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The actin cytoskeleton is of profound importance to cell shape,
division, and intracellular force generation. Profilins bind to glob-
ular (G-)actin and regulate actin filament formation. Although
profilins are well-established actin regulators, the distinct roles of
the dominant profilin, profilin 1 (PFN1), versus the less abundant
profilin 2 (PFN2) remain enigmatic. In this study, we use interac-
tion proteomics to discover that PFN2 is an interaction partner of
the actin N-terminal acetyltransferase NAA80, and further con-
firm this by analytical ultracentrifugation. Enzyme assays with
NAA80 and different profilins demonstrate that PFN2 binding
specifically increases the intrinsic catalytic activity of NAA80.
NAA80 binds PFN2 through a proline-rich loop, deletion of
which abrogates PFN2 binding. Small-angle X-ray scattering
shows that NAA80, actin, and PFN2 form a ternary complex and
that NAA80 has partly disordered regions in the N-terminus and
the proline-rich loop, the latter of which is partly ordered upon
PFN2 binding. Furthermore, binding of PFN2 to NAA80 via the
proline-rich loop promotes binding between the globular
domains of actin and NAA80, and thus acetylation of actin.
However, the majority of cellular NAA80 is stably bound to
PFN2 and not to actin, and we propose that this complex ace-
tylates G-actin before it is incorporated into filaments. In con-
clusion, we reveal a functionally specific role of PFN2 as a
stable interactor and regulator of the actin N-terminal acetyl-
transferase NAA80, and establish the modus operandi for
NAA80-mediated actin N-terminal acetylation, a modifica-
tion with a major impact on cytoskeletal dynamics.

The actin cytoskeleton is a highly dynamic network of actin
polymers, which is involved in diverse and critical functions of
every eukaryotic cell. It supplies the scaffolding for the motor
force that drives cell division and intracellular transport, main-
tains cell shape, and powers cell migration (1). Actin polymer
dynamics are regulated by several mechanisms, including
actin-binding proteins and protein modifications (2, 3). One
class of these important actin regulators are profilins. They are
highly abundant, cytosolic proteins of ;15 kDa and bind the
majority of free globular (G-)actin (3). Profilins promote actin

polymerization in three ways (3). First, they have a high affinity
for actin monomers, binding at the barbed end of G-actin and
actin filaments when the terminal actin monomer is ADP-
bound. This increases the rate of actin-ADP barbed end disso-
ciation from the filaments; however, when the actin is ATP-
bound, profilin affinity is low and it dissociates rapidly after
delivering actin-ATP to the barbed end of growing actin fila-
ments (4). Thus, profilins sterically block nucleation and elon-
gation of actin filaments at the pointed end, whereas they pro-
mote polymerization at the rapidly growing barbed end.
Second, they increase the rate of ADP-ATP exchange on G-
actin, thereby contributing to the polymerizable pool of actin
monomers available for filament formation (5). Finally, profi-
lins bind a range of ligands, which coordinate cytoskeletal dy-
namics by mediating the interaction with actin. They do so
by binding polyproline motifs through a hydrophobic surface
formed by N- and C-terminal helices and an internal b-sheet
(6). This allows profilin to deliver actin monomers to polypro-
line-containing elongation factors like formins (7) and Ena/
VASP (8–10), effectively increasing the rate of elongation as
well as preventing filament capping (10). Profilin also acts as a
weak nucleator in concert with formin (11). In vertebrates, two
major profilin isoforms, profilin 1 (PFN1) and profilin 2 (PFN2)
exist, encoded by the two genes PFN1 and PFN2 (5). It has been
suggested that mouse PFN2 is mainly expressed in the central
nervous system (12). Human PFN2 is expressed in several non-
neuronal cell lines (13–15). PFN1 is themost abundant isoform
(12, 13), as well as the most widely expressed (16, 17). Two
minor profilins exist in addition to PFN1 and PFN2. Profilin 3
(PFN3) and profilin 4 (PFN4) are both expressed solely in testis
(18–20). Although PFN3 is able to bind actin and polyprolines,
albeit with lower affinity than PFN1 and PFN2 (18, 21), PFN4
has not retained these functions (21). Like PFN1 and PFN2,
both PFN3 and PFN4 bind phosphoinositides (21). PFN3 and
PFN4 localize to the acroplaxome of differentiating spermatids
and may participate in acrosome formation or shaping of the
spermatid head (21). Currently, the extent and importance of
profilin specialization are not known. Because of alternative
splicing PFN2 has two isoforms, termed PFN2a and PFN2b (22,
23). Both are 140 amino acid residues long and differ in nine
residues, which are located between positions 109 and 140.
PFN1, PFN2a, and PFN2b are 60.7% identical at the amino acid
level and share a high degree of structural similarity, with an av-
erage root mean square deviation of 1.13 Å between the Ca
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atoms of PFN1 and PFN2 (24). PFN1 and PFN2 bind to poly-
proline ligands (25) and phosphoinositides (26) with different
affinities. PFN2 has an isoform-specific role in mouse brain de-
velopment, where it contributes to neuronal architecture and
appropriate dendritic complexity (27). Neuronal mouse PFN2
associates with a subset of proteins distinct from PFN1, such as
components of the WAVE complex (28). PFN2 knockout (KO)
mice have defective actin polymerization at the synapse, lead-
ing to increased synaptic excitability and increased novelty-
seeking behavior (29). Furthermore, whereas PFN1 promoted
invasion and metastasis in a human breast cancer model, PFN2
had the opposite effect, slowing migration and lowering the
metastatic potential of cancer cells (13).
In addition to regulation by actin-binding proteins, post-

translational modifications on actin have several regulatory
roles (2). The posttranslational N-terminal acetylation (Nt-
acetylation) of actin was recently revealed to be catalyzed by
NAA80/NatH (30, 31), an N-terminal acetyltransferase (NAT).
NATs catalyze the transfer of an acetyl group from acetyl-CoA
(Ac-CoA) to a protein N-terminus, be it co- or posttranslation-
ally (32, 33). Actin Nt-acetylation is essential for maintaining
cytoskeletal morphology and dynamics, as its loss in NAA80-
KO cells results in an increased number of filopodia and lamel-
lipodia, as well as increased cell migration (30, 34). NAA80-KO
cells also display increased cell size, Golgi fragmentation (35),
and an increase in filamentous actin (F-actin) content com-
pared with WT cells (30). The Drosophila melanogaster
NAA80 structure revealed how its substrate-binding site
uniquely accommodates the acidic actin N-terminus (36).
Here, we show that PFN2, and not PFN1, is the main cellular
interaction partner of NAA80. NAA80 selectively binds
PFN2 in the absence of actin. This binding is associated with
an increase in NAA80 enzymatic activity and is contingent
on a polyproline stretch unique among the NAT enzymes.

Results

PFN2 is a specific and direct interactor of NAA80, whereas
PFN1 does not interact

A pressing question about the novel NATNAA80 is whether
it acts alone or if its activity or localization is directed by any
protein partners, as is the case for several of the previously
characterized NATs (32, 33). To address this, we employed an
affinity-enrichment LC–MS approach to screen for NAA80
interactors. After expressing V5-tagged NAA80 in HeLa cells,
we performed immunoprecitation (IP), analyzing and quantify-
ing the IPs by LC–MS and label-free quantification (LFQ). In
our screen, PFN2 (log2 fold-enrichment: 5.62, p value: 3.6 3
1026) and actin (log2 fold-enrichment: 7.70, p-value: 4.58 3
1025) were significantly enriched in the NAA80 pulldown (Fig.
1A, Table S1). Both b- and g-actin are expressed in HeLa cells,
but segregating the LFQ intensities for each actin isoform by
MS is challenging because most actin peptides (excluding the
N-terminus) are identical (2). We therefore refer to the com-
bined actin protein group, recognizing that the actin intensity
is made up of the total pool of actin with uncertain relative con-
tributions from b- and g-actin. We performed a follow-up vali-
dation screen in HAP1 cells and again, PFN2 was identified as a

significant interactor of NAA80 (log2 fold-enrichment: 2.36, p
value: 0.00023). However, in this validation screen actin was
not enriched by NAA80 (log2 fold-enrichment:20.20, p-value:
0.383) (Fig. 1B, Table S2). We observed a weak, nonsignificant
enrichment of PFN1 in the HeLa screen (log2 fold-enrichment:
1.74, p value: 0.0097), whereas no PFN1 enrichment was
detected in the HAP1 validation screen (log2 fold-enrichment:
0.01, p value: 0.951). In both co-IP experiments, we identified
peptides from both PFN2a and PFN2b isoforms (Fig. S1). This
confirmed that both PFN2 isoforms are present in HeLa and
HAP1 cells, and that they both interact with NAA80. Given the
stochastic nature of data-dependent-acquisition proteomics
(37) and the challenge of comparing peptide intensities
between peptides that are chemically different, we did not
attempt to interpret the relative signal intensities of the pep-
tides within samples to deduce which PFN2 isoform, if any, is
preferred by NAA80.
Although the presence of a proline-rich region (Fig. S2) of

NAA80 suggested a profilin binding ability, it was unexpected
to find that PFN2 and not PFN1 was enriched by NAA80. To
confirm the PFN2 preference over PFN1 and the ability of
NAA80 and PFN2 to interact directly and without the presence
of actin, we performed analytical ultracentrifugation (AUC)
experiments. First, we recombinantly expressed and purified
various NAA80 constructs, PFN1, PFN2a, and PFN2b, and
assessed the sample quality using several biophysical methods
(Figs. S3 and S4, Table S3) before testing the effect of PFN1/2a/
2b on NAA80 activity. Enzyme activity measurements (Fig. S3,
A and B), CD spectroscopy, and differential scanning fluorime-
try (DSF) measurements (Fig. S3C, Table S3) showed that
NAA80 was active and folded under the conditions used in the
AUC experiments. Small-angle X-ray scattering (SAXS) meas-
urements (Fig. S4, Table S4) and size exclusion chromatogra-
phy coupled multiangle light scattering (SEC-MALS) experi-
ments (Fig. S4F) further confirmed a similar behavior between
the profilins. All profilin isoforms were compact, monomeric,
and exhibited similar molecular dimensions. Running fluores-
cently labeled profilins with increasing amounts of full-length
NAA80 in AUC allowed us to measure a potential shift in sedi-
mentation coefficient upon NAA80 binding. Given that we
identified both PFN2a and PFN2b in our LC–MS screen, we
performed the AUC experiments with both isoforms. Indeed,
the addition of NAA80 to either PFN2a or PFN2b resulted in a
shift in the sedimentation coefficient (Fig. 2, A and B). The
curves for the 5:1 and 10:1 NAA80:PFN2 ratios were almost
completely overlapping, suggesting that saturation occurs
above 5:1 NAA80:PFN2 molar ratio. No such shift was ob-
served with PFN1, even when we used twice the concentration
as for PFN2 (Fig. 2C). Furthermore, NAA80 did not co-precipi-
tate cellular PFN1 even in the absence of endogenous PFN2
when using PFN2-KO cells (Fig. 2D), indicating that endoge-
nous PFN1 is not simply outcompeted by endogenous PFN2.
Additionally, we found no further enrichment of actin by
NAA80 in either of the profilin KO cells (Fig. 2D), further
strengthening our conclusion that the NAA80/PFN2 interac-
tion is actin independent and that NAA80-actin complexes are
not prevalent. To determine the quantities of PFN1 and PFN2
in our HAP1 cell model we performed Western blotting-based
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absolute quantification of PFN1 and PFN2.We have previously
determined that there are ;22 million actin molecules per
HAP1 cell, and 7000 NAA80molecules, giving an actin:NAA80
ratio of around 3000:1 (38). Here we used the same approach,
making standard curves with purified PFN1 and PFN2, and iso-
form-specific profilin antibodies. Our measurements indicate
that there are around 4.5 million PFN1 molecules and 330,000
PFN2 molecules per cell (Fig. 2E). Thus, we report a PFN1:
PFN2 ratio of 13.6:1 and PFN1:NAA80 and PFN2:NAA80
ratios of 645.0:1 and 47.5:1 respectively. The PFN1:PFN2 ratio
is comparable with earlier reported measurements in nonbrain
tissues (12, 13). This suggests that the NAA80 preference for
PFN2 cannot be explained by a mass action effect, as PFN1 is
the more abundant isoform by an order of magnitude. In sum,
we found that PFN2, but not PFN1, may directly bind to
NAA80 in vitro and in cells, independent of actin.

PFN2, but not PFN1, enhances the catalytic activity of NAA80
toward actin

Given that PFN2 was found to be a stable interactor of
NAA80 and that profilins are established actin-binding pro-
teins, we wanted to assess whether the lack of profilins
impacted global actin Nt-acetylation levels. To this end, we an-
alyzed lysates of PFN1- and PFN2-KO cells by antibodies spe-
cific for Nt-acetylated b- or g-actin (Fig. 3A). We found no
major difference in the actin acetylation levels at steady state,
and neither PFN2 nor PFN1 alone are required for actin Nt-
acetylation. Next, we wanted to know whether profilin binding
influences the reaction rate of NAA80. We have previously
shown that preformed actin-PFN1 complexes are better sub-
strates of NAA80 than actin alone (38). To investigate whether
NAA80-profilin is a more efficient holoenzyme than NAA80
alone, we added profilin to NAA80 before testing its activity in
two different enzyme assays (Fig. 3B). In the 5,59-dithiobis-2-
nitrobenzoic acid (DTNB) assay, peptides withN-terminimim-
icking b-actin (DDDIA) are used as a substrate along with Ac-
CoA, and the product formation is measured spectrophoto-
metrically (39). The DDDIA peptide is efficiently Nt-acetylated
by NAA80 (30). NAA80 was preincubated with increasing
molar ratios of profilin. For PFN1, we observed no increase in

the NAA80 enzymatic activity. In contrast, there was a concen-
tration-dependent increase in activity for NAA80 preincubated
with PFN2a and PFN2b (Fig. 3C). NAA80 was saturated at a 5:1
PFN2:NAA80 ratio, which resulted in a 2.5-fold increase in
product formation. This is in agreement with the AUC data
(Fig. 2,A and B). Increasing PFN2 concentrations above this ra-
tio did not result in any further potentiation. This suggests that
PFN2 binding enhances NAA80 activity in the absence of actin,
and thus without the need for the extensive NAA80-interacting
interface of actin (38), because actin is not present in this assay.
Importantly, this result holds for both PFN2a and PFN2b, with
a similar potentiation curve and magnitude for both isoforms.
Acetylation of full-length actin can be relatively quantified by
using Western blotting and antibodies specific for Nt-acety-
lated b- or g-actin. We purified unacetylated b- and g-actin
from NAA80-KO cells (30, 40), which was used as a substrate
for purified NAA80/profilin along withAc-CoA. PFN2b signifi-
cantly increased the reaction rate of NAA80 against full-length
actins compared with NAA80 and actin alone, whereas no such
effect was observed for PFN1 (Fig. 3D). This suggested that
PFN2 may act as a substrate shuttle for NAA80, using its dis-
tinct actin- and NAA80-binding domains to bring enzyme and
substrate into closer proximity. However, the peptide-based
DTNB assay demonstrated that actin binding is not required
for this potentiation.

NAA80 polyproline stretches are required for PFN2-NAA80
interaction and appear to be conserved among most animals

NAA80 contains several notable regions in addition to the
GNAT-fold, including an 82-residue N-terminus of unknown
function. The N-terminus is predicted to be disordered (Fig.
S5), and the presence of the initial 22 N-terminal residues dis-
tinguishes the two known NAA80 isoforms from one another.
In addition, profilins are known to interact with polyproline
stretches, and NAA80 contains three such regions in its b6–b7
loop, henceforth referred to as P123 (Fig. 4A). To assess
whether polyprolines are a general feature of NAA80, we
retrieved several NAA80 sequences from UniProtKB and com-
pared their proline content (Fig. 4B, Fig. S2). Currently, only
human (30), murine (31), and D. melanogaster (36) NAA80

Figure 1. NAA80 co-immunoprecipitates PFN2. A, HeLa cells were transfected with NAA80-V5 or lacZ-V5 and B,HAP1 cells were transfected with V5-NAA80
or lacZ-V5. The V5 (IPs) were analyzed by LC–MS, and proteins were quantified by label-free quantification, comparing the intensity of each protein to the con-
trol IP (lacZ-V5) to identify interaction partners of NAA80. Red dots, significantly enriched proteins. Blue dots, selected nonenriched proteins. Dotted lines show
log2 difference = 2 and -log10 p value = 3.
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Figure 2. NAA80 and PFN2 specifically interact, to the exclusion of PFN1. A–C, AUC experiments with fluorescently labeled profilin and varying ratios of
unlabeled NAA80. D, V5 IPs in HAP1 cells (WT, PFN1-KO, or PFN2-KO) transfected with lacZ-V5 or V5-NAA80. Immunoprecipitates were probed with the indi-
cated antibodies. Arrows indicate the expected sizes of the lacZ-V5, V5-NAA80, or actin bands. E,Western blotting-based absolute quantification of PFN1 and
PFN2 in HAP1 cells, using purified proteins as standard. Right panel shows the quantification of the blots in the left panel (n = 3).

PFN2 and NAA80 N-terminally acetylate actin
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have been experimentally validated regarding enzyme function.
The species represent several vertebrate and invertebrate taxa.
NAA80 appears to be highly conserved among mammals and
the average total proline content was about;15%. For compar-
ison, the average proline content in human proteins is 6.2%
(41). The fish species have the highest NAA80 proline content,
ranging from;15% in Danio rerio to 20% in Takifugu bimacu-
latus. NAA80 in the crustacean species Armadillidium vulgare
and Portunus trituberculatus, as well as the nematode Caeno-
rhabditis elegans, have proline contents between 8 and 10%.
Insects are the exception here – in addition toDrosophila mela-
nogaster, themosquitoAnopheles gambiae also lacks significant
proline content.We aligned the NAA80 sequences between the
b6- and b7-strands, and compared the proline content of the
intervening regions (Fig. 4C). Species with an extended b6–b7
loop invariably have at least one polyproline stretch. The three

stretches in human NAA80 (Fig. 4A) are present in the rodents
as well. The fish species have longer stretches, more numerous,
or both. Insects have no NAA80 polyprolines, coinciding with
their lower proline content. All of these species have two profi-
lin genes, except for the arthropods, which have one profilin
each. Taken together, the evolutionary conservation of poly-
prolines in NAA80 suggests a conserved function. We propose
that this function is NAA80-PFN2 binding to facilitate rapid
actin acetylation.
It was of interest to define the individual contributions to

PFN2 binding of the three human polyproline stretches. We
performed an LC–MS interactor screen in HAP1 cells using
V5-tagged human NAA80 lacking these polyproline stretches
(NAA80-DP123) (Fig. 4, D and E). Here, the PFN2 enrichment
was lost in NAA80-DP123. We could not find any evidence of
actin enrichment in this screen, nor was PFN1 enriched by

Figure 3. PFN2 increases the rate of actin acetylation in vitro. A, actin is fully acetylated in PFN1-KO and PFN2-KO cells. Western blots of lysates from the
indicated cell types. B, schematic of the NAA80-profilin enzyme assays using b-actin N-terminal peptides (DDDIA) or full-length actin. C, NAA80/PFN DTNB
enzyme assay using the N-terminal peptides of b-actin (n = 4). Enzyme reactions were run with NAA80/BSA for each ratio in parallel, and each NAA80/profilin
ratio was normalized to the product formation for the corresponding NAA80/BSA ratio. Standard deviations were calculated as described under “Experimental
procedures.” D, in vitro acetylation of full-length actin in the presence of PFN1 or PFN2b. Unacetylated actin purified from NAA80-KO cells was used as a sub-
strate for NAA80/profilin. Right panel shows the quantification of the blots in the left panel (n = 3 for each condition). Error bars show S.D. Statistical significance
was determined by Student’s t test. n.s., p. 0.05; *, p, 0.05; **, p, 0.01.
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NAA80-DP123. When we performed AUC with the same con-
struct, it was apparent that NAA80-DP123 did not bind to
PFN2a (Fig. 4F). We prepared deletion constructs for each

stretch (NAA80-DP1, -DP2, and -DP3, lacking residues 238-
247, 259-272, and 277-284, respectively), confirmed their fold-
ing and activity (Fig. S3), and performed AUC experiments

Figure 4. The NAA80 polyproline-rich b6–b7 loop mediates PFN2 interaction. A, schematic of the NAA80 sequence, with secondary structure elements
and regions of interest highlighted. Black, NAA80 isoform 1-specific N-terminus; yellow, Ac-CoA binding motif; red, polyproline stretches 1, 2, and 3. B, proline
content in NAA80 sequences from the indicated species: Homo sapiens (Uniprot identifier: Q93015),Mus musculus (Q9R123), Rattus norvegicus (A0A0G2JV35),
D. rerio (E7FBQ5), T. bimaculatus (A0A4Z2B4F3), Oryzias latipes (A0A3P9HTG7), P. trituberculatus (blue crab) (A0A5B7DRL4), Armadillidium vulgare (woodlouse)
(A0A444SNE1), D. melanogaster (Q59DX8), A. gambiae (mosquito) (F5HLV5), and C. elegans (Q09518). Dashed line, average proline content in human genome
(6.2%) (41). C, NAA80 b6–b7 loop alignment (residue range in brackets) of NAA80 from the same species as in B, aligned at b6 and b7, with prolines in red and
gaps in gray. D, HAP1 cells were transfected with plasmids encoding V5-tagged NAA80-DP123 or lacZ/b-gal. V5-tagged proteins were immunoprecipitated
and interactors were identified by LC–MS and LFQ, comparing the intensity of each protein to the control IP (lacZ-V5). Red dots, significantly enriched proteins.
Blue dots, selected nonenriched proteins. Dotted lines show log2 difference = 2 and -log10 p value = 3. E, heatmap of the LFQ intensities for the indicated pro-
tein groups in each IP. F andG, AUCwith labeled PFN2a andNAA80 deletionmutants: NAA80-DP123 (F) or NAA80-DP1, NAA80-DP2, and NAA80-DP3 (G).
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(Fig. 4G). This showed that neither deletion of P1 nor P3 had
any major impact on PFN2 binding (see also Fig. S6), whereas
the deletion of P2 (aa 259-272) did abolish PFN2 binding (Fig.
4G). This is in agreement with our recent study (38), where we
determined the main profilin interacting residues of NAA80 to
be within the P2 stretch. Although NAA80 can also bind actin,
the actin/NAA80 interaction is not essential for NAA80/profi-
lin binding, providing further evidence that these interactions
occur at different interfaces (38). We conclude that human
NAA80 binds specifically to PFN2 and that this binding is
mediated through a polyproline stretch located at residues 259-
272.

PFN2-interacting prolines in NAA80 are necessary for rapid
actin acetylation

We next asked, does the abrogation of PFN2 binding mean
that the mutant NAA80 enzyme is unable to be potentiated by
PFN2 in the same way as the full-length enzyme (Fig. 3)? We
found that PFN2 is not able to increase the activity of NAA80-
DP123, consistent with the hypothesis that the polyproline
stretch contains the NAA80-PFN2 interaction interface (Fig.
5A). To exclude that the shortening of the b6–b7 loop in the
deletion mutant resulted in reduced potentiation, we tested a
NAA80 mutant with the critical P2 segment replaced with
glycine-serine repeats (polyGS2), and comparable with the
NAA80-DP123, the NAA80-polyGS2 mutant cannot be poten-
tiated by PFN2 (Fig. 5B). To test whether the loss of the PFN2

interaction impairs NAA80 activity in a cellular context, we
employed an actin reacetylation assay. In this assayNAA80-KO
cells, which contain no Nt-acetylated actin (30), were trans-
fected with V5-tagged NAA80 variants to study how quickly
each variant restored actin acetylation.We developed this assay
to study actin binding to NAA80, and determined that several
actin-interacting residues of NAA80 are important for rapid
reacetylation (38). We here found that NAA80-DP123 was sig-
nificantly slower in restoring actin Nt-acetylation than theWT
NAA80, which has retained PFN2 binding (Fig. 5C, Fig. S7).
This effect was observed for both b-actin and g-actin. Of note,
NAA80-DP123 activity alone is higher than NAA80-WT in
vitro (Fig. S2). After 14 h of transfection, NAA80-DP123 had
restored the actin Nt-acetylation signal to 64 (b-actin) and 62%
(g-actin) compared with cells transfected with NAA80-WT,
demonstrating that cellular actin acetylation kinetics are slower
whenNAA80 is unable to bind PFN2.

SAXS models of NAA80 and NAA80-DP123 demonstrate a
high degree of conformational flexibility in the N-terminus
and the b6–b7 loop

Based on our observation that the b6–b7 loop of NAA80
interacts with PFN2 (Fig. 4), we were interested in the spatial
arrangement of this region in respect to the enzymatic core
and its availability for interaction in solution. Because both
the N-terminus and b6–b7 loop of NAA80 are predicted to
be intrinsically disordered (Fig. S5), we performed SAXS

Figure 5. NAA80 requires PFN2 interaction for rapid actin Nt-acetylation. A, DTNB assay with NAA80-DP123 and varying molar ratios of PFN2a or PFN2b
against DDDIA peptide (n = 3). Enzyme activity for each molar ratio was normalized to the activity of NAA80-DP123 alone. B,DTNB assay with NAA80-polyGS2
and varying molar ratios of PFN2a or PFN2b against DDDIA peptide (n = 3). Enzyme activity for each molar ratio was normalized to the activity of NAA80-pol-
yGS2 alone. C, NAA80-KO cells were transfected with NAA80-WT or NAA80-DP123 for 8-14 h before Western blotting. Left, representative blots. Right, quantifi-
cation of Ac-b- and Ac-g-actin normalized to V5 expression from independent experiments (n = 4). *, p value,0.05, as determined by two-way ANOVA. See
Fig. S7 for all quantified blots. Error bars show standard deviation.
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measurements on recombinant full-length humanNAA80 (Fig.
S8, Table S5). A comparison of the NAA80 scattering data to
the theoretical scattering curve of the folded core, based on the
DmNAA80 crystal structure (PDB code 5WJD) (36), demon-
strated that the N-terminus and b6–b7 loop contribute to a
nonglobular shape of NAA80 (Fig. S8A). The NAA80 SAXS
data showed that the protein has a high degree of flexibility
(Fig. S9B). A SAXS model was generated by building missing
loops onto a rigid body (Fig. S8B), which confirmed the
extended conformation of the N-terminus and polyproline-
rich b6–b7 loop. Further insight into the structural dynamics
of NAA80 were gained by an ensemble optimization method
(EOM) modeling approach, where we found that the N-termi-
nus and the polyproline-rich b6–b7 loop were intrinsically dis-
ordered and could freely move in solution, without stably inter-
acting with the globular core of the protein (Fig. S8D). The
rigid body and EOM models of NAA80 indicate that both the
N-terminus and the polyproline region are available for protein
interactions in solution. We also performed SAXS on NAA80-

DP123 to confirm the structural integrity of the polyproline de-
letion construct (Fig. S8, Table S5). The data verified that the
GNAT-fold remained intact after removing the polyproline
stretch. Similarly to the full-length protein, this construct dis-
played a disordered N-terminus, whereas the residues of the
truncated b6–b7 loop were confined to a smaller conforma-
tional space (Fig. S8,C, E, andG). Further assessment of protein
fold and thermal stability was performed using CD and DSF,
respectively (Fig. S3, Table S3).

NAA80, actin, and PFN2 form a ternary complex

A structure of the DN-NAA80–actin–PFN1 complex was
recently published (38), showing that all three proteins make
contacts with each of the other two. To determine whether the
cellular partner of NAA80, PFN2, can take part in similar inter-
molecular interactions, we performed SAXS on DN-NAA80 in
complex with PFN2a and actin (Fig. 6A, Fig. S9, Table S5) and
generated an ab initiomodel of the complex (Fig. 6B). Superpo-
sition with the crystal structure of DN-NAA80–actin–PFN1

Figure 6. NAA80 forms a ternary complex with PFN2 and actin. A, scattering profiles for DN-NAA80-actin-PFN2a, NAA80-actin-PFN2a, and NAA80-actin-
PFN2b, with fits from GASBOR (red line), CORAL (dashed line), GNOM (solid line), and CRYSOL (dotted line). B, ab initiomodel of DN-NAA80-actin-PFN2a (surface
representation), superimposed with the crystal structure of DN-NAA80-actin-PFN1 (PDB code 6NAS) in cartoon representation. C and D, SAXS models of
NAA80-actin-PFN2a (C) or -PFN2b (D) in surface representation. The crystal structure of DN-NAA80-actin-PFN1 (cartoon representation) was used as rigid
body, and the N-terminus and missing residues of the b6–b7 loop were modeled by using CORAL. E and F, analytical ultracentrifugation of labeled PFN2a,
PFN2a with actin, and PFN2a with actin and full-length NAA80 (E) or NAA80-DP123 (F).
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(Fig. 6B) and its theoretical calculated scattering pattern (Fig.
6A) reveal that the overall molecular architecture of the ternary
complex with PFN2 is the same as observed for the complex
with PFN1. To gain insight into a potential role of the N-termi-
nus in the complex formation, we performed SAXS on the full-
length NAA80 in complex with actin and PFN2 in solution
(Fig. 6A, Fig. S9, Table S5). Both PFN2a and PFN2b formed ter-
nary complexes with NAA80 and actin. CORALmodels (Fig. 6,
C and D) were generated using the crystal structure of the DN-
NAA80–actin–PFN1 complex (PDB code 6NAS) as rigid body.
The flexible N-terminus (aa 1–80) and the part of the b6–b7
loop absent from the crystal structure (aa 221–258, 273–289)
were modeled based on the obtained scattering data (Fig. 6A).
Although the globular part of NAA80 forms extensive contacts
in the NAA80–actin interface, the b6–b7 loop is bound to

PFN2. The N-terminal region of NAA80 does not seem to be
involved in any of the intermolecular contacts in the NAA80–
actin–PFN complex as the SAXS data indicate an extended,
flexible state of the N-terminus (Fig. S9, D and E, and Fig. 6, C
andD).
Enrichment of PFN2, but not actin, in the IP experiments an-

alyzed by MS (Figs. 1B and 4, B and C) and Western blotting
(Fig. 2D) indicated that the NAA80-PFN2 interaction is actin
independent. The recently published ternary structure sug-
gests, however, that it is primarily actin driven (38). The
capacity of NAA80 to properly acetylate actin in cells also
depends on an intact actin-NAA80 interface (38).We therefore
performed AUC experiments with PFN2, NAA80, and actin to
define the dependence of the NAA80-PFN2 interaction in the
formation of this ternary complex relevant for cellular actin Nt-

Figure 7. Gel filtration of cell lysates suggests the presence of low abundance NAA80-PFN2-actin complexes. Gel filtration chromatogram of HAP1
lysate and calibrationmix using the same column andmethod. Fractions were analyzed byWestern blotting and probedwith the indicated antibodies. Arrows
indicate sizes of standard proteins (670 kDa: bovine thyroglobulin; 150 kDa: bovine g-globulins; 44.3 kDa: chicken egg albumin; 13.7 kDa: bovine pancreas
RNase A). Double-headed arrow indicates specific NAA80 band (lower).
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acetylation (Fig. 6, E and F). We found that whereas full-length
NAA80 is able to form a ternary complex with PFN2-actin (Fig.
6E), NAA80-DP123 was not (Fig. 6F). Thus, a ternary NAA80-
actin-PFN2 complex may be formed and this depends on the
interaction betweenNAA80 and PFN2.

Cellular gel-filtration profile suggests that complexes
containing actin, NAA80, and PFN2, but not PFN1,
are present at low abundance

We next asked, what are the relative amounts of NAA80 in a
free unbound state, bound to PFN2, or in ternary complexes
with actin and PFN2?We performed gel filtration of HAP1 cell
lysate and analyzed the fractions by Western blotting (Fig. 7).
Gel filtration sorts proteins and protein complexes by hydrody-
namic radius, which for globular proteins correlates with the
molecular weight. As NAA80 (34 kDa) has a lower molecular
mass than actin (42 kDa), the naive assumption would be that
actin should elute before NAA80. In addition, most cellular G-
actin is profilin bound (3), in a dimeric complex of 57 kDa.
However, subjecting HAP1 lysate to gel filtration, after ultra-

centrifugation at 100,0003 g to remove F-actin, we found that
NAA80 eluted before profilin-actin and indeed before the
44.3-kDa protein standard. The main NAA80 bands coin-
cide with PFN2 bands, but not with PFN1 bands. This can be
explained by the irregular shape of NAA80 (Figs. S8 and S9),
which increases its hydrodynamic radius relative to a globu-
lar protein of similar molecular weight. The presence of
NAA80 and PFN2 bands in the same fractions suggest they
may derive from NAA80-PFN2 complexes. However, PFN2
has other binding partners and these may account for PFN2
in these fractions. Note that this would have to be PFN2-
specific binding partners, as we could not detect PFN1 in
these higher molecular weight fractions. The main fractions
of profilin and actin elute around and after 44.3 kDa. These
fractions are rich in profilin and actin, and presumably
account for the great majority of these protein pools. Thus,
we suggest that whereas most NAA80 is PFN2 bound, the
majority of PFN2 is actin-bound and not in complex with
NAA80. This is in line with the cellular ratio of PFN2 to
NAA80, which we estimate to be;50:1 (Fig. 2).

Figure 8. The function of NAA80 and PFN2 in actin N-terminal processing. During synthesis, NatB co-translationally acetylates the actin N-terminal and
the acetylated initiator methionine (Ac-iMet) is subsequently removed by acetyl-methionine aminopeptidase (AcMetAP). The NAA80-PFN2 complex Nt-acety-
lates the actin neo-N-terminus and the Nt-acetylated actin subsequently enters the polymerization pool. Profilins PFN1/PFN2 bind G-actin with high affinity
and promote binding of ATP and subsequent polymerization. ADP-actin dissociating at the pointed end binds profilin to reenter the cycle. Three possible
options for how the newly synthesized actin enters the polymerization pool are presented: 1) after folding, actin is Nt-acetylated by NAA80-PFN2. NAA80-
PFN2 facilitates ATP binding and delivers actin to the filament for polymerization, before being recycled for a new acetylation cycle. 2) After acetylation,
NAA80 is released, PFN2 catalyzes actin-ATP binding, and actin is delivered to the filament. NAA80 binds PFN2 before a new acetylation cycle. 3) NAA80-PFN2
releases actin after acetylation and is immediately available for a new acetylation cycle. Actin is bound by profilin before ATP binding and delivery to the actin
filament.
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Discussion

The eukaryotic NATs have different modes of operation
(32). The NatA-NatE enzymes are ribosome bound and cata-
lyze co-translational Nt-acetylation (42, 43). Except for NatD,
all of these have auxiliary subunits that anchor the enzyme
complexes to the ribosome and allow catalytic subunits to Nt-
acetylate nascent polypeptides (32, 33, 44). For NatD, NatF, and
NatH it was so far believed that the enzymes NAA40 (45, 46),
NAA60 (47, 48), and NAA80 (30) are solely responsible for
their activities. Our current data reveal that NAA80 interacts
with PFN2 in human cells (Figs. 1 and 2), and further that PFN2
both increases the intrinsic catalytic NAT activity of NAA80
(Fig. 3) as well as facilitating contact between NAA80 and its
substrate actin (Fig. 6). Loss of the PFN2-interaction domain of
NAA80 leads to inefficient actin acetylation inNAA80-KO cells
(Fig. 5C). PFN2 may thus be considered an auxiliary subunit of
NAA80 in a NatH complex. The above data are all in favor of
PFN2’s candidacy as a NAT subunit; however, two other argu-
ments should be considered. One is the apparently normal
steady state level of Nt-acetylated actin in PFN2-KO cells (Fig.
3A). The other is the fact that there are almost 50 PFN2 mole-
cules for each NAA80 molecule (Fig. 2E) and consequently a
large fraction of cellular PFN2 is not complexed with NAA80
(Fig. 7).
Using interaction proteomics, analytical ultracentrifugation

and NAA80 activity assays, we show that PFN2 is the only cel-
lular protein that interacts stably and specifically with NAA80.
The PFN1:PFN2 ratio of more than 10:1 shows that this is not
due to a mass action effect, and IPs in PFN2-KO cells shows
that even when PFN2 is absent PFN1 is unable to take its place.
The present study is not the first to identify differing binding
partners to the different profilin isoforms. Native PFN1 and
PFN2 complexes frommouse brain were found to contain both
exclusive and shared binding partners (28). The BioPlex inter-
actomics database (49), as of April 2020, lists both PFN1 and
PFN2 as NAA80 interaction partners in HEK293T cells. PFN1
was identified as a bait of NAA80, with NAA80 as its only cur-
rently annotated interaction partner in that database. At the
time of writing, only the NAA80 IP was listed in BioPlex, not
the reverse PFN1 IP. PFN2 is annotated as a NAA80 prey and
vice versa. PFN2 has, besides actin, other interactors in these
data sets, mainly actin cytoskeleton remodelers. NAA80, in
addition to the profilins, are annotated as binding b-, a-cardiac
and a-aortic smooth muscle actins, the transcriptional regula-
tor BTB and CNC homolog 2 (BACH2), b-actin–like protein 2
(ACTBL2), and putative b-actin–like protein 3 (POTEKP). Our
current results indicate that PFN2 is the only reliable interactor
of NAA80 in HAP1 cells, but we cannot exclude the possibility
that there is context- or cell type-specific binding to PFN1 or to
other actin-binding proteins. IP coupled to MS or Western
blotting cannot distinguish direct from indirect binding so the
possibility that some of these actin-binding proteins were
pulled down byNAA80 through actin or profilin does exist.
The NAA80 P2 polyproline stretch is a possible reason for

the profilin isoform selectivity. PFN1 and PFN2a/PFN2b ex-
hibit a sequence similarity of 61.4/62.1%, and the differences
are reflected in an altered overall positive net-charge for PFN1

and negative charges for PFN2a and PFN2b (24). Although the
actin-binding sites of the three isoforms are highly similar,
sequence differences mainly occur in the polyproline-binding
site containing the N- and C-terminal profilin helices, resulting
in different affinities toward various polyproline-rich ligands
(26, 50). Kursula and colleagues (25) studied the binding of
mouse PFN2a to polyproline peptides. Although they did not
test the sequence of NAA80 polyprolines specifically, they did
investigate the interaction between PFN2a and a polyproline-
rich ligand from the formin homology 1 (FH1) domain of
mDia1 using X-ray crystallography. This peptide contains the
central binding motif IPPPPPL, which is highly similar to the
NAA80 polyproline stretch P2 with the core sequence
LPPPPPL. The crystal structure of the PFN2a-mDia1 ligand
complex (PDB code 2V8F) revealed that the nonproline resi-
dues Ile and Leu of the mDia1 peptide serve as anchor to
PFN2a, packing against Tyr-6 and Trp-31 of PFN2a. In addi-
tion, Trp-3 and Phe-139 were identified as critical residues
interacting with the proline residues of the mDia1 peptide (25).
The similarity of the polyproline stretch of mDia1 and NAA80
may indicate a similar interaction interface with PFN2a.
Another study using a similar polyproline-rich peptide from
human palladin (FPLPPPPPPLPS), demonstrated that both
PFN1 and PFN2a were able to bind with similar affinity (51),
which again stands in contrast to the differences observed in
our studies. Due to the conservation and presence of the critical
residues Trp-31, Tyr-6, and Trp-3 in all three profilin isoforms
(24), the affinity differences for PFN1/PFN2 observed in our
experiments is surprising. However, a possible explanation is
the aromatic extension of the polyproline binding site by Tyr-
29, which is present in PFN2a and PFN2b (24). This aromatic
residue is conserved in PFN2a and PFN2b, but is replaced by
Ser-29 in PFN1. Tyr-29 can accommodate an additional proline
residue, which may lead to a favored arrangement of the P2
stretch (KGPPLPPPPPLPEC) when bound to PFN2, possibly
explaining the specificity of PFN2 interaction with NAA80. In
addition, PFN2 exhibits an extensive hydrophobic area in the
proximity of Tyr-29, caused by the aliphatic residues Ile-45 and
Met-49 (24). In contrast to the smaller residues Ala-45 and Val-
49 in PFN1, those large residues are protruding from the PFN2
surface and may provide additional anchor points for the
NAA80 b6–b7 loop.
Some of the results presented here are contrary to our recent

article (38), where it is demonstrated that NAA80-actin-PFN1
forms a ternary complex, and that PFN1 increases the reaction
rate of NAA80 toward actin when PFN1 and actin are associ-
ated. This article demonstrates an affinity of NAA80 to PFN1
of 30 mM, and an NAA80/actin affinity of 0.26 mM. It further
shows that the high affinity between actin and NAA80 is an im-
portant driver of actin Nt-acetylation kinetics. We argue here
that this NAA80-PFN1 in vitro binding is not likely to represent
what happens in a cellular context. NAA80-PFN2 is likely to be
the unit which catalyzes most actin acetylation in cells, and
NAA80-PFN2 is likely to dissociate rapidly from actin after Nt-
acetylation. We base this on the following lines of evidence:
binding data of NAA80 to PFN2, with which it associates to the
exclusion of PFN1 (Figs. 1, 2, and 7); the increase in enzyme ac-
tivity we observe when PFN2 is bound to NAA80 (Fig. 3); the
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lack of evidence for NAA80-PFN1 dimers (Figs. 1, 2, and 7);
and the observation that NAA80-actin and NAA80-profilin-
actin do not appear to be prevalent (Figs. 1, 2, 4, and 7). Rebow-
ski et al. (38) found that the ternary complex NAA80-actin-
PFN1 depends on the association between NAA80 and actin. In
contrast, we found that NAA80-actin-PFN2 is not formed
when NAA80 and PFN2 interaction is abrogated, indicating
that NAA80-PFN2 interaction is critical for the formation of
this ternary complex (Fig. 6D).
Our recent study showed that actin-PFN1 is a better sub-

strate for NAA80 than actin alone (38). Any mechanistic expla-
nation of how PFN2 potentiates NAA80 has to take into
account that the potentiation does not just occur when the sub-
strate is full-length actin, but also for actin peptides, which lack
the NAA80-interacting residues (38) and the PFN2 interaction
domain present in full-length actin. This suggests a conforma-
tional change in NAA80 upon PFN2 binding, rather than just a
chaperone effect of PFN2 toward actin. The flexible b6–b7
loop is common to all NATs, forming the peptide substrate-
binding pocket along with the a1–a2 loop and residues of the
a2 helix. The conformation of the b6–b7 loop is a major deter-
minant of how open is the substrate channel (52). The extended
b6–b7 loop is able to exhibit a multitude of conformations,
some of which may hinder substrate or Ac-CoA binding (Fig.
S8D). A constraint of the b6–b7 loop upon PFN2 binding may
increase substrate accessibility and thereby increase the acety-
lation rate of NAA80 (Fig. 3C). Alternatively, PFN2 binding to
the polyproline stretch P2 might induce conformational
changes, possibly propagated via the additional rigid polypro-
line stretches P1 and P3, and thereby change the positioning of
critical residues in the catalytic site or substrate/Ac-CoA bind-
ing cleft.
Based on the IP/MS data (Figs. 1 and 4) and the gel filtration

complex analysis (Fig. 7), we do not believe that NAA80-PFN2-
actin complexes are abundant in human cells. Given the actin:
NAA80 ratio of over 3000:1 and the high stoichiometry of actin
Nt-acetylation, NAA80 would not be expected to associate
tightly with its substrate. Because almost all actin is Nt-acety-
lated at steady state, we propose that NAA80-PFN2 hetero-
dimers act rapidly on the newly synthesized pool of actin.
NAA80-PFN2 dimers are relatively abundant compared with
NAA80 monomers (Fig. 7). Thus, preformed NAA80-PFN2
complexes may efficiently associate with monomeric actin and
catalyze actin Nt-acetylation. At the same time, it cannot be
excluded that actin-PFN2 or actin-PFN1 complexes also may
be targeted by NAA80-mediated Nt-acetylation. Indeed, an
earlier experiment with actin-PFN1 complexes showed that
this heterodimer is more efficiently acetylated by NAA80 than
actin alone (38). We have not performed the corresponding
experiment with actin-PFN2, but we note the following four
points: 1) PFN2 increases NAA80 activity also toward peptides,
demonstrating that interaction between the fold of actin and
NAA80 is not required for potentiation. 2) We observe no
potentiation from NAA80-PFN1 preincubation toward neither
actin peptides nor full-length actin, demonstrating that the
effect is PFN2-specific. 3) The lack of evidence of NAA80-actin
dimers (Figs. 1B, 2D, 4, B and C, and 7), indicates that actin-
NAA80 affinity in vivo is low. 4) NAA80-PFN2 dimers are

more prevalent than NAA80-actin-PFN2 heterotrimers (Fig.
7), suggesting that NAA80-PFN2 interaction is neither driven
by actin nor dependent on it. Our data support a model of low-
affinity, concentration driven PFN2-NAA80 association, where
PFN2 recruits newly synthesized actin to NAA80, concurrent
with or sequential to ATP binding by actin. We have outlined
three possible chains of events in Fig. 8, where newly synthe-
sized actin is processed by NatB (co-translationally) and an
unidentified acetylmethionine aminopeptidase (AcMetAP)
(either co- or posttranslationally) before recognition by
NAA80-PFN2.
In conclusion, we have described the direct interaction

between the actin NATNAA80 and PFN2, an important cytos-
keletal regulator and actin-binding protein. We hypothesize a
constitutive role for NAA80-PFN2 in catalyzing rapid actin Nt-
acetylation, which may be adaptive at times of high actin pro-
duction, for example, during cell growth or cell division. The
specific roles of different profilins have remained elusive, but
we here define a unique role for PFN2 as an enhancer for
NAA80-mediated actin acetylation.

Experimental procedures

Plasmid construction

pcDNA4-V5-NAA80-M23L was constructed by subcloning
NAA80 from pcDNA3.1-NAA80-V5 (30) into the TOPO TA
vector pcDNA 4/Xpress-His (Invitrogen). Then the M23L
mutation was introduced and the N-terminal Xpress tag was
replaced with a V5 tag. Mutations in the vector and NAA80
were introduced using the Q5 site-directed mutagenesis kit
(New England Biolabs) according to the manufacturer’s proto-
col. For recombinant expression and subsequent purification
PFN1, PFN2a, and PFN2b were cloned between the SapI and
EcoRI sites of vector pTYB11 (New England Biolabs). NAA80
and its mutants were cloned between the NdeI and EcoRI sites
of vector pTYB12 (New England Biolabs). The cDNA of human
gelsolin (UniProt ID P06396) was purchased from Open Bio-
systems (GE Healthcare). The fragment encoding subdomains
4-6 (residues 434-782) was amplified by PCR and cloned
between the XhoI and EcoRI sites of vector pCold (Takara Bio).
The plasmids encoding the profilin isoforms, the gelsolin frag-
ment G4–G6, and the NAA80 WT were gifts from Roberto
Dominguez (University of Pennsylvania). All primers and plas-
mids used in this study are listed in Table S6.

Recombinant protein expression and purification

The pTYB vectors contains a chitin-binding domain, used
for affinity purification, and an intein domain, used for self-
cleavage and release of the target protein. The proteins cloned
in pTYB vectors were expressed in BL21(DE3) cells (Invitro-
gen), grown in Terrific Broth medium at 37 °C until the OD600

reached a value of 1.5–2, followed by 16h at 20 °C in the pres-
ence of 0.4 mM isopropyl b-D-thiogalactoside. Cells were har-
vested by centrifugation, resuspended in 20mMHEPES, pH 7.5,
500mM NaCl, 1mM EDTA, 100 mM phenylmethylsulfonyl fluo-
ride (PMSF) (profilin isoforms) or 50 mM Tris, pH 8.5, 300 mM

NaCl, 1 mM EDTA, 1 mM DTT, 100 mM PMSF (NAA80 con-
structs) and lysed using a French Press. After clearing the lysate
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by centrifugation (40,000 3 g, 25 min, 4 °C), the extract was
applied onto a self-packed chitin affinity column, and purified
according to the manufacturer’s protocol (New England Biol-
abs), followed by additional purification through a HiLoad 16/
600 Superdex 75 gel filtration column (GE Healthcare) in
20mM HEPES, pH 7.5, 100mM NaCl, 1 mM DTT, 1 mM PMSF
(profilin isoforms) or 50 mM Tris, pH 8.5, 300 mM NaCl, 1 mM

EDTA, 1 mM DTT, 100 mM PMSF (NAA80 constructs). Gelso-
lin from pCold-G4-G6 vector was expressed in Rosetta (DE3)
cells, grown in Terrific Broth medium at 37 °C until the OD600

reached a value of 0.8 followed by 24 h at 15 °C in the presence
of 0.4 mM isopropyl b-D-thiogalactoside. Cells were then har-
vested by centrifugation, resuspended in 50 mM Tris-HCl, pH
8.0, 500 mM NaCl, 5 mM imidazole, and 0.1 mM PMSF, and
lysed using a French Press. Gelsolin G4-G6 was purified on a
nickel-nitrilotriacetic acid affinity column.

Human cell culture and transfection

WT HAP1 cells (Horizon C631), NAA80-KO (HZGH000-
3171c012), PFN1-KO (HZGHC005831c004), and PFN2-KO
(HZGHC005248c009) cells were purchased from Horizon Dis-
covery and cultured in Iscove’s modified Dulbecco’s medium
(Gibco) supplemented with 10% fetal bovine serum and 1%
penicillin-streptomycin at 37 °C and 5% CO2. Prior to experi-
ments, all HAP1 cell lines were passaged until diploid status
was confirmed by an Accuri BD C6 flow cytometer using pro-
pidium iodide staining. HeLa cells (ATTC CCL-2) were cul-
tured in Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum, 1% penicillin-streptomycin, and
2.5 mM L-glutamine. Cells were transfected with XtremeGene
9 (Roche Applied Science) or FuGENE (Promega). Cells were
harvested 12-48 h post-transfection.

Purification of endogenous actin from HAP1 cells

Ac-actin (from WT HAP1 cells) and nonAc-actin (from
HAP1 NAA80-KO cells) were purified using a gelsolin-affinity
purification protocol (40). NAA80 knockout and WT HAP1
cells were grown in 15-cm diameter plates to 70% confluence in
Iscove’s modified Dulbecco’s medium with the addition of 10%
fetal bovine serum and 1% penicillin/streptomycin. Cells were
harvested and lysed using a glass homogenizer in “Binding
buffer” (10mM Tris-HCl, pH 8.0, 5 mMCaCl2, 1 mMATP, 1 mM

TCEP) supplemented with cOmplete protease inhibitor mix-
ture (Roche), 25 nM calyculin A, 13 HALT protease inhibitor
mixture (ThermoFisher Scientific), and 1 mM PMSF. Cell
lysates were incubated overnight at 4 °C by gentle mixing with
an affinity tag consisting of gelsolin subdomains G4 to G6,
which binds actin in a Ca21-dependent manner. The lysates
were centrifuged for 45 min at 100,0003 g and the supernatant
was incubated for 1 h with 5 ml of nickel-nitrilotriacetic acid
resin containing HisTrap FF column (GE Healthcare), which
binds the gelsolin-actin complex through an N-terminal poly-
histidine affinity tag on the gelsolin fragment. The resin was
washed with 10 column volumes of Binding buffer with the
addition of 100 mM KCl and 20 mM imidazole, followed by
5 column volumes of Binding buffer without CaCl2. Actin was
then eluted with 4 ml of Binding buffer in which CaCl2 was

replaced by 1 mM EGTA. The released actin was polymerized
for 1 h at 25 °C with the addition of 1 mM MgCl2 and 100 mM

KCl. The polymerized actin was pelleted by centrifugation for 1
h at 270,000 3 g, sheared using a glass homogenizer to break
the pellet, and depolymerized through a three-day dialysis
against G-actin buffer (2 mM Tris-HCl, pH 8.0, 0.2 mM CaCl2,
0.2 mM ATP), followed by centrifugation for 1 h at 270,0003 g
to remove any actin that did not depolymerize.

DTNB N-terminal acetylation assay

The DTNB Nt-acetylation assay was performed as described
(39). Purified enzymes (300 nM) were mixed with synthetic pep-
tides (300 mM) and Ac-CoA (300 mM) in acetylation buffer (50
mM Tris-HCl, pH 8.5, 200 mM NaCl, and 2 mM EDTA) at 37 °C,
and reactions were quenched after 60 min with quenching
buffer (3.2 M guanidinium HCl, 100 mM Na2HPO4, pH 6.8). To
measure CoA production, DTNB (2 mM final, dissolved in 100
mM Na2HPO4, pH 6.8, and 10 mM EDTA) was added to the
quenched reactions. The thiol present in the enzymatic prod-
uct, CoA, cleaves DTNB and produces 2-nitro-5-thiobenzoate
(TNB2–), which is readily quantified by monitoring the absorb-
ance at 412 nm. Background absorbance was determined in
negative controls (enzyme added after quenching buffer) and
subtracted from the absorbance determined in each individual
reaction. Thiophenolate production was quantified assuming
e = 13.73 103 M

21 cm21. For the profilin activation assays with
full-length NAA80, the indicated molar ratio of profilin (PFN1,
PFN2a, or PFN2b) or BSAwas added to the reactionmix. Prod-
uct formation was normalized to the product formation in the
corresponding BSA reaction. The normalized standard devia-
tion was calculated using the formula:

SDratio ¼ PFN
BSA

� �
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CVPFNð Þ2 þ CVBSAð Þ2

q
(Eq. 1)

where CV ¼ SD
mean of the PFN or BSA normalized product for-

mation (n = 4 for each molar ratio). For the activation assays
with NAA80 mutants (DP123 and polyGS2), the NAA80/pro-
filin activity is normalized to the activity of NAA80 with no
added profilin. Ratio standard deviation was calculated in a
similar manner as above:

SDratio 5
NAA80 þ PFN

NAA80

� �
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CVNAA801PFNð Þ2 þ CVNAA80ð Þ2

q

(Eq. 2)

where CV ¼ SD
mean of the NAA80/profilin or NAA80 alone nor-

malized product formation (n = 3 for each molar ratio).

Analytical ultracentrifugation

Sedimentation velocity analysis of ATTO-488 (ATTO-
TEC)-labeled profilins was performed with a ProteomLab
Beckman XL-A analytical ultracentrifuge (Beckman Coulter,
Brea, CA) equipped with an AVIV fluorescence detection sys-
tem (Aviv Inc., Lakewood, USA). Unlabeled components were
added at various concentrations, as indicated in the plots, to
500 nM profilin. NAA80-profilin complexes were measured in
20 mMHEPES, 100 mMNaCl, 1 mM EDTA, 1 mMDTT, pH 8.5.
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For measurements including actin (human platelet actin, 99%
pure, from Cytoskeleton, Inc., catalog number APHL99), the
buffer was 5 mM Tris, 0.2 mM CaCl2, 0.2 mM ATP, 5% sucrose,
pH 8.0. Ultracentrifugation was carried out with 42,000 rpm at
20 °C and dF/dt plots were generated by subtracting scans
from a selected time range and normalizing the data against
the initial fluorescence intensity. All plots were generated from
samples measured in the same experiment to ensure identical
sample handling.

Peptide synthesis and quality validation

The peptides were synthesized by means of the simultaneous
multiple peptide synthesis (Schnorrenberg 1989 Tetrahedron)
on the following instrument: SYRRO (MultiSynTech, Ger-
many), using the Fmoc/But strategy by SHEPPARD (Fmoc
Solid State Synthesis 1999 Book). Couplings were performed
using 3-6 eq of Fmoc-amino acid/TBTU and 6-12 eq of N-
methylmorpholine on the following resin: Tentagel S Trityl
resin (RAPP Polymere, Germany), loading: 0.20 mmol/g of
resin. Peptides were synthesized as C-terminal acids (-COOH).
The following protection groups have been used: Cys(trt), Arg
(Pbf), Ser(But), Thr(But), Asp(OBut), Glu(OBut), Asn(Trt), Gln
(Trt), Lys(Boc), His(Trt), and Trp(Boc). Peptides were depro-
tected and cleaved from resin by TFA:thioanisole:thiocresol
(95:2.5:2.5), adding 3% triisopropylsilane for 3 h at room tem-
perature. To purify the synthesized peptides following prepara-
tive HPLC has been used: HPLC instrument Shimadzu LC-8A
with UV-visible detector SPD-10A. The column was Ultrasep
ES (RP-18), 10 mM, 250 3 20 mm. Solvent: A = 0.05% TFA in
water, solvent B = 0.05% TFA in 80% ACN/water with a gradi-
ent of 30 min, flow rate: 15 ml/min, and detection 220 nm. For
validation purposes the following analytical HPLC was used: an
HPLC Shimadzu LC-30AD instrument with photodiode array
detector SPD-M20A; column Ascentis Express Peptide ES-
C18, 2.7 mM, 30 3 2.1 mm (Supelco, USA). The solvent was
used as described above with a flow rate of 0.5ml/min and a lin-
ear gradient of 21.4% B/min and detection at 220 nm. Peptides
were characterized by MALDI-TOF by means of a MALDI
Axima Assurance instrument (Shimadzu, Japan) in linear
mode. Detected molecular weights were as [M 1 H]1 or M 1
22 [M1Na]1. The peptides were lyophilized in the form of
TFA salt and resuspended in water to a stock solution of 5 mM.

IP experiments

HAP1 cells (WT, PFN1-KO, or PFN2-KO) were split 1:3
and the next day transfected using XtremeGene 9 (Roche
Applied Science) with 5 mg of V5-NAA80 (M23L) or lacZ-V5
plasmid for 48 h. Cells were harvested by trypsinization and
washed twice in ice-cold PBS. The cells were lysed by resus-
pending cell pellets in 12 ml of IPH buffer (50 mM Tris-HCl, pH
8.0, 150 mM NaCl, 1% Nonidet P-40) supplied with 1 tablet/50
ml of cOmplete EDTA-free Protease Inhibitormixture (Roche),
per mg cell pellet, and rotating on a wheel at 4 °C for 15 min.
Lysates were cleared by centrifugation at 17,000 3 g for 5 min
and used for immunoprecipitation. 2 mg of anti-V5 was added
to the lysates and the lysates were incubated with rotation at
4 °C for 2 h, before 15 ml of Dynabeads Protein G magnetic

beads (Invitrogen) were added. The bead complexes were left
to form overnight at rotation and 4 °C. The immune complexes
were retrieved by removing the supernatant on a magnet and
washing 3 times with 500 ml of IPH buffer. The beads were
resuspended in 13 sample buffer (Bio-Rad), boiled, and the su-
pernatant was loaded on a gel and probed with the indicated
antibodies.

CD spectroscopy

CD spectroscopy experiments were conducted using a Jasco
J-810 spectropolarimeter. Data were collected from 0.1 mg/ml
of protein samples in 10 mM Na-phosphate buffer, pH 8.0, 100
mM NaF, 1 mM TCEP. Wavelength scans (185–280 nm, 1-nm
data pitch, 3 accumulations) were performed at 20 °C. Baselines
were subtracted from sample spectra and raw data were
smoothened in GraphPad Prism 8 using a polynomial function
of 2nd order with a smoothing window of 5. Thermal denatura-
tion CD data were collected from 0.2 mg/ml of protein in 1 mM

TCEP (20–95 °C, 0.2 °C data pitch) in triplicate. The data were
fitted into a sigmoidal function in GraphPad Prism 8 and the
melting temperature (Tm) was extracted from the midpoint of
the curve.

Differential scanning fluorimetry

Protein thermal stability was assessed by DSF. Measure-
ments were conducted using 0.1 mg/ml of protein in 10 mM

HEPES, pH 8.0, 100mMNaCl, 53 SYPROOrange (Invitrogen).
Fluorescence was followed during protein denaturation from
20 to 98 °C, with a data pitch of 2 °C/min. All measurements
were performed in triplicate. Data were fitted into a sigmoidal
function in GraphPad Prism 8 and the Tm was extracted from
themidpoint of the curve.

Multi-angle light scattering

SEC-MALS was used to analyze protein monodispersities
and molecular weights. SEC was performed using an €Akta Puri-
fier (GEHealthcare) and a Superdex 75 Increase 10/300 GL col-
umn (GE Healthcare) in 20 mM HEPES, pH 8.5, 100 mM NaCl,
2 mM EDTA. For each measurement, 200–300 mg of protein
was injected and gel filtrated at a flow rate of 0.5 ml/min. Light
scattering was recorded using a miniDAWN TREOS instru-
ment (Wyatt Technology). Protein concentration in each elu-
tion peak was determined using differential refractive index.
The data were analyzed using the ASTRA 6.2 software (Wyatt
Technology).

Small-angle X-ray scattering

SAXS measurements were performed at the EMBL P12
beamline at PETRA III, DESY (Hamburg, Germany) and at the
B21 beamline at Diamond Light Source (Oxfordshire, UK).
Measurements of NAA80 variants and ternary complexes were
conducted in SEC-SAXS mode, using a Superdex 200 Increase
10/300 GL column (GE Healthcare). Gel filtration was per-
formed at a flow rate of 0.5 ml/min (20 mM HEPES, pH 8.0, 100
mM NaCl, 1 mM EDTA) at 10 °C. Single proteins (NAA80 and
NAA80-DP123) were injected at a concentration of 5.8 and 10
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mg/ml, respectively. Individual components of the protein
complex, NAA80, and PFN2a/b, human platelet actin (Cyto-
skeleton Inc., APHL99) were mixed in equimolar ratios at 50
mM and incubated on ice for 30 min prior to measurement.
SAXS measurements from 1.1 to 5.7 mg/ml of PFN1, PFN2a,
and PFN2b samples were performed in batch mode at 10 °C.
The sample buffer contained 20 mM HEPES, pH 8.0, 100 mM

NaCl, and 1 mM DTT. Data reduction, processing, and analysis
were performed using the ATSAS 2.8 package (53). SEC-SAXS
frames were analyzed using CHROMIXS (54). Ab initiomodels
were generated using GASBOR (55). Missing loops and termini
were built in rigid bodies using CORAL (56) and ensemble opti-
mization analysis was performed using EOM (57, 58). CRYSOL
was used to calculate theoretical scattering profiles based on
crystal structures (59). Data processing, analysis, and modelling
details are listed in Tables S4 and S5.

Protein disorder prediction

The NAA80 sequence (UniProt ID Q93015) was submitted
to the IUPred2A server (60), predicting disordered protein
regions (IUPred2) and disordered binding sites (ANCHOR).
The output graph represents the disorder tendency of each
individual residue, with higher scores corresponding to higher
disorder probabilities.

Actin reacetylation assay in NAA80-KO cells

Degree of actin acetylation after transfection with a NAA80
variant was measured essentially as described (38). WTNAA80
rapidly reacetylates b- and g-actin, necessitating a short trans-
fection time to discriminate between the efficiency of different
NAA80 variants. We have analyzed cells 8-14 h post-transfec-
tion, because after 24 h most variants would have completely
Nt-acetylated the cellular actin pool. 7 3 106 HAP1 NAA80-
KO cells (50% confluent) were transfected with 3 mg of con-
struct harboring the human full-length NAA80 (V5-HsNAA80
(M23L)), and 1.8 mg of NAA80-DP123 (V5-HsNAA80 (M23L)
D238-284). Cells were harvested and lysed in IPH buffer as
described above. Lysates were analyzed by Western blotting
using anti-Ac-b-actin, anti-Ac-g-actin, anti-pan-actin, and
anti-V5. Degree of actin acetylation relative to V5 expression
was calculated from 4 independent experiments by dividing the
Ac-b- or Ac-g-actin signals by the corresponding V5 signals.
Standard deviations for the ratios were calculated using the fol-
lowing formula:

SDratio ¼ Ac2 actin
V5

� �
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCVAc�actinÞ2 1 ðCVV5Þ2

q

(Eq. 3)

where CV ¼ SD
mean of the Ac-actin or V5 signals (n = 4). Signifi-

cance was calculated using a two-way ANOVA, implemented
in GraphPad Prism version 8.4.2., with a significance threshold
of 0.05.

Immunoprecipitation for MS

Immunoprecipitation was performed essentially as described
above. 10-cm dishes of HeLa or HAP1 cells were transfected in

triplicates with 5 mg of NAA80-V5, V5-NAA80 (M23L), V5-
NAA80 (M23L) D238-284, or lacZ-V5 for 48 h. Cells were har-
vested by trypsinizing, lysed in IPH buffer, and lysates were
cleared for 5 min at 17,000 3 g. Immunoprecipitation with
PureProteome A/G magnetic beads (Merck Millipore) and
anti-V5 (Invitrogen) proceeded overnight. Bound proteins
were eluted by boiling in 50 ml of FASP lysis buffer (2% SDS,
100 mM Tris-HCl, pH 7.6, 100 mM DTT) for 5 min. Beads were
separated on the magnet and the eluate was collected and used
for filter-aided sample preparation (FASP), as described below.

FASP and stagetips desalting

FASP was performed on the V5 immunoprecipitates essen-
tially as described (61). Eluted proteins were mixed with UA (8
M urea, 100 mM Tris-HCl, pH 8.0) transferred to Microcon 30-
kDa centrifugal filter units and cysteine-alkylated with 50 mM

iodoacetamide. The buffer was exchanged to 50 mM ammo-
nium bicarbonate by sequential centrifugation, proteins were
trypsinized overnight (sequencing grade modified trypsin
(Promega) cleaves C-terminal to lysine and arginine residues,
except when followed by a proline) and the tryptic peptides
were recovered by centrifugation. The peptides were dried
in a vacuum evaporator, resuspended in 1% formic acid, and
desalted using in-house packed stagetips essentially as de-
scribed (62). At each stage of the protocol, the stagetips were
spun at around 1500 3 g for 1-2 min, until almost no solution
remained. They were first activated with 200 ml of acetonitrile
with 1% formic acid and then equilibrated three times with 200
ml of 1% formic acid. The peptides were loaded and the flow-
through was run through the stagetip a second time. The stage-
tip was then washed three times with 1% formic acid, before the
peptides were eluted with rounds of 200 ml of 80% acetonitrile
in 1% formic acid. The eluate was vacuum dried and resus-
pended in A* buffer (5% acetonitrile and 0.1% TFA), and the
peptide concentration was measured by absorbance at 280 nm
using a Nanodrop spectrophotometer (Thermo Fisher).

LC–MS

Peptides from each IP (n = 3) were analyzed by LC–MS in
triplicate (HeLa IPs) or duplicate (HAP1 IPs) injections. 0.5 mg
of peptides in A* buffer were injected into an Ultimate 3000
RSLC system (Thermo Scientific) connected to a Q-Exactive
HF mass spectrometer (Thermo Scientific) with EASY-spray
nano-electrospray ion source (Thermo Scientific). The sample
was loaded and desalted on a pre-column (Acclaim PepMap
100, 2 cm 3 75 mm ID nanoViper column, packed with 3-mm
C18 beads) at a flow rate of 5 ml/min for 5 min with 0.1% TFA.
Peptides were separated in a biphasic acetonitrile gradient from
two nanoflow UPLC pumps (flow rate of 200 nl/min) on a 50-
cm analytical column (PepMap RSLC, 50 cm 3 75 mm ID
EASY-spray column, packed with 2-mmC18 beads). Solvents A
and B were 0.1% TFA (v/v) in water and 100% acetonitrile,
respectively. The gradient composition was 5% B during trap-
ping (5 min) followed by 5–8% B over 0.5 min, 8–24% B for the
next 109.5 min, 24–35% B over 25 min, and 35–90% B over 15
min. Elution of hydrophobic peptides and column conditioning
were performed by isocratic elution for 15 min with 90% B and
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20 min of isocratic conditioning with 5% B. The total LC run
time was 195 min. The eluting peptides were ionized in the
electrospray and analyzed by the Q-Exactive HF. The mass
spectrometer was operated in the data-dependent-acquisi-
tion mode to automatically switch between full scan MS and
MS/MS acquisition. Instrument control was through Q Exac-
tive HF Tune 2.4 and Xcalibur 3.0. Survey full scan MS spec-
tra (from m/z 375-1500) were acquired in the Orbitrap with
resolution r = 120,000 atm/z 200, automatic gain control tar-
get of 3 3 106 and a maximum injection time of 100 ms. The
15 most intense eluting peptides above an intensity threshold
of 50,000 counts, and charge states 2 to 6, were sequentially
isolated to a target value (automatic gain control) of 105 and
a maximum injection time of 100 ms in the C-trap, and isola-
tion was maintained at 1.6m/z (offset of 0.3m/z), before frag-
mentation in the higher-energy collision dissociation cell.
Fragmentation was performed with a normalized collision
energy of 28%, and fragments were detected in the Orbitrap
at a resolution of 15,000 with first mass fixed atm/z 100. One
MS/MS spectrum of a precursor mass was allowed before
dynamic exclusion for 20 s with “exclude isotopes” on. Lock-
mass internal calibration (m/z 445.12003) was enabled. The
spray and ion-source parameters were as follows: ion spray
voltage = 1800 V, no sheath and auxiliary gas flow, and a cap-
illary temperature of 260 °C.

Database searching, filtering, and statistics for MS
experiments

The resulting RAW files were processed using MaxQuant
(version 1.6.1.0) and the integrated search engine Andromeda
(63, 64). They were searched against a human proteome data-
base containing 20,352 annotated, canonical, and isoform
entries, retrieved from UniProt on 6 January 2020, and a
reverse decoy database automatically generated by the search
engine. Carbamidomethylation of cysteine was set as a fixed
modification, and N-terminal protein acetylation and methi-
onine oxidation as variable modifications. Protease specificity
was set as trypsin (C-terminal to lysine and arginine, except
when followed by a proline). Minimum peptide length was set
to 7 amino acids and maximum peptide mass was set to 4600
Da. The permitted number of missed cleavages was 2. Mass
tolerance for precursors was set to 4.5 ppm, and the MS/MS
mass tolerance was set to 20 ppm. Peptide and protein identi-
fications were filtered to a 1% false discovery rate. The
MaxLFQ label-free quantification algorithm (65) was used to
obtain relative quantities of each protein group in the differ-
ent samples. LFQ settings were as follows: minimum ratio
count: 2; “Fast LFQ” was checked; and “Skip normalization”
was not checked. Resulting protein group lists were processed
in Perseus (version 1.6.10.43) (66). Proteins identified only by
reverse sequences, by a single peptide, and by modified sites
were removed. Missing values were imputed from the sample
normal distribution to simulate statistical noise (width of 0.3
standard deviations and a downshift of 1.8 S.D.). LFQ inten-
sity for technical replicates of each biological replicate was
averaged before proteins enriched by NAA80 IP were identi-

fied by performing a t test for each protein group. Significant
proteins had log2 fold-enrichment.2 and p value,0.001.

Gel filtration complex assay

43 10-cm dishes of HAP1 cells were harvested and lysed in
IPH buffer as described above. Cell lysate was ultracentrifuged
for 20 min at 100,000 3 g to clear the lysate from F-actin and
other insoluble structures. The supernatant was subjected to
gel filtration using a pre-equilibrated Superdex 200 Increase
10/300 GL column at a flow rate of 0.5 ml/min. The gel filtra-
tion buffer was composed of 50 mM Tris-HCl, pH 8.0, 200 mM

NaCl, and 10% glycerol. 0.5-ml fractions were collected, pre-
cipitated with TCA/chloroform, and the pellets were dissolved
by boiling in 13 SDS-PAGE loading buffer. The proteins from
each fraction were separated by SDS-PAGE and analyzed by
Western blotting. The calibration mix (Protein Standard Mix
15–600 kDa, Merck Millipore) was composed of the following
proteins: 0.5 g/liter of bovine thyroglobulin (molecular mass;
670,000), 1.0 g/liter of g-globulins from bovine blood (molecu-
lar mass; 150 000), 1.0 g/liter of grade VI chicken egg albumin
(molecular mass ; 44,300), 1.0 g/liter of RNase A type I-A
from bovine pancreas (molecular mass; 13,700) and 0.01 g/li-
ter of p-aminobenzoic acid.

Data availability

The MS proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE (67) partner repository
with the data set identifier PXD021408.
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