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Abstract

Background

The fungal part of the pulmonary microbiome (mycobiome) is understudied. We report the

composition of the oral and pulmonary mycobiome in participants with COPD compared to

controls in a large-scale single-centre bronchoscopy study (MicroCOPD).

Methods

Oral wash and bronchoalveolar lavage (BAL) was collected from 93 participants with COPD

and 100 controls. Fungal DNA was extracted before sequencing of the internal transcribed

spacer 1 (ITS1) region of the fungal ribosomal RNA gene cluster. Taxonomic barplots were

generated, and we compared taxonomic composition, Shannon index, and beta diversity

between study groups, and by use of inhaled steroids.

Results

The oral and pulmonary mycobiomes from controls and participants with COPD were domi-

nated by Candida, and there were more Candida in oral samples compared to BAL for both

study groups. Malassezia and Sarocladium were also frequently found in pulmonary sam-

ples. No consistent differences were found between study groups in terms of differential

abundance/distribution. Alpha and beta diversity did not differ between study groups in pul-

monary samples, but beta diversity varied with sample type. The mycobiomes did not seem

to be affected by use of inhaled steroids.

Conclusion

Oral and pulmonary samples differed in taxonomic composition and diversity, possibly indi-

cating the existence of a pulmonary mycobiome.
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Introduction

Fungi are ubiquitous, and are found in indoor and outdoor environments [1]. Due to its direct

communication with surrounding air, the respiratory tract is constantly exposed to fungal

spores through inhalation [2]. Healthy airways possess effective removal of such spores

through mucociliary clearance and phagocytosis. In contrast, impaired defence mechanisms,

use of immunosuppressant, and frequent use of antibiotics probably predispose for increased

fungal growth [2], and all factors are quite frequent in chronic obstructive pulmonary disease

(COPD).

The fungal part of the microbiome, the mycobiome, of the lungs is understudied [3], and

only three studies have used next generation sequencing to study the mycobiome of the respi-

ratory tract in COPD particularly [4–6]. Notably, participants in Cui et al.´s study were also

HIV infected, and only ten had COPD [4]. The study by Su et al. [5] and Tiew et al. [6] used

sputum samples, which are vulnerable to contamination from the high-biomass oral cavity. By

contrast, mycobiome studies of other respiratory diseases have evolved rapidly. For instance, a

study on asthma patients showed higher fungal burdens in participants receiving corticoste-

roid therapy [7], while another study has revealed associations between Aspergillus-specific

immunisation and bronchiectasis severity [8]. There is clearly a need for large studies of the

mycobiome, with a well-characterised COPD disease population and healthy controls.

The Bergen COPD Microbiome study (short name “MicroCOPD”) fills this scientific void

[9]. Samples were collected from the lower airways of participants with and without COPD

using bronchoscopy. The aim of the current paper was threefold: 1) To characterise and com-

pare the oral and pulmonary mycobiomes in a large cohort of participants without lung disease

(controls). 2) To characterise the oral and pulmonary mycobiomes of participants with COPD,

and contrast it to controls, and finally, 3) To examine whether the mycobiomes were affected

by the use of inhaled steroids (ICS) in participants with COPD.

Materials and methods

Study design and population

The study design of the MicroCOPD study has previously been published [9]. MicroCOPD

was a single-centre observational study carried out in Bergen, Western Norway. Study enrol-

ment was between April 11th, 2013, and June 5th, 2015. The study was conducted in accordance

with the declaration of Helsinki and guidelines for good clinical practice. The regional com-

mittee of medical ethics Norway north division (REK-NORD) approved the project (project

number 2011/1307), and all participants provided written consent.

Both subjects with and without COPD were invited to participate. Participants from two

previous cohort studies in our vicinity, the GeneCOPD study and the Bergen COPD cohort

study, were contacted regarding participation in the current study, and some participants were

recruited through media, the local outpatient clinic, or among hospital staff [9]. Potential par-

ticipants were excluded if they had increased bleeding risk, unstable cardiac conditions, hyper-

capnia, or hypoxaemia when receiving oxygen supplement, as specified in the study protocol

[9]. We postponed participation for subjects that had used antibiotics or systemic steroids last

2 weeks prior to participation, and COPD patients should not have been admitted to hospital

due to COPD last 2 weeks. Furthermore, participants with symptoms of an ongoing systemic

or respiratory infection could not attend, but had to postpone participation. COPD was

defined as chronic airway obstruction (low FEV1/FVC) in presence of respiratory symptoms

[10], and the diagnosis was verified by experienced pulmonologists based on spirometry,

radiologic imaging, respiratory symptoms, and disease history. Subjects without COPD or
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other lung diseases were defined as control subjects. 22 control subjects had a ratio of FEV1/

FVC lower than 0.7, but did not have symptoms of COPD.

Data collection

All data collection was performed in our outpatient clinic. A post-bronchodilator spirometry

was performed before the bronchoscopy. Study personnel conducted a structured interview

regarding contraindications, medication use, comorbidities, smoking habits, and evaluation of

dyspnoea. A sterile unsealed bottle of phosphate-buffered saline (PBS) was opened prior to the

procedure, and the fluid within was used for all sample fluids, including negative control sam-

ples, oral wash (OW), and bronchoalveolar lavage (BAL). The OW sample was taken before

the bronchoscopy by gargling 10 ml of the PBS water for 1 minute; collected in a sterile Eppen-

dorf tube. The bronchoscopy was performed with the participant in supine position using oral

access. Topical anaesthesia was given by a 10 mg/dose lidocaine oral spray pre-procedurally,

and 20 mg/ml lidocaine was delivered per-operatively through a catheter within the broncho-

scope’s working channel. Light sedation with alfentanil was offered to all. The details of bron-

choscopic sampling have been published previously [9]. The yields of two fractions of

protected BAL of 50 mL were collected from the right middle lobe using a sterile catheter

(Plastimed Combicath, prod number 58229.19) inserted in the bronchoscope working chan-

nel. The second fraction was used for the current mycobiome analysis. Additionally, a sample

from the PBS was taken for each participant directly from the bottle used for that particular

participant, without entering the bronchoscope or participant. This PBS sample served as a

negative control sample.

Laboratory processing

Fungal DNA was extracted using a combination of enzymatic lysis with lysozyme, mutanoly-

sin, and lysostaphin, and mechanical lysis methods using the FastPrep-24 as described by the

manufacturers of the FastDNA Spin Kit (MP Biomedicals, LLC, Solon, OH, USA). Libraries

were prepared with a modified version of the Illumina 16S Metagenomic Sequencing Library

Preparation guide (Part no. 15044223 Rev. B). The internal transcribed spacer (ITS) 1 region

was PCR amplified (increased from 25 to 28 cycles) using primer set ITS1-30F/ITS1-217R,

which sequences are GTCCCTGCCCTTTGTACACA and TTTCGCTGCGTTCTTCATCG [11]. A

subsequent index PCR was performed with 9 cycles instead of 8. Samples underwent 2x250

cycles of paired-end sequencing in three separate sequencing runs on Illumina HiSeq (Illu-

mina Inc., San Diego, CA, USA).

Bioinformatics

Quantitative Insights into Microbial Ecology (QIIME) 2 [12] version 2019.01 and 2019.10 was

chosen as the main pipeline for bioinformatic analyses, and additional R packages were utilised

as suited [13]. FASTQ files containing all fungal reads were trimmed using the q2-itsxpress

plugin [14]. Trimmed reads were then denoised, i.e., identification and removal of low-quality

reads and chimeric sequences, using the Divisive Amplicon Denoising Algorithm version 2

(DADA2) q2-dada2 plugin [15]. DADA2 also generated exact amplicon sequence variants

(ASVs). LULU, an R package to curate DNA amplicon data post clustering, was used to

exclude artefactual ASVs [16]. ASVs present in only one sample, and ASVs with a total abun-

dance less than 10 sequences across all samples, were filtered out. Presumed contaminants

were identified using the R package Decontam [17] with the prevalence-based approach (user

defined threshold = 0.5), and then removed. Taxonomic assignments were made using a

UNITE database for fungi with clustering at 99% threshold level [18] (via q2-feature-classifier
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[19] classify-sklearn [20]). Resulting ASVs assigned only as Fungi at kingdom level, or Fungi at

kingdom level with unidentified phylum, were manually investigated using the BLASTN pro-

gram in NCBI [21]. ASVs with unambiguous BLASTN results with a high max score were

repeatedly assigned to new taxonomic assignments using UNITE databases with fungi or all

eukaryotes with different threshold levels [18, 22–24] (via q2-feature-classifier [19] classify-

sklearn [20] and classify-consensus-blast [25]), and included for further analyses if the new

assignments matched the BLASTN result. ASVs with ambiguous or non-fungal BLASTN

results were discarded. Alpha diversity was calculated using Shannon index, and beta diversity

metrics (Bray-Curtis dissimilarity and Jaccard similarity coefficient) were estimated using

q2-diversity after samples were rarefied (subsampled without replacement) to 1000 sequences

per sample. The rarefaction depth was chosen based on testing with multiple different values

and resulting alpha rarefaction plots. We aimed to find a rarefaction depth as high as possible

while excluding a minimum of samples.

Data analyses

Statistical analyses of demographical data were analysed with Stata version 15 [26]. A flow

chart of the bioinformatic process was generated using Flowchart Designer version 3 (http://

flowchart.lofter.com). Alpha- and beta diversity analyses including participants with COPD

were stratified by GOLD stage [10]. Statistical differences in alpha diversity measured with

Shannon index were tested with R using Kruskal-Wallis for unpaired variables, and Wilcoxon

signed-rank test for paired analyses. Differences in beta diversity between study groups and

ICS use were tested with permuted analysis of variance (PERMANOVA) adjusted for sex, age,

and percentage of predicted forced expiratory volume in 1 second (FEV1), and differences in

spread with permuted multivariate analysis of beta-dispersion (PERMDISP). Procrustes analy-

ses were performed to check for differences in beta diversity between sample types. PERMA-

NOVA, PERMDISP, and Procrustes were analysed using the Vegan package in R [27]. We

used both Bray-Curtis and Jaccard distances for the beta diversity analyses. To compare taxo-

nomic composition between pairs of samples we calculated the Yue-Clayton measure of dis-

similarity (1-θYC) [28]. Furthermore, differences in distributions and relative abundances

were evaluated by the Microbiome Differential Distribution Analysis (MicrobiomeDDA)

omnibus test [29], the second version of analysis of composition of microbiomes (ANCOM

v2, https://github.com/FrederickHuangLin/ANCOM) [30], and the second version of ANO-

VA-Like Differential Expression (ALDEx2) [31–33] at genus level. A significance level of 0.05

was used in all analyses.

Results

Demographics of participants

The majority of participants with COPD was regular ICS users, and presented with more

comorbidities, higher medication use, and poorer lung function measurements (FEV1/FVC-

ratio and mMRC) than controls (Table 1).

Flow chart. The bioinformatic processing is shown in Fig 1, and details are given in S1

File. ASVs identified by Decontam as presumed contaminants are listed in S1 Table.

Taxonomy and abundance/distribution testing. The taxonomic composition of the OW

and BAL mycobiomes are displayed on group level in the rank abundance plots (Fig 2A and

2B). Both controls and participants with COPD were dominated by Candida, particularly in

the OW samples, reaching nearly 80% of total mean relative abundance. The relative abun-

dances of Malassezia and Sarocladium were high in the control and COPD groups. We also

plotted percentage of reads belonging to either Basidiomycota or Ascomycota (S1 Fig). There
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seemed to be a tendency towards higher proportions of Basidiomycota in the COPD group

compared to the control group both in the OW and BAL plot. No consistent differences were

found between study groups in terms of differential abundance/distribution, and results varied

between available statistical tests (S2 Table).

Taxonomy is displayed for each individual participant in Fig 3A and 3B, enabling us to

compare OW and BAL samples from this particular participant. We observed intra-individual

differences between the sample types for the plotted taxonomic levels (phylum and genus).

This was elaborated with Yue-Clayton testing for each OW/BAL/negative control sample pair

(S2 Fig). The Yue-Clayton measure is 0 with perfect similarity and 1 with perfect dissimilarity.

The average Yue-Clayton measure from OW and BAL samples was 0.63, and 121 out of 180

sample pairs had a Yue-Clayton measure above 0.2. ANCOM and ALDEx2 (S2 Table) found

Candida to differ in abundance between OW and BAL, also stratified by smoking status and

ICS usage. The taxonomy of regular ICS users and non-ICS users was not easily distinguish-

able (Fig 3A and 3B), and no consistent differences were seen in differential abundance/distri-

bution testing (S3 Table).

Diversity

We found no significant differences in alpha diversities between the different study groups or

ICS usage in BAL samples, nor between BAL and OW samples (Fig 4A and 4B, S3 Table).

Beta-diversity results resembled those of alpha diversity (S3 Fig). However, principal coordi-

nates analysis (PCoA) plots before and after symmetric Procrustes transformation (S4 Fig),

indicated that there were significant differences in the composition between OW and BAL

samples from the same individual. The Procrustes transformation yields a sum of squared dis-

tances (M^2) that specifies how similar sample pairs are. Generally, a M^2 above 0.3 is

Table 1. Demographics of participants providing fungal samples in the MicroCOPD study.

Variable Control, n = 100 COPD, n = 93

Age, mean years (SD) 65.6 (8.5) 67.5 (7.6)

Male, sex (%) 57 (57.0) 50 (53.8)

Number of medications, mean (SD) 1.8 (1.7) 5.2 (3.1)

Use of inhaled steroids (%) - 56 (60.2)

Number of comorbidities, mean (SD) 0.8 (1.0) 1.4 (1.2)

FEV1, mean % of predicted (SD) 104.0 (12.3) 61.1 (17.3)

FVC, mean % of predicted (SD) 111.7 (13.6) 98.6 (18.7)

FEV1/FVC-ratio, mean (SD) 0.7 (0.1) 0.5 (0.1)

Pack years, mean (SD) 16.6 (14.3) 30.0 (17.9)

Smoking status (%)

Daily 24 (24.0) 22 (23.7)

Ex-smokers 58 (58.0) 70 (75.3)

Never 18 (18.0) 1 (1.1)

mMRC Grade 2 and higher (%)�

Grade 2: Dyspnoea when walking at level ground 3 (3.0) 16 (17.6)

Grade 3: Dyspnoea when walking 100 meters - 12 (13.2)

Grade 4: Dyspnoea at rest - 2 (2.2)

FEV1: forced expiratory volume in 1 second, FVC: forced vital capacity, mMRC: modified medical research council

dyspnoea scale.

� Two participants with COPD missed information on mMRC.

https://doi.org/10.1371/journal.pone.0248967.t001
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Fig 1. Flow chart of fungal samples, sequences, and fungal ASVs in the MicroCOPD study. DADA2: Divisive

Amplicon Denoising Algorithm version 2, seqs: sequences, ASV: amplicon sequence variant. Samples were sequenced

in three different runs before trimming and denoising. Data from different sequencing runs were merged, and then

further processed to exclude presumed contaminants and negative control samples prior to analyses.

https://doi.org/10.1371/journal.pone.0248967.g001
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interpreted as unsimilar. OW and BAL samples clustered differently, and M^2 were 0.953 and

0.8958 for Bray-Curtis and Jaccard, respectively. However, this was statistically significant only

for Jaccard (p = 0.003).

Fig 2. Rank abundance plots using most abundant fungi in (A) oral wash and (B) bronchoalveolar lavage. Plots

display the nine most abundant taxa in each group. Remaining, low abundance taxa are merged in the “Others”

category. Not all sequences could be assigned taxonomy at the genus level and are therefore displayed as

o__Malasseziales, p__Ascomycota, and o__Capnodiales.

https://doi.org/10.1371/journal.pone.0248967.g002
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Discussion

We have reported the oral and pulmonary mycobiome in a large bronchoscopy study, the first

of its kind on non-immunocompromised patients and with a large healthy control population.

The mycobiomes were dominated by Candida, and there were more Candida in OW com-

pared to BAL for both study groups. Observed differences in taxonomic composition were not

consistent between three different differential abundance/distribution tests. There was no dif-

ference in diversity between study groups. No apparent effects were seen on the mycobiomes

from ICS usage.

Fig 3. Most abundant fungal taxonomic assignments at (A) phylum level and (B) genus level. ICS: inhaled steroids,

BAL: bronchoalveolar lavage, OW: oral wash. Taxa are sorted on Ascomycota in bronchoalveolar lavage samples in Fig

3A, and Candida in bronchoalveolar lavage in Fig 3B. Each column represents a sample, and columns from BAL and

OW corresponds to each other. That means, a BAL column and the corresponding OW column below show samples

from the same participant. Not all sequences could be assigned taxonomy at the phylum or genus level and are

therefore displayed as k__Fungi, p__Ascomycota or o__Malasseziales.

https://doi.org/10.1371/journal.pone.0248967.g003
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Fig 4. Alpha diversity plots and comparisons between (A) study groups and (B) sample types. BAL: bronchoalveolar

lavage, OW: oral wash. Alpha diversity was evaluated using Shannon index. Statistical differences in alpha diversity

were tested using Kruskal-Wallis for unpaired variables (between study groups), and Wilcoxon signed-rank test for

paired analyses (between sample types). Number of samples in each group was as follows: Fig 4A (unpaired): Control

BAL: 40, control OW: 76, COPD grade I/II BAL: 29, COPD grade I/II OW: 50, COPD grade III/IV OW: 23, COPD

grade III/IV BAL: 12. Fig 4B (paired): Control BAL: 31, control OW: 31, COPD grade I/II BAL: 24, COPD grade I/II

OW: 24, COPD grade III/IV OW: 9, COPD grade III/IV BAL: 9.

https://doi.org/10.1371/journal.pone.0248967.g004
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We observed a high Candida load in OW samples from controls, in good agreement with

previously published studies [34–36]. None of these studies included more than 20 individuals.

Thus, our data from 100 controls adds valuable data to this field. The healthy lung mycobiome

is reported to be highly variable between individuals [4, 6, 7, 37–39]. Some of the most abun-

dant taxa are Candida [6], Davidiellaceae [37], Cladosporium [37–39], Saccharomyces [4, 6],

Penicillium [4], Debaryomyces [38], Aspergillus [7, 37], Eremothecium [39], Systenostrema [39],

and Malasseziales [7]. The listed studies include few participants, ranging from 10 [7] to 47 [6].

BAL samples from controls in the current study were dominated by Candida, followed by

Malassezia and Sarocladium. That Candida, one of the most well-known fungal pathogens

[40], resides in the lungs of healthy individuals is clinically interesting. It has been shown that

colonising Candida in the gut could become invasive due to certain triggers [41], and similar

mechanisms are not unlikely to happen in the lungs. Primer bias might explain some of the

observed differences between our study and previous studies [42], and our chosen primer set

has shown improved coverage of Candida compared to the ITS1 –ITS2 primer set used by two

[37, 38] of the listed papers above [11]. Furthermore, Malassezia are common skin commen-

sals, and despite protected sampling and the bioinformatic contamination removal (Decon-

tam), we cannot exclude contamination per se. Also, some reports indicate that some

extraction protocols and primers might be less suited to Malassezia [36, 43]. Different DNA

extraction methods and primers could thus explain the observed differences in Malassezia pro-

portions between our study and others.

OW samples differed from the BAL samples for all measures including taxonomy, Yue-

Clayton measures, and beta diversity. Cui et al. reported that OW and BAL overlapped in

PCoA plots from healthy individuals, while induced sputum (IS) samples clustered separately

[4]. In agreement with our result, they also found more Candida in OW and IS, compared to

BAL. They discovered that 39 fungal species were disproportionately more abundant in the

BAL and 203 species in the IS, as compared with the OW. We could not replicate this latter

finding, but differences could be explained by the different methodologies applied.

Only three previous studies have explored the lung mycobiome in COPD [4–6]. Cui et al.

found that the lung mycobiome in HIV-infected individuals with COPD (n = 10) was associ-

ated with an increased prevalence of Pneumocystis jirovecii, as compared to HIV-positive indi-

viduals without COPD (n = 22) [4]. No Pneumocystis was observed in our data. However,

Pneumocystis is known to be associated with HIV, and the Pneumocystis genome only includes

one copy of the ITS1 locus, which could result in a negative sequencing result [44].

Both Su et al. [5] and Tiew et al. [6] collected sputum samples from COPD patients. When

Tiew compared to healthy subjects they found high abundances of Candida in both groups,

but also found increased alpha diversity in COPD [6]. Su investigated samples during exacer-

bations, and found Candida, Phialosimplex, Aspergillus, Penicillium, Cladosporium, and Euty-
pella [5]. Both studies utilised sputum samples, which hampers direct comparison to our BAL

samples. Indeed, IS samples have been shown to cluster separately from BAL samples in PCoA

ordinations [4].

Few differences were seen when we compared the mycobiomes from controls and partici-

pants with COPD. However, hypothesis testing of microbiome compositional data is an ongo-

ing research area without standardisation. Thus, we chose to perform three different tests with

different foundations. ANCOM v2 and ALDEx2 agreed there was no significantly differential

abundant taxa between study groups. MicrobiomeDDA tests the difference in the entire distri-

bution, taking abundance, prevalence, and dispersion all into account, and detected significant

taxa differences between study groups both in OW and BAL (S2 Table). These conflicting

results complicate a general conclusion.
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Some studies on inflammatory bowel disease, and cystic fibrosis (CF) have found dysbiosis

to be expressed in terms of the Basidiomycota to Ascomycota ratio [45, 46]. Most known fungal

pathogens are found in the Ascomycota phylum. In our study, medians of the Basidiomycota to

Ascomycota ratios were all 0 from different study groups in OW and BAL separately, in line

with the 0.03 median found in a CF study [46]. That means, despite a higher Basidiomycota
fraction in COPD compared to controls in our data (S1 Fig), the majority of samples were

dominated by Ascomycota.

Some limitations of the current study deserve mentioning. First, a longitudinal study with

analyses on interactions between fungi and other kingdoms, and between fungi and host

responses, could have provided more insight into the details of the COPD mycobiome. Sec-

ondly, contamination is particularly problematic for mycobiome studies because of airborne

particles, and samples from the lower respiratory tract are especially vulnerable due to the low

biomass. We countered this by using protected sampling methods, and collecting negative

control samples, subject to the same laboratory protocol as the procedural samples, for each

procedure. These samples were used for contamination removal through the R package

Decontam, and subject to detailed analyses (S2 Fig, S4 Table and S5 Fig). Third, we did not

include positive controls or mock communities in our project. Fourth, ITS primers are biased

[42, 43], possibly explaining the low prevalence of Aspergillus and difficulties identifying Yar-
rowia lypolytica in our data. Still, ITS is the recommended marker-gene region for fungal stud-

ies [47], though no consensus seems to prevail whether ITS1 or ITS2 should be used [43, 48,

49]. Fifth, all mycobiome studies suffer from a fungal dual naming system [50], and also suffer

from incomplete reference libraries and inconsistencies due to taxonomic reassignments [2].

We manually reviewed every sequence assigned only as “k__Fungi” to secure the best possible

taxonomy. Finally, confounding factors and batch effects could not be ruled out. We included

a thorough examination of diversity and differential abundance/distribution testing to look for

potential confounding effects from several important clinical parameters (S3 Table). No appar-

ent effects were seen. We observed no statistically significant difference in alpha diversity

between sequencing runs (S5 Fig), but there might have been an effect on beta diversity (S6

Fig), particularly between sequencing run 1 and 2 (S5 Table). In terms of differential abun-

dance/distribution, it seemed that Sarocladium differed in abundance/distribution between

sequencing run 1 and 2 (S7 Table).

Studies on the lung mycobiome are still in their infancy, and results from the current study

add knowledge to an understudied area. Samples from the mouth differed from pulmonary

samples both in controls and participants with COPD, which may indicate the existence of a

pulmonary mycobiome. Certain inferences on taxonomic compositions differences between

study groups could not be made due to inconsistent results among the differential abundance/

distribution tests used. ICS use could not be seen to significantly affect the lung mycobiome.

These findings should be confirmed in other study populations before we can conclude that

ICS use has no harmful effect on the lung mycobiome.

Supporting information

S1 Fig. Percentage of reads belonging to Ascomycota/Basidiomycota in (A) oral wash and (B)

bronchoalveolar lavage.

(PDF)

S2 Fig. Yue-Clayton measures from (A) controls and (B) participants with COPD. YC: Yue-

Clayton measure. OW: oral wash, NCS: negative control sample, BAL: bronchoalveolar lavage.

A Yue-Clayton measure of 0 means identical sample pairs, while a Yue-Clayton measure of 1
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means unidentical sample pairs.

(PDF)

S3 Fig. Principal coordinates analysis plots by (A) study group and (B) inhaled steroids use.

Differences in beta diversity were tested with permuted analysis of variance (PERMANOVA)

adjusted for sex, age, and percentage of predicted FEV1 (permutations = 10000). No signifi-

cant differences were seen in spread/dispersion (permutations = 1000).

(PDF)

S4 Fig. Principal coordinates analysis plots by sample type (A) before and (B) after symmetric

Procrustes transformation. OW: oral wash, BAL: bronchoalveolar lavage. Arrows are drawn

from the OW sample to the BAL sample from the same participant. Non-randomness (“signif-

icance”) between the two configurations was tested with the protest function including the

three first axis from the PCoA and specifying 999 permutations.

(PDF)

S5 Fig. Plot of Qubit concentrations and comparisons between sample types. BAL: bronch-

oalveolar lavage, NCS: negative control sample, OW: oral wash. Statistical differences in Qubit

concentrations were tested using Wilcoxon signed-rank test as a paired test.

(PDF)

S6 Fig. Alpha diversity plots and comparisons between sequencing runs. BAL: bronchoal-

veolar lavage, OW: oral wash. Alpha diversity was evaluated using Shannon index. Statistical

differences in alpha diversity were tested using Kruskal-Wallis.

(PDF)

S7 Fig. Principal coordinates analysis plots divided by sequencing run. OW: oral wash,

BAL: bronchoalveolar lavage.

(PDF)

S1 Table. Presumed fungal contaminants identified by Decontam in the MicroCOPD

study. ASV: amplicon sequence variant. The R package “Decontam” identified the ASV IDs

above as contaminants. ASVs presumed to be contaminants were removed prior to analyses.

(PDF)

S2 Table. Differential abundance/distribution testing on fungi in the MicroCOPD study

using ANCOM v2, MicrobiomeDDA, and ALDEx2. ANCOM v2: the second version of anal-

ysis of composition of microbiomes, MicrobiomeDDA: Microbiome Differential Distribution

Analysis omnibus test, ALDEx2: the second version of ANOVA-Like Differential Expression,

OW: oral wash, BAL: bronchoalveolar lavage. The most conservative value in ANCOM v2 has

been used in the analyses (i.e. 0.9). Significance level = 0.05. Never- and ex-smokers were

merged into non-smokers. The ALDEx2 approach works poorly if there are only a small num-

ber of taxa (less than about 50), so some groups were not analysed.

(PDF)

S3 Table. Taxonomy and diversity comparisons of selected clinical variables in the Micro-

COPD study divided by sample type and study group. PERMANOVA: permuted analysis of

variance, OW: oral wash, BAL: bronchoalveolar lavage, AN: ANCOM v2, M: Microbio-

meDDA, AL: ALDEx2, sign: significant, FEV1: forced expiratory volume in 1 second. Analyses

on FEV1 were omitted for each study group separately due to a majority of controls having

above 80% of predicted, and a majority of participants with COPD having below 80% of pre-

dicted. Diversity analyses on smoking habits in BAL samples from controls were omitted due

to a lack of current smokers. Analyses on smoking habits were done by comparing current vs
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non-current smokers.

(PDF)

S4 Table. Summary of read/sequence counts in the MicroCOPD study. NCS: Negative con-

trol sample, OW: oral wash, BAL: bronchoalveolar lavage, DADA2: Divisive Amplicon

Denoising Algorithm version 2.

(PDF)

S5 Table. Beta diversity comparisons using Bray-Curtis and Jaccard distances. Compari-

sons were done (A) merged and (B) pairwise. OW: oral wash, BAL: bronchoalveolar lavage,

yrs: years. Differences in beta diversity were tested with permuted analysis of variance (PER-

MANOVA) adjusted for sample type, study group, sex, and age (permutations = 10000).

(PDF)

S6 Table. Permuted multivariate analysis of beta-dispersion using Bray-Curtis and Jaccard

distances. Comparisons were done (A) merged and (B) pairwise. OW: oral wash, BAL:

bronchoalveolar lavage.

(PDF)

S7 Table. Differential abundance/distribution testing on sequencing run using ANCOM

v2, MicrobiomeDDA, and ALDEx2. ANCOM v2: the second version of analysis of composi-

tion of microbiomes, MicrobiomeDDA: Microbiome Differential Distribution Analysis omni-

bus test, ALDEx2: the second version of ANOVA-Like Differential Expression, OW: oral

wash, BAL: bronchoalveolar lavage. The ALDEx2 approach works poorly if there are only a

small number of features (less than about 50). The most conservative value in ANCOM v2 has

been used in the analyses (i.e. 0.9).

(PDF)

S1 File. Bioinformatic processing.

(PDF)
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