploy 

higher attentive resource allocation during the RSVP task.  
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Our results showed a difference in the ability to attend to rapid visual stimuli depending 

on brief meditation type, with OMM participants scoring better, particularly outside the AB. 

This in turn would suggest that there is possibility of an endogenous modulating of either the 

number of attentional resources people are able to distribute, or a way to impact the way we use 

them.  

Meditation type was shown to impact local and global biases (van Leeuwen et al., 2012). 

These biases can be fitted into a Bayesian brain setting by thinking of them as influences on 

models for situations or environments. A local bias might encourage the learning agent to put 

more weight on prediction errors from environmental cues with high assumed salience, even if 

they might end up being distractors. This would tilt the precision of the pwPEs, and potentially 

causing an impact on learning rate by obscuring the hidden states of the environment. By the 

same token, we could explain these results by a more global bias or a reduction of bias in general 

that might keep the learning agent less exposed to these distractors, and in turn allow them to 

gain a better model of the actual hidden states. FAM practitioners have been known to be more 

prone to local bias (van Leeuwen et al., 2012), and females have also been known to put a 

stronger emphasis on contextual cues (Bayliss et al., 2005; Feng et al., 2011; Meritt et al, 2007), 

which could result in a higher learning rate for all female participants. 

Meditation effects on learning. To our knowledge, there has been no previous experiment that 

uses the eHGF to model learning rates during the attentional task. The HGF and eHGF has been 

shown to consistently generate better models for learning than traditional models like the RW 

(Hein, de Fockert & Ruiz, 2020; Iglesias et al., 2013; Diaconescu et al., 2014), and have been 

able to generate strong perceptual models based on the theory of the brain working through 

Bayesian Inference. Commonly these learning paradigms usually have a clear reward focus and 

instructions that frame the paradigm. The learning agent is made aware of potential volatility 

in the environment,  and they are implicitly incentivised to start generating inferences about the 
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environment. Iglesias and colleagues (2013) still found that while larger, reward-directed 

prediction errors was modulated by dopaminergic activity in the basal forebrain, the midbrain 

was associated with smaller updates based on the environment. These were acetyl-cholinergic 

and had no distinct reward for the learner beyond the updating of their generative model of the 

world. On these premises we decided to model a generative model based on the learning factor 

based on Within- versus Outside-AB observations during the AB task.  

The data from female OMM participants supports the assumption that, while there is no reward 

for the participant during the AB task that would motivate the precision weighing of the 

prediction errors, there would still be an effect present based on the general updating of 

environment estimates in order to optimize responses during a performance task. This is further 

supported by the concept of free energy in the brain, with attention as a predictor of error size. 

In this scenario, the predictions of within- versus outside- AB would increase the response 

accuracy depending on the attentional resources allocated, through forming stronger or weaker 

prediction errors (Friston, 2009). In turn, these prediction errors help generate a more accurate 

model of the experimental environment, optimizing learning and improving proficiency on the 

AB-task. The different learning rate estimates for the variation in prediction errors suggest a 

modest learning rate in our AB task, as indicated by moderate ω values. However, when looking 

at individual learners, we found a different trend in volatility estimates (ω3). This was further 

confirmed when comparing ω3 values between genders, where a significant effect was found, 

particularly in the FAM group between male and female participants. Females had higher ω3 

values than males, which suggests a stronger impact from volatility on their estimates. This was 

further accompanied by significant differences in β levels, which are the parameters 

representing noise and fitness of a perceptual model as determined by the observational model. 

In this case, β levels represent how RTs map onto the priors of prediction errors at the next 

level, with females being significantly more impacted by their estimates about changes in the 
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environment (Marshall et al., 2016). The effect of a brief OMM session in female participants 

would thus be to reduce top-down effects on attention (Lippelt et al, 2014). Given the generally 

high uncertainty and weak guiding cues during an AB task, this could in turn generate less noise, 

and allow for more accurate predictions regarding the AB-task based on lower-level updates 

about the environment compared to female FAM participants (Iglesias et al, 2013). 

These findings corroborate the results reported for the Posner task, where female 

participants were more strongly influenced by environmental data (cues). This would imply that 

the strong effect seen between female and male participants in our task is based on gender-

different impact from volatility estimates, where female participants engage in stronger top-

down processes of stimulus inferences and trying to generate accurate models with very little 

information. No significant differences between female FAM participants and female OMM 

participants were found in ω3 values. 

The RW model revealed no significant differences across groups. The low α levels 

suggest that the model failed to capture learning during the AB task in our study. Despite low 

variance estimates, the eHGF outperformed the RW, as indicated by LME comparisons using 

the SPM BMS function. Better performance by the eHGF model indicates that it could map 

learning rates better than the RW model, thereby confirming previous findings. (Hein, de 

Fockert & Ruiz, 2020; Iglesias et al., 2013; Diaconescu et al., 2014). 

Using meditation to explore cognitive performance. Meditation studies have mainly focused 

on well-being benefits such as stress reduction and affective control. However, recent studies 

have used meditation to investigate the impact it might have on cognition, and in particular on 

attentive resources. The findings of our study contribute to this line of research. We have 

attempted a first modelling of meditation effects on the AB phenomenon and we have shown 

that even brief OMM sessions free up increased attentional resources. The opportunities of 

exploiting this result are many and varied. For example, educators might consider including 
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meditation as a welcome addition to teaching environments. Based on our findings, future 

studies should still look more closely into the relationship between gender and meditation 

efficiency, as our results could indicate that meditation is not a ‘one size fits all’ phenomenon. 

This is further supported by the fact that males seem to show less effect of OMM when it comes 

to affective regulation and self-compassion (Rojiani et al, 2017).  

Meditation and modelling. Generalisability is the degree to which data can be expanded 

beyond the laboratory and onto more general behaviour. A common way to achieve 

generalisability is through formulating theoretical models. Thus, abstract predictions can be 

structured into a system so they can be applied to every situation associated with that particular 

behaviour or process (Treagust, Chittleborough & Mamiala, 2002). An example of a well-

known model is the multiple-component model of working memory first introduced by 

Baddeley and Hitch in 1974. They conceptualized several parts of working memory into 

functional components that explained how various senses were combined and incorporated into 

long term memory from short term memory. The theory has generated a large body of research 

with basis on these concepts and has been updated several times (Baddeley & Logie 1999). 

Although models are useful for explaining complex concepts while being easily accessible and 

providing a framework for what to expect given the underlying hypothesis, they can always be 

further optimized. Like the working memory model, they are often subject of corrections and 

revisions (Frigg & Hartmann, 2006). Therefore, it is important when faced with multiple models 

for the same process or situation, to be able to select the model that best explains a phenomenon, 

preferably also in the simplest way possible.  This implies using a rule of thumb known as 

Occam’s Razor, that achieves parsimony by removing unnecessary assumptions. In our case, 

this would mean that “A simple model that explains the data should be selected in favour of a 

complex model that explains the same data” (Lazar, 2010; Balasubramanian, 1997). 

Nevertheless, more is at stake when selecting models than simply using Occam’s Razor. Wears 
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and Lewis (1999) argued that focusing too much on parsimony could result in reduced accuracy, 

especially for statistical models. These models are governed by mathematical equations that 

predict how sample data will be generated based on parameters used to shape and frame the 

data generated. Within psychology these models can be used to generate generalisable 

predictions about behaviour.   

The behaviourist movement used simple models to explain complex behaviour, and 

were able to predict outcomes to a certain degree. Parsimonious models like RW should then, 

from this perspective, always be held in advantage over more complex models like the HGF, 

for being able to calculate a learning effect using less parameters. The issue is that, while both 

models explain the same phenomenon, the omission of important parameters and strong 

assumptions lower model accuracy, thus increasing the likelihood of missing their target 

phenomenon (Wears & Lewis, 1999). With RW models, one may observe the output and the 

input, but lacks the necessary tools to explain the internal process generating the result, because 

these models ignore the agent’s input, without the possibility of adjustment, optimization, and 

adaptation to the environment. In contrast, HGF uses input and response in the same way as the 

RW does and based on the principle of the brain as a probabilistic inference machine it creates 

parameters that can be adjusted and optimized. Lacking the added third layer of the HGF, the 

RW was not able to find clear patterns of learning in the AB, which would support the argument 

that accuracy and power of explanation should be taken into account when considering the rule 

of parsimony. We mainly found notable effects in the ω3 levels that represent internal estimates 

of the environment, a parameter that is beyond the scope of the RW.  

Limitations of the Study 

One limitation of the experimental design used in our study is maintaining constant the 

randomness level of stimuli within and outside the AB. Specifically, in two thirds of the trials, 

T2 occurred within the AB (lags 1 and 3) and in one third of the trials T2 occurred outside the 
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AB (lab 8). It would be interesting to observe further differences in learning rates for within 

versus outside AB targets while modifying the proportion of within and outside AB trials, 

thereby varying the environmental volatility.  

Another limitation of our study is the use of a male voice in the recording of the guided 

meditation session, which might account for some of the response difference between males 

and females. The gender of the guide should be taken into account as a potential confound in 

future meditation studies, which could explore the effects on meditation efficiency by male 

versus female narrators and how the gender of the narrator affects male and female participants. 

In our study, we found differences in performance between the FAM and OMM group, despite 

being recorded by the same speaker, which pleads for there being a well-justified significant 

effect of meditation type.  

Concluding remarks and future studies 

We modelled AB-related learning rates using ERP and Bayesian models for the first 

time. We compared meditation type and gender and found significant differences. The novel 

results of both gender differences and brief meditation type suggest a great number of ways to 

move from here. The first venue that should be explored is a variation of this study using a 

reward-learning task and controlled volatility, allowing us to observe the impact of meditation 

on higher-level prediction errors and how the altered top-down impact alters the learning rates. 

Moreover, given the lack of research on gender differences in the AB-task, an experiment 

controlling for AB between genders like this one while also including a non-meditation setting, 

checking for significant difference between male and female participants also outside a 

meditation paradigm. This would further provide a better foundation for the literature on 

differences in attention between genders in the Posner task.  
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