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1 Scientific environment 
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Thoracic Medicine. The thesis is anchored in the Bergen COPD Microbiome study (short 

name “MicroCOPD”) conducted by The Bergen Respiratory Research Group, led by 

professor Tomas Mikal Lind Eagan. I have been connected to the Faculty of Medicine, 

University of Bergen, during the entire thesis work. First as an attendant at The Medical 

Student Research Programme (MSRP), and later as a PhD candidate. The MSRP is based 

on one year of full-time research and two years of part-time research. I completed my 

full-time research as a MSRP attendant in 2013-2014, and was employed as a PhD 

candidate from 2018 till 2021. My PhD work, including the MSRP, was funded by the 

University of Bergen. 

Main supervisor during the thesis have been: 

Rune Nielsen, associate professor, MD. Department of Clinical Science, Faculty of 

Medicine, University of Bergen. 

Co-supervisors during the thesis have been: 

Tomas Mikal Lind Eagan, professor, MD. Department of Clinical Science, Faculty of 

Medicine, University of Bergen. 

Harald Gotten Wiker, professor, MD. Department of Clinical Science, Faculty of 

Medicine, University of Bergen. 
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2.2 Norwegian acknowledgements (ytringar av takksemd) 
Kalenderen viser 13. februar, og vi er midt inni ein av dei kaldaste vintrane eg kan hugse. 

Tre lag med ull, strenge COVID-19-restriksjonar og heimekontor er blitt den nye 

kvardagen. Nokre dagar har eg følt meg som ein av dei ulukkelege figurane i «PhD 

comics», og heilt ærleg har eg spurd meg sjølv gjentatte gonger om heile PhD-arbeidet 

eigentleg var verdt det. Men svaret er enkelt – ja, det var definitivt verdt det! PhD-

perioden har gitt meg erfaringar og venskap for livet. Eg har sett pris på tida med 

kollegaar, reiser til kurs, utanlandsopphald og undervising. Det har gitt meg fleire opp- og 

nedturar, og har bidratt til å utvikle meg som person og som akademikar. 

Eg er takknemleg overfor Universitetet i Bergen som gav meg moglegheita for å 

gjennomføre PhD-grada. Eg vil rette ein ekstra takk til Forskarlina ved Det medisinske 

fakultet med Marianne Heldal Stien i spissen. Eg las om Forskarlina for første gong på 

vidaregåande, og skjønte at ho kunne oppfylle den idylliske barndomsdraumen min om å 

bli ein forskar. Etter mi meining er Forskarlina ei glimrande moglegheit. Eg håpar at 

Forskarlina vil stå ved lag og attpåtil bli endå meir populær. Eg er også svært takknemleg 

overfor studiedeltakarane. Dette ville ikkje vore mogleg utan dykk. 

Rune, hovudrettleiaren min, fortener ein enorm (eg får endeleg lov til å bruke slike sterke 

adjektiv, sjølv om det er ein av dei mest korrigerte tinga i artikkelutkasta mine) takk! Eg 

vil alltid vere takknemleg for rettleiinga di. Eg har sett på intellektet ditt med vørdnad 

mang ein gong, men det er ikkje intellektet som har gjort deg til ein så god rettleiar. Sjølv 

om vi er noko ulike som personar, har eg følt at du har sett meg for den eg er og for noko 

meir enn berre studenten din, men også som venen din. Du har skuva meg fram i dei 

tøffaste og mest ineffektive tider, og har funne ljos og moglegheiter på dei mørkaste 

stadene. Du har lært meg å stå opp for meg sjølv. Uansett kor overtydande nokon kan 

verke, har eg skjønt at dei alltid kan argumenterast mot. Særleg om dei held ei høgare 
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akademisk grad... Takk for all hjelp og tolmod gjennom desse ti åra. Og hugs – eg valde 

prosjektet grunna gruppa og rettleiar, ikkje grunna interesse for lungemedisin. 

Ein særleg takk er på sin plass til min medrettleiar Tomas også. Du er ein av dei mest 

strukturerte og hardtarbeidande personane eg har kjent nokon gong. Svara dine på e-post 

kan kome midt på natta og grytidleg på morgonen, og fortel mykje om din kapasitet og 

dedikasjon. Det var slåande for meg som fersk medisinstudent å sjå korleis du roa og 

kommuniserte med deltakarane, og det var verkeleg noko å leve opp til. Eg set stor pris 

på rettleiinga di og di genuine interesse for dei tallause utkasta eg har plaga deg med.  

Til Harald, min andre medrettleiar – takk for nokre interessante mikrobiologiske 

diskusjonar på telefonen. Eg set pris på ditt bidrag og kunnskapsdeling. Eg vil også takke 

Per for di rettleiing under Forskarlina. 

Kjære Elise, min næraste kollega og ein av mine beste vener. Vi har kjent kvarandre 

sidan det første året på medisinstudiet. Eg må innrømme at eg var skeptisk til å dele 

rettleiar og samarbeide om mykje av arbeidet, men kor feil kan ein ta. Eg vil våge å påstå 

at utan deg hadde eg kanskje ikkje fullført. Alltid positiv og hjelpsam, og meir effektiv 

enn dei fleste av oss. Vi har delt så godt som alt – opp- og nedturar, lunsjar, kontor, 

merkelege og personlege medisinske problem, kjærleikssorg, livskriser, frustrasjon, 

hotellrom og truleg mykje meir også. Eg blei ein gong spurd av tilsetjingsansvarleg for 

sommarjobbane ved Haugesund sjukehus om eg kjente til deg. Eg sa til han at du var den 

smartaste studenten på kullet, og at han ikkje ville bli skuffa om han valde deg. Jobben 

var din. Seinare har du fleire gonger skulda meg for å ha loge. Vel, sanninga er at det 

gjorde eg ikkje... Tusen takk for ei fantastisk tid, Elise! 

Til Jian Hao, ein av mine beste vener. Takk for dei fruktbare medisinske diskusjonane, 

lunsjane og sosiale møta utanom arbeid. Du har alltid vore hjelpsam med meg, og eg set 

stor pris på venskapet vårt. Eg har ein draum om at vi skal vere LIS1 på det same 

sjukehuset. Du er uansett alltid velkomen hjå oss, uansett kvar vi skulle ende opp. 
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kunne uttrykke frustrasjon, men også snakke om andre ting enn arbeid og forsking. 

Lungeforskingsgruppa – takk for eit trygt og inkluderande arbeidsmiljø. Ein stor takk til 

alle som har hjelpt meg med å gjere denne PhD-grada mogleg. Takk til Øistein, Marit, 

Tharmini, Randi, Tuyen, Lise, Hildegunn, Stine, Kristina og Tove for hjelp med 
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for meg. Hjartevarmen din har vore uvurderleg. Takk til Solveig, Gunnar, Sverre, Kristel, 

Christina, Bahareh, Bernt, Einar og Marta for verdifulle diskusjonar, undervising og 

sosiale møte. 

Walter, Andreu, og resten av mine spanske vener ved Sequentia – takk for 

gjestmildskapen og hjelpa dykkar. Opphalda mine i Barcelona er somme av dei beste 

PhD-minna, og eg hadde aldri nådd måla mine utan dykkar bioinformatiske læring. Takk! 

Til min kjære familie – takk for at de trur på meg og for støtta dykkar. De har alltid vore 

der for meg, og har oppmuntra meg til å følgje draumane mine. Helge- og ferieturane 

mine bort frå Bergen har minna meg på at det definitivt finst meir i livet enn 
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3 Terms and abbreviations 
16S rRNA 16S ribosomal RNA. 

ALDEx2 The second version of ANOVA-Like Differential Expression. 

Alpha diversity The level of diversity found within a single sample. Includes several 

metrics, for instance number of observed ASVs (richness) or 

Shannon index (richness and evenness/distribution). 

Amplicon DNA product of DNA amplification via polymerase chain reaction. 

ANCOM v2 The second version of analysis of composition of microbiomes. 

ASV Amplicon sequence variant. The result of grouping of DNA 

sequences from the marker gene analysis. Represents features or 

taxa in a microbiome study. 

BAL Bronchoalveolar lavage. 

BCCS The Bergen COPD cohort study. 

Beta diversity The level of diversity or dissimilarity found between samples. Used 

to examine whether samples within a group are more similar to each 

other than those in another group. 

BLASTN The Nucleotide Basic Local Alignment Search Tool. 

BOLD The Burden of Obstructive Lung Diseases. 
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CAT COPD assessment test. 

CF Cystic fibrosis. 

COPD  Chronic obstructive pulmonary disease. 

COPD Periods with worsening of respiratory symptoms experienced by 

exacerbations COPD patients. 

CRP C-reactive protein.

CT Computed tomography. 

Culture- Methods for microbial identification without the use of conventional 

independent culture-based approaches, i.e., not requiring culturing of  

sequencing microorganisms in the laboratory. 

techniques 

DADA2 The Divisive Amplicon Denoising Algorithm version 2. 

Diversity The richness and/or distribution of taxa in a sample and 

similarity/dissimilarity of taxonomic composition between samples. 

Embase A biomedical research and literature database provided by the 

medical publisher Elsevier. 

FEV1 Forced expiratory volume in one second. 
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FVC Forced vital capacity. 

GOLD The Global Initiative for Chronic Obstructive Lung Disease. 

HMP The Human Microbiome Project. 

IBD Inflammatory bowel disease. 

ICS Inhaled corticosteroids. 

ICU Intensive care unit. 

IL-8 Interleukin 8. 

IS Induced sputum. 

ISHAM The International Society of Human and Animal Mycology. 

ITS region The internal transcribed spacer region of the fungal ribosomal RNA 

gene cluster. Used for sequencing and fungal identification. Divided 

into ITS1 and ITS2. 

LEfSe Linear discriminant analysis effect size. 

LLN The lower limit of normal. 

M2 The summed squares of deviations/measure of fit in a Procrustes 

analysis. 
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mcL Microlitre. 

MeSH Medical subject headings. 

Metagenomic A way of studying all the genetic material including DNA from host 

sequencing  and microbes. Could be achieved by shotgun random sequencing of 

total DNA in a sample.  

mg Milligram. 

Microbiome The genetic information of microorganism within a defined habitat 

and the properties of the microorganisms’ gene products. 

MicrobiomeDDA The Microbiome Differential Distribution Analysis omnibus test. 

Microbiota The collection of microorganisms found within a habitat, such as the 

human body or the lungs. 

MicroCOPD The Bergen COPD Microbiome study. 

mL Millilitre. 

mm Millimetre. 

MMPs Matrix metalloproteinases. 

mMRC Modified Medical Research Council dyspnoea scale. 
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MSRP The Medical Student Research Programme at The Faculty of 

Medicine, University of Bergen. 

Mycobiome The fungal microbiome, i.e. the collection of fungal organisms in a 

defined habitat. 

NCBI The National Center for Biotechnology Information. 

NCS Negative control sample. 

NGS Next-generation sequencing. 

OLD Obstructive lung disease. 

OTUs Operational taxonomic units. Used to cluster microorganisms based 

on similarity of DNA sequences of a specific taxonomic marker 

gene. Now widely replaced by ASVs. 

OW Oral wash. 

Pack years Number of cigarettes smoked per day divided by 20, and then 

multiplied with the number of years smoked. 

PAMPs Pathogen-associated molecular patterns. 

PBS Phosphate buffered saline. 

PCoA Principal coordinates analysis. 
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PCR Polymerase chain reaction. 

PERMANOVA Permuted analysis of variance. 

PERMDISP Permuted multivariate analysis of beta-dispersion. 

PICO A mnemonic for Patient/problem/population, Intervention, 

Comparison, and Outcome. Used to define research questions, for 

instance in a literature search. 

PIL Patient information leaflet. 

PMA Propidium monoazide. 

Prebiotic Administered molecules that promote growth of specific 

microorganisms. 

PRISMA The Preferred Reporting Items for Systematic reviews and Meta-

Analyses. 

Probiotic Microorganisms administered to patients with therapeutic intent. 

PRR Pattern-recognition receptors. 

PSB Protected specimen brushings. 

PubMed An archive of biomedical and life sciences journal literature at the 

U.S. National Institutes of Health’s National Library of Medicine. 
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QIIME Quantitative insights into microbial ecology. 

Rarefaction A process which subsamples each sample to a given rarefaction or 

sampling/sequencing depth without replacement. Samples with a 

sequence count below this value will be discarded. 

rDNA Ribosomal DNA. 

Relative The proportion of an ASV measured as the absolute count of  

abundance sequence reads for this ASV in a particular sample divided by the 

total number of sequence reads in the particular sample. 

RLL The right lower lobe. 

RML The right middle lobe. 

SML Small-volume lavage. 

Taxon A unit of organisms which are related and share common 

characteristics, for instance a fungus. 

Taxonomy The classification or arrangement of groups of biological organisms 

based on shared characteristics. 
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4 Abstract 
Background 

Chronic obstructive pulmonary disease (COPD) is a high-prevalent lung disease with 

high mortality rates. The COPD pathogenesis is only partly understood, and we do not 

know why some risk factor exposed subjects develop the disease. With the introduction 

of culture-independent sequencing techniques, it has been shown that healthy lung is not 

sterile, and associations between colonising bacteria, or the lung microbiota, and diseases 

have been proposed. Early lung microbiome studies, however, focused exclusively on the 

bacteria, but lungs also contain viruses, fungi, and other eukaryotes. Few studies have 

examined the fungal community, the mycobiome, in the lungs of COPD patients. 

Protected bronchoscopic sampling seems to be a well-suited method to collect samples 

from the COPD lung mycobiome. But the invasive nature of the bronchoscopy procedure 

might make the recruitment of participants challenging. To facilitate large-scale 

bronchoscopy studies on the lung mycobiome, we need information on participation in 

studies involving a bronchoscopy.  

Aims 

The aim of the thesis was to examine participation in research bronchoscopy studies, and 

to analyse the lung mycobiome of participants in the Bergen COPD Microbiome study 

(short name «MicroCOPD»). In paper I, we sought to look for information on motivation 

to participate, participation barriers, response rates, and recruitment strategies in research 

studies involving a bronchoscopy by reviewing the literature. In paper II, we wanted to 

examine participation in the MicroCOPD study by reporting response rates and 

participation motives and declining reasons. In paper III, our aim was to examine the lung 

mycobiome in subjects with or without COPD, and to look for effects on the mycobiomes 

from inhaled corticosteroids (ICS) use. Finally, in paper IV, we aimed to assess the 

stability of the lung mycobiome of the participants in the MicroCOPD study, and to 

determine if intercurrent antibiotic use influences the stability. 
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Material and methods 

We performed a literature review on participation in research bronchoscopy studies using 

the search engines of PubMed and EMBASE. Titles and abstracts of retrieved papers 

were sifted according to prespecified criteria, and included papers were subject for a 

more in-depth review.  

Individuals with and without COPD or asthma were invited to participate in the 

MicroCOPD study. Participants underwent at least one bronchoscopy with sample 

collection by bronchoalveolar lavage (BAL), and a structured interview regarding 

medical history, medication use, and smoking habits. Additionally, post-bronchodilator 

spirometry was performed. Subjects that declined participation at the screening interview 

were asked about their reason not to participate, while subjects accepting participation 

were asked about their motivation to participate just prior to the bronchoscopy using an 

open question. All participants also provided an oral wash (OW) sample, and we 

collected some of the phosphate-buffered saline used in samples to serve as a negative 

control sample (NCS).  

Fungal DNA was extracted from the OW, BAL, and NCS samples, before sequencing of 

the ITS1 region on an Illumina HiSeq sequencing platform. We compared the taxonomic 

composition and alpha and beta diversity between participant groups and by ICS use 

(paper III), and between the first and the second bronchoscopy in paper IV.  

Results 

Only seven papers were included for in-depth reading in the literature review on research 

bronchoscopy studies in the literature (paper I), reflecting a paucity of information on this 

topic. Still, data suggested that most participated for personal benefit and altruistic 

reasons, while fear and inconvenience hindered participation. Response rates varied from 

3 to 73%, and radio advertisement was the most effective recruitment strategy. 
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The response rate in the MicroCOPD study was just above 50%, and men had a 

significantly higher response rate than women. Procedural fear was reported as the 

most common non-response reason. The most frequently stated participation motive was 

personal health benefit, but after merging participation motives into broader categories, 

altruism was the most frequent main motive. Men were less likely to state altruism as 

their main motive. 

In paper III, we found that most samples, both OW and BAL, were dominated by 

Candida. Malassezia and Sarocladium were also frequently found taxa in BAL samples. 

There was more Candida in OW samples compared to BAL samples, and analyses 

suggested that beta diversity differed significantly between OW and BAL samples. 

Neither taxonomy nor alpha or beta diversity analyses found consistent differences 

between participant groups. The mycobiomes did not seem to be affected by use of ICS.  

Taxonomy differed more between the repeated bronchoscopies for BAL samples than 

OW samples, while no apparent effect was seen from participant category and 

intercurrent antibiotic use (paper IV). Alpha and beta diversities were consistent by time. 

Conclusions 

We have shown that most participants in research bronchoscopy studies participate for 

personal benefit or altruism, and that most decliners fear the bronchoscopy (paper II), in 

line with what is known from the literature (paper I). A response rate just above 50% in 

the MicroCOPD study means that large-scale bronchoscopy studies are feasible.  

Oral and pulmonary samples differed in taxonomic composition and diversity, possibly 

indicating the existence of a pulmonary mycobiome (paper III). We have also shown that 

the lung mycobiome is less stable than the oral mycobiome, and neither COPD diagnosis, 

intercurrent antibiotic use, nor time between bronchoscopies seemed to influence the 

stability (paper IV).
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6 Background 
Respiratory diseases are afflicting millions of people worldwide, and one of the most 

common is chronic obstructive pulmonary disease (COPD). COPD was the  

third most frequent cause of death in the world in 2016 with approximately 2.9 million 

registered deaths (1). The global number of deaths globally due to COPD increased from 

2006 to 2016 with a percentage change of 5.5 (1), and the COPD burden has been 

projected to increase in coming years in part due to an ageing population (2). The Nord-

Trøndelag Health Study (HUNT) in Norway report that prevalence of pre-bronchodilator 

COPD was 14.8% in 2006–2008 using fixed-ratio criteria, and 7.3% in 2006–2008 using 

lower limit of normal criteria. Furthermore, the annual treatment-related societal costs of 

COPD in Norway are more than 1,000,000,000 NOK, and are driven by those with most 

severe disease (3). 

Despite extensive research, there is yet significant knowledge gaps of the COPD 

pathogenesis. It is still unclear why some smokers develop COPD while others do not. 

Additionally, patients with COPD are constantly at risk of experiencing periods with 

worsening of respiratory symptoms, so-called COPD exacerbations. Some patients 

become “frequent exacerbators”, whereas other patients nearly never experience these 

events, for reasons yet to be explained. Bhowmik et al. have found that frequent 

exacerbators have shown heightened airway inflammation at stable state (4), but potential 

confounding factors such as inhaled corticosteroids (ICS) treatment, smoking, or bacterial 

colonisation make results unclear. It has also been suggested that increased inflammation 

might be due to the presence or load of bacteria in the lower airways (5). The common 

perception was for a long time that healthy lungs were sterile, and that a failure of innate 

immune mechanisms in COPD allows bacteria to proliferate and persist in the airways 

(6). Furthermore, COPD exacerbations were thought to happen as a result of infections 

(6). However, with the advent of techniques independent on culturing of microorganisms, 

it has been shown that there exists a diverse low-biomass environment of pulmonary 
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microorganisms also in healthy subjects (7). The collective microbes were termed 

“microbiota”, and associations between the pulmonary microbiota and diseases were 

proposed (8).  

That a disturbed lung microbiota is related to the development of respiratory disease is an 

appealing concept, but microbiota studies are often limited by low sample sizes and 

challenging sampling. Reliable sampling of the lower airways could be done using 

protected techniques during bronchoscopy to avoid contamination from oral and upper 

respiratory microbiota (9). The semi-invasive nature of a bronchoscopy, however, can be 

associated with discomfort and anxiety. Including a bronchoscopy as part of the study 

might lower participation, and is one of the challenges microbiota researchers face.  

Another challenge is that the early airway microbiota studies have focused exclusively on 

the bacteria present in the lungs. Fungi, on the other side, are an important but hitherto 

largely ignored part of the airway microbiome. The fungal microorganisms found in the 

airways are called the airway mycobiota. There exists some evidence that mycobiotas 

harbour different body sites including the airways, and that these mycobiotas might be 

associated with various diseases (10). The study of mycobiota and respiratory diseases is 

still in its infancy, and future lung mycobiota studies should focus on the changes in the 

fungi present under health and respiratory diseases. 
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6.1 Chronic obstructive pulmonary disease (COPD) 
COPD is a disease of the airways and lung characterised by persistent respiratory 

symptoms and airflow limitation (11). Shortness of breath, or dyspnoea, is a main 

symptom of COPD (12). Another important symptom of COPD is cough, which might be 

accompanied with sputum production (12). COPD is diagnosed in patients with these 

chronic airway symptoms and chronic airflow obstruction verified by a lung function test 

(spirometry). Chronic airflow obstruction is defined as a lower-than-normal ratio of 

forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) after 

administration of a bronchodilating drug (post-bronchodilator). Various cut-off values 

exist, but frequently, a fixed value of 0.7 is used (13). The disease is often staged 

according to the degree of obstruction, indicated by post-bronchodilator FEV1 values. 

The Global Initiative for Chronic Obstructive Lung Disease (GOLD), categorises FEV1 

in percentage of predicted, and patients are often labelled as GOLD 1 (mild, FEV1 > 80% 

of predicted), GOLD 2 (moderate, FEV1 50-80% of predicted), GOLD 3 (severe, FEV1 

30-50% of predicted), or GOLD 4 (very severe, FEV1 < 30% of predicted) (14).

A major risk factor for COPD is cigarette smoking (15). But never smokers also comprise 

a fair proportion of COPD patients, often with a history of exposure to other harmful 

factors like indoor open fire with coal or coke, or organic dusts in the workplace (16). It 

is also believed that air pollution, noxious fumes and vapours, and secondhand smoke are 

risk factors for COPD (15). The mechanisms explaining why some develop COPD is not 

fully understood, but the disease is associated with chronic inflammation in the lung 

caused by risk factor exposure (17). However, exposure per se is not sufficient to develop 

the disease. Disease development depends on complex interactions between the host and 

the environment, for instance type and amount of exposure, the host’s susceptibility, and 

host responses (17). The chronic inflammation leads to a destruction of the lung 

parenchyma and narrowing of the small airways, eventually resulting in a progressive 

airflow limitation (18). As the disease progresses, inflammation will increase, 
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contributing to more airway damage, remodelling (structural/histological changes), loss 

of small airways, and emphysema (overdistended alveoli) (17-21). Peripheral airflow 

limitation and destruction of alveolar attachment will result in airway closure or collapse, 

thereby trapping air during expiration and create hyperinflation (18, 22). Hyperinflation 

is suggested to correlate with exertional dyspnoea (23, 24). Inflammation is the body’s 

normal reaction to an injury, or in this case inhaled irritants, but the inflammation 

observed in the respiratory tract of COPD patients appears, for reasons not yet 

understood, to be an amplification of the normal inflammatory response (18, 22). The 

inflammatory response in COPD involves both the innate and the adaptive immune 

system, and macrophages, neutrophils, T- and B lymphocytes, and sometimes eosinophils 

are found in increased numbers in the respiratory tract (17, 18, 20). Interestingly, the 

most common inflammatory phenotype is a neutrophilic inflammation (17), an 

inflammatory pattern resembling that observed during a bacterial infection. 

6.1.1 COPD and bacteria 
As early as 1959, researchers suggested that recurrent bronchial infections were the 

reason that some smokers developed progressive airways obstruction and others did not 

(25). This was called “the British hypothesis”, which emphasised a clear distinction 

between COPD and the related disease asthma. At the same time, professor Orie 

presented what was later called “the Dutch hypothesis”, saying that COPD and asthma 

rather had common origins and clinical expressions, and were determined by host factors 

(e.g. age, sex) and environmental factors (e.g. allergens, infections, smoking, air 

pollution) (26). The hypotheses have been subject for debate, with some researchers 

supporting the British (27), some supporting the Dutch (28), and some arguing for both 

(29). The British hypothesis was met with some criticism, but regained enthusiasm when 

Sethi et al. showed that acute exacerbations of COPD were commonly associated with the 

emergence of new bacterial strains (30). Later studies reported that recurrent respiratory 

infections were associated with accelerated loss of lung function in COPD patients, and 
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thereby supporting the British hypothesis further (31-33). It was proposed that the 

exacerbations were associated with increased airway inflammation (4), which in turn led 

to the FEV1 decline. The notion of infections as a driver of lung function decline made 

bacteria more likely to be the antigen associated with the inflammatory immune response 

observed in COPD (34, 35).  

Exacerbations are a common feature of COPD, and it has been reported that 31% of a 

COPD cohort in the ECLIPSE study experienced exacerbations requiring hospital 

admission during a 3-year follow-up (36). It is suggested that 50-70% of exacerbations 

are caused by airway infections, in which the causative agent might be bacteria, atypical 

organisms or respiratory viruses (37). The exact proportion of viral infections as the 

cause of COPD exacerbations is not known, and depends somewhat on the identification 

techniques. Still, studies have shown that viruses are a common cause of COPD 

exacerbations (38-40). A study using a polymerase chain reaction (PCR) based method 

has detected virus in as much as 64% of the exacerbations in a COPD population (41). 

Presence of a potential pathogenic bacteria have been found during exacerbation in 

approximately 30 and 50% in sputum cultures and bronchial secretion cultures, 

respectively (37). The bacterial association to exacerbations was thought not only to be 

infective, but it seemed reasonable to expect that patients with chronic colonisation 

would have a greater inflammatory burden, and more frequent exacerbations (5, 37).  

6.1.2 Healthy lungs and bacteria 
Despite growing evidence of chronic bacterial colonisation in the lungs of adults with 

COPD, the healthy lungs have long been considered sterile (6). This assumption is 

somewhat surprising considering the lower airways’ direct communication with 

surrounding air, and the constantly exposure of microorganisms from the upper 

respiratory tract including microaspiration (42). The idea of lung sterility has its origin in 

data published more than 100 years ago due to minimal bacterial growth from excised 
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nasal and tracheal mucosa of rabbits (8). The hypothesis was supported despite 

observations of bacteria cultures from lung specimens of several different animals as 

early as 1922 (43), and the possibility of microbial transmissions to the lungs through 

microaspirations (44). One of the reasons that the sterility hypothesis survived, is related 

to the methods used by laboratories to detect microorganisms, mainly culture-based 

methods. Different growth media were optimised to allow culturing of bacteria from the 

lung specimens. Methods were mainly aimed at known pathogenic organisms (45), and 

would probably miss important bacteria not unlikely to be present in the lungs. Indeed, it 

has been shown that only a fraction of bacteria is cultivable using standard medical 

microbiology media (46), and in addition, there is always the possibility of infection or 

colonisation with hitherto unknown agents. The introduction of culture-independent 

techniques for identification of microbes was a turning point in the view of lung sterility. 

6.2 The microbiome 
Culture-independent molecular methods for identification of microbes do not require that 

bacteria should be cultivable, i.e. grown in a laboratory, and has the potential to reveal a 

higher diversity of microbial organisms compared to conventional cultures. This allowed 

for the identification of the “microbiota”, defined as the microbial community 

membership associated with a defined habitat, for instance different body parts (47). The 

genetic information and associated physico-chemical properties of the gene products of a 

microbiota is termed the “microbiome” (47). 

As a consequence of the introduction of culture-independent technology discussed above, 

the interest in the human microbiome raised in the first decade of the twenty-first century 

(8). In 2012, it was proposed that relationships existed between the microbiome and 

several human diseases (48), and large-scale studies were initiated to investigate the 

human microbiome in detail. For instance, the Human Microbiome Project (HMP) by the 

US National Institutes of Health (49) and the European MetaHIT (50). Studies reported 
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on substantial variability in microbial composition among human populations, lifespan, 

disease, and events like antimicrobial exposure (48). Studies also indicated associations 

between various diseases or conditions and body site specific microbiomes. In particular, 

association have been found between the gut microbiome and obesity (51, 52), colorectal 

cancer (53, 54), and inflammatory bowel disease (IBD) (55). It became clear that each 

body site harboured a microbiota with unique characteristics (48). However, the study of 

the human microbiome is a young research area, and associated analyses lack 

standardisation and pose several challenges and pitfalls. 

6.2.1 Analysis of the microbiome 
Human microbiome studies usually follow a common study design. Studies are initiated 

with sampling of the microbiome by collection of appropriate samples from the body site 

of interest, for instance bronchoalveolar lavage (BAL) samples from the lower respiratory 

tract or faecal samples from the gut. The total DNA content should then be extracted 

from the cells in each sample, performed by cell lysis using mechanical-, chemical-, or 

enzymatic methods (56). Extracted DNA is subsequently sequenced in order to determine 

the order of nucleotides in the DNA. As discussed above, most microbiome studies utilise 

culture-independent sequencing techniques due to its improved identification of microbes 

compared to conventional cultures. When BAL samples from lung transplant recipients 

were analysed using both culture-independent techniques and a routinely used culture-

based technique, bacteria were found in significantly more samples using the culture-

independent approach (45). Targeted amplicon sequencing is a common culture-

independent sequencing technique well-established to identify microbes from complex 

environments (47), based upon amplification of so-called marker genes. Marker genes are 

highly conserved and thus shared among the microbes of interest. At the same time, these 

marker genes exhibit enough variation to allow for taxonomic identification, a term to 

describe classification of biological organisms based on their characteristics (57). 

Examples of commonly used marker genes are the 16S ribosomal RNA (16S rRNA) for 
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bacterial studies (56), and the 18S small subunit ribosomal DNA (rDNA) (58) or either of 

two fungal rDNA internal transcribed spacer regions (ITS1 or ITS2) for fungal studies 

(59). Marker genes are PCR amplified to make multiple DNA amplicons, which serve as 

input to a sequencing platform. Until the early 2000s, mass sequencing of marker gene 

amplicons was a cumbersome, expensive process. But the so-called next-generation 

sequencing (NGS) technologies allowed high-throughput sequencing processes from 

platforms like Illumina® (e.g., MiSeq or HiSeq; Illumina Corporation, San Diego, CA), 

that could identify millions of DNA reads from collected samples. In short, NGS is 

achieved by parallel sequencing to facilitate high-throughput (60). Sequencing could be 

done at both ends of the DNA fragment, so-called paired-end sequencing, and several 

samples are sequenced simultaneously by appending a unique sample identifier to one or 

both ends of the amplicons, a process called multiplexing.  

Sequencing results in a large number of short sequences, which then are transferred back 

to the researcher in form of data files. Such data files often include several thousand 

DNA reads, and consequently, a microbiome project might end up with millions of raw 

DNA sequences. Sequencing data needs to be processed using bioinformatic tools. Many 

tools and pipelines have been developed, for instance quantitative insights into microbial 

ecology (QIIME) (61) and mothur (62). Additionally, the free software R Project for 

Statistical Computing could be used for further statistical analyses (63). Papers usually 

report the composition or taxonomic information, the relative abundance of species, and 

diversity analyses. The latter includes alpha diversity, which describes the number and 

distribution of organisms within a sample, and beta diversity, which describes diversity 

between pairs of samples (47). Taxonomic assignments are achieved by comparing 

sequences to existing databases such as SILVA for 16s rRNA data (64) or UNITE for 

fungal ITS data (65, 66). Finally, it is common to integrate results with clinical metadata 

(46), for instance looking at differences among participant groups, or predict outcomes 

using species data. 
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Several of the steps in a common microbiome study possess challenges. Contamination is 

a concern in every microbiome study (47), and could happen through sampling directly 

(e.g. oral contamination in sputum samples from the lungs) or sample preparation (e.g. 

contaminants in DNA extraction kits and laboratory reagents) (67). Despite being user-

friendly, several parameters of the analytical tools and pipelines could impact the final 

result (68). Furthermore, different sequencing platforms have been shown to produce 

different results, and variability can be introduced by differences in DNA extraction, PCR 

amplification, and patient diversity (68). Databases used for taxonomic assignment 

contain unresolved information for some sequences, excluding identification on species 

level for some microorganisms (47). Sampling of adequate material is unproblematic in 

many microbiome studies, such as faecal sampling in gut studies, but could be an issue in 

other studies. Sampling the lung microbiome is difficult (69). Numerous studies have 

sampled the lung microbiome by bronchoscopy, including studies of healthy subjects (42, 

70-74), participants with COPD (75-79), and participants with asthma (7), but sputum

sampling is also frequently used (80-82). The bronchoscopy method is prone to

contamination when passed through the upper respiratory tract. Protected sampling

minimises the problem, and should be used (9). However, including bronchoscopy in the

study design could lower participation in lung microbiome studies.

A semi-invasive procedure like bronchoscopy can be associated with discomfort and pre-

procedural anxiety, which might lead possible participants to decline an invitation, or 

withdraw their consent. Studies on the lung microbiome are not necessarily therapeutic or 

beneficial to the participants, perhaps lowering participation even more. Little is known 

of motivation and predictors of participation in studies involving a research 

bronchoscopy. A systematic review of participation in colorectal screening trials has 

reported higher participation rates with general practitioner involvement and face-to-face 

invitation, and lower probability of accepting an invitation if a long travel distance was 

involved (83). The response rates from seven Norwegian respiratory healthy surveys 

from 1965 to 1999 have also been examined, and results show that response rates were 
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higher in women than in men and higher in the middle‐aged/elderly than in young adults 

(84). A bronchoscopy was however not included in the Norwegian studies. Another 

Norwegian study on respiratory health showed that non-response was associated with 

male sex, younger age, and living in a rural area (85). Additionally, they found a weak 

trend towards more manual occupations among non-responders compared to responders 

(85). Table 1 summarises the literature on participation in research bronchoscopy studies 

as of February 2014 (reproduced with editing of a minor correction (see 14 Minor 
errata) from paper I published in European Clinical Respiratory Journal). 
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w
 1
0
0
0
 

m
L
 o
r u
se o

f sy
stem

ic o
r 

in
h
aled

 co
rtico

stero
id
s in
 

p
rev
io
u
s y
ear 

R
etro

sp
ectiv

e stu
d
y
. 

Q
u
estio

n
n
aire-b

ased
 

telep
h
o
n
e in
terv

iew
s 

E
x
am
in
atio
n
 

A
u
to
flu
o
rescen

ce- o
r 

w
h
ite lig

h
t 

b
ro
n
ch
o
sco
p
y
 w
ith
 

b
io
p
sies 

R
esp
o
n
se rate: 7

3
%
.  

P
articip

atio
n
 m
o
tiv
es: P

erso
n
al 

b
en
efit 

 

P
atel, 2

0
1
2
, 

U
n
ited
 

K
in
g
d
o
m
, 

(9
1
) 

E
x
am
in
e m
eth
o
d
s an

d
 

p
articip

atio
n
 in
 a lu

n
g
 

can
cer screen

in
g
 stu
d
y
 

P
articip

atio
n
 m
o
tiv
es, 

d
eclin

in
g
 reaso

n
s an

d
 

v
iew
s o
n
 screen

in
g
 

m
eth
o
d
s 

6
0
 

C
u
rren

t o
r ex
-

sm
o
k
ers, ≥

2
0
 p
k
y
 an
d
 

o
r ≥
2
0
 y
rs, w

ith
 m
ild
 

to
 m
o
d
erate C

O
P
D
 

N
o
 serio

u
s co

m
o
rb
id
 

d
isease, life ex

p
ectan

cy
 ≥
5
 

y
rs 

P
ro
sp
ectiv

e 

q
u
alitativ

e stu
d
y
. 

S
em
i-stru

ctu
red
 

in
terv

iew
s 

E
x
am
in
atio
n
 

F
lu
o
rescen

ce 
b
ro
n
ch
o
sco
p
y
 w
ith
 

b
io
p
sies 

R
esp
o
n
se rate: N

o
t g
iv
en
. 

P
articip

atio
n
 m
o
tiv
es: p

erso
n
al 

b
en
efit, altru

ism
. 

P
articip

atio
n
 b
arriers: fear, b

ad
 

ex
p
erien

ces an
d
 trav

el 

C
h
u
d
leig
h
, 

2
0
1
3
, U
n
ited
 

K
in
g
d
o
m
, 

(9
2
) 

E
x
am
in
e recru

itm
en
t 

an
d
 reten

tio
n
 o
f C
F
 

in
fan
ts an

d
 h
ealth

y
 

co
n
tro
ls, an

d
 p
aren

tal 

attitu
d
e to
 p
articip

atio
n
  

P
articip

atio
n
 m
o
tiv
es, 

b
en
efits an

d
 

d
isad

v
an
tag
es. R

esp
o
n
se 

rates 

C
ases: 8

5
  

V
o
lu
n
teers: 5

6
 

In
fan
ts w

ith
 an
d
 

w
ith
o
u
t C
F
, in
clu
d
in
g
 

p
aren

ts 

C
F
:  N
o
 co
n
train

d
icated

 

d
iso
rd
ers, n

o
 p
reterm

s. 

H
ealth

y
 co
n
tro
ls: N

o
 

m
ed
ical an

d
/o
r so
cial 

co
n
train

d
icatio

n
s, ≥
2
5
0
0
 g
 

P
ro
sp
ectiv

e 

lo
n
g
itu
d
in
al, 

o
b
serv

atio
n
al stu

d
y
.  

S
elf-co

m
p
leted

 

q
u
estio

n
n
aires 

E
x
am
in
atio
n
 

B
ro
n
ch
o
sco
p
y
 w
ith
 

B
A
L
 

R
esp
o
n
se rate: 6

9
%
 (C
F
), 2
1
 %
 

(h
ealth

y
 co
n
tro
ls).  

P
articip

atio
n
 m
o
tiv
es: P

erso
n
al 

b
en
efit, altru

ism
 

BA
L, bronchoalveolar lavage; CO

PD
, chronic obstructive pulm

onary disease; CF, cystic fibrosis; FEV
1 , forced expiratory volum

e in one second; pky, pack-

years.
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An important task for researchers is to obtain an overview of the published literature in 

the research field of interest. Systematic reviews are summaries of the available papers in 

a given research area, conducted with comprehensive literature searches and explicit, 

reproducible criteria for inclusion and exclusion (93). Researchers conducting a 

systematic review need to define a robust research question, and include usable terms in 

their literature search. The PICO framework, a mnemonic for Patient/problem/population, 

Intervention, Comparison, and Outcome, is often used (94). A systematic review could be 

a suitable first step to dig into a novel research area, such as the use of bronchoscopy in 

research studies. More information on response rates, participation motives, and non-

response reasons could lead to better-targeted recruitment for lung microbiome studies. 

6.2.2 The lung microbiome 
Most of the early microbiome studies, including the leading HMP, did not include 

samples from the lungs, but data from lung microbiome studies has increased from 2008 

(46). The first study of the healthy lung microbiome using culture-independent 

techniques was performed in 2010 (7). Patients with COPD or asthma were also included, 

and the study reported on distinct microbiomes from the healthy and diseased lungs (7). 

The result challenged the long-standing notion of a sterile lung community. Nevertheless, 

most attention was given to diseased lungs, and especially to patients with cystic fibrosis 

(95-97). The microbiome of patients with asthma (7, 98) or interstitial lung diseases (99), 

lung transplant recipients (100), and patients receiving mechanical ventilation (101) was 

also investigated. Furthermore, an increasing number of studies also reported a rich lung 

microbiome in clinically stable COPD. 

6.2.3 The microbiome and COPD 
A summary of published papers on the COPD microbiome is presented in Table 2. 

Studies have shown that the lung microbiome found in COPD patients seem to differ 

from that found in healthy controls (7, 76, 78, 102, 103). The COPD microbiome studies 
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reported that Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were 

commonly found phyla, while Pseudomonas, Streptococcus, Prevotella, Moraxella, 

Acinetobacter, Fusobacterium, Neisseria, and Haemophilus were common genera (7, 75-

78, 104, 105). It has also been suggested that patients with more advanced disease stages 

showed lower alpha diversity, i.e. lower number and/or more similar bacteria (106). 

Study participants exposed to inhaled bronchodilators and/or ICS harboured microbiomes 

that clustered together (78). Associations between the lung microbiome and COPD 

exacerbations have also been examined (80, 81, 101, 103, 105, 107, 108). One study 

suggested that rhinovirus infection resulted in increased bacterial burden especially due 

to outgrowth of Haemophilus influenzae with additionally increases in sputum 

inflammatory cells, neutrophils, and neutrophils elastase levels (80). Other studies have 

found that some genera changed in relative abundance during exacerbations (81, 103), 

which, together with other changes in the microbiome, were also associated with 

inflammation (81).  
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Table 2. A
n overview

 of C
O
PD
 lung m

icrobiom
e and m

ycobiom
e studies using targeted am

plicon sequencing as of 16
th of Septem

ber 2017 
A
uthor, year 
of 
publication, 
country, 
reference 

Study objective 
M
ain outcom

es 
N
 

Population 
Inclusion criteria 

D
esign 

H
andling of 

contam
ination 

Sam
pling m

ethod 
R
elevant findings 

Bacterial m
icrobiom

e 

H
ilty, 2010, 
England, (7) 

C
om
pare airw

ay m
icrobiota 

in adult patients w
ith 

asthm
a, C

O
PD
, and 

controls, plus asthm
atic 

children and controls 

Taxonom
y, 

diversity, and 
cladistic analysis. 

A
sthm

a: 11 
C
O
PD
: 5  

C
ontrol: 8 
Paediatrics: 20  

A
dult subjects w

ith and 
w
ithout obstructive 
diseases. Paediatric 
patients w

ith difficult 
asthm

a and non-asthm
atic 

controls 
N
o antibiotics or clinical 
infections at study tim

e  
O
bservational 
study 

N
ot m

entioned 

Sw
abs from

 nose and 
O
P and bronchoscopic 
cytology brushings 
(LU

L). B
A
L in 

paediatric participants. 

Prevotella, Streptococcus, Staphylococcus, 
N
eisseria, C

orynebacterium
, and 

H
aem

ophilus spp. w
ere abundant. N

asal 
m
icrobiota differed from

 O
P and LU

L. 
C
ases: Proteobacteria,  
controls: Bacteroidetes 

H
uang, 2010, 
U
SA
, (101) 

Profile the m
icrobiom

e in 
C
O
PD
 patients w

ith 
exacerbation 

Taxonom
y, 

diversity, 
abundance 

C
O
PD
: 8 

Intubated C
O
PD
 patients 

w
ith exacerbation-related 
respiratory failure treated 
w
ith antibiotics 

Subjects adm
itted to the 

IC
U
 w
ith a prim

ary 
diagnosis of “C

O
PD
 

exacerbation” 
O
bservational 
study 

U
se of 
endotracheal 
tubes 

Endotracheal aspirates 
and quantitative 
clinical laboratory 
bacterial cultures on 
m
-B
A
L 

A
 core com

m
unity of 75 taxa w

as detected 
in all patients. They saw

 interpersonal 
variation in bacterial richness, and tw

o 
distinct groups on N

M
D
S influenced by 

duration of intubation 

Erb-
D
ow
nw
ard, 

2011, U
SA
, 

(77) 

C
om
pare the lung 

m
icrobiom

e in “healthy” 
sm
okers and non-sm

okers. 
A
nalyse m

ultiple sam
ple 

sites from
 surgical explants 

Taxonom
y, 

abundance, and 
diversity 

C
O
PD
: 10 

Sm
okers: 7 

N
on-sm

okers: 3 

Three never-sm
okers w

ith 
norm

al spirom
etry, seven 

sm
okers w

ith norm
al 

spirom
etry, and four 

subjects w
ith C

O
PD
 

N
o m
ental incom

petence 
or active psychiatric 
illness, prim

ary asthm
a 

diagnosis, C
F, 

bronchiectasis, infl or 
fibrotic lung disease, 
prednisone >20 m

g daily 
O
bservational 
study 

B
ronchoscopy 
through m

outh 
B
A
L and 

transplantation tissue 

D
ata suggests the existence of a core 
pulm

onary bacterial m
icrobiom

e. There 
w
ere significant m

icro-anatom
ic differences 

in bacterial com
m
unities w

ithin the sam
e 

lung of subjects w
ith advanced C

O
PD
. Less 

diversity in m
oderate and severe C

O
PD
 

C
abrera-
R
ubio, 2012, 
Spain, (75) 

Exam
ine the C

O
PD
 

m
icrobiom

e, and to com
pare 

diversity from
 upper and 

low
er bronchial sam

ples 
Taxonom

y and 
diversity 

C
O
PD
: 8 

C
O
PD
 patients not 

show
ing signs or 

sym
ptom

s of infection 

M
oderate disease. N

o 
exacerbations, antibiotics, 
or hospitalisation prvs 
year. N

o severe lung 
function or regular 
treatm

ent for C
O
PD
 or 

other severe disease 
O
bservational 
study 

Transnasally 
bronchoscopy 
w
ithout 
aspiration 
before vocal 
cords 

Sputum
, bronchial 

aspirate, B
A
L, and 

bronchial m
ucosa 

Sputum
 sam

ples show
ed significantly low

er 
diversity than the other three sam

ple types. 
Suggests B

A
L is m

ost suitable for low
er 

respiratory tract sam
pling 

Sze, 2012, 
C
anada, (102) 

C
haracterise the bacterial 
com

m
unity 

A
bundance, 
diversity, and 
taxonom

y 

N
on-sm

okers: 8 
Sm
okers: 8 

C
O
PD
: 8 

C
F: 8 

N
on-sm

okers and 
sm
okers, very severe 

C
O
PD
 (G
O
LD
 4) and C

F 
O
bservational 
study 

N
egative 
controls used 
for O

TU
 

subtraction 
Tissue 

M
ore Firm

icutes in C
O
PD
. Sim

ilar diversity 
betw

een non-sm
okers, sm

okers, and C
O
PD
, 

and higher than C
F. C

O
PD
 clustered alone 

in PC
oA
 

Pragm
an, 

2012, U
SA
, 

(78) 
C
om
pare lung m

icrobiom
es 

in C
O
PD
 and controls 

Taxonom
y, 

diversity, and 
abundance 

C
O
PD
: 22 

C
ontrols: 10 

C
ontrols, m

oderate C
O
PD
, 

and severe C
O
PD
 

C
O
PD
 patients w

ithout a 
recent exacerbation. N

o 
sm
oke or system

ic steroid 
in past 6 m

onths or 
antibiotic use in the past 2 
m
onths 

O
bservational 
study 

States that 
standard 
clinical 
protocols w

ere 
follow

ed 
B
A
L 

Significant increase in m
icrobial diversity 

w
ith the developm

ent of C
O
PD
. C
O
PD
 

contained m
ostly Actinobacteria, 

Proteobacteria, and Firm
icutes. PC

oA
 

revealed clustering of control and C
O
PD
 

sam
ples, and on IC

S or IB
D
 use. Suggests 

oral influence on lung m
icrobiom

e content 

Zakharkina, 
2013, 
G
erm

any (79) 

Exam
ine the pulm

onary 
m
icrobial com

m
unities in 

C
O
PD
 patients as com

pared 
to healthy individuals 

Taxonom
y and 

diversity 
C
O
PD
: 9 

H
ealthy: 9 

H
ealthy never sm

okers 
and participants w

ith 
clinically diagnosed 
C
O
PD
 

H
ealthy: N

ever sm
okers, 

no chronic disorders, no 
respiratory illnesses in the 
prvs year. C

O
PD
: 

C
linically diagnosed 
C
O
PD
 

O
bservational 
study 

Included 
positive and 
negative 
controls in the 
PC
R
 

B
A
L 

R
esults of the term

inal restriction fragm
ent 

analysis correlated partly w
ith the data 

obtained from
 clone sequencing. The tw

o 
different m

ethods revealed partly diverse 
m
icrobial spectra 

M
olyneaux, 

2013, U
nited 

K
ingdom

, 
(80) 

To investigate the effect of 
rhinovirus infection on the 
airw

ay bacterial m
icrobiom

e 
A
bundance and 
diversity 

C
O
PD
: 14 

C
ontrols: 17 

M
ild C

O
PD
 and controls 

w
ithout any obstructive 
airw

ay disease (10 non-
sm
okers and 7 sm

okers) 

N
o asthm

a or atopy, no 
other system

ic or 
respiratory conditions, no 
history of respiratory tract 
infection, exacerbation, or 
antibiotic use in the prvs 3 
m
onths  

O
bservational 
study 

States they 
avoided 
invasive 
sam

pling w
ith 

associated 
contam

ination 
Induced sputum

 

Increased bacterial burden, especially 
H
aem

ophilus influenzae, after rhinovirus 
infection in C

O
PD
, but not controls 
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A
uthor, year 
of 
publication, 
country, 
reference 

Study objective 
M
ain outcom

es 
N
 

Population 
Inclusion criteria 

D
esign 

H
andling of 

contam
ination 

Sam
pling m

ethod 
R
elevant findings 

H
uang, 2014, 
U
SA
, (81) 

Exam
ine dynam

ics of the 
m
icrobiom

e during C
O
PD
 

exacerbation 
A
bundance and 
diversity 

C
O
PD
: 12 

C
O
PD
 patients 

longitudinally follow
ed to 

detect exacerbations. 
N
o other lung disease 

O
bservational 
study 

M
entions 

saliva 
contam

ination, 
but argues for 
sputum

 
Expectorated sputum

 

O
bserved com

positional changes at 
exacerbation onset com

pared to pre-state for 
several taxa, and exacerbation com

pared to 
post-period. A

ntibiotics and steroid 
treatm

ent had effect on com
position 

M
illares, 

2014, Spain, 
(103) 

D
eterm

ine characteristics of 
the m

icrobiom
e of severe 

C
O
PD
 patients w

ith and 
w
ithout Pseudom

onas 
aeruginosa colonisation, and 
its changes during 
exacerbation 

A
bundance and 
diversity 

C
O
PD
: 16 

Severe C
O
PD
 in stable 

state w
ith m

ore than 2 
exacerbations/year w

ith 
and w

ithout Pseudom
onas 

aeruginosa colonisation 

A
ge > 40 yrs, no 
respiratory hospital 
adm

ission prvs 6 m
onths, 

no asthm
a, C

F, neoplasia 
or bronchiectasis, no oral 
steroids or im

m
unosupp, 

no change in sm
oking or 

bronchodil in follow
-up 

O
bservational 
study 

M
entions risk 

of oral and 
oropharynx 
contam

ination 
Spontaneous sputum

 

O
bserved abundance changes in 
exacerbations. D

ifferences betw
een 

colonised and non-colonised disappeared 
during exacerbation. N

o diversity difference 
betw

een colonised/non-colonised 

G
aliana, 
2014, Spain, 
(109) 

C
om
pare the m

icrobiota in 
tw
o groups of patients w

ith 
C
O
PD
 of different severity 

(m
ild/m

oderate vs severe) 
A
bundance and 
diversity 

C
O
PD
: 19 

9 patients w
ith m

ild or 
m
oderate C

O
PD
 and 10 

patients w
ith severe or 

very severe C
O
PD
 in a 

stable condition 

A
t least 3 m

onths w
ithout 

exacerbation or use of 
antibiotics for any other 
reason 

O
bservational 
study 

N
ot m

entioned 
Expectorated sputum

 

M
oderate disease had higher diversity. 

B
acterial load w

as higher in severe patients. 
Presence/absence of Actinom

yces associated 
w
ith disease severity. M

oderate disease 
seem

ed to have a core, not seen in severe 

G
arcia-
N
uñez, 2014, 
Spain, (106) 

To identify severity-related 
m
odifications of the 

bronchial m
icrobiom

e in 
C
O
PD
 

A
bundance and 
diversity 

C
O
PD
: 17 

Stable C
O
PD
 (> 4 w

eeks) 
w
ith m

oderate/severe or 
advanced disease 

A
ge > 40 yrs, no 
respiratory hospital 
adm

ission prvs 6 m
onths, 

no asthm
a, C

F, neoplasia 
or bronchiectasis, no oral 
steroids or im

m
unosupp 

O
bservational 
study 

M
entions 

oropharyngeal 
contam

ination, 
but argues for 
sputum

 
Sputum

 

H
igher alpha diversity in m

oderate/severe, 
paralleled by a substitution of the original 
flora by colonizing bacteria only m

arginally 
present in the bronchial m

icrobiom
e of 

C
O
PD
 patients w

ith less severe function 

M
illares, 

2015, Spain, 
(107) 

A
nalyse the com

position 
and the gene content of the 
C
O
PD
 m
icrobiom

e in 
stability and exacerbation 

A
bundance, 
diversity, and 
m
etabolic 

capabilities 
C
O
PD
: 8 

Severe C
O
PD
 (FEV

1 < 
50%

 of ref) w
ith ≥3 

exacerbations in prvs year  

N
o asthm

a, C
F, neoplasia 

or bronchiectasis, no 
im
m
unosupp, no 

antibiotics betw
een 

sam
pling. Included if 

exacerbation sam
ple and 

stable 1-6 m
onths before 

w
ere given 

O
bservational 
study 

PC
R
 controls 

included to 
assess 
contam

inants 
in extraction 
buffer. 
Extraction 
done in cabinet 

Sputum
 

N
o difference in relative abundance or 
diversity betw

een stability and exacerbation. 
Functional differences w

ere identified 
during exacerbations in certain pathw

ays in 
M
G
-R
A
ST, but not significant in PIC

R
U
St 

Sze, 2015, 
C
anada and 
U
SA
, (110) 

Exam
ine the relationship of 

the C
O
PD
 m
icrobiom

e to 
em
physem

atous tissue 
destruction, num

ber of 
term

inal bronchioles, 
infiltrating inflam

m
atory 

cells, and host gene 
expression 

D
iversity, 
abundance, and 
host 
response/relation
ships betw

een 
O
TU
s and host 

factors 
C
O
PD
: 5 

C
ontrols: 4 

V
ery severe C

O
PD
 

(G
O
LD
 4). O

rgan donors 
w
ere controls if lungs 
w
ere unsuitable for 
transplantation 

O
bservational 
study 

Included a 
negative w

ater 
control sam

ple 
Tissue 

D
ecline in m

icrobial diversity that w
as 

associated w
ith structural changes, and the 

C
D
4+ T cell infiltration. Specific O

TU
s 

w
ere also associated w

ith neutrophils, 
eosinophils, and B

-cell infiltration. The 
expression profiles of 859 and 235 genes 
w
ere associated w

ith either m
ore or less of 

Firm
icutes and Proteobacteria, respectively 

A
guirre, 
2015, Spain, 
(104) 

D
escribe bacteria present in 
expectorated sputum

 using a 
pyrosequencing approach 
and to com

pare these 
findings w

ith those obtained 
w
ith conventional culture 

Taxonom
y and 

distribution 
C
O
PD
: 19 

Stable C
O
PD
. N
ine 

patients w
ith m

oderate 
C
O
PD
 and ten patients 

w
ith severe C

O
PD
 

M
in 3 m

onths w
ithout 

exacerbation or use of 
antibiotics. N

o current or 
recurrent sym

ptom
atic 

IH
D
, congestive heart 

disease, cerebrovascular 
disease, dem

entia, lung 
cancer, know

n psychiatric 
illness, system

ic steroids 
use (oral or parenteral), 
active TB

, IB
S or insulin‐

dependent D
M
 

O
bservational 
study 

N
ot m

entioned 
Expectorated sputum

 

M
ore genera w

ith pyrosequencing. In 
pyrosequencing, best represented phyla w

ere 
Firm

icutes, Proteobacteria, Actinobacteria, 
Bacteroidetes, and Fusobacteria 
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A
uthor, year 
of 
publication, 
country, 
reference 

Study objective 
M
ain outcom

es 
N
 

Population 
Inclusion criteria 

D
esign 

H
andling of 

contam
ination 

Sam
pling m

ethod 
R
elevant findings 

Su, 2015, 
C
hina, (108) 

Exam
ine the structure and 

varieties of lung m
icrobial 

com
m
unity in patients w

ith 
severe A

EC
O
PD
 (m
ultiple 

sam
pling tim

es) 

D
iversity, 
taxonom

y, and 
abundance  

C
O
PD
: 6 

Patients experiencing an 
acute exacerbation of 
severe C

O
PD
 and 

receiving m
edical 

treatm
ent 

O
bservational 
study 

N
ot m

entioned 
Sputum

 

B
acterial analysis: Longitudinal sam

pling 
show

ed differences in taxonom
y over tim

e. 
N
o consistent pattern in alpha diversity. 
Sam

ples clustered on C
R
P value in PC

oA
  

W
ang, 2016, 

U
SA
 and 

U
nited 
K
ingdom

, 
(105) 

Exam
ine the lung 

m
icrobiom

e at stable state, 
exacerbation, 2 w

eeks post-
therapy, and 6 w

eeks 
recovery 

Taxonom
y, 

abundance, 
diversity, and 
hum

an-host 
interactions 

C
O
PD
: 87 

C
O
PD
 patients 

N
o asthm

a, or significant 
respiratory disease other 
than C

O
PD
. M
ust be able 

to produce sputum
 after 

sputum
 induction 

O
bservational 
study 

N
egative 
reagent 
controls. 
C
om
pared w

ith 
previous 
contam

ination 
study 

Sputum
 

Longitudinal sam
pling show

ed that changes 
appeared to be associated w

ith exacerbation 
events and indicative of specific 
exacerbation phenotypes. A

ntibiotic and 
steroid treatm

ents appear to have differential 
effects on the lung m

icrobiom
e 

Einarsson, 
U
K
, 2016, 

(76) 

D
eterm

ine airw
ay m

icrobial 
com

position using both 
culture-dependent and 
culture-independent 
m
ethodologies 

Taxonom
y, 

diversity, 
correlation, and 
abundance 

C
O
PD
: 18 

Sm
okers: 8 

N
on-sm

okers: 11 

C
O
PD
 patients in stable 

state. H
ealthy subjects 

recruited from
 the general 

population 

C
O
PD
: M
ild to severe 

airflow
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There is growing evidence that the microbiome plays a role in COPD, but it still remains 

a problem that most of the studies have mainly focused on the bacteria present in the 

lungs (47). Because lungs also contain viruses, fungi, and other eukaryotes. 

6.3 The mycobiome 

The revolution in culture-independent techniques greatly expanded our understanding of 

the bacterial microbiome, but other important community members like fungi were 

largely ignored (114). In fact, the word “microbiome” refers to only inhabiting bacteria 

(115). The term “mycobiome” was introduced by a paper in 2010 as a combination of the 

words “mycology”, i.e. study of fungi, and “microbiome” (116). The mycobiota could be 

defined as the fungal microorganisms in an anatomically defined niche, whereas the 

mycobiome is the collective genetic material of the mycobiota.  

Some important differences between a bacterial microbiome study and a mycobiome 

study are worth mentioning. The total number of fungal cells found on body surfaces are 

usually lower than bacterial cells (59). However, the fungal cell is typically a hundred-

fold larger than bacterial cells (59). Fungal cells are eukaryotic in contrast to the 

prokaryotic bacterial cells, and mycobiome studies using 18S rDNA for amplification 

runs the risk of amplifying DNA from other eukaryotes, for instance human DNA (69). 

Fungi are encased in thick cell walls, and methodology originally developed for isolating 

bacterial genomic DNA is not necessarily ideal for recovery of fungal DNA (59). ITS is 

the recommended marker-gene region for fungal studies (117), but the ITS region has a 

length variation, and ITS fragments from mice and human faeces have been shown to 

vary in length between 100-550 base pairs (118). The fungal databases are also 

incomplete, and suffers from a dual naming system depending on the fungus’ 

reproductive stage (69).  
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Fungi might be important to maintain microbial community structure, metabolic function, 

and immunological responses in a host (119). As with the bacterial microbiome, 

unculturable fungi comprise the largest part of the human mycobiome, and early 

mycobiome studies were based on a few selected culturable fungi like Candida albicans, 

Candida glabrata, Cryptococcus neoformans, Aspergillus fumigatus and the dimorphic 

fungi (Coccidioides, Histoplasma and Blastomyces) (58). The introduction of culture-

independent techniques showed that the various niches harboured a considerable 

mycobiome (58). Evidence emerged that specific fungal populations were found at 

different body sites like the skin, the gastrointestinal tract, and the genitourinary system 

(58, 59). The most commonly found fungus on the skin is called Malassezia, and 

pathogenic fungi like C. albicans has been found as part of the mycobiome in 

asymptomatic healthy individuals (59). Fungal genera such as Candida, Saccharomyces, 

and Cladosporium are also found throughout the gastrointestinal tract and in the 

genitourinary system (59). New evidence suggests that interactions between mycobiomes 

found at different body sites are possible, especially a gastrointestinal-respiratory 

interaction. For instance, an animal model has shown that a disrupted gut microbiome 

due to yeast overgrowth subsequently predispose the host to allergic airway disease after 

allergen challenges (120). Another study has suggested that fungal cell wall components 

might translocate into the bloodstream of HIV-infected individuals without known active 

fungal infection, possibly stimulating a systemic immune response and inflammation 

(121). Furthermore, fungal-bacterial interactions seem to promote or inhibit growth, 

eventually leading to altered immune responses or antimicrobial therapy (58). Another 

important interaction is the one between the mycobiome and the host. It is suggested that 

host factors like genotype, lifestyle choices, and physiologic and immunologic factors all 

play a role in shaping the mycobiome (58). On the other hand, fungi are capable of elicit 

immune responses in humans. Fungi contain pathogen-associated molecular patterns 

(PAMPs) such as glucans, chitin, and mannans present in the fungal cell wall (69). 

Pattern-recognition receptors (PRR) on phagocytes recognise these PAMPs and initiate 

an immune response, illustrating how the interaction between fungi and the immune 
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system is bidirectional. Some fungi are known to have pathogenic traits (122), and, taking 

the beforementioned links between the microbiome and several diseases into account (see 

6.2 The microbiome), associations between the human mycobiome and various 

pathologies do not seem unrealistic.   

There has been a growing literature that the mycobiome indeed is associated with a 

number of diseases. Malassezia spp. have been shown to play a role in several skin 

diseases. The skin is naturally inhabited by Malassezia, but the fungus has pathogenic 

properties. Pityriasis versicolor is the only skin disease known to be caused by 

Malassezia, but Malassezia is suggested to contribute, albeit not directly, in seborrheic 

dermatitis, atopic dermatitis, and psoriasis as well (123). Fungi are considered to affect 

healing of chronic skin wounds. A study suggested that the baseline mycobiome from 

wounds could be predictive of healing time (124). Stool samples are a feasible and easy 

way to investigate the intestinal mycobiome, and have been utilised in studies on IBD. 

Disease-specific alterations in fungal diversity, and reciprocal changes in phyla in IBD 

patients especially during IBD flare has been reported in a large study, suggesting 

considerable shifts in the mycobiome (125). IBD patients also had reduced levels of 

Saccharomyces cerevisiae, a pattern also shown during active flare (125). Furthermore, 

the intestinal mycobiota is suggested to play a part in alcohol-induced liver disease in 

humans and mice (126). The researchers observed that alcohol-dependent patients 

displayed reduced intestinal fungal diversity and Candida overgrowth compared with 

healthy individuals. Additionally, an increased systemic exposure and immune response 

to fungal products were seen in patients with alcohol abuse. Growing focus has also been 

given on the lung mycobiome, and papers on various lung diseases have been published 

(95, 100, 108, 113, 127-134). 
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6.3.1 The lung mycobiome 
A thorough scientific focus should undoubtedly be put on the lung mycobiome for 

several reasons. First, fungi are ubiquitous, and the human respiratory tract are exposed 

for numerous airborne fungi. Indeed, fungal spores represent more than 50,000 spores per 

cubic meter of air during the fungal season (135). Healthy airways possess effective 

removal of such spores through mucociliary clearance and phagocytosis. Second, fungal 

infections have increased in previous years, especially in immunocompromised 

individuals (58). New fungal pathogens are being discovered, and an extensive use of 

antibiotics may have promoted resistant respiratory fungal infections (135). Third, ICS 

are frequently used by individuals with chronic lung diseases. Use of ICS will have anti-

inflammatory and immunosuppressive effects, possibly resulting in outgrowth of 

commensal fungi such as Candida (136). It would thus be interesting to examine whether 

the lung mycobiomes is affected by the use of ICS. Fourth, information on the lung 

mycobiome might reveal an advantageous composition of fungi, enabling us to design 

pro- or prebiotic treatment, or detect specific species or strains with detrimental effect on 

lung health, enabling effective antimycotic treatment. Finally, besides the ability to cause 

life-threatening infections, fungi can interfere with the immune system. As discussed 

earlier, PAMPs present in the fungal cell wall are capable of initiating an immune 

response if they are recognised by PRR. The respiratory epithelium plays a key role in the 

response to fungi, and both innate and adaptive immune responses are activated (69). 

Knowing that part of major respiratory diseases like COPD and asthma are thought to 

include an inflammatory ingredient, revealing the potential role of fungi in these diseases 

seems important. Also, other chronic respiratory diseases like CF and other 

bronchiectatic conditions have been linked to fungi (135), and a rich lung mycobiome 

exists in both disease and health. 
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6.3.1.1 The healthy lung mycobiome 

The healthy lung mycobiome has been investigated using culture-independent techniques 

in a few studies. The first published paper on the healthy lung mycobiome reported a low 

fungal DNA burden from environmental agents such as Davidiellaceae and 

Cladosporium, and some low abundances of Aspergillus (100), while a later study found 

that Eremothecium sinecaudum, Systenostrema alba, Cladosporium cladosporioides and 

Vanderwaltozyma polyspora were particularly prevalent in the sputum of control subjects 

(128). E. sinecaudum, V. polyspora, and S. alba are fungi and microsporidia isolated 

from soil and plants with no known clinical pathogenicity, but C. cladosporioides has 

been described in infections in immunocompromised patients (135). Bittinger et al. 

included 12 healthy controls in a mycobiome study, and found that BAL samples 

contained Cladosporium and Debaryomyces, while oral washes (OW) included amounts 

of Candida (130). Another study reported on the mycobiota from 24 controls in a HIV 

study (113). The investigators performed both 18S and ITS sequencing, and included 

OW, induced sputum (IS), and BAL samples. They found an overrepresentation of 

Pneumocystis jirovecii in HIV patients compared to the healthy controls, and the healthy 

BAL mycobiome was characterised by S. cerevisiae, and Penicillium brevicompactum. 

They also showed that BAL samples clustered together with OW samples in principal 

coordinates analysis (PCoA), i.e. a method to explore and to visualise similarities or 

dissimilarities of data, while IS samples overlapped in part with OW samples, but not 

with BAL. Together with observed differences in species prevalence between IS and 

BAL, and BAL compared with OW, they concluded that shared and unique fungi were 

found in each respiratory tract level (113). Among intensive care unit (ICU) patients 

without pneumonia serving as controls in a pneumonia mycobiome study, the majority of 

the mycobiome was made up of Saccharomycetes, including Candida (129). However, it 

is doubtful whether these should be considered as healthy subjects. For instance, as much 

as 28% of the control subjects had acute respiratory distress syndrome, and 16% were on 

immunosuppression. A somewhat similar study was performed in another ICU setting to 

examine the presence of Candida in the lungs, and also included healthy subjects (132). 
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Healthy subjects were adult patients with healthy respiratory tract undergoing elective 

plastic surgery. Candida sequences were not present in mycobiota of healthy controls. All 

in all, the healthy lung mycobiome is understudied, but some studies are starting to fill 

the void. A growing literature is also found on the diseased lung mycobiome (95, 100, 

108, 113, 127-134). 

6.3.1.2 The diseased lung mycobiome 

The diseased lung mycobiome was investigated with cultured-independent techniques for 

the first time in 2012. Delhaes et al. included four patients in a CF study, and collected 

two temporal sputum samples from each participant (95). They found that reduced fungal 

diversity and richness of fungal and bacterial communities were associated with poor 

clinical status, which means that more fungal species were seen in patients with better 

clinical measures. Another CF study found that Candida represented the dominant genus, 

and that Malassezia occurred in all samples (127). Malassezia appeared in one of the two 

samples from each participant in the CF study by Delhaes et al. as well (95). Malassezia 

is known to be associated with atopic dermatitis, and it was suggested to pay particular 

attention to Malassezia species in further lung mycobiome research (135). CF patients 

were also studied by Kramer et al (131). They found that the airway mycobiome was 

dominated by Candida, possibly acting as a coloniser of the CF airways. 

Several factors involved with a lung transplantation including antibiotics, 

immunosuppression, and structural changes all predispose for fungal growth. Charlson et 

al. have investigated BAL and OW samples of lung transplant patients and compared to 

healthy controls (100). OW samples were dominated by Candida, and BAL samples 

contained mostly Candida, but also some Aspergillus. Control samples had a higher 

fungal richness than samples from lung transplants. This data set was expanded with new 

samples by Bittinger et al. (130). The added data revealed that increasingly severe 

pulmonary and immunologic deficits resulted in a higher colonisation in BAL by fungi 

with known pathogenic potential (130).  
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The lung mycobiota of ICU patients have been investigated in two studies. Candida 

species were the most abundant in ICU patients with pneumonia, and Candida utilis was 

more abundant in controls compared to pneumonia patients (129). Krause et al. showed 

that Candida was part of the lung mycobiome of various intubated and mechanically 

ventilated ICU patients with and without antibiotic therapy and with and without 

pneumonia. They also showed that admission to the ICU altered the lung mycobiome to 

be dominated by Candida, while antibiotics to treat pneumonia did not (132).  

Only a few culture-independent studies have been performed on the lung mycobiota of 

asthma patients. One study included 30 asthma patients and 13 control subjects (128). 

Around 50% of the reads from asthma patients were classified as Psathyrella and 

Malassezia spp.. Psathyrella candolleana, Malassezia pachydermatis, and Termitomyces 

clypeatus were overrepresented in asthma patients, while E. sinecaudum, S. alba, 

Cladosporium clasdosporioides, and V. polyspora showed a higher percentage of reads in 

the controls (128). Another closely related disease, COPD, is also understudied. 

6.3.1.3 The COPD mycobiome 

A summary of published papers on the COPD mycobiome is presented as part of Table 2. 

Little interest has been shown to date regarding the role of the mycobiome and 

development and disease progression of COPD. This is somewhat surprising, knowing 

that COPD possesses several factors that facilitate a rich fungal community. For instance, 

a disturbed airways architecture, bronchiectasis, use of ICS, and frequent use of 

antibiotics predispose for increased fungal growth, and all factors are quite frequent in 

COPD patients. HIV animal studies have related the fungus Pneumocystis to airway 

remodelling and inflammation (137, 138), and a human study has shown that HIV 

patients that are colonized with P. jirovecii have more airway obstruction (139). The P. 

jirovecii colonised patients in the latter study also had significantly higher levels of 

matrix metalloproteinases (MMPs). MMPs have been suggested to be involved in the 

47 



COPD pathogenesis. Thus, colonisation with Pneumocystis could result in the release of 

MMPs both from the fungi and the host lung, which eventually deteriorate the airway 

obstruction. Other fungi are largely unexplored. In fact, only two studies investigating the 

lung mycobiome by culture-independent techniques have included COPD patients. The 

first study was performed in 2015 by Cui et al. (113). OW, BAL, IS, and control samples 

were collected from 10 HIV-infected individuals with COPD and compared to HIV-

infected individuals with normal lung function. The primary fungus enriched in the lungs 

of individuals with HIV and COPD was Pneumocystis. But the fungal communities as a 

whole were also altered, and other fungi not yet reported to be associated with human 

disease were also overrepresented in the BAL of HIV-infected individuals with or 

without abnormal lung function. The second COPD mycobiome paper collected repeated 

sputum samples in patients with severe COPD hospitalised for acute exacerbations (108). 

None of the participants had a stable mycobiome during their hospital stay. Samples were 

dominated by Candida, Phialosimplex, Aspergillus, Penicillium, Cladosporium, and 

Eutypella. No comparisons were done to a healthy or stable COPD cohort. There is 

clearly a need for more studies on the COPD mycobiome. 

Some limitations apply for the few existing COPD mycobiome studies. Due to the risk of 

oropharyngeal contamination, it is suggested that sampling of the airways should be done 

using bronchoscopy with protected sampling (9). It is difficult to reach a sufficient 

number of participants which has been underlined by the two COPD studies including 10 

(113) and 6 (108) COPD patients. Furthermore, COPD patients in the paper by Cui et al.

were also infected with HIV, while the participants in Su et al.’s paper were sampled

during COPD exacerbations. No one has ever sampled non-immunocompromised

patients and compared to a large healthy control population. The lower airways are also

exposed to oral fungi through aspiration, and the sampling of the lung mycobiome is

prone to contamination from the oral mycobiome. The oral mycobiome should be

investigated in all lung mycobiome studies to account for contamination and explore

associations and (dis)similarities between the two mycobiomes. The healthy oral
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mycobiome was investigated with culture-independent techniques for the first time in 

2010 by Ghannoum et al. (116). They found Candida in 75% of individuals (28), but 

Cladosporium, Aureobasidium, Saccharomycetales, Aspergillus, Fusarium, and 

Cryptococcus were also frequently observed. Later research has been in good agreement 

with this result (29), only adding Malassezia as a commensal (30). Contamination from 

air and study equipment are also likely to occur in lung mycobiome studies, and studies 

should include contamination controls from every sample collection in their study design. 

Only one of the studies including COPD patients collected repeated samples (108). The 

sampling period only extended from 7 to 16 days, and patients experienced an 

exacerbation of severe COPD. Four other lung mycobiome studies have included 

sequential sampling (95, 127, 131, 132). However, studies differed in elapsed time 

between sampling, included different study groups, and had low sample sizes, which 

complicate a general conclusion. Longitudinal data is essential to reveal fungi’s 

implication in the progress of chronic respiratory diseases, and also to examine therapy 

outcome (135). 

Summarising data on the COPD mycobiome up to 16th of September 2017 (Table 2), 

there is clearly a need for larger studies with a well-characterised disease population, 

ample healthy controls, and longitudinal data. To facilitate bronchoscopy studies of this 

scale, it is also of interest to examine participation in research bronchoscopy studies both 

in the literature and by original data. 
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7 Objectives 
The objectives of this thesis were to: 

Investigate participation in research bronchoscopy studies by performing a literature 

review on participation motives and barriers to participation, response rates, and 

recruitment strategies in studies involving bronchoscopy with an emphasis on studies 

including COPD patients. 

Investigate response rates and reasons for non-response in a study with bronchoscopic 

sampling. Additionally, we aimed to report participation motives and examine 

demographic predictors for these motives.  

Characterise the oral and lung mycobiomes in health and disease by comparing subjects 

with COPD to subjects without lung or airway diseases. Furthermore, we sought to relate 

the taxonomy and alpha and beta diversity of the mycobiome to the use of ICS. 

Assess the stability of the lung mycobiome over time by comparing the lung mycobiome 

at the first and second bronchoscopy in 51 subjects with and without COPD. 
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8 Material and methods 
The current thesis is based on data from a systematic literature review on participation in 

research bronchoscopy studies, and research data from MicroCOPD. The study design of 

MicroCOPD was described in a previously published paper (140). MicroCOPD was 

performed to compare the lung microbiome in subjects with and without (controls) 

COPD. The initial goal was to include 300 subjects with COPD, and 200 subjects without 

COPD, aiming to be the world’s largest single-site study of the lung microbiome. As the 

project moved forwards, some subjects with asthma were also included. Sampling of the 

lungs was performed with bronchoscopy. Data collection was between April 11th, 2013, 

and June 5th, 2015, and the sequencing of the bacterial microbiome was completed in 

June 2017. The results from the latter have been published (9). A pilot study including 

eight COPD patients was conducted in 2012 for protocol improvement. Data from the 

pilot study was included in the paper examining participation, but not in the lung 

mycobiome papers. Eventually, 103 controls, 130 subjects with COPD, and 16 subjects 

with asthma participated in the MicroCOPD study. 

8.1 Systematic literature review 

Two systematic literature searches were performed between December 2013 and 

February 2014 in the PubMed search engine of the US National Library of Medicine 

(141) and the Excerpta Medica Database (Embase) provided by the medical publisher

Elsevier (142). Relevant search terms were found by completing a modified PICO

scheme (94) with colleagues, and by identifying search terms from papers in initial

searches. The PICO scheme is shown in Table 3 (reproduced from paper I published in

European Clinical Respiratory Journal).
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Table 3. Modified PICO scheme used for a literature review on participation in bronchoscopy studies 

P, population; I, intervention; C, comparison; O, outcomes; MeSH, medical subject headings; tw, text words. The P1 

column was excluded in the final search due to a paucity of results. 

COPD was intended to be part of the PICO scheme, but the term was excluded due to a 

low number of retrieved papers. PubMed uses so-called “medical subject headings” 

(MeSH) terms to index their papers (143). Relevant search terms were included as both 

MeSH terms and text words, meaning that we included two search strategies. In a text 

word search, PubMed scans the whole record of the article: title, abstract, list of applied 

MeSH terms, list of authors, and journal name, and papers containing the queried text 

word are retrieved (144). A more focused search can be done by using MeSH headings 

and subheadings (144). Because of the hierarchical organisation of MeSH terms, 

generalised MeSH terms include papers classified by specific MeSH term. A similar 

subject heading system called Emtree exists in Embase. By including subject headings 

with the explode function in Embase, the search will include the selected subject heading 
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and all of the narrower terms below the heading. The multipurpose function in Embase is 

a keyword search in several parts of a paper, including title, abstract, subject headings, 

and more. MeSH terms were thus replaced by explosion search, and text words were 

replaced by multipurpose terms in our Embase search. All titles and abstracts from the 

PubMed and Embase searches were reviewed and classified according to exclusion and 

inclusion criteria. Number of retrieved papers, and how they distributed according to the 

given classification criteria is presented in Table 4 (reproduced from paper I published in 

European Clinical Respiratory Journal). Papers from both searches were included for in-

depth review if they examined recruitment in bronchoscopy studies. Specifically, papers 

in English or a Scandinavian language including participation motives or perceived 

benefit of participation, non-response reasons, recruitment sources, and/or response rates 

in studies involving respiratory invasive procedures were included. Papers were not 

relevant if no humans were included, if they were case studies or secondary publications 

(literature reviews, reports, comments, letters, guidelines, newspaper articles, books, or 

book chapters), or if they had other main outcomes than participation. 

Table 4: Number of retrieved papers for a literature search in the databases PubMed and Embase on 

participation in research bronchoscopy studies according to classification criteria 

Secondary publications included reviews, expert panels, letters, guidelines, and so on. The Embase search excluded 

studies in languages other than English and Scandinavian languages, as well as non-human studies. 
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8.2 MicroCOPD 

8.2.1 Study design 
MicroCOPD was a single-centre observational study carried out in Bergen, Western 

Norway, at the outpatient clinic at the Department of Thoracic Medicine, Haukeland 

University Hospital. It was, to our knowledge, the largest single-centre lung microbiome 

study performed when the study enrolment ended. The MicroCOPD study included 249 

participants, with 323 performed bronchoscopies. That means, 62 participants underwent 

two bronchoscopies (re-bronchoscopy), and 12 participants had three bronchoscopies. 

The study was conducted in accordance with the declaration of Helsinki and guidelines 

for good clinical practice. The regional committee of medical ethics Norway north 

division (REK-NORD) approved the project (project number 2011/1307). Participants 

received no immediate benefit other than a thorough examination including a 

consultation with a physician, free transportation to the hospital, and reimbursement of 

parking expenses. All participants had to provide a written consent. Response rates and 

motives and non-response reasons for participation in research bronchoscopy studies, and 

investigation of the lung mycobiome was also explored as part of the MicroCOPD study. 

8.2.2 Study population 
Participants were mainly recruited from two previous large COPD studies performed by 

our research groups, namely The Bergen COPD cohort study (BCCS) (145), and the 

GeneCOPD study (146). Some COPD patients attending the outpatient clinic at 

Haukeland University Hospital for clinical purposes were asked to participate if deemed 

eligible. Furthermore, some participants were recruited among hospital staff at Haukeland 

University Hospital. A few individuals contacted our research staff and asked to be 

included through attention from a local media coverage. In total, 14 participants were 

recruited from the outpatient clinic and by own initiative, accounting for a small part of 

the total number of participants.  
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Individuals with and without COPD or asthma were invited to participate, but asthma 

patients were not included in the mycobiome analysis. Controls could either be current-, 

ex-, or never-smokers. Current smokers smoked at the time of participation, while ex-

smokers and never-smokers did not smoke at the time of participation. Ex-smokers had a 

history of smoking in the past, while never-smokers had never tried smoking. Potential 

participants were not eligible for participation if they had increased bleeding risk or poor 

cardiac status judged by the study physician, hypercapnia, hypoxemia despite oxygen 

supply, or were allergic against lidocaine. To investigate the stable state of the 

microbiome, we postponed participation for subjects that were currently on, or had 

recently had, a course of systemic antimicrobial treatment or systemic steroid treatment. 

Specifically, no participant should have used antibiotics the 2 weeks immediately 

preceding participation, and COPD patients should not have been admitted to hospital 

due to COPD last 2 weeks. Furthermore, participants with symptoms of an ongoing 

systemic or respiratory infection could not attend, but had to postpone participation. A 

modification of Anthonisen’s symptom criteria (147) were used to rule out or confirm a 

likely respiratory infection or acute exacerbation of COPD, where presence of two major 

symptoms (i.e. increased dyspnoea, colour change or increased sputum) or one major and 

one minor symptom (increased cough, sore throat, runny/stuffed nose, asthenia, wheezing 

from the chest) excluded attendance. A summary of exclusion and postponement criteria 

are given in Table 5. 

55 



Table 5: Exclusion criteria for participants with COPD and controls in the MicroCOPD study 

Exclusion criteria Detailed description 

Increased bleeding risk 
Double platelet inhibition, oral anticoagulant therapy, treatment with clopidogrel, ticagrelor, or low 

molecular weight heparin. Total platelet count < 75*109, INR > 2.0, or presence of a coagulopathy. 

Poor cardiac status 
Cardiac valve prosthesis, known severe pulmonary hypertension, or acute coronary syndrome during the 

preceding 6 weeks. 

Hypercapnia Arterial CO2 tension > 6.65 kPa 

Hypoxemia Arterial O2 tension < 8.0 kPa or SpO2 < 90% despite 3 litres/minute oxygen supply  

Comorbidities Control: Treatment for lung or airway disease 

Allergy Allergic against lidocaine or alfentanil 

Healthcare utilisation Antibiotic or systemic steroid use last two weeks. COPD: Admission due to COPD last two weeks. 

Infection 

Ongoing respiratory symptom exacerbation defined as either two major symptoms (increased dyspnoea, 

colour change, or increased sputum production) or one major and one minor symptom (increased cough, 

sore throat, runny/stuffed nose, asthenia, or wheezing from the chest).  

INR, International Normalized Ratio; CO2, carbon dioxide; kPa, kilopascal, O2, oxygen; SpO2, oxygen saturation as 

measured by pulse oximetry. Absolute exclusion criteria are given in bold, while participants with recent healthcare 

utilisation or infection had to postpone participation. 

Included COPD patients had a post-bronchodilator FEV1/FVC ratio below 0.7 according 

to the GOLD report (14). Subjects without COPD or other lung diseases and without 

significant airflow obstruction were defined as controls. In some instances, the 

differentiation between COPD and asthma can be challenging, and also differentiation 

between COPD stage I and healthy smoking controls. Diagnoses where the study 

physician was in doubt were re-evaluated by three experienced pulmonologists from our 

research group. These decisions were based on available spirometry, radiologic imaging, 

respiratory symptoms, and disease history. A small number of subjects were then re-

categorised: 6 “unclear asthma or COPD” were defined as COPD in 5 of the cases, and 

one control was re-categorised as COPD. A total of 22 controls providing samples for the 

fungal analyses had a ratio of FEV1/FVC lower than 0.7, but did not have symptoms of 

COPD and remained classified as controls. 

Theoretically, all participants included in the BCCS and the GeneCOPD study were 

eligible for participation. However, the majority were classified as ineligible, mainly due 
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to death or that the MicroCOPD inclusion period had ended. A flow chart of the inclusion 

process is presented in Figure 1 (reproduced from paper II published in Multidisciplinary 

Respiratory Medicine).  

Figure 1: Flow chart of the MicroCOPD study 

* Local media, hospital staff, and outpatient clinics were regarded as other sources.

In total, 235 potential participants accepted an invitation to participate, while an addition 

of 14 individuals from recruitment sources other than the BCCS and the GeneCOPD 

studies also participated.  

Subjects from previous COPD 
cohorts (Bergen COPD cohort study 

and GeneCOPD study)
n=2205 (possible participants)

Invited for participation
n=462 (invited subjects)

Regarded as ineligible
n=1743

Deceased: 578
Main study ended: 505
Travel distance: 278
Other reasons: 382

Positive response
n=323 (accepted invitation)

Study participation and 
bronchoscopy

n=235 (responders)

Declined after consideration
n=88 (late non-responders)

Participants from other sources*
n=14 (additional responders)

Declined participation
n=139 (initial non-responders)
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8.2.3 Data collection 
All data collection was performed at the outpatient clinic of the Department of Thoracic 

Medicine at Haukeland University Hospital over one or two days. Both biologic materials 

in the form of samples, and non-biologic information were collected. Collected 

information was used to create the so-called metadata, i.e. data about the data. This term 

is used in bioinformatics where the metadata describes co-variates that describe the 

samples, circumstances surrounding the sampling, which subject that provided the 

sample, demographics related to this subject, and more. The metadata is stored in a large 

tab-delimited file which is used for analysis.  

8.2.3.1 Metadata 

Most of the metadata was collected through a structured interview conducted by study 

personnel at the day of the bronchoscopy. However, invited individuals that declined to 

take part were asked about their reason not to participate in order to examine non-

response reasons. All study interviews were conducted in the same way as specified by a 

study questionnaire. The questionnaire was developed by our research group, mostly 

consisting of previously validated instruments, written in Norwegian (see 16.1 Appendix 

A. Questionnaire, MicroCOPD study). The questionnaire gathered information on:

- Potential contraindications, including questions on COPD exacerbation/lower

respiratory tract infection

- Current medications and vaccination status, including antibiotic and steroids

use

- Comorbidities

- Demographics (age, sex, marital status, children, education, menopause,

pets/livestock)

- Tobacco smoking and alcohol habits
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- Dyspnoea assessments (COPD assessment test (CAT) (148), modified Medical

Research Council dyspnoea scale (mMRC) (149) except that 100 yards was

replaced with 100 meters, and a Borg CR10 Scale® with 19 points as found in

the 2010 folder (150))

- Motivation for participation, and pre-procedural anxiety

- Participants’ perception of the bronchoscopy procedure

Perceptions of side effects and discomfort associated with the bronchoscopy was 

evaluated immediately after the procedure, two hours after the procedure, and after one 

week. The interviewer was instructed to ask these questions on perception exactly as they 

were written. An open question on motivation was first included in the study 

questionnaire from the fifth pilot patient and was asked immediately prior to the 

procedure. 

All subjects underwent a spirometry at least 15 minutes after bronchodilation with 400 

microgram salbutamol administered through a large-volume spacer prior to the 

bronchoscopy. Spirometry was performed with a Viasys Vmax ENCORE (VIASYS 

Healthcare, Inc. Conshohocken, PA, USA). Absolute numbers of FEV1 and FVC in litres 

were obtained, and values in percentage of predicted were calculated using Norwegian 

reference values from Johannessen et al. (151). Peripheral venous blood samples were 

drawn both before, and one hour after the bronchoscopy. An arterial blood gas was taken 

and analysed on a Radiometer ABL 800 flex (Radiometer Medical ApS, Brønshøj, 

Denmark). Anthropometric measures including weight, height, waist circumference, and 

bioelectrical impedance using Bodystat 1500 (Bodystat Ltd, Douglas, Isle of Man), and a 

blood pressure measurement were also collected with Omron HEM-757 (Omron 

Corporation, Kyoto 600-8530, Japan). Spirometry, blood samples, arterial blood gases, 

anthropometric measures, and blood pressure measurements were performed by trained 

study technicians. Participants were offered participation in a concurrent study which 

included a Siemens Somatom definition flash (Siemens Healthcare GmbH, Erlangen, 
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Germany) computed tomography (CT) scan of the heart and lungs. For the current 

studies, CT results were only used when we sought to clarify the participant status 

(COPD or asthma patients/controls). 

8.2.3.2 Sample collection 

An overview of the biological sample collection performed before, during, and after the 

bronchoscopy is given in Figure 2. 

Figure 2: Sample collection in the MicroCOPD study 

The figure is a modified version of Fig. 1 in the MicroCOPD study design paper (140). 

Samples from the lungs were obtained from given locations and in a given order, as 

specified in Figure 2. Note, however, that the left-right order was converted a while into 

the study implementation to look for microbiota differences related to sampling order. 

Biopsies were always taken last. 

8.2.3.2.1 Pre-bronchoscopic sample collection in MicroCOPD 

Stool samples, blood samples, OW, gingiva samples, and negative control samples (NCS) 

were collected before the bronchoscopy. Participants were given a faecal sample kit at 
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their first visit at the outpatient clinic. Samples were obtained at home, and brought to the 

next outpatient clinic visit. The gingival samples, blood samples, and stool samples were 

not utilised in the current papers. The OW sample was collected for each participant by 

gargling 10 millilitre (mL) of phosphate-buffered saline (PBS) water for 1 minute, and 

then delivered in a sterile Eppendorf tube. The PBS was taken from a sterile bottle which 

was opened just prior to the procedure, or within 24 hours of a previous procedure. A 

PBS sample was taken directly from the bottle to serve as a NCS to account for 

contamination. That means, that a NCS was obtained for each participant using the same 

PBS as for OW and the samples obtained during bronchoscopy. The PBS had been 

sterilised by sterile filtration (0.22 µm) and autoclaving at 121 °C for 15 minutes by the 

manufacturer. Gingival samples were obtained by inserting sterile paper points to the 

gingiva in 5 interdental spaces in both the upper and the lower jaw.  

8.2.3.2.2 Bronchoscopic sample collection in MicroCOPD 
All bronchoscopies were performed by one of six experienced study physicians and one 

of two trained study nurses. Participants had to be fasting for at least 4 hours. Prior to 

procedure initiation, participants were under surveillance using three-lead ECG-monitors, 

pulse oximetry, and non-invasive blood-pressure measurement. Our outpatient clinic uses 

Olympus bronchoscopes, and actual scope used per procedure was determined by 

availability and wanted diameter. The largest bronchoscope used (Olympus BF-XT160) 

had an outer diameter of 6.3 millimetre (mm), and working channel diameter of 3.2 mm. 

The smallest used (Olympus BF-P180 or similar) had an outer diameter of 4.9 mm, and 

inner working channel of 2.0 mm. Bronchoscopes were cleaned after each procedure. We 

performed at maximum three bronchoscopies per day, explaining the use of different 

bronchoscopes. Figure 3 includes pictures from the cleaning machine and the 

bronchoscopy storage cabinets at the outpatient clinic where all the bronchoscopies were 

performed. 
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The bronchoscopy was performed with the participant in supine position using oral 

access. Topical anaesthesia was applied using 10 milligram (mg)/dose lidocaine oral 

spray onto the base of the tongue and down the oropharynx pre-procedurally. 20 mg/mL 

lidocaine was delivered per-operatively through a catheter within the bronchoscope’s 

working channel to the vocal cords, trachea, and bronchi. All participants were offered 

light sedation with alfentanil, and midazolam could be given intravenously in case of 

great anxiety as evaluated by the study physician. No suction was applied prior to having 

entered the trachea. The bronchoscopic sampling was completed using three different 

sampling methods, namely protected specimen brushings (PSB), lavage (fractioned BAL 

and small-volume lavage (SML)), and endobronchial biopsies. Three wax-plug PSBs 

(Conmed, Utica, NY, USA) were obtained from the right lower lobe (RLL) and the left 

upper lobe. We installed two fractions of 50 mL PBS in the right middle lobe (RML) 

through a wax-tip protected catheter (Plastimed Combicath, prod number 58229.19) 

inserted in the bronchoscope working channel. PBS used for BAL was taken from the 

same procedure-specific PBS bottle used for NCS and OW (see 8.2.3.2.1 Pre-

bronchoscopic sample collection in MicroCOPD). Yield of the installed PBS was 

immediately collected by manual aspiration to the same 50 mL sterile syringe used for 

installation. For BAL to be performed, we required a measured FEV1 of at least 30% of 

predicted and above 1.0 litres. SVL was obtained by installing 20 mL PBS, and then 

suctioned into two serially connected lavage traps. A maximum of six biopsies from the 

RLL were taken. Three of the biopsies were placed in fixative for immunohistochemistry, 

and three were flash frozen in liquid Nitrogen.  

For mycobiome analysis, only OW, the second fraction of BAL, and a NCS was used for 

each participant. That means that for each participant we had three samples. However, 

due to minimum requirements in FEV1 measures for BAL collection, BAL samples were 

not obtained for all participants. In total, 206 participants provided OW, BAL, and a 

NCS, where 13 of the participants had asthma and were not included in fungal analysis. 

Thus, 579 samples were included in the mycobiome analyses. 
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8.2.4 Laboratory processing 
8.2.4.1 Fungal DNA extraction 

Fungal DNA was extracted together with bacterial DNA using a protocol developed in-

house by Tuyen Thi Van Hoang (University of Bergen) and professor Harald Gotten 

Wiker (University of Bergen). The protocol for DNA extraction, bacterial PCR, and 

bacterial sequencing of samples from the MicroCOPD study has been published (152, 

153). Only the DNA extraction step was used for the fungal samples. 

In summary, fungal DNA was extracted using a combination of enzymatic and 

mechanical lysis. We used 1800 microlitre (mcL) of the OW samples and the BAL 

samples, and 450 mcL of the NCS as input to the extraction process. We then treated 

each sample with an equal amount of Sputasol (Oxoid Limited, England) as the input 

sample volume, before samples were incubated at 37 °C for 15 minutes on a thermomixer 

(1000 rpm). Samples were centrifugated at 15700 x g at room temperature for 8 minutes. 

The resulting cell pellet was resuspended in 250 mcL PBS. Each sample were then 

treated with an enzyme cocktail solution consisting of 25 mcL lysozyme (10 mg/ml, 

Sigma-Aldrich, USA), 3 mcL mutanolysin (25 KU/mL, Sigma-Aldrich), 1.5 mcL 

lysostaphin (4000 U/mL, Sigma-Aldrich), and 20.5 mcL TE5 buffer (10 mM Tris-HCl, 5 

mM EDTA, pH 8). Samples were then incubated on a thermomixer at 37°C with shaking 

at 350 rpm for 1 hour. An additional centrifugation was performed to pellet any cells not 

lysed. The pellet was resuspended in 800 mcL CLS-TC buffer (FastDNA SPIN kit, MP 

Biomedicals, LLC, Solon, OH, USA). The resulting suspension was transferred to a 

Lysing Matrix A tube (FastDNA SPIN kit), and homogenised in the FastPrep-24 

instrument at a speed setting of 6.0 m/s for 40 seconds. Samples were centrifuged at 

14000 x g at room temperature for 10 minutes before the 650 mcL supernatant was 

combined with 300 mcL of the supernatant from the enzymatic lysis. The supernatant 

from the enzymatic lysis had not been treated with mechanical lysis to avoid any 

potential DNA shearing. Further processing included addition of Binding Matrix 

(FastDNA SPIN kit), incubation, spinning through a SPIN filter (FastDNA SPIN kit), and 
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addition of prepared SEWS-M (FastDNA SPIN kit) and DES (FastDNA SPIN kit) before 

incubation and centrifugation.  

DNA concentration, or yield, were measured using the Qubit quantification platform 

(Thermo Fisher Scientific Inc, Waltham, MA, USA). 

8.2.4.2 Fungal PCR and high-throughput sequencing 

The Illumina 16S Metagenomic Sequencing Library Preparation guide (Part no. 

15044223 Rev. B) served as a template for the sequencing library preparation, but with 

some minor modifications as noted in the following. First, an amplicon PCR was carried 

out targeting the fungal ITS1 region using primer set ITS1-30F/ITS1-217R, which 

sequences are GTCCCTGCCCTTTGTACACA and TTTCGCTGCGTTCTTCATCG 

(154). The number of cycles was increased from 25 to 28 in the amplicon PCR. An index 

PCR was then performed to add Illumina sequencing adapters and dual‐index barcodes. 

The number of cycles was increased from 8 to 9 in the index PCR. Libraries were then 

quantified again. Samples were loaded on an Illumina HiSeq sequencing platform 

(Illumina Inc., San Diego, CA, USA) and underwent 2x250 cycles of paired-end 

sequencing in three separate sequencing runs. The PCR and sequencing were performed 

by Sequentia Biotech SL (Barcelona, Spain, https://www.sequentiabiotech.com/). 

8.2.5 Bioinformatic analysis 
The Illumina sequencing generates a large number of data files with biological data and 

quality scores in a specific format called the FASTQ format. The generated data need to 

be processed with methods and software tools to make any sense. We chose to use 

selected tools (plugins) provided within the second version of Quantitative Insights into 

Microbial Ecology (QIIME 2) bioinformatic package for the upstream analysis (155), and 

suitable packages in R (63) for downstream analysis. 
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8.2.5.1 Upstream bioinformatic analysis 

FASTQ files created by the Illumina sequencing include up to thousands of lines with 

DNA sequences or reads. Due to the paired-end sequencing design in the current study, 

both ends of the fragment were sequenced in opposite directions. One FASTQ file is 

generated for the forward direction, and one FASTQ file is generated for the reverse 

direction. The forward and reverse read can be merged into a single read if they were 

sufficiently overlapping. Overlap in paired reads in our study were evaluated using 

BBMerge (156), and samples with a lack of overlapping forward and reverse reads were 

removed. Most of the remaining upstream bioinformatic analysis were then performed 

using QIIME 2 (versions 2019.1 and 2019.10).  

Fungal ITS primers are often located in the more conserved 18S/5.8S genes or the 

5.8S/28S genes flanking the ITS regions and keeping these more conserved regions has 

been shown to create mis-assignments in downstream analyses (157). We therefore 

trimmed our reads using the q2-itsxpress plugin specified for the fungal ITS1 region and 

clustered at 100% identity (157). We then performed a quality control of the trimmed 

reads using the Divisive Amplicon Denoising Algorithm version 2 (DADA2) q2-dada2 

plugin (158). DADA2 is used to perform a so-called denoising by filter out low-quality 

sequences and remove chimeric sequences and singletons. Chimeric sequences are 

spurious sequences made by combining fragments from different sequences during PCR. 

PCR amplification spontaneously abort from time to time. The resulting, incomplete 

amplicons could then serve as primers in the next PCR cycle, anneal to another template 

and generate an artificial sequence called a chimera. DADA2 utilise an algorithm that 

models the errors introduced during sequencing to infer the sample composition. The 

resulting inferred sample sequences are called exact amplicon sequence variants (ASVs). 

ASVs are replacing the formerly used operational taxonomic units (OTUs). OTUs are 

sequences that are clustered based on a similarity threshold chosen by each individual 

researcher for their projects, usually 97%, and then used as a proxy for taxa (47). The 

ASVs are suggested to detect more fine-scale variations than the OTUs (158). Finally, 
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DADA2 merge the paired-end reads. DADA2 was performed on a per-sequencing run 

basis with no truncation or further trimming in accordance with the recommendations in 

the DADA2 ITS pipeline workflow (159). 

Samples originating from different sequencing runs were merged after DADA2. 

Taxonomy was assigned to ASVs generated in DADA2 using the q2‐feature‐classifier 

(160) classify‐sklearn (161) with a UNITE database for fungi with clustering at 99%

threshold level (162). As mentioned in the background section (see 6.3 The mycobiome),

fungal databases are often incomplete, and a portion of the fungal ASVs are often

insufficiently assigned. We defined ASVs assigned only as Fungi at kingdom level, or

Fungi at kingdom level with unidentified phylum as unclassified. Unclassified ASVs

were subject for a manual examination. First, unassigned ASVs were checked using the

Nucleotide Basic Local Alignment Search Tool (BLASTN) program maintained by the

National Center for Biotechnology Information (NCBI) (163) in the Nucleotide database

(164). ASVs without hits were discarded, while accession identifiers from the remaining

unassigned ASVs were further investigated using NCBI’s Nucleotide database tool Batch

Entrez in order to filter on fungi (165, 166). Only fungal records from the Batch Entrez

results were included for further assessments. The corresponding ASVs to the fungal

Batch Entrez results were manually checked in detail using BLASTN. A max score is

generated in each BLASTN search to show how well the query sequence aligns with

sequences in the nucleotide database in terms of matched or mismatched nucleotides.

Based on the max score in BLASTN, a decision was made whether it was likely that the

ASV represented a fungus, and if so, what fungus it was. ASVs with ambiguous or non-

fungal BLASTN results, for instance plants, were discarded. ASVs with an unambiguous

BLASTN result with a high max score were repeatedly assigned to new taxonomic

assignments using UNITE databases with fungi or all eukaryotes with different threshold

levels (162, 167-169) (via q2-feature-classifier (160) classify-sklearn (161) and classify-

consensus-blast (170)). If one of the repeated taxonomic assignments matched the

decision made on the BLASTN result (i.e. a given fungus), the particular ASV was
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assigned to this particular taxonomy. A thorough examination of the unclassified are 

important to reduce inclusion of likely non-fungal ASV initially assigned as fungi.  

Despite removal of low-quality reads and chimeras by DADA2, some PCR and 

sequencing errors are likely to still exist in the data, potentially creating an unreasonable 

diversity. The rarest OTUs or ASVs are often discarded at an arbitrary level. LULU was 

created aiming to exclude artefactual OTUs without discarding rare, but real OTUs (171). 

It does so by investigating whether a rare OTU could be explained by co-occurrence with 

a more abundant OTU, and if so, subsequently merged. We curated our ASVs with 

LULU in R with 80% coverage and 84% identity in the database blast search, and the 

actual LULU curation with default settings (minimum_ratio_type = "min", 

minimum_ratio = 1, minimum_match = 84, minimum_relative_cooccurence = 0.95).  

ASVs present in only one sample, and ASVs with a total number of sequence reads less 

than 10 obtained across all samples, were filtered out.  

Mycobiome studies are impacted by contamination. Principally, this contamination can 

stem from the sampling procedure or the laboratory handling/analyses. Contaminants can 

be found in PCR reagents, and because of their ubiquity as airborne particles, fungi can 

also contaminate equipment and samples directly (172). The lower respiratory tract is a 

low-biomass environment, and mycobiome studies thus observe modest numbers of 

organisms in their samples (130). This makes contamination a particular concern. There 

seems to be no consensus how to handle contamination in mycobiome studies (172). We 

included NCS to evaluate contamination. However, different strategies exist on how to 

best utilise the information found in the NCS. Usage of bioinformatic tools is one 

solution. One of them, Decontam (173), has proven effective for contamination removal 

in lung microbiome sequencing data (174), and has recently been used by a COPD 

mycobiome study (175). We thus chose to identify likely contaminants with Decontam. 

Decontam was run with the prevalence-based approach, and a user defined 
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threshold of 0.5. A batched classification was used, meaning identification of 

contaminants was done on a per-sequencing run basis. Identified contaminants were 

removed from the fungal ASVs.  

Samples from re-bronchoscopies were only included in the longitudinal study (paper IV), 

and thus removed prior to the descriptive analyses (paper III). 

Flowchart Designer version 3 (http://flowchart.lofter.com) was used to create a flow 

chart of the bioinformatic analysis with remaining samples, sequences and ASVs as 

shown in Figure 4. Only samples from participants with two bronchoscopies were 

included in the longitudinal mycobiome analysis (paper IV), shown by the red boxes at 

the end of the flow chart (Figure 4).   
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Figure 4: Flow chart of the fungal upstream bioinformatic analysis in the MicroCOPD study 

DADA2: Divisive Amplicon Denoising Algorithm version 2, seqs: sequences, ASV: amplicon sequence variant. 

Samples were sequenced in three different runs before trimming and denoising. Data from different sequencing runs 

were merged, and then further processed to exclude presumed contaminants and spurious ASVs prior to analyses. 

Boxes with a red line is exclusively for the longitudinal mycobiome paper (paper IV). 
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8.2.5.1 Downstream and statistical analysis in MicroCOPD 

8.2.5.1.1 Participation analysis (paper II) 

All analyses were performed using Stata version 14 (176). We defined all participants 

that underwent a bronchoscopy as responders. Non-responders were divided in two – 

initial non-responders declined participation at first approach, while late non-responders 

reconsidered an initial acceptance to participate. Bivariate comparisons between 

responders and non-responders, and between initial non-responders and late non-

responders were performed using parametric (t-test) and non-parametric tests (chi-square 

test or Fisher’s exact test), when judged appropriate. Demographic continuous variables 

were reported as means with standard deviations, and demographic categorical variables 

as absolute numbers with percentages. 

Participants could provide as many unique participation motives as wanted, and all 

unique participation motives were merged into broader principal motives afterwards. 

These principal motives were further combined into three main groups:  

1. Altruism. A wish to help others or continue previous study participation, or a

willingness to contribute to science.

2. Personal benefit. A perceived hope to improve own health by participation.

3. Obligation. A subjective feeling of being bound to participate.

Unspecified reasons were labelled missing. We fitted bivariate logistic regression models 

on participation motives. We used “exclusive altruism” and “exclusive personal benefit” 

as binary variables. Participants that only had altruism as main motive or only personal 

benefit as main motive were labelled 1 in the respective variables. If participants had 

more than two main motives, or had obligation as main motive, they were coded “0” on 

the binary variables. Variables were included in the model in a step-wise manner, and 

covariates with a p less than 0.20 were included in multivariate models. Age and FEV1 in 

percentage of predicted values were treated as continuous variables, but divided by 10 to 
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provide ratios for an increase of 10 units. Smoking habits were included in the logistic 

regression model as a binary variable with current smoking and never-/ex-smoking.  

For other analyses, never-smokers and ex-smokers were handled as separate groups. Pack 

years were calculated by dividing number of cigarettes per day by 20, and then multiplied 

by years smoked. Percentage of predicted values of FEV1 and FVC, as well as the 

FEV1/FVC-ratio, were used as measures of lung function. Dyspnoea was assessed by the 

mMRC (149). A response rate was defined as the number of bronchoscopies performed 

divided by the number of invited subjects. COPD and asthma were merged as obstructive 

lung diseases in the response rate calculations, and calculations were stratified by sex and 

participant category (control/obstructive lung disease). Frequencies of given non-

response reasons were compared using Chi-square test or Fisher’s exact test stratified by 

time of non-response decision and participant category. 

8.2.5.1.2 Descriptive mycobiome analysis (paper III) 

Demographics were analysed using Stata version 15 (177). Smokers were divided into 

daily smokers, ex-smokers, and never-smokers in demographic analysis, but ex-smokers 

and never-smokers were merged into one category for taxonomic composition analysis 

and diversity analysis. Alpha and beta diversity analyses including participants with 

COPD were stratified by GOLD stage (14). Age and FEV1 in percentage of predicted 

were treated as binary variables (below or above and equal to 70 years for age, and below 

or above and equal to 80% for FEV1) in diversity analysis and differential 

abundance/distribution testing. Fungal ASVs from the upstream bioinformatic processes 

were collapsed at genus and phylum level before taxonomic bar plot creation and 

differential abundance/distribution testing either by the q2-taxa barplot or the q2-taxa 

collapse commands. No collapsing was done prior to the diversity analysis.  

Taxonomic bar plots, rank abundance plots, and Basidiomycota/Ascomycota-ratios were 

made using the packages readr (178), janitor (179), tibble (180), SOfun (181), dplyr 
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(182), tidyr (183), glmnet (184), and ggplot2 (185) in R (63). Taxonomic bar plots were 

displayed at subject level, and divided by sample type, participant group, and use of ICS. 

Medians of the Basidiomycota/Ascomycota-ratios were calculated in R (63).  

The q2-diversity core-metrics plugin was used to generate several diversity metrics, 

including Shannon index for alpha diversity analysis. Samples were rarefied (subsampled 

without replacement) to 1000 sequences per sample before making the diversity metrics. 

Samples with a sequence count below this value were discarded in the diversity analysis. 

The rarefaction depth (i.e. 1000 sequences) was chosen based on the plateau in alpha 

rarefaction plots, and multiple testing with different values. We aimed to find a value as 

high as possible while excluding a minimum of samples. Statistical differences in alpha 

diversity measured with Shannon index was tested in R using Kruskal-Wallis for 

unpaired variables (age, sex, FEV1, smoking habits, ICS use, and participant group with 

GOLD stages), and Wilcoxon signed-rank test for paired analyses (sample type, i.e. OW 

vs BAL). Shannon index comparisons on participant group and sample type were plotted 

using the R packages ggpubr (186) and gginnards (187). Both the Bray-Curtis 

dissimilarity and the Jaccard similarity coefficient were calculated from the rarefied ASV 

table using the vegan package in R (188). The R package ape was used to create PCoA 

plot values corrected for negative eigenvalues with Cailliez method (189). Differences in 

beta diversity between age, sex, FEV1, smoking habits, and ICS use were tested with 

permuted analysis of variance (PERMANOVA) on OW and BAL separately, and for 

controls, COPD patients, and both participants groups combined. Comparisons on age, 

sex, FEV1, smoking habits, and ICS use were performed unadjusted. We also tested for 

beta diversity differences between study groups in BAL samples both unadjusted and 

adjusted for age, sex, and FEV1. Differences in spread was tested with permuted 

multivariate analysis of beta-dispersion (PERMDISP) for all variables. PERMANOVA 

tests were run with 10000 permutations, except for pairwise comparisons in which 999 

were used. PERMDISP tests had 1000 permutations. Bray-Curtis and Jaccard distances 

were shown in PCoA plots divided by participant group and ICS use. Furthermore, PCoA 
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plots divided by sample type were created with and without Procrustes transformation 

with 999 permutations restricted to the three first axes from the PCoA result. The 

summed squares of deviations (M2) and p-values from the Procrustes analysis were given 

in the plots. PERMANOVA, PERMDISP, and Procrustes were analysed using the vegan 

package in R (188), while ggpubr (186) was used to create the PCoA plots.  

Differences in distributions and relative abundances on group level were evaluated by the 

Microbiome Differential Distribution Analysis (MicrobiomeDDA) omnibus test (190), 

the second version of analysis of composition of microbiomes (ANCOM v2, 

https://github.com/FrederickHuangLin/ANCOM) (191), and the second version of 

ANOVA-Like Differential Expression (ALDEx2) (192-194) at genus level with a 

processing step using tibble (180). All three tests were used to compare participants 

groups, while only ANCOM v2 and ALDEx2 were used to compare sample types due to 

the possibility to define a paired design. Differences in relative abundances on subject 

level, i.e. between samples provided by the same participant, were evaluated by 

calculating the Yue-Clayton measure of dissimilarity (1-θYC) (195). Relative abundances 

were plotted with the calculated Yue-Clayton measures between OW and negative 

control samples, BAL and negative control samples, and OW and BAL. The R packages 

tibble (180), tidyverse (196), reshape2 (197), randomcoloR (198), and ggpubr (199) were 

used to create the plots.  

8.2.5.1.3 Longitudinal mycobiome analysis (paper IV) 

The demographic analyses were similar in the longitudinal mycobiome paper (paper IV) 

as in the descriptive mycobiome paper (paper III), except that intercurrent antibiotic use 

and time between procedures were also reported. Variables were analysed with data from 

the first bronchoscopy, while demographics from the second time point were not shown. 

Demographics were analysed with Stata 16 (200). Taxonomic bar plots were generated 

using the R packages dplyr (182), tibble (180), tidyr (183), readr (178), glmnet (184), and 

ggplot2 (185) in R (63), and displayed at genus level after collapsing with the q2-taxa 
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barplot command. Taxonomic bar plots were stratified by participant group and use of 

antibiotics in the time between the bronchoscopies. Only the nine most abundant taxa 

were visualised individually, while taxa with low abundances were merged and visualised 

as Others. Additionally, genus level taxonomy from each bronchoscopy was plotted for 

each participant separately, labelled with the corresponding Yue-Clayton measure. The 

Yue-Clayton measures were calculated as in the descriptive paper (paper III), and plots 

were generated with the R packages tibble (180), tidyverse (196), reshape2 (197), 

randomcoloR (198), and ggpubr (199).  

Shannon indexes were estimated using q2-diversity core-metrics after samples were 

rarefied (subsampled without replacement) to 2000 sequences per sample. To visualise 

changes in alpha diversity, Shannon indexes were plotted with lines between Shannon 

indexes from the same participant, i.e between Shannon indexes from the first and the 

second bronchoscopy. The plot was made with ggpubr (186), and gginnards (187) in R 

(63). We compared Shannon indexes from the first and the second bronchoscopy using 

Wilcoxon signed-rank test for paired analysis stratified by sample type. The q2-diversity 

core-metrics command provided a rarefied table that were used to make beta diversity 

metrics (Bray-Curtis dissimilarity and Jaccard similarity coefficient) using the vegan 

package in R (188). Plot values used to create PCoA plots were made using the ape R 

package (189). Negative eigenvalues were corrected with Cailliez method. PCoA plots 

using Bray-Curtis or Jaccard were made using ggpubr (199). We made plots coloured by 

bronchoscopy number and sample type, intercurrent antibiotic use and sample type, and 

bronchoscopy number and intercurrent antibiotic use for both OW and BAL. The PCoA 

plots coloured by bronchoscopy number and intercurrent antibiotic use for OW and BAL 

were also plotted with a Procrustes transformation with 999 permutations using the vegan 

package in R (188). The Procrustes analysis was restricted to the three first axes in the 

PCoA result, and M2 and p-values were given in the plots with Procrustes transformation. 
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Pairwise distances between a participant’s samples from the first and the second 

bronchoscopy were calculated from both Bray-Curtis and Jaccard distance matrixes using 

q2‐longitudinal (201). Calculated pairwise distances were grouped on sample type in one 

plot with colours indicating intercurrent antibiotic use, and comparisons were done 

between sample types using Kruskal-Wallis test. Pairwise distances were grouped on 

time between bronchoscopies measured in days in another plot. The plot grouped on time 

between bronchoscopies were divided in OW and BAL, and we added a different colour 

for each distance metric type. Pairwise distance plots were generated with ggpubr (199).  
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9 Results 
9.1 Paper I – Literature review on participation 

Studies involving a semi-invasive procedure like bronchoscopy is inevitable associated 

with some discomfort. During recruitment, possible participants are informed about the 

procedure and consequently, recruitment to bronchoscopy studies could be challenging. 

Furthermore, one might wonder why at all people choose to participate in studies 

involving a bronchoscopy. 

As organizers of a large research bronchoscopy study, we wanted to investigate 

participation in bronchoscopy studies in detail. As a preparation for this, we performed a 

systematic literature review on this subject. 

We did a systematic literature search on participation in research bronchoscopy studies in 

February 2014 using the search engines of PubMed and EMBASE. There was clearly a 

lack of information on participation in research bronchoscopy studies in the literature, 

and after a classification of 1,976 resulting papers, only seven relevant papers were 

included. Still, some main findings were worthy of attention: 

1) Participants were driven by four main motives, namely personal benefit,

altruism, perceived importance of research, and obedience to the authority of

the researchers.

2) Response rates varied from 3 to 73%.

3) The invasive nature of the procedure influenced potential participants’ view on

participation negatively.

4) Radio advertisement was the most effective recruitment strategy.

The literature review also showed difficulties for bronchoscopy studies in recruiting 

control subjects and younger individuals. No studies included participants with COPD. 
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9.2 Paper II – Participation in the MicroCOPD study 

The MicroCOPD study was initiated to compare the lung microbiome in subjects with 

COPD and controls. As one of the largest single-centre bronchoscopy studies on the lung 

microbiome, the study gave the opportunity to investigate participation in detail.  

Participation was thus examined as a sub-study, and included examination of 

participants’ motivation for participation, reasons to decline participation, and 

calculations of response rates. Participation motives and non-response reasons were 

collected using open questions. We compared responders and non-responders, and non-

responders declining participation immediately with those declining after some waiting 

time. Motives were merged into broader categories called altruism, personal benefit, and 

obligation, and we fitted a bivariate logistic regression model using altruism and personal 

benefit as outcome. 

The MicroCOPD study had an overall response rate of 50.9%. The response rate in men 

was significantly higher than the response rate in women (56.5% vs 44.8%, p-value 0.01), 

and there was no difference in the response rates for subjects without obstructive lung 

disease and subjects with COPD or asthma. There was a higher percentage of participants 

with obstructive lung diseases among the late non-responders compared with initial non-

responders, although non-significant (p-value 0.06). 

Altruism as participation motive was mentioned by 67.3% of the participants, while 

52.2% stated personal benefit as important. Men were less likely to state altruism as their 

main participation motive. The most given non-response reasons were fears and worries 

related to study participation (40% of initial non-responders). More late than initial non-

responders stated worries and fears as their non-response reason (34.1% vs 16.5%, p-

value < 0.01). Health issues was a frequently given non-response reason, and especially 

so for subjects with obstructive lung diseases (27.3% vs 9.5%, p-value < 0.01). 
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9.3 Paper III – Descriptive mycobiome analysis 

The fungal part of the microbiome is understudied, and we set out to characterise and 

compare the oral and pulmonary mycobiomes in a large cohort of participants without 

lung disease and participants with COPD. Additionally, we examined if OW samples 

differed from BAL samples, and if participants using ICS had a different lung 

mycobiome compared to participants not using ICS. 

We created taxonomic bar plots grouped by sample type, participant group, and ICS use. 

Alpha diversity was calculated using Shannon index, and Bray-Curtis dissimilarity and 

Jaccard similarity coefficient were estimated to assess beta diversity using PCoA plots 

with and without a Procrustes transformation. We calculated the Yue-Clayton measure of 

dissimilarity between pairs of samples, i.e. OW and BAL samples. Three different 

differential abundance/distribution tests were used to look for differences in sample type, 

participant group, sex, age, smoking habits, and ICS use. 

Taxonomies from OW differed compared to taxonomies from BAL with a mean Yue-

Clayton measure of 0.63. OW and BAL taxonomies were dominated by Candida, but 

there was significantly more Candida in OW compared to BAL for both participant 

categories. Malassezia and Sarocladium were other common fungi found in both OW and 

BAL samples. No difference was seen in alpha diversity between OW and BAL samples, 

but PCoA plots before and after symmetric Procrustes transformation indicated that there 

were differences in the composition between OW and BAL samples from the same 

individual. We observed no difference in neither alpha nor beta diversity between 

participant groups, but there seemed to be a tendency towards higher proportions of 

Basidiomycota in participants with COPD compared to controls both in OW and BAL. 

Differential abundance/distribution tests provided varying results when comparing taxa 

between the participant categories, and thus, no consistent differences were found. The 

results indicated that ICS use did not seem to significantly affect the lung mycobiome. 
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9.4 Paper IV – Longitudinal mycobiome analysis 

To our knowledge, no study has published data on the stability of the lung mycobiome in 

subjects without lung disease, while few studies have performed repeated sampling of the 

COPD lung mycobiome. Thus, we aimed to report on the stability of the oral and lung 

mycobiome in participants with and without COPD. We also aimed to examine the 

potential effects on the mycobiomes from intercurrent antibiotic use. 

We performed repeated sampling with bronchoscopy in 30 participants with and 21 

without COPD. Taxonomic bar plots were generated grouped by bronchoscopy number, 

study group, and intercurrent antibiotic use. We calculated Shannon index to compare 

alpha diversity between repeated bronchoscopies, and the Yue-Clayton measure of 

dissimilarity between each sample pair from the first and the second bronchoscopy. Bray-

Curtis dissimilarity and Jaccard similarity coefficient were estimated, and differences in 

beta diversity between repeated bronchoscopies were presented as PCoA plots with and 

without a Procrustes transformation. Pairwise distances between the first and the second 

bronchoscopy were calculated and grouped on sample type and time between procedures. 

We observed that the oral mycobiome showed a higher stability compared to the lung 

mycobiome based on three observations: 

1) A visual impression of higher instability in BAL compared to OW samples.

2) BAL had a higher average Yue-Clayton measure than OW samples (0.69 vs 0.22).

3) Significantly higher pairwise distances in BAL samples compared to OW sample

using the Bray-Curtis distance metric (p-value < 0.01).

We found no evidence of differences in Shannon indexes or obvious clusters in PCoA 

plots between repeated bronchoscopies. Intercurrent antibiotic use and time between 

bronchoscopies did not seem to influence the mycobiomes. 
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10 Discussion of methodology 
A plethora of choices related to study designs, generation of variables, and statistical tests 

are made by the researchers. These different approaches might yield different results. 

Consistency in data analysis was examined in a study by Silberzahn et al. (202). They 

recruited 29 research teams to analyse the same data set to address whether soccer 

referees are more likely to give red cards to dark-skin-toned players than to light-skin-

toned players. Twenty teams (69%) found a statistically significant positive effect, and 9 

teams (31%) did not observe a significant relationship. With Silberzahn et al.’s study in 

mind, this section focuses on methodological issues for the current thesis. 

10.1 Study design 

One of the first choices that researchers are faced with, is the choice of study design, i.e. 

how the study should be conducted. To conclude on a suitable study design is of 

particular importance because a poorly designed study can never be recovered, whereas a 

poorly analysed study can be reanalysed to reach a meaningful conclusion (203). 

Research designs can simplified be classified into descriptive or analytical, where 

analytical studies attempt to analyse and draw inferences while descriptive are more 

summarising (204). Analytical studies can further be divided into observational if no 

exposure is determined or experimental if exposure is determined (204). Ultimately, 

studies can be cross-sectional, based on cases, or cohorts (204). Choosing an appropriate 

study design is a necessity to generate reliable and valid data. In contrast, inappropriate 

study designs generate poor data and are prone to biases. 

10.1.1 Reliability, validity, and bias 
Measurements of reliability and validity are important factors to assess the quality of a 

research study. Measurement reliability relates to the consistency of the measure (205). If 

a researcher repeats the study measurements under consistent conditions and receives 

similar results, we say that the measurements have high reliability. But measurements are 
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useless if they consequently evaluate inaccurately. Measurement validity refers to the 

extent to which a concept is accurately measured (205). A high measurement validity 

means we measure what we intend to measure. The combination of high measurement 

validity and reliability creates data that we trust. Similarly, a valid study design is needed 

to draw valid conclusions. The validity of study designs is commonly divided into 

internal and external study validity. Internal study validity assesses how well the study 

can draw conclusion regarding the study population, while external study validity covers 

the generalisation of the study results to a larger population (206). Skewness in data, or 

biases, are known to influence study validity. Biases are systematic errors that arise from 

the study methods (206), and can be divided into different types. Selection bias comes 

from any error in selecting the study participants and/or from factors affecting the study 

participation (206), and becomes a problem if the selected study participants are 

significantly different compared to subjects not included in the study. Information bias 

occurs during data collection and handling and creates systematic differences from the 

truth (207). Information biases could occur as a result of misclassification, observer 

variation, or bias in recall, and is a probable bias within observational studies (207).  

10.1.2 Study design of the MicroCOPD study (paper II, III, and IV) 
MicroCOPD was a single-centre observational study with repeated sampling for a sub-

cohort of the participants. The aim was to examine the microbiome in participants with 

and without COPD. Strictly speaking, the aim made participant category an exposure 

while characteristics associated with the mycobiome became the outcome. Paper III 

utilised data from the first sampling time point. Because the analyses in paper III relied 

on samples at a single point in time, we could say that data in paper III mimics data taken 

from a study with a cross-sectional design. A limitation with cross-sectional studies is 

that they cannot determine any causality, because it cannot be demonstrated that the 

exposure preceded the outcome (208). Although we defined participant category as 

exposure and mycobiome characteristics as outcome above, we are unable to determine 
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any direction of potential associations in paper III. For instance, we cannot say whether 

characteristics with the lung mycobiome are involved in the COPD pathogenesis or if 

COPD disease features alters the lung mycobiome. However, cross-sectional studies are 

suitable to reveal potential associations, they are relatively easy to conduct, inexpensive, 

and can be carried out in a short time frame (203). As discussed above, observational 

studies are prone to information biases. The use of a questionnaire creates several 

participant-reported variables, and the risk of recall biases is present. Recall biases will 

be further discussed later (see 10.2.2.1 Collection of metadata).  

The MicroCOPD study is, to our knowledge, the largest single-centre study on the COPD 

lung mycobiome using targeted amplicon sequencing. Another COPD mycobiome study 

has included 337 participants with stable COPD and 47 non-diseased controls (175). In 

this latter COPD study, participants were recruited across five hospital sites which could 

introduce experimental bias. However, a strength of the multi-centre study is that all 

experiments were done at a single site, and that all samples were quality-controlled on 

arrival at the site where experiments were performed. We did not perform any sample 

size calculation for the MicroCOPD study, but we had a larger number of participants 

compared to the other published single-centre COPD lung mycobiome studies (108, 113). 

Participants in the MicroCOPD study were recruited from residents in the same county, 

and were represented by a quite heterogeneous population. We included a thorough 

examination of diversity and differential abundance/distribution testing to look for 

potential confounding effects from sex, age, smoking habits, FEV1 in percentage of 

predicted, and ICS use, but no obvious effects were seen. Although the study design 

facilitated high internal validity, we acknowledge that generalisation to a larger 

population (external validity) is somewhat limited due to the confined recruitment area.  

Motivation for participation, response rates, and non-response reasons were examined in 

the MicroCOPD population as a sub-study (paper II). While originally being designed as 

a microbiome study, the study design has some limitations in regards to analyses of 
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participation. The two main recruitment sources for the MicroCOPD study were the 

earlier conducted BCCS (145) and the GeneCOPD study (146). For paper II, inviting 

individuals with a known history of willingness to participate in previous research, we 

cannot exclude an introduction of selection bias with an increase in response rates as 

consequence. On the other hand, previous participation could frighten or tire out 

individuals, making future participation less likely.  

Paper IV examined the stability of the lung mycobiome in participants with and without 

COPD, utilising that 62 participants underwent bronchoscopy twice. The longitudinal 

study design was well-suited to look for intra-individual differences in the mycobiome. A 

limitation of the study design is that participants underwent repeated bronchoscopies with 

different time intervals, which could introduce biases. However, the interval was random, 

and did not differ systematically between the groups of interest. Furthermore, we did not 

observe any trend in pairwise distances drawn from Bray-Curtis and Jaccard distance 

matrices, suggesting that beta diversity was little affected by elapsed intercurrent time. 

10.1.3 Study design of paper I 
For paper I, a literature search was conducted to summarise knowledge on participation 

in research bronchoscopy studies using both the PubMed search engine and Embase. We 

used a modified PICO scheme to detect relevant search terms. Specifically, keywords 

were found by looking at MeSH terms from relevant papers and by discussion with a 

colleague. More information on the literature search process is found in the Material and 

methods section (see 8.1 Systematic literature review). Retrieved papers were sifted 

based on predetermined classification criteria. For instance, we decided that only papers 

written in English or a Scandinavian language should be included. In total, 102 papers 

were omitted due to language. The importance of choosing appropriate databases has 

been emphasised in a paper on successful literature searching, as each database will 

contain unique material (209). We did only include PubMed and Embase in our literature 
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search, but acknowledge that several other databases common in medical sciences exist, 

such as Medline (Ovid), Scopus, and Web of Science (209). Thus, we cannot exclude that 

we have missed relevant literature in another language or in another database. 

The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 

statement has been developed to improve the reporting of systematic reviews and meta-

analyses (210). Using PRISMA to review paper I, we admit that the search could have 

been described in more detail in order to be repeated by others. More focus on biases in 

the included papers would also have been beneficial, including publication bias, a bias 

occurring when the hypothesis and significance of the results have influenced the 

publication process. A study has described the steps involved to undertake a new or 

update an existing Cochrane review (211). Critical steps, including study selection, data 

extraction, and data analysis are suggested to be repeated by a second author. This was 

not performed in paper I, although close supervision was maintained during the whole 

review process. It could be that relevant papers were omitted due to a lack of 

understanding, considering that I only had finished two years at medical school when 

study selection was done. Analysis and writing were done in the following year. 

Nevertheless, the study topic was not too clinically difficult to understand, and included 

papers were written without use of a detailed medical language. Additionally, only seven 

papers were included for in-depth analysis, enabling that considerable time could be 

spent on each of them. We did not publish any protocol for the literature review, which 

runs the risk of making decision during the review process that had not been discussed 

before the process started. This could have introduced biases (211). However, exclusion- 

and inclusion criteria were pre-specified before the classification began. 

One benefit from our literature review is that we included keywords both as subject 

headings and as text words in PubMed or explosion searches and multipurpose terms in 

Embase, thereby broadening our search. It may take a few months before subject 
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headings are added to an article, which confirms the importance of including text words 

and multipurpose terms. 

10.2 Data collection 

The data collection for this thesis is anchored in the MicroCOPD study. In the 

MicroCOPD study, a self-developed questionnaire was used to interview participants on 

numerous important exposures (see 8.2.3.1 Metadata and 16.1 Appendix A. 

Questionnaire, MicroCOPD study). Data from this questionnaire was used in both 

participation and mycobiome analyses. In addition, biological material from the 

bronchoscopic sampling was processed and sequenced to be used in the mycobiome 

papers (paper III and IV). 

10.2.1 Data collection for participation analyses (paper II) 
We examined motivation to participate in the MicroCOPD study by an open question 

asked in the following way:  

“Why did you wish to take part in this project?” 

The question was asked some minutes before the procedure. The question is by no means 

exhaustive, especially considering that we coded the answers into categories at time of 

analysis. It would have been interesting to perform a profound psychological analysis of 

participation motives, for instance as a qualitative study. Such detailed analyses were 

outside the scope of the MicroCOPD study. Previous studies published at the time of data 

collection for the MicroCOPD study utilised different ways of examining participation 

motives in research bronchoscopy studies. Questionnaires with open and/or closed 

questions were used by three studies (86, 88, 92), while four studies used interviews 

either face-to-face or by telephone (87, 88, 90, 91). Only one study collected information 

by use of focus groups (88). The benefit with closed questions, i.e. pre-defined answer 
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options, is the ease in classification afterwards, but one might miss important nuances in 

answers. We made an open question to reveal such nuances. More information and 

follow-up questions could perhaps be gained from focus groups. However, as 

experienced by Kerrison et al., recruitment for such groups can be difficult (88). Addition 

of follow-up questions in our study could have strengthened results, especially since 

8.2% of answers were missing. Some of these missing values were a result of too few 

details in the answer, such as “wanted to participate” or “was asked”. It should be 

mentioned that different study personnel were involved in data collection, including 

participation motives. But all had been instructed to ask the question as written in the 

questionnaire. Participants in the MicroCOPD study were asked for participation motives 

in the operating room just prior to the procedure. Chudleigh et al. asked parents for 

motives for including their children in the study at two time points, first early in the study 

and then again late in the study (92). They observed that parents got less confident that 

participation was safe, and that they were less motivated by achieving a benefit for their 

child later in the study (92). This suggests that the timing of the question had an impact 

on the outcome. The measurement validity of the participation motive variable in the 

MicroCOPD study could thus been increased if we had asked the participants both at 

recruitment and at the procedure day. The bronchoscopic procedure was not mentioned in 

the question text, and one could argue that answers are not specific for bronchoscopy 

procedures. But the question was asked as part of a 13 pages long questionnaire (see 16.1 

Appendix A. Questionnaire, MicroCOPD study) focusing on the consecutive 

bronchoscopy, and it was asked immediately prior to the procedure. Thus, we expected 

that participants considered the bronchoscopy study for this particular question. 

Data on non-response was collected from approached subjects that declined participation. 

Most of the non-responders declined at first approach, while some declined participation 

after some waiting time. Non-responders were asked directly by one of the study 

physicians what reason that prevented them from participation using an open question. 

Non-response reasons were categorised later. A total of 21.6% of initial non-responders 
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missed non-response reason in paper II, and there were significantly more missing in 

non-response reasons from the initial non-responders compared to late non-responders. 

Unfortunately, not all of the recruiting study physicians had been informed that we 

collected non-response reasons early in the recruitment. Most participants were scheduled 

for bronchoscopy at that time and few had been bronchoscoped. As it is likely that most 

late non-responders decline participation close up to their scheduled bronchoscopy, 

missing information is likely to impact initial non-responders most. It would have been 

interesting to know more about the non-responders. Unfortunately, due to privacy 

regulations, this was not possible. Non-responders were previous participants of BSCC 

and GeneCOPD, and some information was still available. Data were however limited to 

age, sex, and diagnosis. 

10.2.2 Data collection for mycobiome analyses (paper III and IV) 
The mycobiome papers are based on analyses of the OW and BAL samples, and NCS. In 

addition to biological samples, so-called sample metadata is collected in mycobiome 

studies. Metadata are “data about data” and are essential to gain biological insight from 

our data. Examples of common metadata are sex, age, diagnosis, and medication use. 

Metadata is thus specific to a given mycobiome study, and it was collected by use of a 

questionnaire for paper III and IV.  

10.2.2.1 Collection of metadata 

Participant category, or diagnosis, was an important variable in the metadata. Participants 

with COPD in the MicroCOPD study had a chronic airway obstruction (low FEV1/FVC) 

in presence of respiratory symptoms. Additionally, 22 controls had a ratio of FEV1/FVC 

lower than 0.7, i.e. airflow obstruction. Airflow obstruction detected by spirometry is 

required to establish a COPD diagnosis, but the individual in whom a COPD diagnosis is 

considered should also have relevant symptoms and a history of risk factor exposure 

according to the GOLD report (14). Consequently, it is justified that more than an 
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obstructive spirometry is needed to establish a COPD diagnosis. Airflow limitation could 

in fact be a result of advancing age (212-214). The 22 controls with airflow obstruction 

did not experience sufficient symptoms to be put in the COPD group. Still, these 22 

obstructive controls were of particular interest, and were subject for some additional 

analyses (Table 6). 

Table 6. Comparison of obstructive controls and participants with COPD 

Variable Obstructive controls, n=22 COPD, n=93 Comparison 

Age, mean years (SD) 68.9 (7.1) 67.4 (7.6) p-value = 0.4047

FEV1, mean % of 

predicted (SD) 97.4 (13.1) 61.1 (17.3) 

p-value < 0.0001

Pack years, mean (SD) 28.5 (25.8) 30.0 (17.9) p-value = 0.7421

Smoking status (%) 

Daily 13 (59.1) 22 (23.7) 

Ex-smokers 6 (27.3) 70 (75.3) p-value < 0.01

Never 3 (13.6) 1 (1.1) 

COPD, chronic obstructive pulmonary disease, SD, standard deviation, FEV1, forced expiratory volume in 1 second. 

Age, FEV1 in percentage of predicted, and pack years were tested with a t-test. Smoking status was tested with 

Fisher’s exact test.  

Obstructive controls had significantly higher FEV1 values than participants with COPD. 

The obstructive controls had a pretty high smoking burden, but less than participants with 

COPD if we merge daily and ex-smokers. Albeit non-significant, obstructive controls 

were also older.  

The lower limit of normal (LLN) is an alternative to the fixed FEV1/FVC ratio cut-off. 

The LLN is taken to be equal to the 5th percentile of the frequency distribution in a 

reference population (215). The fixed ratio can increase false positive results in males 

aged above 40 years and females above 50 years, in addition to overdiagnosis of COPD 

in asymptomatic elderly never-smokers (215). Our definition of COPD relied on the fixed 

ratio, which thus could have led to overdiagnosis of COPD in our elderly population. 
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However, we also required that participants with a FEV1/FVC < 0.7 had symptoms that 

corresponded to COPD to support a clinical diagnosis of COPD. Our research team 

included pulmonologists with long experience in COPD treatment, and all diagnoses 

were verified based on spirometry, radiologic imaging, respiratory symptoms, and 

disease history. We believe that a thorough individual examination in the MicroCOPD 

study thus prevented overdiagnosis of COPD. We did not perform BAL in participants 

with a measured FEV1 below 30% of predicted and below 1.0 litres due to safety 

concerns. Participants without a BAL sample were excluded in the mycobiome papers 

(paper III and IV), thus participants with a very low FEV1 are not included in these 

analyses. This limited comparison based on severity. We also excluded subjects that were 

currently on, or had recently had, a course of systemic antimicrobial treatment or 

systemic steroid treatment, and subjects with symptoms of an infection. By doing so, we 

were only able to investigate the stable state of the mycobiome. 

Inclusion of a questionnaire might introduce biases, especially recall bias (see 10.1.1 

Reliability, validity, and bias). Participants were asked about current and previous 

smoking habits and previous antibiotics treatment. Precise smoking exposure and dates 

are difficult to remember, and variables were not objectively verified. If tobacco exposure 

was more vividly remembered in subjects with COPD, this could lead to an incorrect 

calculation of pack years. Information on previous antibiotic treatment was used to create 

the intercurrent antibiotic variable (i.e. antibiotic treatment between two sampling time 

points). It is possible that participants that frequently require antibiotic treatment, for 

instance participants with COPD with frequent exacerbations, might be more inclined to 

forget a treatment, and are thus subject to recall bias.  

10.2.2.2 Collection of procedural samples 

An ideal lung sample should be possible to collect safely. Essentially, this means without 

the use of an invasive procedure. Collecting lung samples without an invasive procedure 

is difficult of natural reasons, considering the lungs’ anatomic location. Furthermore, the 
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researcher needs to be certain that the sample truly represents the lung environment and is 

not too much blurred by contamination. Finally, the sampling method should be 

achievable, both in terms of costs and feasibility. That means, it should not require too 

much of the participants, as we do not want to introduce sample differences based on 

participants’ effort. Some common sampling methods are discussed below. 

Sputum samples is a common way of sampling the lungs and can either be spontaneous 

or induced. IS samples are obtained by having subjects cough after inhalation of a 

hypertonic saline solution and then expel the sputum from the mouth into a container 

(69). There are several advantages of choosing sputum samples. They are easy to 

perform, non-invasive and thus possible to perform during exacerbations, and 

inexpensive. However, sputum samples are the most vulnerable to upper airway 

contamination due to its direct contact with microbes at the passage through the mouth. 

Furthermore, sputum samples proximal and distal airways in all parts of both lungs, in 

contrast to BAL and biopsies. It has indeed been shown that IS mycobiomes are distinct 

from the oral and BAL mycobiome (113). Different environmental conditions are 

proposed to exist in different portions of the lungs (42), and such regional differences 

will be indistinguishable in a sputum sample (69).  

Bronchoscopic sampling is an alternative to sputum samples, and is usually performed by 

lavage, biopsies, or brushes. BAL samples from a subset of the alveoli (69), thereby 

providing researchers with better control of where obtained samples are collected. It also 

means that, in contrast to sputum samples, BAL might miss regional differences entirely 

due to its limited sampling area (69). Dickson et al. have proposed that BAL from a 

single segment is sufficient to characterise the healthy lung microbiome (42). But it has 

also been shown that different microbiomes have been found in different lung lobes of 

COPD patients (77), questioning the validity of including BAL samples from only one 

lobe in analyses of diseased lungs. The invasiveness and costs associated with a 

bronchoscopy are motives for not including BAL in the study design of a microbiome 
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study. Still, our research group has shown that bronchoscopy generally is a safe 

procedure with few serious complications (216, 217). It is associated with some 

discomfort, though. There are also no agreed standards for bronchoscopic sampling in 

microbiome studies. Whether the amount of returned BAL volume impact analyses 

remain to be examined. BAL is often performed fractionated. What total volume one 

should obtain, and whether analyses should be performed for fractions separately or 

pooled, are considerations that remain to agree on. A benefit of BAL however is the 

possibility to perform analyses of the local immune response such as cell counts, 

measures of inflammation markers, and more. 

Mycobiome analyses in the MicroCOPD study (paper III and IV) were based on the 

second fraction of BAL from the RML. The entire MicroCOPD study included four 

different sample types to sample the lungs, namely PSB, BAL, SVL, and biopsies. We 

expected that sampling would have an impact on the surroundings. Thus, we chose 

different sampling sites for the different sample types to avoid any potential impact from 

earlier sampling, which explains why PSB was taken from the RLL and BAL was taken 

from RML. Dickson et al. have proposed that microaspiration is more likely to influence 

the right lung due to the vertically oriented right main bronchus (42). Additionally, if 

different mycobiomes are present in different parts of the lungs, similarly to what is 

proposed for bacteria in healthy state (42) or in disease (77), we might have decreased the 

measurement validity in the mycobiome analyses by use of RML only. We included BAL 

rather than sputum samples in the MicroCOPD study as we considered contamination 

from upper airways on BAL to be less. However, the risk of contamination in BAL 

samples is not negligible. In fact, contamination in mycobiome studies is an issue which 

requires special attention.  

Contamination in a microbiome setting has been defined as “the observation of sequence 

reads in a sample coming from microbes that were not originally part of that sample” 

(218). Contamination could be introduced in different parts of a mycobiome study, for 
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instance during the procedure. Except for sampling of lung explants, sampling modalities 

of the lung are impacted from the upper airways and the oral cavity, either through direct 

contact with the sample (sputum samples) or the sampling device (bronchoscopic 

samples). Considering the low levels of fungi in the lungs (172), only minor disturbances 

from the high-biomass oral cavity could significantly impact lung mycobiome samples. 

In fact, it is assumed that bacteria vastly outnumber fungi on must human mucosal 

surfaces (59), making contamination particularly problematic for mycobiome studies. 

The extent of upper airway contamination on bronchoscopic samples is somewhat 

unresolved. Some claim that lung samples are confounded by bronchoscopic carryover 

(71), while others claim that there is only minor impact from pharyngeal contamination 

(70, 219). While no conclusion exists on the impact of upper airway contamination, our 

research group has shown that protected BAL, as used in the MicroCOPD study, 

minimises such contamination (9). Only the second fraction of the BAL was used in the 

mycobiome analyses in the MicroCOPD study (paper III and IV). The paper by our 

research group has also shown high similarity between the first and the second fraction of 

BAL, suggesting little impact from choice of fraction. Although, in theory, use of a 

second fraction could be a method to reduce impact from potential bronchoscopic 

carryover (71). All other COPD mycobiome studies have included sputum samples in 

their analyses (108, 113, 175), rendering them more vulnerable to oral contamination, 

although Cui et al. additionally collected BAL (113). The largest study collected samples 

as a combination of spontaneous and induced sputum (175). A bacterial microbiome 

study found different microbiota profiles using both spontaneous and induced sputum 

(220), meaning that unwanted variation might have been introduced in the mycobiome 

study by Tiew et al. (175). 

As discussed above, lungs are exposed to microorganisms through microaspiration. 

Consequently, lung samples will have a similarity to oral samples (70, 71), and it remains 

a challenge to separate contamination from true exposures. We thus included an oral 

wash in the MicroCOPD study for representation of the upper airway microbiota. 
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Inclusion of proximal and distal sampling sites in the lung would probably have increased 

our possibility to examine the role of microaspiration in shaping the lung mycobiome, but 

only BAL was included in the mycobiome analyses. Nevertheless, we are not aware of 

other mycobiome studies comparing OW and protected BAL.  

Except for contamination introduced by the procedure, mycobiome studies are also prone 

to laboratory contamination. The laboratory work and the associated contamination will 

be discussed in the following. 

10.3 Laboratory work 

10.3.1 Laboratory contamination 
Studies have now emphasised that microbiome samples are being contaminated during 

laboratory processing steps (for instance from DNA extraction kits, PCR reagents, 

technician, or microbes in air) (67, 174). This especially applies to the low-biomass 

mycobiome studies, as greatest impact is expected to be on samples with low microbial 

loads (67). Furthermore, it has been suggested that that fungal DNA can often 

contaminate PCR reagents (221). Fungi is also found in both indoor dust samples and 

outdoor air (222) and might be a contamination source during preparation. Laboratory 

contamination runs the risk of introducing false positive in mycobiome studies and 

should not be overseen. 

In silico methods are developed to handle laboratory contamination. One option is to 

remove sequences below a user-specified relative abundance threshold, employed by for 

instance Bittinger et al. (130). The rationale behind removing low-abundance ASVs is 

that these probably represent spurious sequences and not true biological signals (223). 

Still, rare ASVs could in fact appear in low abundances, and the method would remove 

these ASVs rather than abundant contaminants that are the most likely to interfere with 

subsequent analysis (173). Another option is to remove sequences found in NCS. NCS 
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are subject to index cross-talk from abundant true sequences found in other samples 

discussed more in detailed later (224). Removing true sequences, possibly with a high 

abundance, makes this decontamination option an unwanted pitfall. A third 

decontamination option would be to remove taxa commonly known to often appear as 

contamination. Contamination specific for a given study is however not removed by the 

common contaminant method (173).  

In 2018, Davis et al. published a decontamination tool especially developed for marker-

gene and metagenomic sequencing called Decontam (173). Decontam is based on two 

assumptions: 1) That sequences from contaminating taxa are likely to have frequencies 

that inversely correlate with sample DNA concentration, and 2) sequences from 

contaminating taxa are likely to have higher prevalence in control samples than in true 

samples (173). Both assumptions can be used to identify presumed contaminants, and we 

employed the second assumption to do a so-called prevalence-based contaminant 

identification in our mycobiome analyses (paper III and IV). The prevalence-based 

decontamination method is based on the prevalence of ASVs in NCS compared to actual 

samples, for instance BAL samples. The relationship between prevalence in NCS and 

actual samples creates a score for each taxon, which is later used in comparison to a user-

defined threshold. A taxon is classified as a contaminant if the score is less than the 

threshold. The default threshold is 0.1 but should be set individually for each study. A 

higher threshold results in a more stringent contamination identification, meaning more 

taxa are classified as contaminants. The interpretation of a threshold of 0.5 is intuitively 

easy to interpret, because taxa would be classified as contaminants if present in a higher 

fraction of NCS than actual samples. The prevalence-based decontamination is feasible 

even in low-biomass environments (173), which suits our mycobiome lung samples well. 

The Decontam algorithm also includes an approach consisting of identifying non-

contaminants in very low-biomass samples where samples are expected to constitute of a 

larger fraction of contamination than actual sequences. We chose the approach to identify 

contaminants, but we acknowledge that the non-contaminant approach perhaps would 

95 



have been more feasible. However, we observed several differences between our BAL 

and OW samples compared to the NCS including lower DNA yields, lower sequence 

reads, and differences in taxonomy, suggesting contaminant identification was 

appropriate. 

As suggested by the Decontam authors, we did multiple comparisons before deciding on 

a threshold. Scores from Decontam were plotted for each comparison, and presumed 

contaminants were compared. Specifically, we tested with and without prior filtering of 

low abundance ASVs, with all sequencing runs together or separately, with OW and BAL 

together or OW and BAL separately, curation with LULU prior or after Decontam, and 

with threshold 0.1 or 0.5. Minor differences were seen from all parameters except for 

different thresholds. A threshold of 0.5 naturally identified more contaminants than 0.1. 

Our final model included a pre-filtering step of low abundance ASVs after LULU 

curation, and Decontam performed on each sample type separately with a 0.5 threshold. 

We did not run Decontam on each sequencing run independently. However, inherent bias 

is expected across sequencing runs, and thus include different contaminants. Decontam 

allows users to do a batched classification in which case scores are generated 

independently within each batch. We specified sequencing runs as batches in our 

mycobiome analyses. The Decontam algorithm has been confirmed to work well on the 

16S rRNA data from the MicroCOPD study (174), but it has not been frequently 

employed by mycobiome studies. However, one recent study on the COPD mycobiome 

did also use Decontam with a prevalence threshold of 0.5 for contamination identification 

(175), adding some indication that Decontam could work well in mycobiome studies as 

well. Although it has been suggested that five to six NCS are sufficient to identify most 

contaminants in Decontam (173), sensitivity increases with more samples. A NCS was 

collected for each participant in the MicroCOPD study, creating a solid foundation for 

contaminant identification. In comparison, the other mycobiome study using Decontam 

only included 4 DNA extraction blanks and 10 sequencing blanks from a total of 437 

participants with COPD and 47 healthy controls (175).  
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NCS were not made specifically for each step in the study, i.e. we did not include a NCS 

from the PBS, the DNA extraction kit, and the sequencing separately. Nevertheless, our 

PBS NCS were subject to the same laboratory protocol and sequencing as the procedural 

samples, and we therefore expect contamination from each step of the study to be 

included. In addition to be used in Decontam, our NCS were subject to detailed analyses. 

Taxonomy was assigned to all samples, and a Yue-Clayton measurement was calculated 

between the NCS and OW, and NCS and BAL from each participant. In addition, 

diversity and differential abundance analysis were performed on the different sample 

types. We observed lower read counts in NCS compared to OW and BAL in every part of 

the bioinformatic workflow, and a significantly higher Shannon index in NCS compared 

to both OW and BAL. Sample types clustered differently in Procrustes plots with M2 

above 0.85 for both comparisons, although not significant. The M2 statistic increases with 

less concordance, and a M2 above 0.3 is often interpreted as unsimilar. The mean value of 

Yue-Clayton measurements was 0.65 for OW and NCS sample pairs, and 0.73 for BAL 

and NCS. The Yue-Clayton measure is 0 with perfect similarity and 1 with perfect 

dissimilarity. There is however no settled threshold to define similarity/dissimilarity 

using Yue-Clayton measures, but previous studies have used 0.2 as cut-off for taxonomic 

differences (220, 225). Using this cut-off value, the results indicate dissimilarities 

between our OW and BAL samples compared to NCS. The observed differences in read 

counts, DNA yields, and diversity give additional evidence that the NCS mycobiome 

profiles differed from those made from OW and BAL. 

During library preparation, DNA fragments are labelled with indexes so that sequences 

can be traced back to the sample they belonged to. Problems arise if sequences are 

assigned to an incorrect sample, commonly referred to as index misassignment or index 

cross-talk (224). Index cross-talk can be introduced by several mechanisms, including 

adapter errors from the manufacturer, experimental/sample handling issues, sequencing 

or bioinformatic errors, or carryover from previous runs on the same instrument (224). In 

order to reduce the impact from cross-talk, it is recommended to use dual index adapters 
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(226), and apply quality filtering of the index sequences (227). We did not apply any 

specific strategy to handle index cross-talk in our data except dual indexes, but we 

removed ASVs present in only one sample, and ASVs with less than 10 sequence reads 

across all samples, also for NCS. It is likely to assume that misassigned sequences 

constitute a minor fraction of a sample’s total sequences. By including the most abundant 

taxa only, we thus expect impact from index cross-talk to be reduced, but recognise that it 

will not resolve the issue entirely. Other COPD mycobiome studies (108, 113, 175), 

however, have not commented on cross-talk contamination, suggesting index cross-talk 

might be an overlooked, albeit important, limitation of mycobiome studies. Index cross-

talk could also contribute to contamination of NCS, potentially limiting their use in 

decontamination. Index cross-talk does not seem to limit contaminant identification using 

the prevalence method in Decontam, but Decontam is not designed to remove such cross-

talk contamination (173).  

Despite the inherent risk of contamination, laboratory work cannot be avoided, and the 

following sections will focus on the different parts. 

10.3.2 Fungal DNA extraction and viability 
The fungal cell wall is unique to the fungi, and is primarily composed of chitin, glucans, 

mannans, and glycoproteins (228). The components of the fungal cell wall create 

mechanical strength, and different combinations yields varying strengths (228). In 

contrast to fungi, bacterial cell walls consist of peptidoglycan (229). Due to the 

differences between bacterial and fungal cell walls, methodologies to extract bacterial 

DNA might not be suitable for fungal DNA extraction. Fungal cell walls are more 

difficult to open compared to the bacterial cell wall and might require chemical or 

mechanical lysis as a pre-extraction step (135). For instance, by employing a harsh bead 

breaking step, Dupuy et al. showed that Malassezia was a prominent community member 

of the oral mycobiome that had previously been overlooked (230). Use of mechanical 
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disintegration, however, runs the risk of shearing the DNA, in addition to unwanted 

release of DNA from other sources than fungi (69). A recent study comparing five 

protocols for assessing bacterial and fungal DNA recovery found that inclusion of a bead 

beating step increased the recovery of certain fungal taxa, including Malasseziaceae, 

Aspergillaceae, Cladosporiaceae, and Dipodascaceae (231). Bead-beating combined 

with pre-treatment consisting of magnetic stirring in PBS, and inclusion of 

Phenol:Chloroform:Isoamyl alcohol, was suggested to reduce the proportion of dead 

microorganisms. Nevertheless, whether observed taxa from amplicon marker studies are 

living and reproducing in the lungs remains a controversy. Sample pre-treatment with 

propidium monoazide (PMA) has been suggested to facilitate viable microorganism 

detection. No significant differences were observed between PMA-treated and untreated 

samples in a study by Nguyen et al. (133), but samples were collected from 5 CF patients 

with acute exacerbations, thus limiting generalisability.  

The fungal DNA extraction in the MicroCOPD study was based on a protocol developed 

primarily for bacterial DNA extraction. However, our protocol included lysis both by 

enzymes and bead beating. We observed that Malassezia, which is well-known for its 

thick cell wall (230), was one of the most abundant fungi both in OW and BAL. 

Observations of Malassezia thus suggests that our included DNA extraction protocol was 

suited to open robust cell walls. We did not include any other quality control of the DNA 

extraction except quantifying DNA yield by Qubit. The DNA extraction protocols 

employed in the three other COPD mycobiome studies were not consistent across studies 

(108, 113, 175), nor to our study. Using different DNA extractions is just one of several 

factors limiting comparison across different mycobiome studies. 

10.3.3 PCR 
The PCR procedure can introduce biases in a mycobiome study, especially with 

increasing PCR cycles. In a paper by Salter et al., it was shown that by increasing the 
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number of PCR cycles from 20 to 40, a weaker signal from the sample microbiota and an 

increased signal from contamination was seen (67). In a study by our research group, 

however, it was shown that the impact from contamination did not vary much between a 

30 PCR-cycle and a 45-PCR cycle setup (174). Our research group has recently examined 

the impact of a one vs two-step PCR protocol using bacterial data (232). The results from 

the study indicated an increased number of small ASVs when following a two-step PCR 

protocol.  

We used a two-step PCR approach in our studies as recommended by the Illumina 

sequencing platform. Taking the one vs two-step study above into consideration, we 

realise the possibility of introducing a PCR related bias using this setup. The study also 

emphasised that Decontam did not resolve differences in results between sequencing 

setups (232). We do believe, though, that further investigations should be done to fully 

reveal the impact from different PCR protocols, in particular with fungal data included. 

We modified the Illumina 16S Metagenomic Sequencing Library Preparation guide (Part 

no. 15044223 Rev. B) by increasing the first PCR step from 25 to 28, and the second 

index PCR from 8 to 9 cycles. By increasing the first PCR step, i.e. the amplicon PCR, 

higher levels of DNA are provided for sequencing, which might be important in low 

biomass mycobiome studies. As discussed above, the literature is conflicting regarding 

the impact from increasing PCR cycles (67, 174). The percentage of increase in PCR 

cycles for our mycobiome data was nonetheless low compared to the setup in study 

reporting increased signal from contamination with more cycles (67). 

10.3.4 Sequencing 
The mycobiome papers in the current thesis relied on PCR-amplified gene fragments, or 

amplicons, with the help of primers with broad fungal specificity. In mycobiome studies, 

these primers are usually targeted against the gene encoding the 18S region, or the ITS 

regions located between the 18S and 26S rRNA genes (69). The 18S rRNA gene is more 
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conserved across eukaryotes, and consequently, any human DNA in samples will also be 

amplified (69). Use of the 18S approach has somewhat diminished in recent years, and 

the ITS has been suggested as the recommended universal barcoding target for fungi 

(117). No consensus seems to prevail whether ITS1 or ITS2 should be used, though (233-

235). A drawback of ITS amplification is that different primer pairs are biased towards 

particular taxa (236). Furthermore, ITS regions of different fungi vary in length (59) and 

are present in variable copy numbers in fungal genomes (172). Length variation could 

introduce biases during PCR amplification and sequencing approaches (59), while the 

copy number variation hampers accurate quantitative analyses (172). Additionally, 

because it is a non-coding region, ITS sequences cannot be used to determine 

phylogenetic relationships between unidentified fungi (69). Lastly, species resolution is 

poor using the ITS1 marker gene (117, 172), and analyses are more reliable at genus 

level. 

We chose to amplify the ITS1 region in our analyses. An earlier comparison between 

18S, ITS1, ITS2, and large subunit rRNA found an overrepresentation of C. albicans for 

all targets using a mock community (233). For this comparison, primer pair ITS1F – ITS2 

was used to amplify the ITS1 region. Our primer set, the ITS1-30F/ITS1-217R, has 

shown a further increase in the coverage of Candida compared to the ITS1F – ITS2 

primer pair (154). Overestimation of Candida is of particular interest due to the Candida 

dominance seen in our studies. We did a pilot project prior to the sequencing to compare 

three different primer pairs for ITS1 amplification, namely ITS1-ITS2, ITS1-ITS4, and 

ITS1-30F/ITS1-217R. We included four of our real samples, and compared percentage of 

unknown reads, taxonomy, and diversity. The ITS1-30F/ITS1-217R primer pair came out 

as most precise and sensitive. This argues for our choice of the ITS1-30F/ITS1-217R 

primer pair. However, it does not justify why we chose ITS1, and not ITS2, as has been 

argued for in some papers published after our sequencing was done (233, 235, 237). In 

hindsight, amplifying both the ITS1 and ITS2 regions, and perhaps even doing shotgun 

sequencing, could have added additional information to our analyses. In reality, many 
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decisions in research, especially on study design, are the results of compromise between 

desired methods and available resources. Sequencing is expensive, which is one of the 

reasons mycobiome studies frequently sequence ITS1 or ITS2 alone. Amplification of 

ITS1 using ITS1F-ITS2 has failed to generate sequences for particular taxa, for instance 

Yarrowia lipolytica and Malassezia (233). Based on unambiguous BLASTN results in 

our results, we concluded that Y. lipolytica was represented in our unclassified sequences. 

The sequences account for a small part of the total count though but could have impacted 

presence/absence metrics like Jaccard. Additionally, several Malassezia ASVs were 

found. 

We did not adjust for copy number variation, which could impact analyses based on 

abundance. It is suggested that researchers should not solely rely on read numbers to 

determine relative abundances (172), because high copy numbers result in 

overestimations. Furthermore, we did not include any phylogenetic diversity metrics, and 

we did all analyses except diversity analyses on genus level. Diversity analyses were 

done on ASV level because the diversity metrics used (Shannon, Bray-Curtis, and 

Jaccard) are independent of taxonomy. 

10.3.5 Batch effects due to DNA extraction and sequencing 
Batch effects can be defined as unwanted variation introduced by confounding factors 

that are not related to any factors of interest, and where the term batch itself refers to one 

of the levels of a particular confounding factor (238). Age and sex could for instance be a 

confounding variable in a microbiome study. In the current thesis, we were concerned 

about batch effects due to inherent biases expected from the use of different sequencing 

runs and different DNA extraction kit lots. We noticed that the number of ASVs after 

merging of the three sequencing runs was close to the sum of ASVs found in the separate 

runs, suggesting new, potentially spurious ASVs, to be introduced with each sequencing 

run. We expected a sum closer to the number of ASVs found in the sequencing run with 
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the highest number of ASVs. Thus, analyses of batch effects were done on our processed 

data. No differences in Shannon indexes were observed between sequencing runs. There 

seemed to be some clustering on sequencing run in PCoA plots, especially for BAL 

samples, but variance explained was low for the first and second axis. Pairwise 

PERMANOVA tests on differences in beta diversity between sequencing runs were hard 

to interpret due to low R-squared, contradictory results for Jaccard and Bray-Curtis 

metrics, and significant differences in dispersion. ANCOM v2, MicrobiomeDDA, and 

ALDEx2 reported Sarocladium to be significantly different in abundance/distribution 

between sequencing run 1 and 2 for OW and BAL separately, but ideally no taxa should 

be different. Based on PCoA plots and PERMANOVA we do not believe batch effects 

were introduced from the different DNA extraction kit lots. However, these analyses 

were somewhat limited due to many missing values. We missed information on 

extraction kit used for 114 of 230 samples included for diversity analysis after 

rarefaction. To summarise, no apparent batch effect was seen due to the inclusion of 

multiple sequencing runs and different DNA extraction kit lots, but could not be entirely 

ruled out, particularly for sequencing run 1 and 2 for BAL samples. Groups of interest for 

the analyses in the current thesis, i.e. sample types and participant groups, were present in 

each sequencing run, and samples from a given participant were always sequenced in the 

same run. Due to no obvious batch effect, and a robust sequencing design, no further 

correction was done to adjust for batch effects from sequencing runs or DNA extraction 

kit lots.   

We included a thorough examination of diversity and differential abundance/distribution 

testing to look for potential confounding effects from several important clinical 

parameters. No apparent effects were seen on potential confounding effects from several 

important clinical parameters like sex, age, FEV1 in percentage of predicted, smoking, or 

ICS use. 
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10.4 Bioinformatics 

A mycobiome study generates a large amount of data that needs to be processed 

bioinformatically prior to analyses. Different software packages have been developed, but 

most are directed towards bacterial data. That means, applying default settings of 

common software packages on fungal data could lead to errors, especially regarding 

classification at species level (172). Lack of a standard processing method leaves 

researchers to freely choose between an excess of bioinformatical tools with multiple 

parameter settings. A bioinformatic workflow of our mycobiome analyses is included in 

the Material and methods section (see Figure 4 in 8.2.5.1 Upstream bioinformatic 

analysis), summarising which tools that were included.  

ITSxpress is a bioinformatical tool developed for marker gene studies using ITS (157). 

The two ITS regions are flanked by conserved regions and separated by one intercalary 

conserved region (154). It is shown that removal of the conserved regions improves 

taxonomic classification (239). ITSxpress trims the FASTQ reads to filter out conserved 

parts. We chose to cluster at 100% identity in the ITSxpress software command, as this 

parameter is chosen by the author of ITSxpress in the QIIME 2 tutorial on ITSxpress 

(240). Because of the length variation found in the ITS regions, another issue called read-

through might happen if the read length is longer than the ITS region. The read will then 

extend into the opposite primer, leaving the reverse complement of the primers in the 

sequencing read. As the priming regions are often found in the conserved regions, we 

anticipated read-through to be handled by ITSxpress.    

Errors are frequent from amplicon sequencing, and it is difficult to distinguish such errors 

from real biological differences. Sequencing errors generally increase towards the read 

end, especially in reverse reads (241), and are often evaluated by quality scores (242). 

PCR errors, such as chimeras (see 8.2.5.1 Upstream bioinformatic analysis), are also 

common. Quality control methods are available to correct errors. DADA2 is one of the 
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amplicon-specific quality control methods (173). It was previously agreement between 

microbiome researchers that sequences should be clustered together based on their 

similarity, usually on a 97% similarity threshold. These clusters were called OTUs. OTUs 

reduced the rate at which errors were misinterpreted as biological variation but ignored 

fine-scale variation (173). In contrast, DADA2 identifies such fine-scale variations to 

create ASVs, resolving differences of as little as one nucleotide. DADA2 calculates a 

probability that the abundance of reads of a given sequence could be explained by errors 

in the sequencing, or if there are more than could be explained by errors. We applied 

some specific parameter options to fit fungal data. Specifically, we skipped trimming of 

the start of the read (primers) and truncation. ITS length variability is biological, and 

truncation could remove real ITS variants that were shorter than the chosen truncation 

length (159). However, the QIIME 2 ITS fungal analysis tutorial applies truncation of the 

sequencing read ends due to the decreased sequencing quality mentioned above (243). It 

was not obvious to us which solution we should choose. However, our quality scores 

were high, with median values above 30 at base position 250 for all forward reads and 

two of three reverse reads. The quality score of the reverse read in sequencing run 3 was 

somewhat lower, with a median quality score of 22 at the 250 base position, meaning a 

base call accuracy of 99% (242). We thus chose to abstain from truncation of our reads as 

recommended by the DADA2 ITS tutorial. It has been suggested that DADA2 inflates 

alpha diversity, both by outputting rare organisms, but also false positives (244). Filtering 

of low abundance ASVs, as done in the current thesis, can reduce the number of 

unmatched ASVs generated by DADA2 (244). An inflation would impact metrics not 

taking abundance of ASVs into account, for instance the Jaccard similarity coefficient, 

which could explain observed differences between the Bray-Curtis and Jaccard metrics in 

our data. 

The result of the DADA2 process is an ASV table, a table of the number of times each 

ASV appears in each sample. A mycobiome study should compare abundances of ASVs 

between groups of interest to look for differential abundant ASV, i.e. ASVs that differ 
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significantly in abundance. Abundance data in an ASV table is, however, not directly 

comparable. Each sample has its own sequencing depth or sum of abundances. Imagine 

that a theoretical sample A has a Candida abundance of 200 reads and a sequencing 

depth of 250, while another sample B has 14,000 Candida reads and a sequencing depth 

of 70,000. Candida read count is higher in sample B. But the proportion of Candida 

reads is lower (relative abundances are 80% in sample A and 20% in sample B). 

Abundance tests are thus tests of proportions. Since proportions always add to one, a 

change in a taxon’s relative abundance will change the relative abundances of the 

remaining taxa. In other words, microbiome datasets are compositional (245). This 

complicates analysis because we are unable to deduce absolute changes of taxa in a given 

sample without quantitative information about total microbial load (246). Several 

techniques have been proposed to deal with this compositionality, including rarefaction 

(subsampling without replacement to a given sampling depth), median, and quantile 

normalization, but methods lack sufficient control of false discovery rates (246). Methods 

specifically developed for differential abundance testing has shown high false positive 

rates (245). We included three differential abundance tests with distinct foundations. 

ANCOM v2 uses Aitchison’s log-ratio based methodology (191), ALDEx2 applies the 

centred log-ratio values from a modelled probability distribution of the dataset (192-194), 

while MicrobiomeDDA is built on a zero-inflated negative binomial regression model 

(190). We expected that inclusion of multiple tests would strengthen the reliability of the 

results, especially since we only considered taxa found by all three tests as a positive 

result. But we do admit that it can have the opposite effect, creating confusion only. The 

three methods test for differential abundance of taxa on group level. We calculated the 

Yue-Clayton measurement between sample types in paper III, and between the 

bronchoscopy procedures in paper IV. The Yue-Clayton measurement is a calculation 

based on differences in proportions for all taxa between two samples of interest. We 

could therefore look for differences for each participant specifically. Another problem in 

abundance testing is the before mentioned copy number variation (see 10.3.4 
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Sequencing) found in the ITS regions. Differences in copy number variation could have 

impacted our differential abundance analyses, as we did not account for this.  

Comparison of diversity is also an important part of a mycobiome study. Creation of 

diversity metrics is not straightforward due to the differences in sequencing depth across 

different samples. As a normalisation method, we chose to rarefy our ASV table to a 

specified depth. That means, all sample counts will be randomly subsampled to the given 

depth. Samples with a total read count lower than this depth will be excluded. We 

examined our ASV table to find a suitable depth, which should be as high as possible. A 

high value keeps most of the information, but will also result in a bigger loss of samples. 

In contrast, many of the sample may have no shared ASVs at a low depth, which would 

result in a distance of 1.0 with Jaccard and Bray-Curtis. The rarefaction process has been 

criticised due to loss of information and reproducibility (247), and other options like 

additive-, centre-, or isometric log-ratio transform have been suggested (245). Our 

decision was motivated by one of QIIME 2’s learning tutorials (248). QIIME 2 (155) is 

one of the main pipelines used to perform microbiome analyses, and their diversity metric 

plugin or command has a required rarefaction step. Only the non-phylogenetic beta 

diversity metrics Bray-Curtis dissimilarity and Jaccard similarity coefficient were 

included in our analyses. We did not include any phylogenetic diversity metrics, because 

ITS sequences cannot be used to determine phylogenetic relationships between 

unidentified fungi (69). Although not useful, ITS sequences have been used in analyses 

including phylogenetical information in a previous COPD mycobiome study (108). We 

admit that important information is lost without phylogeny, but believe it is a strength 

that both a qualitative (Jaccard) and a quantitative (Bray-Curtis) distance metric was 

included or beta diversity analyses. That means, Jaccard values rare taxa equally as the 

high-abundant taxa, while Bray-Curtis values the high-abundant most. Including two 

such different metrics made it possible to see how the Candida dominance manifested in 

different methods.  
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10.5 Mycobiome specific issues 

10.5.1 Mock communities and positive controls 
It is generally recommended to include positive controls and a mock community in any 

mycobiome study (47, 235). Positive controls are samples with known species unlikely to 

be found in the samples, and aid in the assessment of contamination, error accumulation, 

chimera formation, and cross-contamination (235). A fungal mock community is a 

community with a predefined content of fungi. By using a mock community, researchers 

are able to assess their methodologies by comparing their results from the mock 

community with the known content. Use of mock communities is important to compare 

results between studies performed in different laboratories (47). Our studies are 

somewhat limited by the absence of positive controls and mock communities. In 

hindsight, this is a shortcoming of our study, that also affects a number of other studies, 

and one can only hope that future investigators will take this into account. 

10.5.2 Taxonomy assignment 
Fungal databases are used in mycobiome studies to assign taxonomy, but the databases 

have some limitations that affect the assignments. In contrast to bacterial databases, 

fungal databases include few sequences (58, 69), and sequences included in the databases 

are often incomplete and/or incorrect (59, 118, 172, 249). Additionally, databases are 

curated from gastrointestinal or environmental sources perhaps making them less relevant 

to the lung mycobiome (250). Fungal taxonomic assignment also suffers from a dual 

naming system, in which sexual and asexual forms of a fungal species can be classified as 

different taxa (58, 59, 69, 118, 135). Several fungal databases exist, including UNITE 

(65, 66), SILVA (64), and the International Society of Human and Animal Mycology 

(ISHAM)-ITS reference DNA barcoding database (251). The UNITE database was 

created to overcome the issue of misidentification of fungi. Occasionally, new, curated 

versions of the UNITE database is released. We chose the UNITE database for taxonomic 

assignment in the current thesis, as has been recently recommended (235). The sequences 
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within the UNITE database are heavily biased toward the Dikarya sub-kingdom, which 

includes the Ascomycota and Basidiomycota phyla (69, 172). This could explain why 

nearly all of our sequences were assigned to Ascomycota or Basidiomycota, but that does 

not mean that the assignment is incorrect. Other authors have suggested to do a further 

manual investigation after the taxonomic assignment, especially of the most abundant 

ASVs (59, 235). We did a thorough investigation of unclassified ASVs, i.e. ASVs only 

assigned to Fungi at kingdom level (see 8.2.5.1 Upstream bioinformatic analysis). A 

total of 463 ASVs were excluded as they were likely to be non-fungal, while 90 ASVs 

were included for further analyses, often with an improved taxonomy. Considering that 

463 ASVs could have been included as unclassified fungi when they most likely did not 

represent fungi, our investigation of unclassified ASVs should be viewed as a strength. 

However, due to time constraints, no ASVs with a more detailed taxonomy than Fungi at 

kingdom level were further investigated. The Nucleotide database is a collection of 

sequences from several sources, including GenBank, RefSeq, TPA and PDB (164). Even 

though some of these sources are quality-controlled, researchers can still freely submit 

their sequences to the database, possibly leading to incorrect or poorly-defined species 

names (59). It has previously been shown that as many as 20% of the publicly-available 

fungal ITS sequences are annotated incorrectly at the species level (252). We 

acknowledge the limitation of the Nucleotide database. The investigation was also limited 

by subjectivity. There exists, however, data in the Nucleotide database output that could 

have been used to reduce subjectivity. We could, for instance, have required that a hit 

needed a certain percent identity and coverage in order to being considered further. 

Furthermore, it is known that for some taxa, for instance Aspergillus spp., use of one 

target region is not sufficient for species identification (253). Adding another barcode, for 

instance betatubulin, could provide improved resolution, but was not done in the current 

thesis. To compensate for issues related to taxonomic assignment, analyses involving 

taxonomy were performed on genus level. This conforms with recommendations saying 

species level is not a suitable discrimination level for ITS1 data (117). However, 

important species-to-species differences are then lost. 
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10.5.3 Statistics 
A sufficient sample size is needed for any statistical test to be valid. The MicroCOPD 

study included more participants than previous similar studies. Still, some issues with 

sample size were encountered during time of analysis. As discussed earlier, data was 

rarefied, i.e. subsampled without replacement, to a given sequencing depth in order to 

assess diversity independent of sampling depth. Samples with a sequencing depth below 

the chosen rarefaction value were discarded. That means, rarefaction normalise data at 

the expense of power loss, a sacrifice that has been criticised in the literature (247). 

Diversity analyses on smoking habits in BAL samples from controls were omitted due to 

a lack of current smokers in the descriptive mycobiome paper included in this thesis 

(paper III). Rarefaction also omitted most BAL samples in the longitudinal paper (paper 

IV), leaving only 12 left for analyses and decreasing power in the diversity analyses 

including BAL samples. The low number of samples precludes stratification on 

participant group in alpha and beta diversity analyses in the longitudinal mycobiome 

paper. However, we did not see any difference between controls and COPD in the 

descriptive study, meaning that stratification might not could have added additional 

information. The statistical analysis of Shannon index between those receiving 

intercurrent antibiotics and those who did not, was not stratified on sample type, even 

though different colouring was applied in the plot. We know that OW and BAL are two 

quite different sampling methods, but again, the descriptive paper did not show any 

difference in Shannon between the two methods. Furthermore, one of the included 

differential abundance tests, ALDEx2, works poorly if there are only a small number of 

taxa (less than about 50). Analyses to look for differential abundant features in OW 

compared to BAL and vice versa using ALDEx2 were not performed in smoking controls 

and smoking participants with COPD, and participants with COPD not using ICS 

regularly. No comparisons were done between sequencing run 1 and 3 in OW and BAL 

due to few taxa.  

110  



The rDNA is dynamic and can exhibit substantial interspecific and intraspecific variation 

in copy number (254). In fungi, the locus is typically duplicated 100-200 times (118). 

The variation in copy numbers complicates any conclusions on quantitative comparisons 

and will influence taxonomic bar plots and comparisons based on quantities, for instance 

the Bray-Curtis metric and differential abundance tests. Suitable solutions to adjust for 

copy number variations are yet to be developed, and we thus need to interpret our data in 

light of possible interspecific and intraspecific responses (254). However, this issue is not 

specific to our study. Differential abundance testing was discussed in general earlier (see 

10.4 Bioinformatics). Hypothesis testing of microbiome compositional data is an 

ongoing research area without standardisation, exemplified well by the three COPD 

mycobiome studies performed (108, 113, 175). Cui et al. used the neutral model and 

ubiquity-ubiquity plots to look for disproportionately abundant fungi in different sample 

types (113). The neutral model predicts if the composition in the lung is a result of 

dispersal from the oral cavity or organisms adapted for growth in the lungs (72). Further, 

they used two machine-learning classifiers and an R-based open-source software called 

Metastats to identify any species associated with COPD (113). Su et al. did not include 

any statistical test to look for differences, but relative abundances could be examined 

visually (108). The multi-centre study by Tiew et al. utilised Linear discriminant analysis 

effect size (LEfSe) to look for dominating fungi in different geographic locations and 

between participants with different COPD exacerbation status (175). It is worth noting 

that LEfSe does not perform multiple testing correction. Multiple testing correction is 

offered by MicrobiomeDDA, which was included in our study. It is a demanding work to 

navigate in the differential abundance testing field. With the wealth of available options 

with different foundations, generalisability across studies is also limited. Furthermore, 

differential abundance tests are usually tested on bacterial data, and further testing should 

be done to evaluate their performances on fungal data. Mycobiome studies would 

certainly have benefitted from a standardisation in abundance testing.  
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Samples that were taken from the same participant are inevitably dependent and should 

be analysed with paired tests. Thus, analyses between OW, BAL, and NCS, and analyses 

between samples from first and second bronchoscopies should be paired. The 

MicrobiomeDDA test did not have any option to specify a paired design and was 

therefore not used in analyses on sample type. We did not include differential abundance 

tests in the longitudinal study because we suspected such tests to look for differences on 

group level rather than subject level. Yue-Clayton measures for each sample pair was 

used instead. We did not find any suitable paired test for comparison of beta diversity 

differences between OW and BAL nor between two consecutive bronchoscopies, so we 

presented the data in PCoA plots both with and without a Procrustes transformation. A 

Procrustes transformation gave us a measure of fit (M2) and a p-value as a measure of 

concordance between the PCoA plots. Tiew et al. analysed temporal changes in beta 

diversity using PERMANOVA, while statistical method to analyse changes in alpha 

diversity by time was not given (175). We are not aware of any way to define a paired 

test using PERMANOVA, suggesting alternative methods should be used by Tiew in the 

temporal beta diversity analyses. To our knowledge, there is not agreement on what 

ordination method fits microbiome data best. Several methods exist, each with its unique 

features (255). We chose to visualise our multidimensional data using PCoA, mainly 

influenced by QIIME 2’s learning tutorial (248). We did, however, tried nonmetric 

multidimensional scaling, but did not reach any solution using the metaMDS function in 

the vegan R package (188). PCoA plots do seem widely used in the COPD mycobiome 

literature as well (108, 113, 175). Ultimately, plots are visual presentations, and choosing 

the appropriate statistical method seems at least quite as important. 

10.5.4 Reproducibility in mycobiome research 
Bittinger et al. has reported that the reproducibility in mycobiome studies is poor by 

performing repeated extractions from samples (130). A low reproducibility would have 

an impact on our longitudinal analysis in particular, because we need acceptable 
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reproducibility to assess the stability between two time points. It should be mentioned 

that the reproducibility analyses in Bittinger et al.’s paper was based on 18 samples only, 

but did include up to four repeated extractions. Furthermore, the reproducibility seemed 

to improve after conversion to PicoGreen-corrected abundance. Fungal OTUs with 

proportions of 1% to 50% appeared sporadically between replicates (130). Removal of 

low-abundance ASVs in the current thesis might have reduced noise from spurious 

ASVs, and together with contamination removal, this have probably increased the 

reproducibility. Still, examinations of repeated extractions of selected samples, preferably 

from each sample type and study group, would have strengthened our study results.  

To build on the ideas of reproducibility, generalisation and comparison with other studies 

is worth mentioning. Technical variation is introduced in mycobiome research by 

different sampling techniques, storage, PCR amplification, and DNA sequencing (256). 

Without a standardised workflow, results can only be interpreted in each specific study 

setting, preventing generalisation. There is thus a need for standardisation and open 

research. An essential requirement in this regard, is the sharing of data. However, it has 

been shown that differences in bioinformatics and statistics could affect reproducibility, 

even with open access to the original raw data (256). Work has now been initiated to 

develop standards in the microbiome field by creation of reference reagents (257). 

Generalisation of the current thesis is also limited by the heterogeneous nature of the 

COPD disease (212), and more research is needed to examine the mycobiome in different 

COPD phenotypes. Moreover, data from different geographical areas should be collected, 

for instance in Africa where development of COPD due to indoor open fires is more 

common. But, as emphasised, comparisons are of limited value unless we can agree on a 

common workflow. 
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11 Discussion of main results 
11.1 Participation in research bronchoscopy studies 

Paper I was a literature review of participation in studies involving a bronchoscopy. Only 

seven papers were included in the final review, of which none included detailed analyses 

of patients with COPD. The studies were heterogeneous with respect to geography, aims, 

and disease in focus, which precludes generalisation of the results to a COPD population. 

Still, some inferences from the literature are discussed in the following sub-sections and 

compared with our analyses on participation in the MicroCOPD study. 

11.1.1 Response rates in research bronchoscopy studies 
Response rates were given or derived in five of the included paper from the literature 

review. The two studies without response rates included Malawian adults undergoing 

research bronchoscopy (87), and smoking patients with COPD approached for 

participation in a lung cancer screening trial (91). The remaining studies included quite 

heterogeneous study populations. One studied HIV-infected individuals (86), while two 

studies included individuals who participated in, or were asked to participate in lung 

cancer chemoprevention trials (89, 90). The fourth examined infants with and without 

CF, and the last bronchoscopy study with a known response rate included patients with 

suspected lung cancer (88). Despite differences in study populations, response rates did 

not vary considerably, ranging from 64% to 73% in four of the five papers (86, 88, 90, 

92). In contrast, the response rate in one of the lung cancer chemoprevention trials was 

markedly lower, with only 3% of pre-screened individuals being enrolled (89). This lung 

cancer chemoprevention trial had numerous specific exclusion criteria such as a minimal 

requirement of 30 pack years and no pre-existing medical condition, and subjects had to 

pass both a pre-screening and a screening in order to participate. Only 7.2% of the 

approached subjects passed the pre-screening, and received the consent form and were 

invited for a second in-person screening including both a CT and a bronchoscopy. 
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Subjects without exclusionary findings on the in-person screening were enrolled in the 

study, which constituted only 3.1% of the originally pre-screened subjects. Unfortunately, 

we could not find any information on the number of subjects that declined participation 

of their own will. Thus, the 3.1% response rate probably mostly reflects exclusion by the 

research team rather than denial to a specific invitation. Furthermore, several of the 

recruitment methods relied on the participants to contact the research team for a pre-

screening by telephone. Strictly speaking, all subjects who read or heard about the study 

could thus be defined as invited, and this number is not possible to obtain. The discussed 

lung cancer chemoprevention trial was the only study examining the optimal recruitment 

strategy. They found that radio advertisement was the most effective strategy in terms of 

generated inquiries (89). The costs of each recruitment strategy utilised in the study were 

also evaluated, but not accounted for in the effectiveness calculation. The paper was 

published in 2009, and it would be interesting to repeat the study to examine the potential 

that lies in social media. 

We chose to exclude participants that were recruited to the MicroCOPD study from our 

outpatient clinic and participants that contacted us by their own initiative. Final response 

rate for the MicroCOPD study was 50.9% (paper II). The response rate is in line with the 

results from the literature review, despite being somewhat lower. By achieving a 

satisfactory response rate, we minimise the risk of type II errors, i.e. an erroneous 

acceptance of the null hypothesis, and we can generalise our results to a greater extent. 

The highest response rate observed in the literature review (paper I) was 73% in a study 

where they investigated the effect on smoking cessation by participation in a 

chemoprevention trial for premalignant lesions (90). No response rate was explicitly 

given in the study, but we derived the response rate from a flow chart in the paper. The 

response rate was calculated in line with the definition in our literature review as number 

of enrolled divided by approached or pre-screened individuals. A total of 201 subjects 

were pre-screened, and 146 were analysed to examine smoking cessation, giving the 

response rate of 73%. However, pre-screened individuals had already accepted 
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participation in the chemoprevention trial, possibly introducing a selection bias. 

Furthermore, a total of 47 subjects were excluded from the smoking cessation trial due to 

lack of participation in the chemoprevention trial, being non-smokers, or not answering, 

leaving only 8 subjects as “true” decliners. Moreover, one could argue that this included 

response rate is not displaying a bronchoscopy study since the calculated response rate 

points to the smoking cessation trial and not the chemoprevention trial, in which a 

bronchoscopy was included. Nevertheless, the calculation example from the smoking 

cessation trial illustrates the difficulties in comparing response rates in studies not 

designed with that purpose in mind.  

In paper II we reported a significantly higher response rate in men compared to women 

(44.8% and 56.5%, p = 0.01). No difference was observed with regard to age. Most 

literature on participation in clinical trials stem from cancer research, which has shown 

that women and elderly are underrepresented in cancer trials (258, 259), and women are 

also under-enrolled in heart failure research in the United States (260). The situation was 

somewhat different in seven Norwegian respiratory healthy surveys from 1965 to 1999, 

in which response rates were higher in women than in men and higher in the middle‐

aged/elderly than in young adults (84). None of the Norwegian studies included a 

procedure as invasive as bronchoscopy, and one could speculate that men viewed 

bronchoscopy as more beneficial compared to perceived benefit from non-invasive 

studies, thereby explaining the differences in response rates between women and men in 

the MicroCOPD study. 

Another study from the literature review (paper I) showed that recruitment of infants with 

CF was more feasible than recruitment of healthy controls (92), suggesting higher 

response rates among subjects affected by the index disease. No differences were seen in 

response rates for the different participant categories in the MicroCOPD study (paper II), 

although 70.4% of subjects that declined participation after some consideration time had 

COPD or asthma. The Norwegian health system is highly ranked by the World Health 
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Organization (261). That subjects with COPD or asthma were as likely to participate as 

controls could perhaps be due to close monitoring of patients with obstructive lung 

disease (OLD) in Norway. In addition, health services are almost without charge in 

Norway, and together with the close monitoring, participation in a clinical study could 

thus be seen as no additional benefit. However, both responders with and without disease 

were driven by personal health benefit in the MicroCOPD study. 

11.1.2 Participation motives in research bronchoscopy studies 
Both the literature review (paper I) and the original analyses from the MicroCOPD study 

(paper II) concluded that personal benefit, altruism, and obligation were the most 

frequent participation motives in research bronchoscopy studies. Personal benefit was 

listed as a participation motive in all of the papers examining participation motives in the 

literature review (86-88, 90-92) and a later study (262), and it was most often related to 

participant’s own health. In the MicroCOPD study, the personal benefit motive was a 

combined label from several unique participation motives merged together, especially 

personal health benefit. The consent form stated that no direct benefit was to be gained 

from participation, but still almost half of the participants gave personal health benefit as 

a participation motive. One could speculate that the consent form was not read properly 

by all participants, or that the consent form was too advanced to understand for any 

without a medical background, although it was written in an easy language for optimal 

understanding.  

Similar to bronchoscopy study participants, patients undergoing bronchoscopy for 

clinical purposes also require information, often given in the form of a patient 

information leaflet (PIL). One study examined the readability and content of PILs 

provided to patients prior to gastrointestinal and respiratory endoscopic procedures in 

Irish public hospitals (263). The readability was evaluated using the Flesch Reading Ease 

and the Flesch–Kincaid Grade Level scores. The Flesch Reading Ease and the Flesch–
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Kincaid Grade Level scores are validated tools for measuring readability (264). The 

Flesch Reading Ease creates a score which should be above 60 if readability should be 

acceptable, while the Flesch–Kincaid Grade Level score corresponds to the number of 

years of education usually required to understand the material, and patient information 

should be aimed at 6th grade (10–11 years old) level (263). The authors found that no 

department produced PILs that all met the recommended standard (Reading Ease scores 

of 60 or more and Grade Level of 6 or less) (263). Although a research setting is difficult 

to compare to a clinical situation, the Irish study demonstrates that medical information 

can be hard to deliver in a feasible manner. Generally speaking, regardless of how well-

written the consent form is, it is the researcher’s responsibility that participation is 

informed and that the participants have understood the consequences of participation. 

Researchers should put aside their own desires and not romanticise participation when 

approaching potential participants. As discussed above, the MicroCOPD consent form 

stated that no direct benefit was to be gained from participation. Nevertheless, the same 

consent form stated that all participants would get a proper examination of their lungs 

including a CT scan, which, understandably, might be perceived as a benefit. All subjects 

examined by CT scans or bronchoscopy, are potentially subject to unexpected findings. A 

specialist in the field of cardiology or pulmonology examined all results from a clinical 

perspective, and appropriate further diagnostics or treatment were given; for example, in 

the instance of finding significant arteriosclerosis in the cardiac vessels or a suspected 

malignancy on pulmonary CT scan or during bronchoscopy. Additionally, incidentally 

found deviations in blood sampling could be dealt with. Our research group has shown 

that research bronchoscopies have few serious complications, but are associated with 

discomfort such as post-procedural sore throat and fever (216, 217). Summarised, with 

few complications and potential advantages from examination, it is possible to argue that 

some benefits are achieved through participation. However, possible discomfort 

associated with participation should perhaps be more emphasised in the consent form.   
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Altruism was the other main participation motive in the MicroCOPD study (paper II), 

especially for women. Helping others, which could be regarded as the genuine altruism, 

was only reported by 15.9% of the participants, but contribution to science and 

continuation of previous participation added to a broader category of altruism. Altruism 

was also mentioned in three of the papers (86, 91, 92) from the literature review (paper I) 

and among healthy people in a later study on pulmonary tuberculosis in Malawi (262), 

and it was often accompanied by self-interest in an elderly population (91).  

The last main participation motive for research bronchoscopy studies is a feeling of 

obligation (paper I and II). A study found that HIV-positive individuals were motivated 

by being asked by a physician or that the physician seemed to want them to participate 

(86). Obligation was more rarely mentioned as a participation motive in the MicroCOPD 

study. Nevertheless, physicians should be aware that their authority could affect potential 

participants’ choices regarding study participation.  

11.1.3 Non-response reasons in research bronchoscopy studies 
The invasiveness of a bronchoscopy is the most common reason to decline participation 

in research bronchoscopy studies (86, 89, 91), and was also the most commonly reported 

non-response reason in the MicroCOPD study. Invitees feared the discomfort associated 

with the procedure (86, 89, 91), while some felt participation increased anxiety or 

perception of risks or complications (92). Several studies have examined patients’ 

perceptions of bronchoscopy and shown that bronchoscopy is associated with discomfort 

(265-276). Furthermore, studies have reported that bronchoscopy is associated with 

anxiety (262, 266-268, 272, 276-278), albeit considered unjustified after the procedure 

(272). Interestingly, findings from the literature indicate that women experience more 

anxiety before a bronchoscopy (277), which again could explain their lower response rate 

observed in the MicroCOPD study (see 11.1.1 Response rates in research 

bronchoscopy studies). A study by Poi et al. suggested that a more detailed explanation 
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of what sensations patients should expect to experience during a bronchoscopy might 

reduce some of the common fears (277), while another emphasised that full disclosure of 

risks was appreciated among participants (262). This contrasts somewhat to the results in 

a study by Uzbeck et al., showing that a more detailed pre-procedural risk disclosure 

given to subjects undergoing bronchoscopy increased anxiety compared to subjects 

receiving a simple risk information (279). It should be noted that the Uzbeck et al. 

studied pre-procedural risk disclosure, while the study by Poi et al. examined how further 

details regarding the procedure, for instance expected events or sensations, could 

alleviate anxiety. Nonetheless, it is expected that study participants are fully informed. 

Researchers should anyway consider how risk disclosure increases anxiety, and perhaps 

set aside sufficient time to discuss and relieve fears that potential participants might have, 

for instance at the time of consent signing. Additionally, each individual has its own 

preferences and understanding of the information given, which ideally should be 

accounted for. This is difficult in research with strict legal responsibilities and 

standardised consent forms and is perhaps easier to consider in the clinical setting.  

We observed that subjects that declined participation in the MicroCOPD study after some 

consideration time more often stated worries/fear compared to subjects declining 

participation at first encounter (paper II). This suggests that waiting time increases fear of 

participation and should thus tried to be avoided. Participants with OLD more often 

reported that disease/health issues prevented them from participation compared to 

controls, which is not surprisingly considering that OLD are chronic diseases with 

respiratory symptoms.  

How well a bronchoscopy is tolerated, is most often measured by examining how many 

would accept an additional bronchoscopy in the future, i.e. willingness to return. Despite 

being an uncomfortable procedure, most patients tolerate a bronchoscopy well (86, 87, 

91, 265, 267, 270-274, 276, 280-282). Still, the range in acceptance rates for a future 

bronchoscopy is fairly wide, ranging from 13% (269) to 100% if probable returners were 
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included (86, 87, 271). The study with a willingness to return rate of 13% did not add “if 

necessary” in their willingness to return question and did not offer a sedative, which 

might explain some of the difference. Being female has been shown to be associated with 

higher reluctancy (265), while men has shown higher willingness to return for a repeat 

bronchoscopy (273, 282) and better tolerance in terms of satisfaction and acceptance of 

discomfort (278). This conforms to the lower response rates among women in research 

bronchoscopy studies discussed previously. Experienced discomfort has been associated 

with less patient satisfaction (265, 273, 274, 276). It has been suggested that reluctant 

subjects recollected more of the procedure (265), and that there is less reluctance to 

attend a future bronchoscopy among consciously sedated patients (270). Furthermore, 

others have found relatively low willingness to return among non-sedated patients 

undergoing bronchoscopy (283), and better tolerance in consciously sedated patients and 

patients with less pre-procedural anxiety (275, 276, 278). One could speculate that adding 

sedatives in a research bronchoscopy study design might increase the probability of risks, 

but analyses on complications and discomfort in the MicroCOPD study has shown that 

alfentanil reduced overall need for unplanned intervention or early termination of 

bronchoscopy (216). However, ten cases of drug-induced complications were also seen 

(216). Measuring tolerance by willingness to return has been criticised since several 

factors influence the accept of an additional procedure such as a desire for a diagnosis 

(268). Tolerance is also dependent on when the participant completed the questionnaire, 

for instance immediately after the procedure, or a few days later when the effect of the 

sedatives are passed. That bronchoscopy is generally well tolerated is important for 

researchers planning a study involving bronchoscopy. Knowing that most decline 

participation due to fear, it seems wise to inform potential participants of the findings 

regarding tolerance, possibly relieving some of the fear. Additionally, high willingness to 

return suggests that participation in a study with bronchoscopy does not negatively 

impact a decision of undergoing a future bronchoscopy if medically indicated, as has 

been discussed in the literature previously (86). 
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11.2 The pulmonary mycobiome 

The COPD mycobiome is not well studied, and only three studies have used next 

generation sequencing to study the pulmonary mycobiome in COPD (108, 113, 175). 

Results from the MicroCOPD study has added knowledge to an understudied research 

area. To our knowledge, no studies have used next generation sequencing to examine the 

stability of the lung mycobiome in a COPD population or subjects without lung disease. 

In the following sections, we will discuss descriptive and longitudinal results from 

analyses on the pulmonary mycobiome from participants in the MicroCOPD study. 

11.2.1 Descriptive analyses on the pulmonary mycobiome 
11.2.1.1 Differences between sample types 

In our analyses of the mycobiome, we included both OW, BAL, and NCS samples. The 

OW samples were analysed to account for potential contamination from bronchoscopic 

carryover. Both the OW and BAL samples in the MicroCOPD study were dominated by 

Candida, and there was significantly more Candida in the OW samples compared to 

BAL samples for both participant categories. OW and BAL samples also differed in Yue-

Clayton measures and in beta diversity analyses. Significant differences in Candida 

abundances between OW and BAL has been shown earlier by Cui et al. (113). However, 

they did not find any difference between OW and BAL in PCoA plots based on OW, 

BAL, and IS samples from healthy individuals. Their results are somewhat hard to 

interpret since they did not include any statistical tests to look for differences in beta 

diversity. The visual interpretation of PCoA plots is subjective. They also rarefied their 

data to 50 reads per sample. With such low rarefaction depth, samples may end up having 

no shared features, which would result in a distance of 1.0 with UniFrac. Furthermore, 

they only included BAL and IS in the PCoA plot made from the entire cohort including 

HIV-infected and HIV-uninfected individuals with or without normal lung function, and 

it should be interesting to know where OW samples would have ended up in that plot.  
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The difference in OW and BAL samples found in the MicroCOPD study suggests a 

unique mycobiome in the lungs. However, that does not mean that the oral and the lung 

mycobiome is not associated or influenced by each other. The larynx is the only part that 

blocks the lungs from being in direct communication with the air and the mouth. 

Consequently, microorganisms in air, mouth, or even the stomach could be dispersed into 

the lungs by inhalation or microaspiration, while microorganisms could move the other 

way through coughing. One study has suggested that most of the microbes in the lungs 

indeed stem from the oral cavity in healthy subjects, but that local environmental factors 

and active selection is more important in disease (72). Charlson et al. proposed that there 

existed a continuity in the respiratory microbiome, ranging from the upper respiratory 

tract to the lower respiratory tract with decreasing biomass, but that no distinct lung-

specific microbiome existed in healthy people (71). The study was limited by a low 

sample size (n=6). Later, Dickson et al. proposed an adapted island model of lung 

biogeography, depicting the respiratory system as a function of immigration and 

extinction of microbes that originate in the upper airway (284). Factors like disease and 

medication use influence immigration and extinction, thereby changing species richness 

in a defined area of the respiratory tract. Dickson et al. later showed that the proximal 

part of the lower respiratory tract more closely resembled the supraglottic space than the 

distal part, and that the richness decreased with increasing distance from the larynx (42).  

The question is maybe not whether transfer of microbes between the mouth and lung 

exists, but rather if lung microbiome studies should focus on authentic microbes with 

replication in the lung or include transferred microbes and thus analyse the whole 

community. 

The use of BAL in sampling of the lungs has been shown in several studies to sample the 

airways and not just finding microbiota as a result of oral contamination (42, 285-287), 

especially when using protected sampling (9). Although these studies have not included 

fungal data, we believe our BAL samples were representative of the lung environment. 

Charlson et al. argued that comparing an OW sample and a BAL sample from the same 
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participant inevitably will detect differences due to rare organisms in the OW sample and 

suggests use of replicate sampling instead (286). Replicate sampling adds additional costs 

to already expensive studies and might prove impossible to perform in large-scale studies 

like the MicroCOPD study. However, only the most abundant genus, Candida, was found 

by the differential abundance/distribution tests to significantly differ between OW and 

BAL samples, showing less impact from rare taxa.  

Figure 5 shows the most abundant fungi found in each of the sample types included in the 

MicroCOPD study. 

Figure 5. Rank abundance plots using most abundant fungi in oral wash, bronchoalveolar lavage, and 

negative control samples in the MicroCOPD study 

OW, oral wash; BAL, bronchoalveolar lavage; NCS, negative control sample. Contaminants identified by Decontam 

are excluded in OW and BAL, but not NCS. 

124  



An oral fungal environment rich in Candida is well-known from the literature (116, 230, 

288). The similarity between BAL and NCS is somewhat concerning, previously also 

reported by Bittinger et al. (130). Reassuringly though, we did find differences in 

abundance. ANCOM v2 reported that Candida and Sarocladium were different in 

abundance between OW and NCS, and BAL and NCS. Candida was also reported to 

differ between OW and NCS by ALDEx2. Differences were also seen in DNA yields and 

read counts between NCS and OW/BAL. By looking at relative abundances, such 

differences are not detected. Decontam was used to remove contaminants in OW and 

BAL samples, but we could have considered to remove OW or BAL samples that 

resembled NCS. However, we do find this problematic, because it might be that the true 

constituents of the environmental microbiota, that influence the NCS, are the same as we 

find in most lung samples. 

11.2.1.2 The healthy pulmonary mycobiome 

The healthy lung mycobiome has been examined in several studies (100, 113, 128, 130, 

175, 289), but sample sizes were relatively small, ranging from 10 participants (289) to 

47 participants (175). Studies reported that abundant fungi were Candida (175), 

Davidiellaceae (100), Cladosporium (100, 128, 130), Saccharomyces (113, 175), 

Penicillium (113), Debaryomyces (130), Aspergillus (100, 289), Eremothecium (128), 

Systenostrema (128), and Malasseziales (289). BAL samples in the MicroCOPD study 

contained mainly Candida, Malassezia, and Sarocladium. Candida is a well-known 

pathogen (135), and C. albicans is the main pathogen causing candidiasis in most clinical 

settings. Non‐albicans Candida species are, nevertheless, increasingly reported as a cause 

of infections (290). Unfortunately, our analyses were restricted to genus level due to 

limitations in the ITS barcode in correctly identifying fungi down to species level (117). 

It would be interesting to have more information on species level to further elucidate 

Candida’s role in maintaining health or causing disease. We observed that Candida 

resided in the lungs of a large fraction of controls with an unknown clinical consequence. 

There was no difference in Candida abundance between healthy controls and participants 

125 



with COPD. One could speculate that Candida residing in lungs of healthy controls could 

cause an infection in presence of certain triggers. Such mechanisms have been discussed 

in the context of the gut mycobiome (291), and it is not unlikely that similar mechanisms 

could exist in the lungs. Due to the Candida dominance, we reported every ASV assigned 

as Candida down to genus and species level in Table 7. The Candida taxa reported were 

found in the finally processed OW and BAL samples included for further analyses both 

from the first examinations and repeated procedures. The table should be read with some 

caution, though, due to the uncertainty of species discrimination for ITS1 data (117).
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Table 7: Sum
m
ary of A

SV
s assigned to Candida in the M

icroC
O
PD
 study 

A
SV
 ID
 

Taxonom
ic assignm

ent 

0336a05ed19277bdf8c25804c187fa0b 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_albicans 

069929698b007a6ee5210bf7cf150083 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_albicans 

0bcd4699aaaef91810304329c4000458 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_albicans 

2ab4a5a14cce5b707ea294316c5f8ad5 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_m

altosa 

326d37aeef9d4ef8f672c8372d5e47b7 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_dubliniensis 

38a9dc74ed923f0c8683e5f59d25dae5 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_m

altosa 

3fd75501a4b37554390ef45724395bb2 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_railenensis 

4c5a94cf2792d1e0dad3cbec8262cb62 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_albicans 

5a484d884f715bd9b91fd5de883f47cf 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_m

altosa 

66bb3b905e859fabca7559698068d546 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_m

altosa 

6740b028fa544055ca8389831d5811fc 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_friedrichii 

6b79b8cfa44f917109d5c99c6ed1c350 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_albicans 

7b1133da646399236e40fa903a2fdf12 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_tropicalis 

803aab77225830ac71f1ce35d71f34c8 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_zeylanoides 

a0a7fc5a21f96eae94265dc987372c67 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_albicans 

a72c1820d53342ed63b38c14763d04a1 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_m

altosa 

b2d186cbeb52a7e284be3025c7296ee0 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_albicans 

bb1800678bd134f4e624eac405e5fcdb 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_dubliniensis 

c5948bb2019826b1dd03da28e5bc06ea 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_dubliniensis 

cae63524c934edac25bd15cb100732db 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_hyderabadensis 

d13eee2d29e795f7a611b571098b5f2f 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida 

d5a3b43015c417b247b0ee32248fddb5 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_albicans 

fd6afda5d5013896f80abf3d661efa02 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida 

fdb44eafd771df13907fb1e1e0ad0dd2 
k__Fungi;p__A

scom
ycota;c__Saccharom

ycetes;o__Saccharom
ycetales;f__Saccharom

ycetales_fam
_Incertae_sedis;g__C

andida;s__C
andida_albicans 

A
SV
, am

plicon sequence variant. The A
SV
s above w

ere all assigned at least to Candida at genus level.
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Species of Malassezia are common skin commensals, and are associated with a variety of 

skin disorders, such as pityriasis versicolor, atopic dermatitis, and psoriasis, and can lead 

to fungemia in susceptible individuals (292). That the observed Malassezia in the 

MicroCOPD study stem from contamination during sample handling cannot be ruled out, 

as it is commonly found on skin. Efforts were exerted to reduce contamination, including 

protected BAL sampling and removal of contaminants using Decontam, strategies not 

implemented by the other studies reporting on the healthy lung mycobiome. Dupuy and 

colleagues emphasise harsh cell lysis methods to detect Malassezia (230), and Hoggard et 

al. found an under-representation of Malassezia using primer pair ITS1F – ITS2 (233). 

Different DNA extraction methods and primers could thus explain the observed gaps in 

Malassezia proportions. Sarocladium kiliense is usually found in soil, but do occasionally 

cause human infections (293), also reported in lungs (294).   

11.2.1.3 The COPD pulmonary mycobiome 
We observed few differences between the healthy lung mycobiome and the COPD 

mycobiome in the MicroCOPD study. Concerning abundance, only the MicrobiomeDDA 

algorithm indicated differences between the participant categories. The results from 

MicrobiomeDDA were not replicated by ANCOM v2 and ALDEx2, which questions the 

reliability of the MicrobiomeDDA results. Only three previous studies have explored the 

lung mycobiome in COPD (108, 113, 175). In contrast to our study, Cui et al. suggested 

that P. jirovecii was associated with COPD (113). However, participants with COPD and 

the group for comparison were also infected with HIV. This complicates interpretation 

because P. jirovecii is known to be associated with immunosuppression (295), and have 

previously been detected in the respiratory tract of HIV-infected individuals using nested 

PCR (296). Another study, however, has shown an association between Pneumocystis 

colonisation and severity of airflow obstruction in smokers (297), possibly suggestion a 

role of Pneumocystis in COPD pathogenesis anyway. We observed no Pneumocystis in 

our data, in line with another large multi-centre study including participants with COPD 
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(175). The Pneumocystis genome only includes one copy of the ITS1 locus, which could 

result in a negative sequencing result (95).  

Su et al. included participants with COPD in their mycobiome study, but participants 

experienced an exacerbation at the time of inclusion (108). Furthermore, they collected 

sputum samples, which complicates direct comparison to the BAL samples in the 

MicroCOPD study. Sputum samples were collected from participants experiencing a 

COPD exacerbation in the study by Tiew et al. as well (175). Additionally, they included 

337 participants with stable COPD, and 47 non-diseased controls. Both participants with 

COPD and controls showed high abundances of Candida (175). In contrast to our study, 

they observed significantly increased Shannon indexes in the COPD participants 

compared to controls. Furthermore, they reported several fungi to be COPD specific, 

including Trametes, Penicillium, Mycosphaerella, Cryptococcus, Cladosporium, and 

Aspergillus. Our data agreed that Trametes and Cryptococcus were only found in 

participants with COPD, in relative abundances of 2 and 0.7%, respectively. However, 

the remaining taxa listed above were all found in controls in the MicroCOPD study. It 

should be mentioned that four of the other COPD specific taxa found in the study by 

Tiew et al., Wallemia, Itersonilia, Aureobasidium, and Alternaria, were only found in 

NCS in the MicroCOPD study, and identified by Decontam as contaminants. The 

Decontam algorithm was also employed in Tiew et al.’s study. One can only speculate 

whether the dissimilar Wallemia, Itersonilia, Aureobasidium, and Alternaria 

classifications represents technical or true differences. One strength of the MicroCOPD 

study is the inclusion of one NCS per participant. In comparison, Tiew et al. included 

total of fourteen negative control samples (i.e. PBS) and extraction blanks (i.e. Zymo 

reagents). Discrepancies in diversity and taxonomy between our and Tiew et al.’s results 

could perhaps be attributed to the different sample types used, as IS samples have been 

shown to cluster differently than BAL samples in a PCoA space (113). Still, since similar 

sample types were utilised inside each of the study designs, the effect from different 

sample types should be small. Some differences were seen in the fungal taxonomy from 

129 



Singapore/Malaysia and Dundee, suggesting that geographical differences in lung 

mycobiomes exist (175). Geographical differences to our study centre could also explain 

the observed discrepancies between Tiew et al.’s study and the MicroCOPD study. 

Nevertheless, mentioned discrepancies are worthy of additional investigations to 

conclude further. In congruence with our results, they suggested that the lung 

mycobiomes were unaffected by treatment with ICS in patients with stable COPD (175). 

11.2.2 Longitudinal analyses on the pulmonary mycobiome 
We have shown in Paper IV that the oral mycobiome showed a high degree of stability, 

but less so for the pulmonary mycobiome. Intercurrent antibiotic use did not seem to 

influence the mycobiome. As found in paper III, most sample pairs were dominated by 

Candida, particularly for OW samples. Based on the Yue-Clayton plots, we visually 

divided each of the participants into three groups: Candida dominated, Candida reduced, 

and Candida discordant. The dominated and the reduced group had high and low relative 

abundances of Candida both in the first and the second bronchoscopy, respectively. The 

discordant group were participants with a high relative abundance of Candida in one of 

the bronchoscopies, but low relative abundance of Candida in the corresponding 

bronchoscopy. When participants with asthma were included, no differences were seen 

between the three groups in terms of C-reactive protein (CRP), thrombocyte count, 

interleukin 8 (IL-8), COPD assessment test (CAT) score, BAL yield in percentage, BAL 

macrophages, BAL lymphocytes, BAL eosinophils, sex, participant group, smoking or 

gastroesophageal reflux disease medications. We did, however, see an increased number 

of BAL neutrophils in the Candida reduced group compared to the Candida dominant 

group for the first bronchoscopy (Figure 6, p-value 0.048). This result should be read 

with caution. We did not adjust for multiple testing, participants with asthma were not 

excluded from the analysis, and we could not replicate the finding with blood samples 

taken from the second bronchoscopy (Figure 6, p-value 0.1). Given that the observation 
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could be reproduced by other researchers in other populations, one could speculate that 

Candida dominance provides protection against inflammation. 

Figure 6: BAL neutrophils between different Candida groups in the first and second bronchoscopy in the 
MicroCOPD study 

BAL, bronchoalveolar lavage. Neutrophil content in BAL were compared with Wilcoxon signed-rank test based on 

the Candida content in the sample pairs from participants undergoing two bronchoscopies in the MicroCOPD study. 

Three observations strengthened the view of a more stable oral mycobiome compared to 

the pulmonary mycobiome in the MicroCOPD study. First, the average Yue-Clayton 

measure in OW bronchoscopy pairs were 0.22 compared to 0.69 in BAL samples. As 

previously mentioned, the Yue-Clayton measure is based on differences in taxa’s relative 

abundances and is 0 with perfect similarity and 1 with perfect dissimilarity. The lower 

average Yue-Clayton measure in OW sample pairs is thus suggestive of a more stable 

mycobiome. Second, pairwise distances between each sample pair were significantly 

higher in BAL compared to OW using Bray-Curtis as distance metric. The higher Bray-

Curtis value, the more dissimilar were the two samples in a sample pair. We did not find 

any significant differences between pairwise distances using Jaccard. This is probably 

explained by the high Candida dominance in OW samples. A high Candida dominance 
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will affect Bray-Curtis and Jaccard differently since Bray-Curtis takes abundance into 

account, while Jaccard is based merely on absence-presence, reducing the impact from 

Candida. Significantly higher distances in BAL samples compared to OW samples using 

the Bray-Curtis distance metric add to the notion of a more stable OW mycobiome. 

Finally, taxonomy seems to change less between the first and the second bronchoscopy in 

OW compared to BAL by visual impression. But the high Candida dominance could 

create a visual illusion because of the less coloured OW plot. A differential abundance 

test could provide a more reliable estimate on taxonomy changes, but we were concerned 

to include a differential abundance test on group level, as the most interesting changes 

were intra-individually. We thus had greater confidence using the Yue-Clayton measures, 

which is calculated for each participant separately.  

The literature on the stability of the lung mycobiome is limited, and only three studies 

have included participants with COPD. Bafadhel et al. collected sputum samples from 

participants with COPD at baseline and three months later to examine the stability of 

Aspergillus fumigatus cultures (298). They found a poor repeatability of Aspergillus 

fumigatus, but comparison to our study is difficult due to differences in sample type and 

methodology. The two last studies examined longitudinal changes in the lung mycobiome 

during exacerbations (108, 175). The study by Su et al. found an unstable mycobiome in 

included patients. But samples were only collected during participants’ hospital stays, 

which ranged from 7 to 16 days. The time interval is probably too short to draw 

conclusions on the mycobiome stability. Furthermore, only six participants were 

included, and no statistics were applied to the results from consecutive collected samples. 

In Tiew et al.’s study, repeated sputum sampling was performed in 34 participants with 

COPD before an exacerbation, within 24 hours of an acute exacerbation and again two 

weeks post exacerbation following treatment with one week of oral antibiotics (either 

doxycycline or co-amoxiclav) and five days of oral corticosteroids (prednisolone) (175). 

No significant changes were seen in airway mycobiome profiles, alpha diversity, or beta 

diversity. Taxonomy was only presented on group level between the different time points, 
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which could have masked intraindividual differences, as seen in the MicroCOPD study. 

Results from diversity analyses concurred with results from the MicroCOPD study, 

though hard to compare due to a low sampling interval and treatment given in the study 

by Tiew et al. (175). The authors concluded that treatment of an acute exacerbation did 

not alter the lung mycobiome, but ideally, they should have examined the lung 

mycobiome at an additional later time point, for instance 3-4 months later. 

One could speculate that the bronchoscopic procedure in the MicroCOPD study affected 

the lung environment more than the sputum sampling performed in the aforementioned 

exacerbation study by Tiew et al. (175). It has been shown that bronchoscopy and BAL is 

associated with a potential immune response, exemplified by fever and flu-like symptoms 

in the following days after the procedure (299, 300). If the immune response is caused by 

respiratory microorganisms, such immune responses could be involved in the elimination 

of the given immune response trigger, i.e. the given microorganism. An increased 

immune response from bronchoscopy could thus have explained the instability in BAL 

samples, which was not observed in sputum samples during an exacerbation (175). That 

some of the BAL sample pairs showed identical taxonomy between the two time points 

challenges the immune response hypothesis but could have several explanations. For 

instance, that the immune response only happens in a fraction of participants, or that 

another specie from the same genus has replaced the eliminated microorganism. The 

higher stability observed in OW samples fits the hypothesis, since the oral cavity is less 

triggered by the bronchoscopy, and is more accustomed to exposures. We therefore 

expect less impact from the bronchoscopy on the oral mycobiome. The immune response 

hypothesis presented here should be examined with multiple sampling time points in 

larger populations. 

Some other studies have performed repeated sampling of the lung mycobiome, but 

included CF patients (95, 127) or intubated and mechanically ventilated patients with 

pneumonia (132), which complicates further comparisons to our results. 
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12 Conclusions 

1. There was few publications available on response rates in bronchoscopy studies.

Despite a limited literature, we found that response rates were generally high, but varied

between healthy and diseased people and with age. The invasive nature of a

bronchoscopy was a common reason to decline participation, while responders seemed to

be motivated by a combination of personal health benefit and altruism.

2. Just above 50% of invited subjects accepted and underwent a bronchoscopy in the

MicroCOPD study, showing that large-scale bronchoscopy studies are feasible.

Participants had a somewhat misleading perception of personal health benefit from

participation which emphasise the importance of providing accurate study information at

recruitment. Detailed information about the procedure, and avoidance of long waiting

times, are important to reduce participants’ fears and worries.

3. Oral and pulmonary samples differed in taxonomic composition and diversity in the

MicroCOPD study, possibly indicating the existence of a pulmonary mycobiome. No

consistent differences were found between participants with COPD and controls in terms

of differential abundance/distribution, alpha diversity, or beta diversity. ICS use could not

be seen to significantly affect the lung mycobiome.

4. The lung mycobiome showed less stability compared to the oral mycobiome in

participants from the MicroCOPD study. Neither intercurrent antibiotic use nor time

between bronchoscopies seemed to influence the mycobiomes.
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13 Future perspectives and implications 
The literature review included in the current thesis showed that further research on 

participation in research bronchoscopy studies is warranted. The analyses on participation 

in the MicroCOPD study contributed to fill this void, but some topics are still 

understudied. First, more detailed demographics of non-responders would be useful. We 

did not apply for any extended ethics approval, preventing detailed examination of non-

responders in the MicroCOPD study. Our analyses were thus limited to data collected 

from their participation in previous studies. Furthermore, an in-depth interview made 

specifically for a qualitative study would probably be more appropriate to extend our 

knowledge on participation in research bronchoscopy studies. Additionally, information 

on participants’ understanding of study information also enlightens us on issues regarding 

bronchoscopy in daily clinical practice, a well-established procedure frequently 

performed in the Norwegian health system. Newly acquired knowledge on bronchoscopy 

studies could also facilitate future large-scale studies on the COPD mycobiome. 

COPD mycobiome studies are still in their infancy. We have seen in this thesis that 

COPD mycobiome studies suffer from a lack of a standardised workflow, preventing 

generalisation. First priority of future studies should thus be to follow a common 

workflow that researchers have agreed upon so that prior publications, including those in 

the current thesis, could be validated, and to secure that newly generated results are 

reliable. Specifically, studies should include larger sample sizes, measure DNA 

quantitively, and include both negative and positive controls and relevant mock 

communities. Furthermore, DNA extractions should be performed similarly across 

studies, and the processing of at least a fraction of the samples should be replicated. 

Studies should preferably include the same bioinformatical principles. It is however 

common practice to publish the sequencing data from microbiome studies, so if we could 

agree on a common workflow prior to the bioinformatical processing, reliable sequencing 

data could be bioinformatically processed and analysed by different research teams. 
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When we feel confident that we have characterised the COPD mycobiome using reliable 

data, studies could move on to examine the COPD mycobiome further, for instance their 

role in exacerbations. 

Exacerbations is a common feature of the COPD disease. Tiew et al. has shown in a 

recent publication that the COPD lung mycobiome is associated with exacerbations 

(175). However, they did not observe any changes in their longitudinal analysis during an 

exacerbation, and future studies should repeat the analyses with increased time intervals 

or potentially further sampling time points. Considering the dominance of Candida in 

Tiew et al.’s exacerbation study and our results, and our suggestion of Candida as a 

stabilising factor of the lung mycobiome, it should be interesting to reveal Candida’s role 

in exacerbations in more detail.  

The majority of studies on the COPD microbiome have focused on bacteria, but recently 

also the viral part, or the virome, has been examined by metagenomic NGS in 

participants with a COPD exacerbation (301). Although most studies on COPD so far 

have examined the bacterial, fungal and viral part separately, less is known on how they 

interact with each other. We know that fungal-bacterial interactions can be beneficial or 

detrimental for the host (302), and it seems reasonable to propose that further studies 

should look more into inter-kingdom interactions in diseased COPD lungs. Furthermore, 

future studies should relate COPD mycobiomes with the host response to further 

elucidate the mycobiome’s role in disease. Targeted amplicon sequencing is unable to 

describe mycobiomes’ functional effects, but metagenomic sequencing approaches are 

more well-suited. A metagenomic study of the COPD mycobiome has identified fungi 

that are responsible for allergic sensitisation in COPD and shown that the sensitisation 

associates with frequent exacerbations (303). The study is an example of how new and 

advanced sequencing techniques can create new knowledge. 
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New knowledge carries hope for future implications. Hypothetically, knowledge on 

“helpful” and “exacerbating” fungi in the airways could lead to future screening of 

COPD patients. More directly, information on the architecture of the airway mycobiome 

might reveal an advantageous composition of fungi, enabling us to design pro- or 

prebiotic treatment, or detect specific species or strains with detrimental effect on lung 

health, enabling effective antimycotic treatment. Testing existing antimycotics on 

identified species and strains are definitely possible, whereas pro- or prebiotic treatment 

might require some sort of collaboration with industrial partners. The load from COPD 

on Norwegian hospitals is huge in terms of personnel and economics, and the disease 

inflicts serious inconveniences on COPD patients’ life through several hospital stays, 

unpleasant symptoms and fear. Clearly, more information on new and promising 

treatment options that reduce the incidence of COPD exacerbations, and even prevent 

disease, would have resulted in beneficial implications for the Norwegian health system. 

In the end, it is such information that one day might benefit patients with COPD as well. 
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14 Minor errata 
Paper I 
The study objective of Schook et al.’s study was reported as “Examine whether 

participation in a smoking cessation trial could influence smoking cessation” (90) in 

Table 3. It should have been “Examine whether participation in a chemoprevention study 

could influence smoking cessation”. 

Additionally, the citation of the study with the lowest response rate should have been 

reference 13 (Kye et al., reference (89) in this thesis), and not reference 11 (Chudleigh et 

al., reference (92) in this thesis). The citation is found in the “Response rates” 

undersection in the “Results”. 

Paper II 
One missing value for number of cigarettes were included as 99 (the default missing 

value used in data entry) and thus interpreted as 99 cigarettes, and one participant had 

incorrect smoking amount, which was later changed from 50 to 7. Additionally, non-

smokers were not included in the mean calculations, creating falsely high means. The 

control and COPD groups did not differ much after reanalyses, but mean pack years 

changed from 20.9 to 10.4 in the asthma group due to the low number of participants with 

asthma. Pack years and smoking amount was not included in any analysis other than 

demographics. 

Two controls had some minor errors in age from the data entry, which also affected the 

predicted values of FEV1 and FVC. We reanalysed age, and FEV1 and FVC in percentage 

of predicted for the demographic table. The only observed difference was a change in the 

standard deviation in FVC in percentage of predicted for the controls from 13.5 to 13.4. 

No further re-analyses were done as any impact on the results seemed unlikely. 
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Recruitment form and personal information. MicroCOPD. 
First	name,	last	
name	 1.1	 Sex 1.1a	

Norwegian	
national	identity	
number	 1.2a,	1.2b	

ID	number	
BergenCOPD	

1.3	

GeneCOPD	
ID	

1.3a

ID,	
MicroCOPD	

1.4	

Recruitment	
source	 1.5	

Address,	postcode	and	place	

1.6a,	1.6b,	1.6c	

Telephone	number	
1.7a,	1.7b,	1.7c,	1.7d	

Re-bronchoscopy (tick): 
1.8

Participant group (tick): 
COPD	 Control,	never-

smoke	
Control,	
smoke	

Asthma	 Other	

1.9

Critical information regarding recruitment 
Informed	about	fast	

1.10	

Informed	about	non-ability	to	drive	if	sedation	is	given	
1.11	

Questioned	about	anticoagulants,	dual	antiplatelet	therapy	 1.12	

Questioned	about	artificial	heart	valve	 1.13	

Questioned	about	antibiotic	usage,	steroids	and	exacerbation	 1.14	

Bronchoscopic	sampling	completed?	
Sample	 Tick	if	completed	 Note	what	is	missing,	and	reason
Brushes*2	 1.32 1.28	

SVL	 1.33 1.29	

BAL	 1.34 1.30	

Biopsies	 1.35 1.31	

Plotted	and	controlled,	date	and	signature:	 	________________________________	1.27a,	1.27b	
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ID	number,	MicroCOPD:	_________________	

Version 2.16, September 2014. English translation February 2021 Page	2	out	of	13 

Contraindications.
Yes	 No	

BLEEDING	RISK	
Known	haemophilia	

2.1
Blood	samples	

2.2
tpc	<	75*109	

2.3
INR	>	2,0	

2.4
Anticoagulants	(Marevan,	Pradaxa,	Xarelto,	Eliquis)	

2.5
Dual	antiplatelet	therapy,	or	clopidogrel/plavix/ticagrelor/brilique	last	5	days.

2.6
Low	molecular	weight	heparin	last	24	hours.	

2.7

OTHER	
Artificial	heart	valve	

2.8
Myocardial	infarction,	acute	coronary	syndrome/unstable	angina	last	6	weeks	

2.9
Known	severe	pulmonary	hypertension	

2.10
SpO2	below	90%,	with	supplemental	oxygen	

2.11

STABLE	COPD?	
Hospitalised	for	COPD	last	2	weeks	 2.12
Antibiotic	usage	last	2	weeks	 2.13	
Oral	glucocorticoids	last	2	weeks	 2.14	
Ongoing	exacerbation	–	2	major	or	1	major	+	1	minor,	2	
subsequent	days	(relative)	

MAJ:	Increased	dyspnoea	
2.15

MAJ:	Increased	sputum	
2.16

MAJ:	Colour	change	sputum	 2.17
MIN:	Stuffed/runny	nose	 2.18
MIN:	Increased	cough	or	sore	throat	 2.19
MIN:	Asthenia	

2.20
MIN:	Increased	wheezing	sounds	from	the	chest	 2.21

THE	PATIENT	INTENDS	TO	DRIVE	HOME	AFTER	THE	PROCEDURE	 2.22
FAST	NOT	COMPLETED	 2.23

In	the	case	of	any	“yes”,	the	project	physician	is	contacted	for	individual	consideration.	If	
the	procedure	is	conducted	despite	“yes”,	the	reason	is	documented	here:		

2.24	
__________________________________________________________________________	
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M
edication and vaccination: 

Note	all	drugs	the	patient	uses,	both	as-needed	and	regular	medication.								No	medication:				3.0.
M
edication nam

e 
Adm

inistration form
 

Dose (unit) 
Dosage (num

ber of
doses per 24 hours, or B for 

as-needed) 

Last dosage given (tim
e in 

last 24h) 
Start date if cure 

3.1a 
3.1b 

3.1c, 3.1d 
3.1e 

3.1f 
3.1g 

3.2a
3.2b

3.2c, 3.2d
3.2e

3.2f
3.2g

3.3a
3.3b

3.3c, 3.3d
3.3e

3.3f
3.3g

3.4a
3.4b

3.4c, 3.4d
3.4e

3.4f
3.4g

3.5a
3.5b

3.5c, 3.5d
3.5e

3.5f
3.5g

3.6a
3.6b

3.6c, 3.6d
3.6e

3.6f
3.6g

3.7a
3.7b

3.7c, 3.7d
3.7e

3.7f
3.7g

3.8a
3.8b

3.8c, 3.8d
3.8e

3.8f
3.8g

3.9a
3.9b

3.9c, 3.9d
3.9e

3.9f
3.9g

3.10a
3.10b

3.10c, 3.10d
3.10e

3.10f
3.10g

3.11a
3.11b

3.11c, 3.11d
3.11e

3.11f
3.11g

Approxim
ate	m

onth/year	
W
hen	did	you	last	receive	a	flu	shot?	

3.12	

W
hen	did	you	last	receive	antibiotic	treatm

ent?	
3.13	

W
hen	w

as	your	latest	cortisone/prednisolone	
cure?		

3.14	
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Conditions/diseases (active treatment, current symptoms, sequelae etc) 
Disease 
Yes No 

Diagnosis When diagnosed (years since) 

 4.1 Chronic obstructive pulmonary disease (COPD) 4.1a 

 4.2 Emphysema 4.2a 

 4.3 Chronic bronchitis 4.3a 

 4.4 Asthma 4.4a 

 4.5 Lung fibrosis 4.5a 

 4.6 Cystic fibrosis 4.6a 

 4.7 Sarcoidosis 4.7a 

 4.8 Lung cancer 4.8a 

 4.9 Tuberculosis 4.9a 

Conditions in airways are to be verified through medical history taking/spirometry/medical records and are regarded as 
diagnoses given/verified at the time of examination.  
CONDITION	 Yes	 No	 CONDITION	 Yes	 No	
Diabetes	mellitus	 	

4.10	
Depression	with	regular	use	of	medication	 	

4.33	
Myocardial	infarction	 	

4.11	
Other	psychiatric	illness	 	

4.34	
Angina	 	

4.12	
	 which?	 	 	 	 	 		4.35	

Intermittent	claudication	 	
4.13	

Muscle	disease	with	regular	use	of	medication
	 	

	
4.36	

Heart	valve	condition	 	
4.14	

	 which?		 	 	 	 	 		4.37	

Heart	failure	 	
4.15	

Active	known	cancer	(diagnosed/treated	last	5	
years)	

	
	

Cerebral	infarction	or	bleeding	 	
4.16	

	 Lung	cancer	 	
4.38	

Other	known	neurological	disease	 	 	
4.17	

	 GI	cancer	 	
4.39	

	 which?		 	 	 	 											4.18	 	 Breast	cancer	 	
4.40	

Gastric	ulcer	 	
4.19	

	 Endometrial	cancer	(NOT	dysplasia	
only)	

	
4.41	

Hepatic	disease	 	
4.20	

	 Cancer	in	gonads	 (testes/ovaries)	 	
4.42	

	 which?		 	 	 	 											4.21	 	 Prostate	cancer	 	
4.43	

Kidney	disease	 	
4.22	 	 Blood	cancer,	leukaemia	 	

4.44	

	 which?		 	 	 	 											4.23	 	 Lymphoma	 	
4.45	

High	blood	pressure,	treated	hypertension		 	
4.24	

	 Skin	cancer	(not	including	treated	
basalioma)	

	
4.46	

	 	
	

	 Other	type	of	cancer	 	
4.47	

Inflammatory	diseases	in	need	of	therapy	 	 which	 		 	 	 																						4.49	

Rheumatoid	arthritis	 	
4.26	

Other	diseases	(active	treatment,	physician-
given	diagnose)	–	write	here:	

	 	

Psoriasis	arthritis	 	
4.27	

	 	 	
4.50	

Systemic	lupus	erythematosus	 	
4.28	

	 	
4.51	

Polymyalgia	rheumatica	 	
4.29	

	 	
4.52	

Ulcerous	colitis/Mb	Crohn	 	
4.30	

	 	
4.53	

Disease	in	skeleton	or	joints	with	regular	use	
of	medication,	including	osteoporosis	

	
4.31	

	 	
4.54	

	 Which?		 	 	 	 											4.32	 	 	
4.55	

Comorbidities	should,	to	the	greatest	extent	possible,	be	verified	through	medical	history	taking	or	
medical	record	review.		
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Marital status, children, education, menopause, domestic animals 
1.	Are	you	(one	tick):	 	 Married/Registered	partner		 5.1a

	 Widow/widower		 5.1b

	 Cohabitant	 5.1c

	 Divorced,	live	alone		 5.1d

	 Unmarried/single		 5.1e

2.	If	you	have	children,	how	many?	 number	

5.2	

3.	Which	education	level	best	suits	you?	 	 Compulsory	education	 5.3a

	 High	school/vocational	training													5.3b
	 3	years	of	higher	education/university	5.3c	
	 ³4	years	of	higher	education/university	5.3d	

4.	For	women,	do	you	still	experience	regular	periods?	 		Yes	 		No		 5.4

4.	a.	If	no,	when	did	you	reach	menopause?	 years	ago	

5.5	

5.	Do	you	keep	domestic	animals	or	birds?	 		Yes	 		No	 5.6

5.	b.	Which	domestic	animal(s)/bird(s)	do	you	have?	
5.6a1	–	5.6a4	

5.	c.	Have	you	kept	domestic	animals/birds	at	home	before?	 		Yes	 		No	 5.6b	

5.	d		Which	domestic	animal(s)/bird(s)	did	you	have	before?	
5.6c1		-	5.6c4

Arterial blood gas and pulse oximetry 
Yes	 No	

Does	the	patient	receive	continuous	oxygen	
5.7	

Oxygen	supplied	in	the	30	minutes	prior	to	
puncture	(litres/min)	 5.8	

Blood	gas	results	

FiO2,	oxygen	fraction,	room	air	=	0,21	
5.9	

pH	
5.10	

Oxygen	tension	(PaO2,	kPa)	
5.11	

Carbon	acid	tension	(PaCO2,	kPa)	
5.12	

arterial	saturation	(%)	
5.13	

bicarbonate,	mmol/l	
5.14	

carbon	monoxide,	%	
5.15	

haemoglobin,	g/dl	
5.16	

Blood	gas	not	performed	because	(perform	pulse	oximetry,	note	in	bronchoscopy	form)	

Refuses	 5.17	

> 6	attempts 5.18	

	Apparatus	failure	 5.19	



Participant	papers,	MicroCOPD	 29.08.14	

ID	number,	MicroCOPD:	_________________	

Version 2.16, September 2014. English translation February 2021 Page	6	out	of	13 

Lung function testing, height, weight 

1. Chosen	spirometer:	________________________________________________	6.1

2. Technician	(four-character	code):□□□□ 6.2
3. Weight	of	participant	(kg):□□□.□ 6.3	

4. Height	of	participant	(in	whole	cm) □□□ 6.4

5. Given	Ventolin?	 	 	Yes							 	No	6.5

5.1	Time:	□□:□□ 6.6

6. Time	test	start:□□:□□ 6.7

7.a		Best	FEV1		_____________________	(litres)	6.8 7b.	Best	FEV1	%	of	predicted_________	6.9	

8.a		Best	FVC	_______________________	(litres)	6.10 8b.	Best	FVC	%	of	predicted_________	6.11	

9. Which	reference	values	were	applied?	______________________________________________	6.12
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COPD exacerbations, smoking habits, alcohol 

1. Number	of	exacerbations	in	the	last	12	months	requiring	antibiotics/steroids	or	hospital	admission?

_________________________	(number	of	exacerbations)	7.1

If	yes,	answer	question	2,	if	not,	move	on	to	question	3.	

2. If	one	or	more	therapy	requiring	exacerbations	in	the	last	12	months	–	how	many	of	them	required
acute	hospitalisation?

__________________________	(number	of	admissions)	7.2	

3a	 Do	you	smoke	daily	now?	
If	yes,	answer	3b,	if	no	move	to	3d	

	Yes	 	No	
7.3	

3b	 Do	you	smoke	cigarettes	daily?	(roll-your-own	or	manufactured)?	
If	yes,	move	to	3f,	if	no	move	to	3c	

	Yes	 	No	

7.4	

3c	

	

What	do	you	use	to	smoke	tobacco?	

Move	to	3f	

	pipe	
	cigar	

7.5	

3d	 Have	you	smoked	daily	before?	
If	yes	move	to	3e,	if	no	move	to	3i	

	Yes	 	No												

7.6
3e	 How	long	since	you	quit?	 	Less	than	three	months		

	Between	three	months	and	one	year	
	One	to	five	years	
	More	than	five	years	 	 7.7

3f	 How	many	years	have	you	smoked	daily?	 ëûëû			7.8	 Number	of	years	

3g	 How	many	cigarettes	do	you	smoke	or	did	you	smoke	daily?	
(give	the	number	per	day,	both	roll-your-own	and	
manufactured)	Move	to	question	4.	

ëûëû				7.9	 Number	of	units	

3i	 Do	you	smoke	cigarettes	once	in	a	while,	or	have	you	smoked	
cigarettes	once	in	a	while	before?	If	yes,	move	to	3j	and	3k,	if	
not	move	to	question	4.	

	Yes	 	Before			 	No	

7.13

3j	 For	how	long	have	you	smoked	once	in	a	while?	 ëûëû			7.14	 Number	of	years	

3k	 How	many	cigarettes	do/did	you	smoke	in	the	course	of	a	
regular	week?		

ëûëû				7.15	 Number	of	units	

4. Number	of	cigarettes	or	tobacco	units	(not	snus)	in	the	last	24	hours	_______	number	of	units.	7.10

5. Number	of	hours	since	you	smoked	or	used	tobacco			___________	(number	of	hours)	7.11

6. How	many	units	of	alcohol	do	you	consume	in	the	course	of	an	average	week?

___________________	(number	of	alcohol	units)	7.12	
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CAT COPD assessment test (copyright GSK): 

For each item below, place a mark (X) in the box that best describes your current situation. Please ensure 
that you only select one response for each question 

Example:	

I	am	very	
happy	 0	 1	 2	 3	 4	 5	 I	am	very	sad	

SCORE	
I	never	cough	 0	 1	 2	 3	 4	 5	 I	cough	all	the	time	 8.1	

I	have	no	phlegm	
(mucus)	in	my	chest	at	
all	

0	 1	 2	 3	 4	 5	 My	chest	is	full	of	
phlegm	(mucus)	

8.2	

My	chest	does	not	feel	
tight	at	all	

0	 1	 2	 3	 4	 5	 My	chest	feels	very	
tight	 8.3	

When	I	walk	up	a	hill	or	
a	flight	of	stairs,	I	am	not	
out	of	breath	

0	 1	 2	 3	 4	 5	 When	I	walk	up	a	hill	
or	a	flight	of	stairs,	I	
am	completely	out	of	
breath	 8.4	

I	am	not	limited	to	doing	
any	activities	at	home	

0	 1	 2	 3	 4	 5	 I	am	completely	
limited	to	
doing	all	activities	at	
home	 8.5	

I	am	confident	leaving	
my	home	despite	my	
lung	condition	

0	 1	 2	 3	 4	 5	 I	am	not	confident	
leaving	my	home	at	all	
because	of	my	lung	
condition	 8.6	

I	sleep	soundly	 0	 1	 2	 3	 4	 5	 I	do	not	sleep	soundly	
because	of	my	lung	
condition	 8.7	

I	have	lots	of	energy	 0	 1	 2	 3	 4	 5	 I	have	no	energy	at	all	 8.8	

TOTAL	SCORE	 8.9	

Motivation for participation 
Why	did	you	wish	to	take	part	in	this	project	(open	question,	answer	in	free-form	text)?	

8.10 

Expectations 
On	a	scale	from	zero	to	10,	where	10	is	the	worst	you	can	imagine,	and	0	is	nothing.	How	
much	do	you	dread	this	examination?	(whole	numbers,	no	comment)	

8.11 
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Assessment of chronic dyspnoea (mMRC scale) 

First	
Are	you	restricted	from	walking	due	to	other	condition	than	breathlessness?	

Yes ☐ No	☐ 9.0

If	yes,	move	pass	the	next	question,	if	no:	

Give	the	one	answer	that	is	correct	for	you	(mark	only	one)	9.1	
☐ I	am	too	breathless	to	leave	the	house	or	I	am	breathless	when	dressing.
☐ I	stop	for	breath	after	walking	about	100	metres	or	after	a	few	minutes	on	level
ground
☐ On	level	ground,	I	walk	slower	than	people	of	the	same	age	because	of
breathlessness,	or	have	to	stop	for	breath	when	walking	at	my	own	pace.
☐ I	get	short	of	breath	when	hurrying	on	level	ground	or	walking	up	a	slight	hill	☐
I	only	get	breathless	with	strenuous	exercise

Assessment of dyspnoea before bronchoscopy (Borg scale) 9.2 

How	severe	is	your	breathlessness?	 Tick	
0	 Nothing	at	all	 ”No	intensity”	
0,3	
0,5	 Very,	very	slight	 Just	noticeable	
0,7	
1	 Very	slight	
1,5	
2	 Slight	 Light	
2,5	
3	 Moderate	
4	
5	 Severe	 Heavy	
6	
7	 Very	severe	
8	
9	
10	 Extremely	severe	 ”Strongest	intensity”	
11	
* Absolute	maximum Highest	possible	
Borg	CR10	scale.	 Copyright	Gunnar	Borg,	1982,	1998
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Bronchoscopy date:  ____/____/20___  10.0 

Safety	

Contraindications	
checked	 10.1	

Allergies,	
asked*	 10.2

Blood	samples	
date	(safety)	 10.2a	

Tpc	*109
10.3 Hb,	mg/l	 10.4

INR	
10.5

SpO2	WITHOUT	
supplemental	
oxygen	(before	
start,	%)	 10.7b	

SpO2	WITH	
supplemental	
oxygen	(before	
start,	%)	 10.6

O2	supplied	
(l/min	

10.7

BP	before	
anaesthesia	 10.8

BP	after	anaesthesia	
10.9

Operators,	equipment	

Operator	1,	four-
character	code	 10.10

Nurse	1,	four-character	
code	 10.11

Bronchoscope	1	
10.12

Rack	
10.13

Drugs	

Lidocaine	10	
mg/spray,	number	
of	applications	 10.14

Bronchodilation	
prior	to	procedure	

Drug(s)	 Amount	+	unit	 Indication	

Fill	in	here	if	
given:	 10.15 10.16,	10.16a 10.17

Alfentanil	preop.,	
mg	 10.18

Supplemental	alfentanil	
perop,	mg	 10.19

Midazolam	preop,	
mg	 10.20

Supplemental	
midazolam	perop,	mg	 10.21

Applied	lidocaine	
during	procedure,	
in	millilitre	(20	
mg/ml)	 10.22

Applied	adrenaline,	0,1	
mg/ml,	place,	amount	

10.23

Procedure	start	and	end	

Time,	start	(passing	
of	vocal	cords)	

10.24

Time	end	
(scope	
withdrawn)	 10.25
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Sampling	

Negative	
controls	of	fluid?	 11.1	

Inspection	
completed**	 11.2	

Normal	(not	
norm.	next	page)	 11.3	

Gingival	samples	
taken.	 11.3a	

Comment	
gingiva	 11.3b	

Oral	wash,	type		
&	fluid	amount	 11.4a,	11.4b,		

Oral	wash	
return	(ml)	 11.5	

Brushes	 Order	 Lobe	 Segment	 Number	of	
brushes	

Right	
11.6a 11.6	 11.7	 11.8	

Left	
11.9a 11.9	 11.10	 11.11	

Lavage	 Order	 Lobe	 Segm.	 Type	of	
fluid	

BAL	or	
SVL?	

Installed	
(ml)	

Return	
(ml)	

Right	
11.18a 11.18	 11.19	 11.20	 11.21	 11.22	 11.23	

Left	
11.12a	 11.12	 11.13	 11.14	 11.15	 11.16	 11.17	

Endobrochial	
biopsy	

Place	(lobe,	carina	level	
and	segment)	

Type	of	
forceps	

Sent	to	(GMA,	
freezer,	mitoc.,	other)	

number	1	
11.24	 11a	 11a1	

number	2	
11.27	 11b	 11b1	

number	3	 11.30	 11c	 11c1	

number	4	 11.33	 11d	 11d1	

number	5	
11.36	 11e	 11e1	

number	6	 11.39	 11f	 11f1	

number	7	 11.41a	 11g	 11g1	

number	8	
11.41c	 11h	 11h1	

Termination	

Complicated	

11.42,	11.43	

Must	fill	out	
complication	form	

When	can	the	patient	eat	
(time)	

11.44	

Observation	time	
completed,	time,	four-
character	code	 11.45	 11.46	

* anaesthesia,	sedation
**	vocal	cords,	carina,	inspection	of	all	lobes	and	segmental	ostia
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Bronchoscopy event form 

Study personnel present: _____________________________________________________ 12.1a - h 

Event: Time, duration, assumed 
cause and intervention 

No event (mark) 

12.2 

Cough 

12.3, 12.3a 

Dyspnoea 

12.4, 12.4a 

Oxygen desaturation >4 
% 
or to <90 % 

12.5, 12.5a 

Change in BP/Heart rate 

12.6, 12.6a 

Bleeding 

12.7 

Other serious 
complication 

12.8 

Other events 

12.9 
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Subject experience of bronchoscopy 
Question	 Immediately	

after	
After	the	
observation	

After	1	week	

A.	What	do	you	think	of	the	procedure	now?	Have	
you	had	any	discomforts	(which?)	(Open	question)

13.1a	 13.1b	 13.1c	
B. How	uncomfortable	did	you	find	this	experience,
taking	into	consideration	everything	that	has	
happened	until	now,	on	a	scale	from	0	to	10,	where
10	is	the	most	uncomfortable	you	can	imagine,	and	
0	is	no	discomfort. 13.2a	 13.2b	 13.2c	

C.	For	how	long	do	you	think	the	procedure	lasted? 13.3a	

1. How	short	of	breath	are	you	now?	(Borg	scale),	0-
10	(show	Borg	scale) 13.4a	 13.4b	 13.4c	
2. If	you	were	asked	to	participate	in	a	new	research
project	involving	the	same	procedure,	would	you
participate?	(if	yes,	go	to	question	4,	if	no,	ask	
question	3) 13.5a	 13.5b	 13.5c	

3. If	your	doctor	advised	you	to	undergo	this	type	of
procedure,	would	you	then	have	done	it	again? 13.6a	 13.6b	 13.6c	
4. Do	you	have	a	sensation	of	fever	in	your	body
now,	or	have	you	had	fever/fever	sensation	in	
relation	to	bronchoscopy	or	after	the	procedure?	 13.7a	 13.7b	 13.7c	

5.	Did	you	cough	blood	or	red/light	red	saliva?
13.8a	 13.8b	 13.8c	

6.	Have	you,	after	the	procedure,	experienced	

a.	Increased	breathlessness,	dyspnoea	or	
tightening	of	the	chest?	(Synonymous	words)?	

13.9a	 13.9b	 13.9c	

b.	Increased	sputum?
13.10a	 13.10b	 13.10c	

c.	Sputum	colour	change?
13.11a	 13.11b	 13.11c	

d.	Increased	rhinitis/stuffed	nose?
13.12a	 13.12b	 13.12c	

e.	Increased	wheezing	chest	sounds?
13.13a	 13.13b	 13.13c	

f.	Sore	throat/increased	cough?
13.14a	 13.14b	 13.14c	

g.	Increased	fatigue/lack	of	initiative?
13.15a	 13.15b	 13.15c	

f.	flu	symptoms	(fever,	muscle/joint	ache,
headache,	reduced	general	condition)?	

13.16a	 13.16b	 13.16c	

7. Have	you,	after	the	procedure,	needed	to	seek	a	doctor/call	(unscheduled),
use	antibiotics,	receive	cortisone/prednisolone	or	be	admitted	to	hospital?	
(if	yes,	note	what,	and	cause) 13.17,	13.17a

8.	Have	you,	in	relation	to	the	procedure	or	after	received	any	new	treatment?	
In	case,	which?	(type	of	treatment,	if	drug	–	dosage	etc)	

13.18	

9.	Note	if	the	participant	has	been	in	contact	with	a	physician	or	the	study	
personnel	outside	of	standard	follow-up	–	reason	for	contact,	date	and	
intervention.	 13.19	
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C
hronic obstructive pulmonary disease (COPD)

will be the third leading cause of death in 2030,

according to estimates by the World Health

Organization (1). The mechanisms explaining why only a

limited fraction of individuals exposed to tobacco and

other air pollutants develop COPD remain unknown.

Recent advances in the field of metagenomics have indi-

cated that airway microbiota might differ between subjects

with and without COPD (2). To sample the airway micro-

biota, it is necessary to have a feasible method, yet with

minimal contamination. Although induced sputum is a

possibility (3), this method is prone to contamination from

the oral microbiota. Furthermore, the accuracy in pre-

dicting which segments of the airways are being sampled

is uncertain.

Bronchoscopy is a safe procedure with a low complica-

tion rate (4) and is the ideal procedure both to ensure

minimal contamination as well as to enable mapping of

different areas of the airways. However, a semi-invasive

procedure such as bronchoscopy can be associated with

discomfort. Together with pre-procedural anxiety, this dis-

comfort might lower participation in studies that sample

the airways by bronchoscopy. Previous studies on the

airway microbiota in asthma and COPD patients with

bronchoscopic sampling had low numbers of participants

(2, 5, 6). There is a need for studies with more statis-

tical strength to secure reliable and reproducible data.

However, large-scale bronchoscopy studies would require

attention to logistic challenges, including recruitment and

participation.
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More information on response rates and participa-

tion motives could lead to better-targeted recruitment for

clinical studies. Furthermore, by revealing common pre-

procedural concerns and anxieties, it might be possible

to also improve patient information and compliance in

regular clinical practice. The aim of the current report

was to perform a systematic review of the current litera-

ture on participation motives, response rates, and recruit-

ment strategies in research bronchoscopy studies with an

emphasis on studies including COPD patients.

Methods

Search strategy
Two separate literature searches were performed using

the PubMed search engine of the US National Library

of Medicine (7) and the Excerpta Medica Database

(EMBASE) provided by the medical publisher Elsevier (8).

PubMed papers are indexed by keywords called medical

subject headings (MeSH) (9). Due to the hierarchical

organization, generalized MeSH terms include papers

classified by specific MeSH term. We identified MeSH

terms from the indexed papers in initial searches, supplied

by qualified suggestions from a collegial brainstorming

session using a modification of a population�intervention�

comparison�outcome (PICO) scheme (10). Most search

terms were included as both MeSH terms and text words

to increase search sensitivity. The columns were combined

with ‘OR’, and rows were combined with ‘AND’.

EMBASE has similar functions as PubMed, though

MeSH terms are replaced by Emtree terms. We used the

same modified PICO scheme (Table 1) for the EMBASE

search. MeSH terms were replaced by explosion search,

and text words were replaced by multipurpose (mp) terms.

Titles and abstracts were sifted and classified by pres-

pecified exclusion and inclusion criteria (Table 2). Only

papers concerning recruitment to studies including bron-

choscopy were included. Reports of motives or perceived

benefits of participation in studies with respiratory inva-

sive procedures, reasons for non-response, recruitment

sources, and response rates in studies involving respiratory

invasive procedures were included. Papers not written

in English or a Scandinavian language were excluded,

together with non-human studies, case studies, and secon-

dary publications, including literature reviews, reports, com-

ments, letters, guidelines, newspaper articles, books, or

book chapters. Studies that did not have participation as a

main objective or as a study end point were also excluded.

Similar criteria were used in evaluating retrieved papers

found from both the PubMed and EMBASE searches.

Table 1. Modified PICO scheme used for a literature review on participation in research bronchoscopy studies

P1 P2 I O

COPD (MeSH) Patients (MeSH) Bronchoscopy (MeSH) Patient participation (MeSH)

COPD (tw) Patients (tw) Bronchoscopy (tw) Participation (tw)

Chronic obstructive

pulmonary disease (tw)

Participants (tw) Response (tw)

Human volunteers (MeSH) Non-response (tw)

Volunteers (tw) Attitude (MeSH)

Study (MeSH major topic) Attitude (tw)

Trial (MeSH major topic) Motivation (MeSH)

Research subjects (MeSH) Motivation (tw)

Research subjects/psychology (MeSH) Refusal to participate (MeSH)

Clinical research (MeSH) Refusal to participate (tw)

Informed consent (MeSH)

Participation rate, patient (MeSH)

Participation rate (tw)

Patient selection (MeSH)

Patient selection (tw)

Advertising as topic (MeSH)

Advertising (tw)

Risk assessment (MeSH)

Risk assessment (tw)

Altruism (MeSH)

Altruism (tw)

Perception (tw)

The P1 column was excluded in the final search due to a paucity of results.

P, population; I, intervention; C, comparison; O, outcomes; MeSH, medical subject headings; tw, text words

Einar Marius Hjellestad Martinsen et al.
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Results
Results from the two literature searches were classified

as shown in Table 2. The majority of papers, 1,117, were

excluded due to their lack of participation as a main

objective or study end point. The PubMed search yielded

eight relevant papers, and the EMBASE search yielded

nine relevant papers. Seven out of nine articles from the

EMBASE search were also found in the PubMed search.

Thus, 10 individual papers were included for in-depth

review. Three of these 10 papers did not report participa-

tion and were excluded.

Table 3 provides an in-depth overview of the final seven

included papers (11�17). Four of the papers were pub-

lished in the last five years, and six of the studies were

conducted in Europe. Six papers focused on motives or

perceived benefits of participation for studies involving

research bronchoscopies (11, 12, 14�17). One of these

also reported reasons to decline participation (16), and

one studied predictors for the decision to consent to a

second bronchoscopy (14). Further, one study evaluated

the recruitment process in a lung cancer chemopreven-

tion study that included a research bronchoscopy (13).

Research bronchoscopies were carried out in all the

studies (Table 3).

Five of the reviewed studies were prospective (11, 13�16).

The largest included 146 participants in a smoking cessa-

tion trial (17), whereas the smallest examined 18 subjects

(12). Three studies were limited to current or ex-smokers as

study subjects (13, 16, 17), and none of these studies

compared results with a healthy control population.

Only one study included COPD patients (16), but the

study emphasized lung cancer. Thus, none of the studies

published results generalizable to a COPD population.

The most frequently used method of obtaining infor-

mation was interviews (12, 13, 15�17), which were con-

ducted by telephone in three of the studies (12, 13, 17).

The remaining two studies made use of self-completed

questionnaires for data collection (11, 14). Statistical

methods were not reported in three of the included

studies (11�13). The effects of demographic variables on

participation were examined in five of the papers (13�17).

Motivation and benefits of study participation
We identified four main groups of motives for par-

ticipation in bronchoscopy studies � personal benefit

(11, 12, 14�17), altruism (11, 14, 16), perceived importance

of research (11, 12), and obedience to the authority of the

researchers (14).

Personal benefit was found as a participation motive

in all six papers that examined participation motives

(11, 12, 14�17). The benefits appeared to take various

forms, but were mainly defined as interest in their own

health (11, 14, 17), getting a proper health assessment

(15, 16), or treatment or surveillance of their health (12, 15).

In the study of parents of children with cystic fibrosis

(CF), personal benefit was more important when they

accepted participation on behalf of their children com-

pared to parents of healthy control infants (98 vs 25%)

(11). In the Malawian study, new volunteers expected

participation to be of benefit to them, perceived as health

assessment and prompt treatment (15). In the study on

an HIV-infected population in the United Kingdom, two-

thirds of participants stated personal benefit as impor-

tant, but only 51% gave their own health as their main

motive for participation (14).

In the latter study (14), altruism was considered the

main reason for participation by HIV-infected patients.

The same was true for parents of healthy controls in

the CF case�control study (11). In the study by Patel

et al., four of seven elderly participants (age �70) gave

altruistic reasons for participation. However, this motive

was often accompanied by self-interest. No participants

stated altruism as the only motive for participation (16).

Participation as a result of physician’s authority was

rare, but could be seen in the study by Lipman et al. (14),

which found that participants were motivated by being

asked by a physician or that the physician seemed to

want them to participate. Kerrison et al. (12) found a

Table 2. Number of retrieved papers for a literature search in the databases PubMed and EMBASE on participation in research

bronchoscopy studies according to classification criteria

Classification criteria PubMed EMBASE

Total number retrieved 989 987

Non-English/non-Scandinavian language 102 None

Case studies/series 82 427

Secondary publications 116 108

Non-human studies 7 None

Participation not a major topic 674 443

Papers included in review 8 9

Papers common to PubMed and EMBASE searches 7

Secondary publications included reviews, expert panels, letters, guidelines, and so on. The EMBASE search excluded studies in

languages other than English and Scandinavian languages, as well as non-human studies

Participation in research bronchoscopy
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somewhat similar motive when participants described

their participation as an important investment in scientific

progress. This motive was also mentioned by 32% of the

parents in the CF case�control study (11).

Response rates
Response rate, defined as number of enrolled divided by

approached or prescreened individuals, was a main objec-

tive in three of the reviewed papers (11, 13, 14), whereas

response rates could be found or derived from two

additional papers (12, 17). Response rates varied from

3 to 73% (11, 17) and seemed to be higher in studies

involving individuals that were affected by the index

disease (11, 14). Chudleigh et al. showed that recruitment

of healthy controls was feasible, but more challenging

than recruiting CF patients (11). Only Lipman et al.

looked into predictors for participation and found that

participants were significantly older (14).

Refusal
Reasons for declining primary participation or a second

bronchoscopy was reported in three articles (13, 14, 16),

and disadvantages of participation were examined in one

study (11). All studies exploring refusal to participate listed

a negative view on bronchoscopy as a main reason for non-

response (13, 14, 16), and the severity and duration of

previous experienced post-bronchoscopy symptoms was

the most common reason to refuse a second research

bronchoscopy in an HIV population (14). Patients that

refused or were unsure (21% of participants who already

had undergone a bronchoscopy) had more clinically

advanced HIV infection. However, all of the participants

did agree to a second bronchoscopy if medically indicated

(14). Patel et al. identified barriers to participation as

disadvantages of involvement exemplified by travel incon-

venience, bad experiences, and negative perceptions of

bronchoscopy (16), whereas Chudleigh reported anxiety

and perceived risk for complications as negative aspects of

participation (11).

Recruitment strategies
The study by Kye et al. was the only one reporting the

efficacy of various recruitment strategies, and in a US

lung cancer screening trial they found that radio adver-

tisement was the most effective, especially information

on the news stations, followed by Internet posting, print

media, posted and racked flyers, and mass mailings (13).

Discussion
We have shown that the literature on participation in

research bronchoscopy studies is somewhat limited.

Nevertheless, investigators planning new studies might

benefit from some inferences. First, it seems that both

control subjects and younger individuals have lower

response rates (11, 14). The highest response rates were

seen in a study involving current or former smokers (17)Ta
b
le

3
(C
o
n
ti
n
u
e
d
)

A
u
th
o
r,
y
e
a
r
o
f

p
u
b
lic
a
ti
o
n
,

c
o
u
n
tr
y

(r
e
fe
re
n
c
e
)

S
tu
d
y
o
b
je
c
ti
v
e

M
a
in

o
u
tc
o
m
e
s

N
P
o
p
u
la
ti
o
n

In
c
lu
s
io
n
c
ri
te
ri
a

D
e
s
ig
n

P
u
rp
o
s
e
o
f

b
ro
n
c
h
o
s
c
o
p
y

B
ro
n
c
h
o
s
c
o
p
y

p
ro
c
e
d
u
re

R
e
le
v
a
n
t
fi
n
d
in
g
s

P
a
te
l,
2
0
1
2
,

U
n
it
e
d

K
in
g
d
o
m

(1
6
)

E
x
a
m
in
e
m
e
th
o
d
s

a
n
d
p
a
rt
ic
ip
a
ti
o
n
in

a

lu
n
g
c
a
n
c
e
r

s
c
re
e
n
in
g
s
tu
d
y

P
a
rt
ic
ip
a
ti
o
n

m
o
ti
v
e
s
,
d
e
c
lin
in
g

re
a
s
o
n
s
,
a
n
d
v
ie
w
s

o
n
s
c
re
e
n
in
g
m
e
th
o
d

6
0

C
u
rr
e
n
t
o
r

e
x
-s
m
o
k
e
rs
,

]
2
0
p
k
y
a
n
d

o
r
]
2
0
y
e
a
rs
,

w
it
h
m
ild

to

m
o
d
e
ra
te

C
O
P
D

N
o
s
e
ri
o
u
s
c
o
m
o
rb
id

d
is
e
a
s
e
,
lif
e

e
x
p
e
c
ta
n
c
y

]
5
y
e
a
rs

P
ro
s
p
e
c
ti
v
e

q
u
a
lit
a
ti
v
e
s
tu
d
y.

S
e
m
i-
s
tr
u
c
tu
re
d

in
te
rv
ie
w
s

E
x
a
m
in
a
ti
o
n

F
lu
o
re
s
c
e
n
c
e

b
ro
n
c
h
o
s
c
o
p
y

w
it
h
b
io
p
s
ie
s

R
e
s
p
o
n
s
e
ra
te
:
n
o
t
g
iv
e
n

P
a
rt
ic
ip
a
ti
o
n
m
o
ti
v
e
s
:

p
e
rs
o
n
a
l
b
e
n
e
fi
t,
a
lt
ru
is
m

P
a
rt
ic
ip
a
ti
o
n
b
a
rr
ie
rs
:
fe
a
r,

b
a
d
e
x
p
e
ri
e
n
c
e
s
,
a
n
d
tr
a
v
e
l

C
h
u
d
le
ig
h
,
2
0
1
3
,

U
n
it
e
d

K
in
g
d
o
m

(1
1
)

E
xa

m
in
e
re
c
ru
itm

e
n
t

a
n
d
re
te
n
tio

n
o
f
C
F

in
fa
n
ts

a
n
d
h
e
a
lth

y

c
o
n
tr
o
ls
,
a
s
w
e
ll
a
s

p
a
re
n
ta
l
a
tt
itu

d
e
s
to

p
a
rt
ic
ip
a
tio

n

P
a
rt
ic
ip
a
ti
o
n

m
o
ti
v
e
s
,
b
e
n
e
fi
ts
,

a
n
d
d
is
a
d
v
a
n
ta
g
e
s
.

R
e
s
p
o
n
s
e
ra
te
s

C
a
s
e
s
:
8
5

V
o
lu
n
te
e
rs
:
5
6

In
fa
n
ts

w
it
h

a
n
d
w
it
h
o
u
t
C
F,

in
c
lu
d
in
g

p
a
re
n
ts

C
F
:
n
o
c
o
n
tr
a
in
d
ic
a
te
d

d
is
o
rd
e
rs
,
n
o
p
re
te
rm

s.

H
e
a
lth

y
c
o
n
tr
o
ls
:
n
o

m
e
d
ic
a
l
a
n
d
/o
r
so

c
ia
l

c
o
n
tr
a
in
d
ic
a
tio

n
s,

]
2
5
0
0
g

P
ro
s
p
e
c
ti
v
e

lo
n
g
it
u
d
in
a
l,

o
b
s
e
rv
a
ti
o
n
a
l

s
tu
d
y.

S
e
lf
-

c
o
m
p
le
te
d

q
u
e
s
ti
o
n
n
a
ir
e
s

E
x
a
m
in
a
ti
o
n

B
ro
n
c
h
o
s
c
o
p
y

w
it
h
B
A
L

R
e
s
p
o
n
s
e
ra
te
:
6
9
%

(C
F
),

2
1
%

(h
e
a
lt
h
y
c
o
n
tr
o
ls
)

P
a
rt
ic
ip
a
ti
o
n
m
o
ti
v
e
s
:

p
e
rs
o
n
a
l
b
e
n
e
fi
t,
a
lt
ru
is
m

B
A
L
,
b
ro
n
c
h
o
a
lv
e
o
la
r
la
v
a
g
e
;
C
O
P
D
,
c
h
ro
n
ic

o
b
s
tr
u
c
ti
v
e
p
u
lm

o
n
a
ry

d
is
e
a
s
e
;
C
F,

c
y
s
ti
c
fi
b
ro
s
is
;
F
E
V
1
,
F
o
rc
e
d
e
x
p
ir
a
to
ry

v
o
lu
m
e
;
p
k
y,

p
a
c
k
-y
e
a
rs
.

Participation in research bronchoscopy

Citation: European Clinical Respiratory Journal 2016, 3: 29511 - http://dx.doi.org/10.3402/ecrj.v3.29511 5
(page number not for citation purpose)



and in a study of an HIV population (14). Conversely,

healthy subjects in a chemoprevention study had the

lowest participation rate (3.1%) (13), possibly suggesting

that more advanced diseases result in higher participation

fractions. However, the latter study also pointed out the

challenge of recruiting healthy subjects, as these require

strict entry criteria and minimal comorbidities, which

may also have contributed to their very low response rate.

An earlier review conducted on participation in COPD

studies without an invasive procedure also examined res-

ponse rates (18). Sohanpal et al. found that study parti-

cipation rates were higher than expected, and 81% of the

studies included had a study participation rate above

50%. This finding conforms to the current report. The

average participation rate was 77.8% in Sohanpal et al.’s

review, whereas our review had an average of 55.8%,

possibly suggesting higher participation rates in studies

without invasive procedures. However, our material is

limited and caution needs to be taken when comparing

these results. Second, it seems that the main motivation

for participation lies somewhere in a balance between

perceived personal health benefit and altruism. This war-

rants some caution from investigators in not portraying

participation as a substitution for otherwise inadequate

healthcare access and some modesty in what results

might be expected from the study. In particular, profes-

sionals should be aware that perceived authority results

in undue pressure on invitees (14). Third, the main reason

for non-response or declination of participation was fear

related to the invasive procedure. It would be logical

to assume that both content and deliverance of study

information influences participation, but no study exam-

ined these factors in detail. Fourth, participation in

research bronchoscopy does not seem to negatively in-

fluence patient consent for medically indicated proce-

dures (14), which is of key importance when deciding

whether or not to include bronchoscopy in a clinical

study. Finally, researchers considering media as a recruit-

ment source should know that radio and Internet

advertising seem to be the most effective sources (13).

The distinction between non-therapeutic and therapeu-

tic studies could possibly give rise to different participa-

tion motives. In the current review, we defined three of

the articles as therapeutic (13, 16, 17), defined by any

perceived direct benefit to the participants involved, and

four as non-therapeutic (11, 12, 14, 15). Interestingly, all

six papers that focused on motivation (11, 12, 14�17)

reported personal benefit to be important. The perceived

benefit from a non-therapeutic study could reflect a lack

of understanding among the participants, thus emphasiz-

ing the importance of providing adequate and detailed

information to eligible subjects.

In comparison to our area of study, participation

in colorectal cancer screening trials was reviewed by

Bakker et al. (19). They found that participation rates

and completion of the fecal occult blood test as a screen-

ing procedure was higher when the researcher added the

screening kit to the invitations. The addition was com-

pared to invitations in which participants had to request

the kit if interested or visit their general practitioner or a

screening center to obtain the kit. In addition, a higher

test completion rate was observed if participants received

the test by post before a health check rather than being

offered the test at the health check. General practitioner

involvement and face-to-face invitation also resulted in

higher participation. Furthermore, long travel distances

from the screening facility were considered a participa-

tion barrier, consistent with results reported in the study

by Patel et al. included in the current review (16).

A review by Ellis assessed patient and physician

participation in randomized clinical trials in oncology

(20). In line with our findings, the review confirmed that

altruism, personal benefit, and scientific contribution

were important motives for participants. Physician’s

authority was not emphasized, but patients that trusted

their doctors seemed more willing to participate in clinical

trials. Males, older patients, less well-educated persons

or persons from lower socioeconomic backgrounds were

also more inclined to participate. Among the reasons for

non-response the authors emphasized fear of randomi-

zation, suggesting the process to be unfair, and loss of

freedom to make their own decisions. Some individuals

reported the feeling of being a guinea pig as unpleasant.

Lack of information and distrust of the medical profession

also appeared as barriers. Further, large difference in the

treatment offered negatively influenced the decision to

participate.

Our review has also revealed some limitations in the

existing literature and some fields that warrant further

research. The bulk of literature was on participation

motives, whereas only two studies presented information

on non-responders. Only one of these two presented a res-

ponse rate, but this study had fewer than 100 individuals

in their final analysis, and only 52% of the participants

had actually undergone a bronchoscopy at the time of

analysis (14).

We have summarized the existing literature on recruit-

ment strategies, response rates, and participation motives

in studies including bronchoscopy as a part of their design.

In particular we set out to identify studies including

COPD patients, but found there was very little data on

this patient group. Inclusion for an observational bron-

choscopy study was completed in June 2015 at Haukeland

University Hospital, Bergen, Norway (MicroCOPD).

The aim of the MicroCOPD study is to shed light on

the role of the microbiome in COPD (21). Participants

underwent a bronchoscopy with collection of protected

specimen brushes, small-volume lavage, bronchoalveolar

lavage, and bronchial biopsies. The respiratory microbiome

in subjects with and without COPD will be investigated

Einar Marius Hjellestad Martinsen et al.
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relative to disease progression and development and are

expected to provide insight in a new and promising re-

search field. Participation will be examined as a substudy.

Motives for participation will be asked as an open ques-

tion before the bronchoscopy. Response rates will be

estimated, and predictors for participation are targeted

to be revealed. It is anticipated that these results will

contribute to later research on COPD and facilitate the

conduction of other bronchoscopy studies.

Conclusions
A literature search performed between December 2013 and

February 2014 exploring participation in clinical studies

involving research bronchoscopies yielded seven relevant

articles. Conducting bronchoscopy studies involves diffi-

culties in recruiting control subjects and younger indi-

viduals, as well as the invasive nature of the procedure.

Responders seem driven by a combination of personal

health benefit and altruistic motives. However, we found

no solid evidence on recruitment for COPD studies, and

the characterization of non-responders had major limita-

tions. Thus, further research on participation in broncho-

scopy studies is warranted.
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Abstract

Background: Bronchoscopy is frequently used to sample the lower airways in lung microbiome studies. Despite
being a safe procedure, it is associated with discomfort that may result in reservations regarding participation in
research bronchoscopy studies. Information on participation in research bronchoscopy studies is limited. We report
response rates, reasons for non-response, motivation for participation, and predictors of participation in a large-scale
single-centre bronchoscopy study (“MicroCOPD”).

Methods: Two hundred forty-nine participants underwent at least one bronchoscopy in addition to being examined
by a physician, having lung function tested, and being offered a CT scan of the heart and lungs (subjects > 40 years).
Each participant was asked an open question regarding motivation. Non-response reasons were gathered, and
response rates were calculated.

Results: The study had a response rate just above 50%, and men had a significantly higher response rate than
women (56.5% vs. 44.8%, p = 0.01). Procedural fear was the most common non-response reason. Most
participants participated due to perceived personal benefit, but a large proportion did also participate to help
others and contribute to science. Men were less likely to give exclusive altruistic motives, whereas subjects
with asthma were more likely to report exclusive personal benefit as main motive.

Conclusion: Response rates of about 50% in bronchoscopy studies make large bronchoscopy studies feasible,
but the fact that participants are motivated by their own health status places a large responsibility on the
investigators regarding the accuracy of the provided study information.

Keywords: COPD, Clinical research, Motivation, Response rate, Non-response

Introduction
Although primarily employed as a diagnostic tool, bron-
choscopy is useful in studies on airway inflammation,
bronchial remodelling, and the airway microbiota.
Studies on airway microbiota have so far been relatively
low-powered [1–3], and future studies will depend on
larger samples. Even if bronchoscopy is associated with a
low complication rate [4], some discomfort is inevitable,
and potential participants may therefore have reserva-
tions [5]. Knowledge on motives for participation and re-
sponse rates in bronchoscopy studies have the potential
to optimise the recruitment process.

However, there are few studies providing reliable re-
sponse rates and motives for participation in bronchoscopy
studies. A literature review on research bronchoscopy stud-
ies included seven relevant studies, and found personal
benefit and altruistic reasons to be the most important par-
ticipation motives, whereas fear of the bronchoscopy was
reported as a participation barrier [6]. Response rates from
the seven studies varied from 3 to 73%, and no study exam-
ined participation among subjects with chronic obstructive
pulmonary disease (COPD) in particular [6].
The Bergen COPD Microbiome study (“MicroCOPD”)

is a large single-centre study of the airway microbiota,
with bronchoscopic sampling of all participants. Data
was collected at the Department of Thoracic Medicine,
Haukeland University Hospital in Bergen, Norway, be-
tween April 2013 and June 2015. The main objective in
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the MicroCOPD study was to examine and compare air-
way microbiota from subjects without COPD (controls)
and subjects with COPD. Some subjects with asthma
were also included. The current paper reports re-
sponse rates, reasons for non-response, motivation for
participation, and predictors of participation in the
MicroCOPD study.

Methods
Study design and population
The MicroCOPD study was a single-centre prospective,
observational study carried out in Bergen, Western
Norway. The study design has been described previously
[7]. A pilot study of eight subjects with COPD was con-
ducted in 2012 for protocol improvement. Participants
from the pilot and main study were included in the
current analyses. The main study included its first par-
ticipant on April 11th, 2013, with the final study bron-
choscopy performed June 5th, 2015. The study was
conducted in accordance with the declaration of
Helsinki and guidelines for good clinical practice. The
regional committee of medical ethics approved the pro-
ject (project number 2011/1307), and all participants
provided informed written consent.
Controls and subjects with COPD or asthma were

mainly recruited among participants of two previous stud-
ies performed by our research groups; the GeneCOPD
study from 2003 to 2004 [8] and the Bergen COPD cohort
study from 2006 to 2009 [9–12]. In addition, 6 subjects
were recruited from outpatient clinics, and 8 subjects were
recruited by their own initiative through attention from
local media and hospital staff.
All subjects from the two previous studies who still

lived in Bergen or the closest surrounding municipalities
were eligible for participation. Potential participants
were screened by an interview performed by a study
physician regarding exclusion criteria for bronchoscopy
before giving informed consent. We did not include sub-
jects with increased bleeding risk, subjects with unstable
cardiac conditions, or subjects with hypercapnia or hyp-
oxaemia when receiving oxygen supplement [7]. Elderly
subjects judged frail by the study physician were ex-
cluded. Participation was postponed for subjects that
had used antibiotics or oral corticosteroids in the last 14
days, as well as subjects with symptoms of acute exacer-
bation of COPD.

Data collection
Subjects that declined participation at the screening
interview were asked about their non-response reason.
Participants attended the outpatient clinic over one or
two days depending on the availability of computed tom-
ography (CT) scanning. A pulmonary and coronary CT
scan was offered as part of a concurrent study, and this

would be performed prior to bronchoscopy if the partici-
pants were scheduled for both procedures. At the day of
bronchoscopy, prior to the procedure, participants
underwent a structured interview regarding their medical
history, respiratory symptoms, smoking habits, medication
use, motivation, and exacerbation frequency if they had
obstructive lung disease. An open question on motivation
was first included in the study questionnaire from the fifth
pilot patient, asked immediately prior to the procedure.
Additionally, post-bronchodilator spirometry was per-
formed and blood samples were collected.
Diagnoses of COPD and asthma were evaluated by the

study physician, based on medical history, symptoms,
pulmonary CT scan, and post-bronchodilator spirometry
[13, 14]. Controls were judged to have no sign of airway
or lung disease, based on the same information. After all
participants were included, a panel of three physicians
evaluated the diagnoses for a quality control regarding
possible misclassification between controls and subjects
with COPD or asthma.
The bronchoscopy procedure was explained in detail

to each participant by the study physician immediately
prior to the procedure. The procedure was performed
with the participant in the supine position, with the
option of light sedation (alfentanil, potentially com-
bined with midazolam). Samples were gathered by
sterile brushes and bronchoalveolar lavage (BAL) after
application of a local anaesthetic agent. Additionally,
gathering of bronchial biopsies began in May 2014.
The details of bronchoscopic sampling have been pre-
viously published [7]. The average length of the bron-
choscopy procedures was 15 min, including
bronchoscopies with bronchial biopsies.

Outcomes
Responders were subjects who accepted the invitation
and underwent a bronchoscopy. Non-responders were
subjects who did not undergo a bronchoscopy. Late
non-responders were subjects who reconsidered an ini-
tial decision to participate, or when bronchoscopies were
terminated before sampling due to participant discom-
fort. All non-responders were asked about their reason
to decline participation. The response rate was defined
as the number of bronchoscopies performed divided by
the number of invited subjects.
Participation motives were collected from an open

question before bronchoscopy started: “Why did you
wish to take part in this project?”. Participants could
provide more than one motive for participation, thus the
overall numbers of motives exceeded the numbers of
participants. At the time of analysis we initially merged
the unique motives into 16 more principal motives, and
then further classified these into three main groups: 1)
Altruism was motivation by a wish to help others or a
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wish to continue participation from previous studies, as
well as desire to contribute to science. 2) Personal benefit
was motivation by a wish to somehow improve own health
by participating in the project. 3) Obligation was a subject-
ive feeling of being bound to participate. Subjects without
specific reasons were labelled missing. We constructed
binary variables “exclusive altruism” and “exclusive per-
sonal benefit” by coding them as ‘1’ if the participant only
gave altruism or personal benefit as main motive, respect-
ively. Participants stating both altruism and personal
benefit, or altruism/personal benefit and obligation, were
coded ‘0’ on these variables.

Statistical analyses
All analyses were performed using Stata version 14 [15].
Response rates were stratified by sex and study category
(control/obstructive lung disease). Chi-square test or
Fisher’s exact test was used to compare frequencies of
non-response reasons.
Bivariate analyses of responders and non-responders,

as well as initial and late non-responders, were per-
formed using parametric (t-test) and non-parametric
tests (chi-square test or Fisher’s exact test), when judged
appropriate. Bivariate logistic regression models were
fitted with “exclusive altruism” or “exclusive personal
benefit” as outcome. Covariates with p less than 0.20 be-
fore adjustment were included in multivariate models. In
the logistic regression, age and FEV1 were treated as
continuous variables, but divided by 10 to provide ratios
for an increase of 10 units. Smoking habits were grouped
according to current smoking status (never-, ex-,
current-smokers), and we calculated number of pack/
years (cigarettes per day divided by 20, multiplied by
years smoking). Never-smokers and ex-smokers were
merged into one category in the logistic regression ana-
lysis. Lung function was analysed using the percentage
of predicted values of FEV1 and FVC, as well as the
FEV1/FVC-ratio. Dyspnoea was classified according to
the modified Medical Research Council (mMRC) dys-
pnoea scale [16].

Results
Flow chart (Fig. 1)
In total, 2,205 subjects from the two previous COPD co-
horts were considered potential participants for the
MicroCOPD study. 1,743 were ineligible, mainly due to
death or that the MicroCOPD inclusion period ended
(see Additional file 1: Table S1 for details). The total
number of invited individuals for bronchoscopy was 462,
of whom 323 subjects accepted the invitation. 85 sub-
jects reconsidered their decision to participate, and fur-
ther three bronchoscopies were terminated before
sampling due to participant discomfort.

Response rates
Since the denominator of the response rate for subjects
recruited from outpatient clinics, local media, and hos-
pital staff was unknown, these 14 subjects were excluded
from the response-rate analyses. Final response rate for
the main study was 50.9%. The response rates in women
and men were 44.8% (100/223) and 56.5% (135/239), re-
spectively (p = 0.01). No significant difference in attend-
ance was seen between subjects without obstructive lung
disease and subjects with COPD or asthma.

Demographics of responders and non-responders (Table 1)
There was no significant difference in age between re-
sponders and non-responders or between early or late re-
sponders. Whereas responders and initial non-responders
did not differ by study category, there was a larger number
of patients among the late non-responders compared with
initial non-responders.

Non-response reasons (Table 2)
Most initial non-responders stated that they feared the
discomfort of a bronchoscopy (23.7%), and together with
unspecific fear and worries related to study participation
this accounted for 40.2% of all the initial non-response.
The percentage of worries and fears in late non-re-
sponders was more than twice as high (p < 0.01). Among
the initial non-responders there was a higher expression
of study fatigue (10.1% vs. 2.3%, p = 0.03). A considerable
number of the non-responders felt that their own health
prevented participation (17.3% in initial non-responders,
and 26.1% in late non-responders), and most so in
subjects with obstructive lung diseases (p < 0.01).

Detailed demographics of responders (Table 3)
The majority of responders were ex-smokers (68.3%),
and a minority were never-smokers (9.6%). Age and sex
were not significantly different between the controls and
subjects with COPD. However, there were more
ex-smokers and higher number of pack/years, less edu-
cation, fewer married, more drug use, more comorbidi-
ties, as well as higher symptom burden and lower lung
function among the subjects with COPD (p ≤ 0.01, tests
not shown).

Motivation (Table 4)
Personal health benefit was the most common stated
principal motive for participation (49.0%), followed by
contribution to science (39.2%). 39 subjects (15.9%) also
mentioned helping others as motivation. After merging
into broader categories, primarily altruism was the main
motive stated by most participants (67.3%), while 52.2%
gave motives considered to be of personal benefit. Only
2.0% participated out of a sense of obligation.
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Frequencies on motives were also stratified by
participant group, i.e. control, COPD, and asthma (see
Additional file 1: Table S2 for details).
Men were less likely to state altruism as their main

motive for participation (Fig. 2a, odds ratio (OR) 0.6,
95% confidence interval (0.3, 0.9)). This effect was more
pronounced in the adjusted model, OR = 0.5 (0.3, 0.9).
More subjects with asthma stated personal benefit mo-
tives than controls, unadjusted OR = 4.4 (1.5, 13.3), ad-
justed OR = 5.1 (1.6, 16.0) (Fig. 2b). No significant effect
was observed by FEV1 in percentage of predicted, age,
number of comorbidities, education, or smoking status.

Discussion
We have reported response rates, non-response reasons,
and motives for participation in a large single-centre
bronchoscopy study. Response rates were about 50%,
and did not differ between controls and subjects with
COPD or asthma. The main reasons for non-response
were fear of discomfort from the bronchoscopic proced-
ure, and a subjective feeling of being diseased or too
bothered from health issues to participate, especially
among subjects with COPD or asthma. Participants were
most frequently motivated by altruistic motives, but less
so for men.

Table 1 Demographics of responders and non-responders in an observational research bronchoscopy study

Variable Responders
n = 235

Non-responders p-* p**

Initial, n = 139 Late, n = 88

Age (SD) 66.9 (7.6) 67.9 (8.0) 67.4 (7.5) 0.3 0.6

Sex 0.01 0.5

Women (%) 42.6 56.1 51.1

Men (%) 57.4 43.9 48.9

Study category 0.2 0.06

Controls (%) 43.0 41.7 29.6

Obstructive lung disease (%) 57.0 58.3 70.4

*Difference between responders and all non-responders
**Difference between initial and late non-responders

Fig. 1 Flow chart of an observational research bronchoscopy study. * Local media, hospital staff, and outpatient clinics were regarded as
other sources
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Table 2 Self-reported non response-reasons in an observational research bronchoscopy study

Reasons Non-responders Study category

Initial, n = 139
Frequency (%)

Late,
n = 88
Frequency (%)

p Controls, n = 84
Frequency (%)

OLD, n = 143
Frequency (%)

p

Discomfort 33 (23.7) 16 (18.2) 0.3 19 (22.6) 30 (21.0) 0.2

Unspecified worries/fear concerning participation 23 (16.5) 30 (34.1) < 0.01 19 (22.6) 34 (23.8) 0.08

Disease/health issues 24 (17.3) 23 (26.1) 0.1 8 (9.5) 39 (27.3) < 0.01

Study fatigue 14 (10.1) 2 (2.3) 0.03 5 (6.0) 11 (7.7) 0.2

Time constraint 5 (3.6) 5 (5.7) 0.5 7 (8.3) 3 (2.1) 0.2

Practicala 5 (3.6) 6 (6.8) 0.3 5 (6.0) 6 (4.2) 0.9

Not satisfied with previous study participation 2 (1.4) 0 0.5 0 2 (1.4) 0.5

Feeling too old 2 (1.4) 0 0.5 2 (2.4) 0 0.2

Refuse to specify 1 (0.7) 0 1.0 1 (1.2) 0 0.5

Personal reason 0 3 (3.4) 0.06 1 (1.2) 2 (1.4) 1.0

Not specified 30 (21.6) 3 (3.4) < 0.01 17 (20.2) 16 (11.2) 0.7

OLD obstructive lung disease
aPractical reflects practical issues for researcher or patient

Table 3 Demographics of participants in an observational research bronchoscopy study

Variable All, n = 249 Control, n = 103 COPD, n = 130 Asthma, n = 16

Age (SD) 66.3 (8.3) 65.3 (8.6) 67.2 (7.3) 65.5 (12.6)

Sex (men) 143 (57.4) 60 (58.3) 76 (58.5) 7 (43.8)

Number of medications (SD) 3.8 (3.2) 1.8 (1.7) 5.4 (3.3) 3.6 (2.4)

Number of comorbidities (SD) 1.1 (1.1) 0.8 (1.0) 1.4 (1.2) 0.8 (0.9)

FEV1, % of predicted (SD) 78.3 (28.2) 103.9 (12.3) 56.5 (19.2) 90.7 (13.3)

FVC, % of predicted (SD) 102.7 (18.7) 111.7 (13.5) 95.0 (19.2) 107.5 (16.5)

FEV1/FVC-ratio (SD) 0.6 (0.2) 0.7 (0.1) 0.5 (0.1) 0.7 (0.1)

Pack/years (SD)a 28.6 (20.1) 21.6 (16.9) 33.7 (20.5) 20.9 (22.0)

Smoking status (%)

Daily 55 (22.1) 25 (24.3) 30 (23.1) 0 (0.0)

Ex-smokers 170 (68.3) 59 (57.3) 99 (76.2) 12 (75.0)

Never 24 (9.6) 19 (18.5) 1 (0.8) 4 (25.0)

Marital status (%)a

Married/partner 157 (64.3) 79 (77.5) 72 (57.1) 6 (37.5)

Widowed 22 (9.0) 3 (2.9) 16 (12.7) 3 (18.8)

Cohabitant 20 (8.2) 5 (4.9) 13 (10.3) 2 (12.5)

Divorced, lives alone 33 (13.5) 11 (10.8) 17 (13.5) 5 (31.3)

Single 12 (4.9) 4 (3.9) 8 (6.4) 0 (0.0)

Education (%)a

Primary school 48 (19.8) 12 (11.8) 35 (27.8) 1 (6.7)

Upper secondary/high school 125 (51.4) 52 (51.0) 67 (53.2) 6 (40.0)

3 years or more of higher education 70 (28.8) 38 (37.3) 24 (19.1) 8 (53.3)

mMRC Grade 2 and higher (%)

Grade 2 level ground 30 (54.6) 3 (100) 27 (52.9) 0 (0.0)

Grade 3100 m 18 (32.7) 0 (0.0) 17 (33.3) 1 (100)

Grade 4 resting dyspnoea 7 (12.7) 0 (0.0) 7 (13.7) 0 (0.0)

FEV1 Forced Expiratory Volume in 1 Second, FVC Forced Vital Capacity, and mMRC modified Medical Research Council dyspnoea scale
aDue to some missing information, the sum of participants is not 249
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Given the invasiveness of the involved procedures, a
response rate of 50% is not remarkably low. Little data
exists on participation in research bronchoscopy studies
[6]. Neither of seven Norwegian respiratory health sur-
veys studies between 1965 and 1999 included a bron-
choscopy, but baseline response rates varied from 68 to
90% [17]. Once attending, only 5% of attendants did
not complete their participation [17]. In the current
study, 27.2% (88/323) reconsidered their decision,
suggesting higher rates of reconsideration with more
invasive procedures.
A trend towards lower participation rates has been ob-

served in Norwegian studies over time [17, 18]. This
trend could at worst lead to selection bias and compro-
mised external validity. In general, young, single men
living in urban areas are the least likely to participate in
social science surveys, while older women are the most
willing [18]. In the current study, more men than
women were responders. Experiences from clinical work
suggest that women worry more about clinical

procedures, and this could serve as a possible explan-
ation for the observed difference. Additionally, more
men were motivated by perceived personal benefit. If
this observation stands true, one could speculate that
male motivation is more easily satisfied by participation
in a clinical study involving an actual diagnostic proced-
ure, than participation in a questionnaire study. We ob-
served no difference in mean age between responders
and non-responders, but younger individuals were omit-
ted from the current study, and frail elders were ex-
cluded. In another Norwegian study on respiratory
health, non-response was related to lower age, rural
habitation, and smoking habits [19]. Response rates from
the current study will help researchers scale the number
of invited subjects, aiming to recruit a sufficient number
of participants, in order to avoid type II errors. These
numbers can also be of value when investigators seek
funding and ethics approval, providing precise informa-
tion regarding the inclusion process.
Knowledge of reasons for non-response could guide re-

searchers to provide precise information regarding the
procedure during recruitment, which in turn might
influence the willingness to participate. Observed differ-
ence in worries/fear between initial and late non-re-
sponders suggests that participants become frightened
during the waiting time. Information on relevant discom-
fort should always be disclosed at first contact to avoid
unreasonably procedural fear, and unnecessary waiting
time before scheduled procedures should be avoided, both
for research and clinical purposes. This will reduce costs
and planning of non-performed procedures.
In agreement with the literature, we could categorise

motives for participation into three groups, namely per-
sonal benefit, altruism, and obligation [6], although the re-
view stated obedience to the authority of the researchers as
an own group. Only one subject claimed trust in author-
ity/research to be of importance in the current study. This
discrepancy with previous studies might reflect both cul-
tural differences and differences in health care organisa-
tion. Furthermore, patients are increasingly making their
own health decisions [20], which might have changed the
view of physicians as authorities.
We observed that women expressed more altruistic

motives than men. In concordance with the current
study, a meta-analysis on altruism and gender by Rand
et al. showed women to be more intuitively altruistic,
and men to be more selfish both intuitively and after
consideration [21]. Our observation that subjects with
asthma tend to report personal benefit needs to be inter-
preted with some caution. There were few subjects with
asthma in our study, and they were recruited in a
non-controlled manner.
Our results indicate that providing information on fu-

ture implications of research can promote participation

Table 4 Motives reported by the 245a participants who gave
motives in an observational research bronchoscopy study

Motives n Percentage

Primarily altruismb 165 67.3

Previous participation 23 9.4

Contribute to science 96 39.2

Help others 39 15.9

Give back (for previous participation) 7 2.9

Generally positive (to examination or
participation and “yes-human”)

6 2.4

Social responsibility 3 1.2

COPD in family/among friends
(including risk of COPD in family)

19 7.8

Available time 3 1.2

Primarily personal benefitb 128 52.2

Personal health benefit 120 49.0

Experience the discomfort of
bronchoscopy

1 0.4

Challenge 1 0.4

Curiosity 14 5.7

Fun 1 0.4

Primarily obligationb 5 2.0

Acquaintance (in study, working with and
was connected to the study or asked by)

4 1.6

Trust in authority/research 1 0.4

Missing 20 8.2
aParticipation was not part of the questionnaire for the first four participants
bUnique motives are categorised into three main motives (in italic) by merging
the unique motives listed below the main motive. The frequency (n) of main
motives is not equal to the sum of each principal motive because a subject
stating both "personal health benefit" and "challenge" would result in two
observations in principal motives, but just one after merging
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by appealing to a desire to contribute to science and fu-
ture health care. Emphasising potential health benefits of
study participation would probably have an even greater
effect, but this warrants caution. Screening effects of
bronchoscopy are not known. Also, there is a small compli-
cation risk associated with the procedure [4]. Participants
were offered participation also in a concurrent study
wherein a CT scan was offered, however participation in ei-
ther study was not dependent on participation in the other.
Thus, no exclusive, immediate benefit was received for the
participants in the MicroCOPD study. Even though this
was clearly stated in the written consent, almost half of the
final participants stated personal benefit as an important
motive. Participants’ expectation of perceived health benefit
from participation is well known from the literature, even
though no such benefit should be expected [5, 22], also
where this is clearly stated by the research team [23]. Thus,
we believe that participants´ perceived personal benefit in
observational studies should be examined more thoroughly
in future studies.

The MicroCOPD study is, to our knowledge, the lar-
gest single-centre lung microbiome study performed to
date. We had extensive demographics on responders,
and reliable results on motivation and non-response rea-
sons. Some potential weaknesses deserve mentioning.
Firstly, due to ethical and practical reasons, demograph-
ics on non-responders were sparse, and a considerable
proportion of non-responders did not give any reason
for their decline. Secondly, albeit a large study, the
heterogeneity of the participants may have obscured
the finding of important predictors of participation
and motivation. Thirdly, an in-depth interview could
have provided more insight into the details of
non-response and motivation. Finally, most partici-
pants had already shown a willingness to take part in
previous studies. Hence, they might be more prone to
take part than a general population, generating some
degree of selection bias. On the other hand, “study fa-
tigue” might have lowered the participation rate in
the current study.

a

b

Fig. 2 Logistic regression on a) exclusive altruism- and b) exclusive personal benefit-variables in an observational research bronchoscopy study
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Conclusions
The response rate for research bronchoscopy in our
study was 50%, and did not differ between controls and
subjects with COPD or asthma. Non-responders refused
participation mainly due to procedural fear. In contrast,
responders were driven by perceived personal benefit,
but a large proportion did also participate to help others
and contribute to science. Our findings underline the
importance of providing comprehensive information
about the procedures. This might serve to avoid refusal
on a possible misunderstood risk assessment, and to se-
cure inclusion of a sufficient number of well-informed
participants.

Additional file

Additional file 1: Table S1. Reasons for ineligibility in an
observational research bronchoscopy study, n = 1743. Table S2.
Motives reported by the 245a participants who gave motives in an
observational research bronchoscopy study stratified by participant
group. (PDF 96 kb)
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Abstract 
Background: The fungal part of the pulmonary microbiome (mycobiome) is 
understudied. We report the composition of the oral and pulmonary mycobiome in 

participants with COPD compared to controls in a large-scale single-centre bronchoscopy 

study (MicroCOPD). 

Methods: Oral wash and bronchoalveolar lavage (BAL) was collected from 93 
participants with COPD and 100 controls. Fungal DNA was extracted before sequencing 

of the internal transcribed spacer 1 (ITS1) region of the fungal ribosomal RNA gene 

cluster. Taxonomic barplots were generated, and we compared taxonomic composition, 

Shannon index, and beta diversity between study groups, and by use of inhaled steroids. 

Results: The oral and pulmonary mycobiomes from controls and participants with COPD 
were dominated by Candida, and there were more Candida in oral samples compared to 

BAL for both study groups. Malassezia and Sarocladium were also frequently found in 

pulmonary samples. No consistent differences were found between study groups in terms 

of differential abundance/distribution. Alpha and beta diversity did not differ between 

study groups in pulmonary samples, but beta diversity varied with sample type. The 

mycobiomes did not seem to be affected by use of inhaled steroids. 

Conclusion: Oral and pulmonary samples differed in taxonomic composition and 
diversity, possibly indicating the existence of a pulmonary mycobiome.  

 

 

 

 
 

 

 

 

 



 

Introduction 
Fungi are ubiquitous, and are found in indoor and outdoor environments (1). Due to its 

direct communication with surrounding air, the respiratory tract is constantly exposed to 

fungal spores through inhalation (2). Healthy airways possess effective removal of such 

spores through mucociliary clearance and phagocytosis. In contrast, impaired defence 

mechanisms, use of immunosuppressant, and frequent use of antibiotics probably 

predispose for increased fungal growth (2), and all factors are quite frequent in chronic 

obstructive pulmonary disease (COPD). 

 

The fungal part of the microbiome, the mycobiome, of the lungs is understudied (3), and 

only three studies have used next generation sequencing to study the mycobiome of the 

respiratory tract in COPD particularly (4-6). Notably, participants in Cui et al.’s study 

were also HIV infected, and only ten had COPD (4). The study by Su et al. (5) and Tiew 

et al. (6) used sputum samples, which are vulnerable to contamination from the high-

biomass oral cavity. By contrast, mycobiome studies of other respiratory diseases have 

evolved rapidly. For instance, a study on asthma patients showed higher fungal burdens in 

participants receiving corticosteroid therapy (7), while another study has revealed 

associations between Aspergillus-specific immunisation and bronchiectasis severity (8). 

There is clearly a need for large studies of the mycobiome, with a well-characterised 

COPD disease population and healthy controls. 

 

The Bergen COPD Microbiome study (short name “MicroCOPD”) fills this scientific 

void (9). Samples were collected from the lower airways of participants with and without 

COPD using bronchoscopy. The aim of the current paper was threefold: 1) To 

characterise and compare the oral and pulmonary mycobiomes in a large cohort of 

participants without lung disease (controls). 2) To characterise the oral and pulmonary 

mycobiomes of participants with COPD, and contrast it to controls, and finally, 3) To 

examine whether the mycobiomes were affected by the use of inhaled steroids (ICS) in 

participants with COPD. 



 

Materials and methods 
Study design and population 
The study design of the MicroCOPD study has previously been published (9). 

MicroCOPD was a single-centre observational study carried out in Bergen, Western 

Norway. Study enrolment was between April 11th, 2013, and June 5th, 2015. The study 

was conducted in accordance with the declaration of Helsinki and guidelines for good 

clinical practice. The regional committee of medical ethics Norway north division (REK-

NORD) approved the project (project number 2011/1307), and all participants provided 

written consent. 

 

Both subjects with and without COPD were invited to participate. Participants from two 

previous cohort studies in our vicinity, the GeneCOPD study and the Bergen COPD 

cohort study, were contacted regarding participation in the current study, and some 

participants were recruited through media, the local outpatient clinic, or among hospital 

staff (9). Potential participants were excluded if they had increased bleeding risk, unstable 

cardiac conditions, hypercapnia, or hypoxaemia when receiving oxygen supplement, as 

specified in the study protocol (9). We postponed participation for subjects that had used 

antibiotics or systemic steroids last 2 weeks prior to participation, and COPD patients 

should not have been admitted to hospital due to COPD last 2 weeks. Furthermore, 

participants with symptoms of an ongoing systemic or respiratory infection could not 

attend, but had to postpone participation. COPD was defined as chronic airway 

obstruction (low FEV1/FVC) in presence of respiratory symptoms (10), and the diagnosis 

was verified by experienced pulmonologists based on spirometry, radiologic imaging, 

respiratory symptoms, and disease history. Subjects without COPD or other lung diseases 

were defined as control subjects. 22 control subjects had a ratio of FEV1/FVC lower than 

0.7, but did not have symptoms of COPD. 

 

 

 



 

Data collection  

All data collection was performed in our outpatient clinic. A post-bronchodilator 

spirometry was performed before the bronchoscopy. Study personnel conducted a 

structured interview regarding contraindications, medication use, comorbidities, smoking 

habits, and evaluation of dyspnoea. A sterile unsealed bottle of phosphate-buffered saline 

(PBS) was opened prior to the procedure, and the fluid within was used for all sample 

fluids, including negative control samples, oral wash (OW), and bronchoalveolar lavage 

(BAL). The OW sample was taken before the bronchoscopy by gargling 10 ml of the PBS 

water for 1 minute; collected in a sterile Eppendorf tube. The bronchoscopy was 

performed with the participant in supine position using oral access. Topical anaesthesia 

was given by a 10 mg/dose lidocaine oral spray pre-procedurally, and 20 mg/ml lidocaine 

was delivered per-operatively through a catheter within the bronchoscope’s working 

channel. Light sedation with alfentanil was offered to all. The details of bronchoscopic 

sampling have been published previously (9). The yields of two fractions of protected 

BAL of 50 mL were collected from the right middle lobe using a sterile catheter 

(Plastimed Combicath, prod number 58229.19) inserted in the bronchoscope working 

channel. The second fraction was used for the current mycobiome analysis. Additionally, 

a sample from the PBS was taken for each participant directly from the bottle used for 

that particular participant, without entering the bronchoscope or participant. This PBS 

sample served as a negative control sample. 

 

Laboratory processing 

Fungal DNA was extracted using a combination of enzymatic lysis with lysozyme, 

mutanolysin, and lysostaphin, and mechanical lysis methods using the FastPrep-24 as 

described by the manufacturers of the FastDNA Spin Kit (MP Biomedicals, LLC, Solon, 

OH, USA). Libraries were prepared with a modified version of the Illumina 16S 

Metagenomic Sequencing Library Preparation guide (Part no. 15044223 Rev. B). The 

internal transcribed spacer (ITS) 1 region was PCR amplified (increased from 25 to 28 

cycles) using primer set ITS1-30F/ITS1-217R, which sequences are 



 

GTCCCTGCCCTTTGTACACA and TTTCGCTGCGTTCTTCATCG (11). A 

subsequent index PCR was performed with 9 cycles instead of 8. Samples underwent 

2x250 cycles of paired-end sequencing in three separate sequencing runs on Illumina 

HiSeq (Illumina Inc., San Diego, CA, USA). 

 
Bioinformatics 

Quantitative Insights into Microbial Ecology (QIIME) 2 (12) version 2019.01 and 

2019.10 was chosen as the main pipeline for bioinformatic analyses, and additional R 

packages were utilised as suited (13). FASTQ files containing all fungal reads were 

trimmed using the q2-itsxpress plugin (14). Trimmed reads were then denoised, i.e., 

identification and removal of low-quality reads and chimeric sequences, using the 

Divisive Amplicon Denoising Algorithm version 2 (DADA2) q2-dada2 plugin (15). 

DADA2 also generated exact amplicon sequence variants (ASVs). LULU, an R package 

to curate DNA amplicon data post clustering, was used to exclude artefactual ASVs (16). 

ASVs present in only one sample, and ASVs with a total abundance less than 10 

sequences across all samples, were filtered out. Presumed contaminants were identified 

using the R package Decontam (17) with the prevalence-based approach (user defined 

threshold = 0.5), and then removed. Taxonomic assignments were made using a UNITE 

database for fungi with clustering at 99% threshold level (18) (via q2-feature-classifier 

(19) classify-sklearn (20)). Resulting ASVs assigned only as Fungi at kingdom level, or 

Fungi at kingdom level with unidentified phylum, were manually investigated using the 

BLASTN program in NCBI (21). ASVs with unambiguous BLASTN results with a high 

max score were repeatedly assigned to new taxonomic assignments using UNITE 

databases with fungi or all eukaryotes with different threshold levels (18, 22-24) (via q2-

feature-classifier (19) classify-sklearn (20) and classify-consensus-blast (25)), and 

included for further analyses if the new assignments matched the BLASTN result. ASVs 

with ambiguous or non-fungal BLASTN results were discarded. Alpha diversity was 

calculated using Shannon index, and beta diversity metrics (Bray-Curtis dissimilarity and 

Jaccard similarity coefficient) were estimated using q2-diversity after samples were 



 

rarefied (subsampled without replacement) to 1000 sequences per sample. The rarefaction 

depth was chosen based on testing with multiple different values and resulting alpha 

rarefaction plots. We aimed to find a rarefaction depth as high as possible while excluding 

a minimum of samples. 

 

Data analyses 

Statistical analyses of demographical data were analysed with Stata version 15 (26). A 

flow chart of the bioinformatic process was generated using Flowchart Designer version 3 

(http://flowchart.lofter.com). Alpha- and beta diversity analyses including participants 

with COPD were stratified by GOLD stage (10). Statistical differences in alpha diversity 

measured with Shannon index were tested with R using Kruskal-Wallis for unpaired 

variables, and Wilcoxon signed-rank test for paired analyses. Differences in beta diversity 

between study groups and ICS use were tested with permuted analysis of variance 

(PERMANOVA) adjusted for sex, age, and percentage of predicted forced expiratory 

volume in 1 second (FEV1), and differences in spread with permuted multivariate analysis 

of beta-dispersion (PERMDISP). Procrustes analyses were performed to check for 

differences in beta diversity between sample types. PERMANOVA, PERMDISP, and 

Procrustes were analysed using the Vegan package in R (27). We used both Bray-Curtis 

and Jaccard distances for the beta diversity analyses. To compare taxonomic composition 

between pairs of samples we calculated the Yue-Clayton measure of dissimilarity (1-

θYC) (28). Furthermore, differences in distributions and relative abundances were 

evaluated by the Microbiome Differential Distribution Analysis (MicrobiomeDDA) 

omnibus test (29), the second version of analysis of composition of microbiomes 

(ANCOM v2, https://github.com/FrederickHuangLin/ANCOM) (30), and the second 

version of ANOVA-Like Differential Expression (ALDEx2) (31-33) at genus level. A 

significance level of 0.05 was used in all analyses. 

 

 

 



 

Results 
Demographics of participants 
The majority of participants with COPD was regular ICS users, and presented with more 

comorbidities, higher medication use, and poorer lung function measurements 

(FEV1/FVC-ratio and mMRC) than controls (Table 1). 

 

Table 1. Demographics of participants providing fungal samples in the MicroCOPD study  

Variable Control, n=100 COPD, n=93 

Age, mean years (SD) 65.6 (8.5) 67.5 (7.6) 

Male, sex (%) 57 (57.0) 50 (53.8) 

Number of medications, mean (SD) 1.8 (1.7) 5.2 (3.1) 

Use of inhaled steroids (%) - 56 (60.2) 

Number of comorbidities, mean (SD) 0.8 (1.0) 1.4 (1.2) 

FEV1, mean % of predicted (SD) 104.0 (12.3) 61.1 (17.3) 

FVC, mean % of predicted (SD) 111.7 (13.6) 98.6 (18.7) 

FEV1/FVC-ratio, mean (SD) 0.7 (0.1) 0.5 (0.1) 

Pack years, mean (SD) 16.6 (14.3) 30.0 (17.9) 

Smoking status (%)   

 Daily 24 (24.0) 22 (23.7) 

 Ex-smokers 58 (58.0) 70 (75.3) 

 Never 18 (18.0) 1 (1.1) 

mMRC Grade 2 and higher (%)*   

 Grade 2: Dyspnoea when walking at level ground 3 (3.0) 16 (17.6) 

 Grade 3: Dyspnoea when walking 100 meters - 12 (13.2) 

 Grade 4: Dyspnoea at rest - 2 (2.2) 

 

FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; mMRC, modified medical research council 

dyspnoea scale. * Two participants with COPD missed information on mMRC. 

 

 

 



 

Flow chart 
Fig 1. Flow chart of fungal samples, sequences, and fungal ASVs in the MicroCOPD study 

 
 

DADA2, Divisive Amplicon Denoising Algorithm version 2; seqs, sequences; ASV, amplicon sequence variant. 

Samples were sequenced in three different runs before trimming and denoising. Data from different sequencing runs 

were merged, and then further processed to exclude presumed contaminants and negative control samples prior to 

analyses.  

 

The bioinformatic processing is shown in Fig 1, and details are given in S1 File. ASVs 

identified by Decontam as presumed contaminants are listed in S1 Table. 



 

Taxonomy and abundance/distribution testing 
Fig 2. Rank abundance plots using most abundant fungi in (A) oral wash and (B) bronchoalveolar lavage 

 

 

Plots display the nine most abundant taxa in each group. Remaining, low abundance taxa are merged in the “Others” 

category. Not all sequences could be assigned taxonomy at the genus level and are therefore displayed as 

o__Malasseziales, p__Ascomycota, and o__Capnodiales.



Fig 3. M
ost abundant fungal taxonom

ic assignm
ents at (A

) phylum
 level and (B) genus level 

 

    


�		�

	�
��

	��	�

��	���
��

�
�

�
�

��
�
������%������


%
�


��%������


%
�


��%��


%

�
�

�
�

�
�

�� 	�		��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
�

����
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

���� 
�		�
��

�
�

����	�
��
��	��	�

	����

	�		�

�
�"� 

�
%
�
�
��

�!���%

��������

��
�����

#����%
�
���

��������
#����%

�
�
��

	
!�����

#����%

�
%

$
%

�$	



 

IC
S
, inhaled steroids; B

A
L
, bronchoalveolar lavage; O

W
, oral w

ash. T
axa are sorted on Ascom

ycota in bronchoalveolar lavage sam
ples in F

ig 3A
, and Candida 

in bronchoalveolar lavage in F
ig 3B

. E
ach colum

n represents a sam
ple, and colum

ns from
 B
A
L
 and O

W
 corresponds to each other. T

hat m
eans, a B

A
L
 colum

n 

and the corresponding O
W
 colum

n below
 show

 sam
ples from

 the sam
e participant. N

ot all sequences could be assigned taxonom
y at the phylum

 or genus level 

and are therefore displayed as k__Fungi, p__Ascom
ycota or o__M

alasseziales.  

����	

����	

����	

�	����	
�

�
�

	
�	������	
���	 ����	
��

�
	

���
����

����	

����	

����	 ������

�
��" ��&������

�&
�



��&������

�&
�



��&��

�&

���
��

���
���

��� �	����
	�	�������������

�����
��

��������

�
�


�
!�� ����#!&

�
��


�
����!�� �#�

&
�
��


�
$��!���� ����&

�
��


�
��������#�

�
�&

�
���!!�%����!

������
�
��


��� ����� �&
�
��


�#!� �#�
&

�

	

�����!���&
�

�

�

�������!�!&
�
�


�
� !

�

�

������&
�


�
���!!�%��&

�
�




����!"��

�
�

�

�� ������#�

�

�

!���
$��"�& �����

���	�

�
�

�
�

�
�

�
�

�
�

��	



The taxonomic composition of the OW and BAL mycobiomes are displayed on group 

level in the rank abundance plots (Figs 2A and 2B). Both controls and participants with 

COPD were dominated by Candida, particularly in the OW samples, reaching nearly 80% 

of total mean relative abundance. The relative abundances of Malassezia and Sarocladium 

were high in the control and COPD groups. We also plotted percentage of reads 

belonging to either Basidiomycota or Ascomycota (S1 Fig). There seemed to be a 

tendency towards higher proportions of Basidiomycota in the COPD group compared to 

the control group both in the OW and BAL plot. No consistent differences were found 

between study groups in terms of differential abundance/distribution, and results varied 

between available statistical tests (S2 Table). 

  

Taxonomy is displayed for each individual participant in Figs 3A and 3B, enabling us to 

compare OW and BAL samples from this particular participant. We observed intra-

individual differences between the sample types for the plotted taxonomic levels (phylum 

and genus). This was elaborated with Yue-Clayton testing for each OW/BAL/negative 

control sample pair (S2 Fig). The Yue-Clayton measure is 0 with perfect similarity and 1 

with perfect dissimilarity. The average Yue-Clayton measure from OW and BAL samples 

was 0.63, and 121 out of 180 sample pairs had a Yue-Clayton measure above 0.2. 

ANCOM and ALDEx2 (S2 Table) found Candida to differ in abundance between OW 

and BAL, also stratified by smoking status and ICS usage. The taxonomy of regular ICS 

users and non-ICS users was not easily distinguishable (Figs 3A and 3B), and no 

consistent differences were seen in differential abundance/distribution testing (S3 Table).  

 

 

 
 
 

 
 



 

Diversity 
Fig 4. Alpha diversity plots and comparisons between (A) study groups and (B) sample types 

 

 

BAL, bronchoalveolar lavage; OW: oral wash. Alpha diversity was evaluated using Shannon index. Statistical 

differences in alpha diversity were tested using Kruskal-Wallis for unpaired variables (between study groups), and 

Wilcoxon signed-rank test for paired analyses (between sample types). Number of samples in each group was as 

follows: Figure 4A (unpaired): Control BAL: 40, control OW: 76, COPD grade I/II BAL: 29, COPD grade I/II OW: 

50, COPD grade III/IV OW: 23, COPD grade III/IV BAL: 12. Figure 4B (paired): Control BAL: 31, control OW: 31, 

COPD grade I/II BAL: 24, COPD grade I/II OW: 24, COPD grade III/IV OW: 9, COPD grade III/IV BAL: 9. 



 

We found no significant differences in alpha diversities between the different study 

groups or ICS usage in BAL samples, nor between BAL and OW samples (Figs 4A and 

4B, S3 Table). Beta-diversity results resembled those of alpha diversity (S3 Fig). 

However, principal coordinates analysis (PCoA) plots before and after symmetric 

Procrustes transformation (S4 Fig), indicated that there were significant differences in the 

composition between OW and BAL samples from the same individual. The Procrustes 

transformation yields a sum of squared distances (M^2) that specifies how similar sample 

pairs are. Generally, a M^2 above 0.3 is interpreted as unsimilar. OW and BAL samples 

clustered differently, and M^2 were 0.953 and 0.8958 for Bray-Curtis and Jaccard, 

respectively. However, this was statistically significant only for Jaccard (p = 0.003).  

 

Discussion 
We have reported the oral and pulmonary mycobiome in a large bronchoscopy study, the 

first of its kind on non-immunocompromised patients and with a large healthy control 

population. The mycobiomes were dominated by Candida, and there were more Candida 

in OW compared to BAL for both study groups. Observed differences in taxonomic 

composition were not consistent between three different differential 

abundance/distribution tests. There was no difference in diversity between study groups. 

No apparent effects were seen on the mycobiomes from ICS usage. 

 

We observed a high Candida load in OW samples from controls, in good agreement with 

previously published studies (34-36). None of these studies included more than 20 

individuals. Thus, our data from 100 controls adds valuable data to this field. The healthy 

lung mycobiome is reported to be highly variable between individuals (4, 6, 7, 37-39). 

Some of the most abundant taxa are Candida (6), Davidiellaceae (37), Cladosporium (37-

39), Saccharomyces (4, 6), Penicillium (4), Debaryomyces (38), Aspergillus (7, 37), 

Eremothecium (39), Systenostrema (39), and Malasseziales (7). The listed studies include 

few participants, ranging from 10 (7) to 47 (6). BAL samples from controls in the current 

study were dominated by Candida, followed by Malassezia and Sarocladium. That 



 

Candida, one of the most well-known fungal pathogens (40), resides in the lungs of 

healthy individuals is clinically interesting. It has been shown that colonising Candida in 

the gut could become invasive due to certain triggers (41), and similar mechanisms are 

not unlikely to happen in the lungs. Primer bias might explain some of the observed 

differences between our study and previous studies (42), and our chosen primer set has 

shown improved coverage of Candida compared to the ITS1 – ITS2 primer set used by 

two (37, 38) of the listed papers above (11). Furthermore, Malassezia are common skin 

commensals, and despite protected sampling and the bioinformatic contamination 

removal (Decontam), we cannot exclude contamination per se. Also, some reports 

indicate that some extraction protocols and primers might be less suited to Malassezia 

(36, 43). Different DNA extraction methods and primers could thus explain the observed 

differences in Malassezia proportions between our study and others. 

 

OW samples differed from the BAL samples for all measures including taxonomy, Yue-

Clayton measures, and beta diversity. Cui et al. reported that OW and BAL overlapped in 

PCoA plots from healthy individuals, while induced sputum (IS) samples clustered 

separately (4). In agreement with our result, they also found more Candida in OW and IS, 

compared to BAL. They discovered that 39 fungal species were disproportionately more 

abundant in the BAL and 203 species in the IS, as compared with the OW. We could not 

replicate this latter finding, but differences could be explained by the different 

methodologies applied.  

 

Only three previous studies have explored the lung mycobiome in COPD (4-6). Cui et al. 

found that the lung mycobiome in HIV-infected individuals with COPD (n=10) was 

associated with an increased prevalence of Pneumocystis jirovecii, as compared to HIV-

positive individuals without COPD (n=22) (4). No Pneumocystis was observed in our 

data. However, Pneumocystis is known to be associated with HIV, and the Pneumocystis 

genome only includes one copy of the ITS1 locus, which could result in a negative 

sequencing result (44).  



 

 

Both Su et al. (5) and Tiew et al. (6) collected sputum samples from COPD patients. 

When Tiew compared to healthy subjects they found high abundances of Candida in both 

groups, but also found increased alpha diversity in COPD (6). Su investigated samples 

during exacerbations, and found Candida, Phialosimplex, Aspergillus, Penicillium, 

Cladosporium, and Eutypella (5). Both studies utilised sputum samples, which hampers 

direct comparison to our BAL samples. Indeed, IS samples have been shown to cluster 

separately from BAL samples in PCoA ordinations (4).  

 

Few differences were seen when we compared the mycobiomes from controls and 

participants with COPD. However, hypothesis testing of microbiome compositional data 

is an ongoing research area without standardisation. Thus, we chose to perform three 

different tests with different foundations. ANCOM v2 and ALDEx2 agreed there was no 

significantly differential abundant taxa between study groups. MicrobiomeDDA tests the 

difference in the entire distribution, taking abundance, prevalence, and dispersion all into 

account, and detected significant taxa differences between study groups both in OW and 

BAL (S2 Table). These conflicting results complicate a general conclusion.  

 

Some studies on inflammatory bowel disease, and cystic fibrosis (CF) have found 

dysbiosis to be expressed in terms of the Basidiomycota to Ascomycota ratio (45, 46). 

Most known fungal pathogens are found in the Ascomycota phylum. In our study, 

medians of the Basidiomycota to Ascomycota ratios were all 0 from different study groups 

in OW and BAL separately, in line with the 0.03 median found in a CF study (46). That 

means, despite a higher Basidiomycota fraction in COPD compared to controls in our data 

(S1 Fig), the majority of samples were dominated by Ascomycota.  

 

Some limitations of the current study deserve mentioning. First, a longitudinal study with 

analyses on interactions between fungi and other kingdoms, and between fungi and host 

responses, could have provided more insight into the details of the COPD mycobiome. 



Secondly, contamination is particularly problematic for mycobiome studies because of 

airborne particles, and samples from the lower respiratory tract are especially vulnerable 

due to the low biomass. We countered this by using protected sampling methods, and 

collecting negative control samples, subject to the same laboratory protocol as the 

procedural samples, for each procedure. These samples were used for contamination 

removal through the R package Decontam, and subject to detailed analyses (S2 Fig, S4 

Table, and S5 Fig). Third, we did not include positive controls or mock communities in 

our project. Fourth, ITS primers are biased (42, 43), possibly explaining the low 

prevalence of Aspergillus and difficulties identifying Yarrowia lypolytica in our data. 

Still, ITS is the recommended marker-gene region for fungal studies (47), though no 

consensus seems to prevail whether ITS1 or ITS2 should be used (43, 48, 49). Fifth, all 

mycobiome studies suffer from a fungal dual naming system (50), and also suffer from 

incomplete reference libraries and inconsistencies due to taxonomic reassignments (2). 

We manually reviewed every sequence assigned only as “k__Fungi” to secure the best 

possible taxonomy. Finally, confounding factors and batch effects could not be ruled out. 

We included a thorough examination of diversity and differential abundance/distribution 

testing to look for potential confounding effects from several important clinical 

parameters (S3 Table). No apparent effects were seen. We observed no statistically 

significant difference in alpha diversity between sequencing runs (S5 Fig), but there 

might have been an effect on beta diversity (S6 Fig), particularly between sequencing run 

1 and 2 (S5 Table). In terms of differential abundance/distribution, it seemed that 

Sarocladium differed in abundance/distribution between sequencing run 1 and 2 (S7 

Table). 

Studies on the lung mycobiome are still in their infancy, and results from the current 

study add knowledge to an understudied area. Samples from the mouth differed from 

pulmonary samples both in controls and participants with COPD, which may indicate the 

existence of a pulmonary mycobiome. Certain inferences on taxonomic compositions 

differences between study groups could not be made due to inconsistent results among the 



 

differential abundance/distribution tests used. ICS use could not be seen to significantly 

affect the lung mycobiome. These findings should be confirmed in other study 

populations before we can conclude that ICS use has no harmful effect on the lung 

mycobiome. 
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Supporting information 
S1 Fig. Percentage of reads belonging to Ascomycota/Basidiomycota in (A) oral wash and (B) bronchoalveolar 

lavage 

 

S1 File. Bioinformatic processing 

 

S1 Table. Presumed fungal contaminants identified by Decontam in the MicroCOPD study 

ASV: amplicon sequence variant. The R package “Decontam” identified the ASV IDs above as contaminants. ASVs 

presumed to be contaminants were removed prior to analyses. 

 

S2 Fig. Yue-Clayton measures from (A) controls and (B) participants with COPD 

YC: Yue-Clayton measure. OW: oral wash, NCS: negative control sample, BAL: bronchoalveolar lavage. A Yue-

Clayton measure of 0 means identical sample pairs, while a Yue-Clayton measure of 1 means unidentical sample 

pairs. 

 

S2 Table. Differential abundance/distribution testing on fungi in the MicroCOPD study using ANCOM v2, 

MicrobiomeDDA, and ALDEx2 

ANCOM v2: the second version of analysis of composition of microbiomes, MicrobiomeDDA: Microbiome 

Differential Distribution Analysis omnibus test, ALDEx2: the second version of ANOVA-Like Differential 

Expression, OW: oral wash, BAL: bronchoalveolar lavage. The most conservative value in ANCOM v2 has been 

used in the analyses (i.e. 0.9). Significance level=0.05. Never- and ex-smokers were merged into non-smokers. The 

ALDEx2 approach works poorly if there are only a small number of taxa (less than about 50), so some groups were 

not analysed. 

 

S3 Fig. Principal coordinates analysis plots by (A) study group and (B) inhaled steroids use 

Differences in beta diversity were tested with permuted analysis of variance (PERMANOVA) adjusted for sex, age, 

and percentage of predicted FEV1 (permutations = 10000). No significant differences were seen in spread/dispersion 

(permutations = 1000).  

 

S3 Table. Taxonomy and diversity comparisons of selected clinical variables in the MicroCOPD study divided 

by sample type and study group 

PERMANOVA: permuted analysis of variance, OW: oral wash, BAL: bronchoalveolar lavage, AN: ANCOM v2, M: 

MicrobiomeDDA, AL: ALDEx2, sign: significant, FEV1: forced expiratory volume in 1 second. Analyses on FEV1 

were omitted for each study group separately due to a majority of controls having above 80% of predicted, and a 

majority of participants with COPD having below 80% of predicted. Diversity analyses on smoking habits in BAL 

samples from controls were omitted due to a lack of current smokers. Analyses on smoking habits were done by 

comparing current vs non-current smokers. 



 

S4 Fig. Principal coordinates analysis plots by sample type (A) before and (B) after symmetric Procrustes 

transformation 

OW: oral wash, BAL: bronchoalveolar lavage. Arrows are drawn from the OW sample to the BAL sample from the 

same participant. Non-randomness (“significance”) between the two configurations was tested with the protest 

function including the three first axis from the PCoA and specifying 999 permutations. 

 

S4 Table. Summary of read/sequence counts in the MicroCOPD study 

NCS: Negative control sample, OW: oral wash, BAL: bronchoalveolar lavage, DADA2: Divisive Amplicon 

Denoising Algorithm version 2. 

 

S5 Fig. Plot of Qubit concentrations and comparisons between sample types 

BAL: bronchoalveolar lavage, NCS: negative control sample, OW: oral wash. Statistical 

differences in Qubit concentrations were tested using Wilcoxon signed-rank test as a paired 

test. 

 

S5 Table. Beta diversity comparisons using Bray-Curtis and Jaccard distances. Comparisons were done (A) 

merged and (B) pairwise 

OW: oral wash, BAL: bronchoalveolar lavage, yrs: years. Differences in beta diversity were tested with permuted 

analysis of variance (PERMANOVA) adjusted for sample type, study group, sex, and age (permutations = 10000). 

 

S6 Fig. Alpha diversity plots and comparisons between sequencing runs 

BAL: bronchoalveolar lavage, OW: oral wash. Alpha diversity was evaluated using Shannon index. Statistical 

differences in alpha diversity were tested using Kruskal-Wallis. 

 

S6 Table. Permuted multivariate analysis of beta-dispersion using Bray-Curtis and Jaccard distances. 

Comparisons were done (A) merged and (B) pairwise 

OW: oral wash, BAL: bronchoalveolar lavage. 

 

S7 Fig. Principal coordinates analysis plots divided by sequencing run 

OW: oral wash, BAL: bronchoalveolar lavage. 

 

S7 Table. Differential abundance/distribution testing on sequencing run using ANCOM v2, MicrobiomeDDA, 

and ALDEx2 

ANCOM v2: the second version of analysis of composition of microbiomes, MicrobiomeDDA: Microbiome 

Differential Distribution Analysis omnibus test, ALDEx2: the second version of ANOVA-Like Differential 

Expression, OW: oral wash, BAL: bronchoalveolar lavage. The ALDEx2 approach works poorly if there are only a 

small number of features (less than about 50). The most conservative value in ANCOM v2 has been used in the 

analyses (i.e. 0.9). 
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Errata 

Page 54 Incorrect number: “That means, 62 participants underwent two bronchoscopies 
(re-bronchoscopy), and 11 participants had three bronchoscopies” corrected to 
“That means, 62 participants underwent two bronchoscopies (re-bronchoscopy), 
and 12 participants had three bronchoscopies”.  

Page 85 Incomplete and incorrect statement: “One benefit from our literature review is that 
we included keywords both as subject headings and as text words in PubMed or 
explosion searches in Embase, thereby broadening our search. It may take a few 
months before subject headings are added to an article, which confirms the 
importance of including text words and explosion searches” corrected to “One 
benefit from our literature review is that we included keywords both as subject 
headings and as text words in PubMed or explosion searches and multipurpose 
terms in Embase, thereby broadening our search. It may take a few months before 
subject headings are added to an article, which confirms the importance of 
including text words and multipurpose terms”. 

Page 132 Incorrect statement: “But the high Candida dominance could create a visual 
illusion because of the less coloured BAL plot” corrected to “But the high Candida 
dominance could create a visual illusion because of the less coloured OW plot”. 
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