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Abstract  
The tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) consists of a 

desmoplastic fibrous stroma along with tumor cells, fibroblast and immune cells, resulting in a 

dense, hypovascularized environment resistant to all conventional treatments. While treatment of 

other cancers has improved markedly during the last years, the long-term survival of PDAC 

patients has not. Recent research has emphasized the role of tumor stroma, and its importance in 

impeding the efficacy of treatments and accelerate tumor progression. Therefore, Innovative pre-

clinical models, which take the tumor/stroma interaction into account, are urgently needed. 

 

In this study, we expanded a novel pre-clinical model system for PDAC using decellularized 

porcine small intestine (SISser) and pancreas (PanMA) as biological scaffolds, with the potential 

to reflect the complex three-dimensional extracellular matrix composition more accurately. Real-

time visualization by confocal microscopy was utilized to optimize experimental efficiency for 

different PDAC cell lines. With this system, morphology and growth kinetics of PDAC cells were 

analyzed in monoculture and in coculture with pancreatic stellate cells (PSCs), to evaluate their 

interactions. 

 

Different PDAC cell lines retain their unique growth pattern and kinetics, both in monoculture and 

coculture within the model system. We monitored interactions between PDAC cell lines and PSCs 

showing statistical significance in PSC growth kinetics while PDAC growth kinetics remained 

unchanged. We show that cellular behavior is affected by organ specific cues of the scaffold and 

highlight the significance of the matrix for tumor development. We examined the effect of dynamic 

culture conditions on PDAC cells with SISser scaffolds. And finally, we examined the applicability 

of our model system for PDAC therapy by testing efficacy of gemcitabine. 

Our 3D model system show promise as a pre-clinical niche, by maintaining complex extracellular 

matrix composition and biophysical properties that influence tumor growth.   
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1 Introduction 

1.1 Pancreatic ductal adenocarcinoma   

Pancreatic ductal adenocarcinoma (PDAC) accounts for approximately 90% of all pancreatic     

neoplasms (1), and is one of the leading causes of cancer deaths in the industrialized world with 

56700 new cases and 45750 deaths in the US alone, in 2019. Significant advances in PDAC have 

been made the last decades, however, the 5 year survival of PDAC is ~9%, with slow progression 

for improving long-term survival  rate (2). The median diagnosis age for a PDAC patient is 70, 

often with late-stage detection. Due to very vague symptoms and a lack of a valid biomarker, 

PDAC is often detected after metastasis. The majority of PDAC cases are irregular with no known 

genetic predisposition (3,4). 

 

PDAC emerges from the epithelial cells of the pancreatic ducts and follows a stepwise 

development similar to other carcinomas, most notably to colon carcinoma (5). Several distinct 

types of precursor lesions have been described, most common are microscopic pancreatic 

intraepithelial neoplasia (PanIN), which are divided into PanIN-1 and PanIN-2 (low grade) and 

PanIN-3 (high grade). Low grade lesions are associated with normal adult pancreas or patients 

with chronic pancreatitis with a low risk of PDAC development, while high grade lesions are for 

the most part, solely found in patients with invasive PDAC (6). 

Other types of precursor lesions include macroscopic cysts; most notably the intraductal papillary 

mucinous neoplasm (IPMN) and mucinous cystic neoplasm (MCN) which have the possibility to 

become invasive PDAC (7). 

 

It is estimated that around 30% of all cancers have an oncogenic mutation in one of the Ras genes; 

H-Ras, N-Ras and K-Ras. Mutations in the Ras gene family usually results in a gain-of-fuction 

and constitutive activation of the Ras-gene.  PDAC rarely acquires mutations of H-Ras and N-Ras, 

but almost exclusively on the K-Ras locus with mutation rates of the gene reported to be upwards 

of 95% of all PDACs (8). Loss of function of the tumor suppressor P16/CDKN2A also shows very 

high mutation frequency, but usually in the later stages of tumor development than K-Ras (9). 
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The poor long-term survival is due to a combination of late-stage detection, invasive and metastatic 

phenotypes of PDAC and that they are resistant to all conventional treatments. Treatments for 

PDAC include surgical removal, chemotherapy and radiation. Surgical removal of the tumor is 

still the best standard care for small tumors that have not metastasized. This increases the 5-year 

survival rate to 20%. Unfortunately, only 20% of PDAC cancers are resectable. Surgery is not 

possible when the tumor invades the superior mesenteric artery or coeliac axis (10). Radiotherapy 

has been used in an adjuvant setting, most commonly in post-surgery. However, the results have 

been conflicting and controversial (11). Immunotherapies targeting checkpoint inhibitors have yet 

to prove their efficacy, theorized to be because of a low immunogenic microenvironment (12). 

Unfortunately in PDAC, only chemotherapies have demonstrated efficacy. 

 

In PDAC, chemotherapies are chosen based on the patient’s fitness and different health factors.  

Gemcitabine (GEM) is a chemotherapeutic agent used to treat several cancers, including PDAC.  

Older patients or patients in general poor health condition are treated with GEM and nab 

(nanoparticle albumin-bound) paclitaxel, which show a good response rate and a significantly 

improved overall survival of 6.8 months (13,14). For young and healthy patients, FOLFIRINOX, 

consisting of Leucovorin plus short-term fluorouracil infusion plus oxaliplatin and irinotecan is 

the preferred treatment. Studies have shown that patients given FOLFIRINOX have a median 

survival time of 11.1 months. However, FOLFIRINOX has more severe side effects, including 

febrile neutropenia, thrombocytopenia, neuropathy and diarrhea (15). Since chemotherapies target 

proliferating cells, the limited treatment efficacy is hypothesized to be cause by the development 

of chemoresistance (16) and a dense hypo-vascularized tumor stroma that impairs drug delivery, 

making the drugs obsolete(17). Therefore, the development of novel therapies is crucial for 

improving the long-term survival rate of PDAC patients.   

 

1.2 Tumor stroma  

One main characteristic of PDAC tumors that was clearly underestimated in previous treatments 

attempts was the desmoplastic stroma of PDAC. Defined by fibrous connective tissue, it can 

comprise up to 90% of the tumor volume. The remaining components consist of tumor cells, cancer 

associated fibroblast (CAFs),  immune cells and other stromal components (18). The stroma is 
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defined by both cellular components such as fibroblast and immune cells, and non-cellular 

components including extracellular matrix (ECM) as collagen, laminins and hyaluronan. The 

different components provide a scaffolding system to support the tumor cells and provides the 

ability for communication between different cells. The cells can communicate with each other by 

direct contact or by releasing signaling molecules to reorganize the stroma (19). The rigid and 

fibrous PDAC stroma can in combination with high concentrations of hyaluronan increase the 

interstitial fluid pressure, resulting in compression of blood vessels and reduce perfusion leading 

to a decrease in drug delivery to neoplastic cells (20). 

 

Stromal configuration 

Components 

 

Constituents Function 

Fibroblast 

  

 Production of the structural framework by 

synthesis of ECM proteins. 

Immune cells  

 

 

 

 

 

 

Macrophages 

Phagocytosis of pathogens and apoptotic cells, 

presents antigens from digested cells. 

 

Dendritic cells 

Antigen presenting cells that can activate innate 

T-cells. 

 

Neutrophils 

One of the first responders to inflammation in 

tissues. Eliminates microbes by releasing anti-

microbial substance or phagocytosis. 

Extracellular 

matrix  

Collagen  Connective fibers that strengthen and provide 

structure to tissues. 

Fibronectin  

 

Vital for communication between the intra and 

extracellular environment by binding of integrin 

receptors of the cell surface. 

Laminins  

 

Major component of the basal lamina, crucial for 

cell differentiation, migration, and adhesion 
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Enzymes Matrix 

metalloproteinase 

Enzymes that can degrade the ECM. Important 

for proliferation, migration, and differentiation. 

Signal molecules 

               

Cytokines 

  

Signaling molecules produced by cells for 

specific biological functions. 

Chemokines  Small molecules that can induce chemotaxis of 

immune cells.  

Table 1.1 Different components of the tumor stroma. 

 

Pancreatic stellate cells (PSCs) are the most important cell type mediating  the dense desmoplasia. 

PSC are classified as myofibroblast-like cells and their main function is to regulate the change in 

extracellular matrix proteins to ensure a secure and normal stroma structure, meaning the PSCs 

can synthesize different ECM proteins as well as matrix metalloproteinases and their inhibitors 

(21). The interaction between PSCs and tumor cells mutually benefit both. Tumor cells increase 

proliferation, ECM synthesis and the migration in PSCs, while PSCs increase the proliferation and 

migration in the cancer cells. PSCs also increase invasion potential and inhibit apoptosis. This 

strengthens the hypothesis that the significance of the stroma is much more than just to provide a 

framework and structure for inflammatory cells and cancer cells (22,23).  

 

In tumor development, PSCs and other cell types are stimulated to become cancer associated 

fibroblasts (CAFs). The primary role of fibroblast is tissue remodeling and regeneration. This is a 

highly regulated procedure, leading to programmed cell death of the fibroblast after completion of 

its tasks or the return to a dormant state (24). The fibroblast function in cancer can be altered, 

producing CAFs that are not highly regulated and are tumor promoting. Tumorigenesis can be 

enhanced by CAFs by stimulating the surroundings to an oxygen-rich, pro inflammatory and 

immunosuppressive microenvironment (25). Challenges emerge when trying to determine the 

biological origin to CAFs, due to a lack of specific biomarkers. Most commonly hypothesized, 

activated fibroblasts in local tissues develop into CAFs during wound healing (26). Mesenchymal 

stem cells derived from bone-marrow can be activated by transforming growth factor β  (TGF-β1) 

and induce the transformation into CAFs (27). The epithelial-mesenchymal transition (EMT), 

where cells lose their polarity and their cell-to-cell adhesion gain the ability to migrate and assumes 
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a mesenchymal cell phenotype (28), allowing the epithelial cells to become fibroblasts. In this 

hypothesis, epithelial cells undergo a specialized EMT where they take on the characteristics of 

mesenchymal cells and transdifferentiate into activated myofibroblasts (29,30). This shows that 

the heterogeneity of CAFs can be explained by the different origins they derive from and will then 

be regulated by different factors. The function of the CAF, regardless where it originated will be 

different between pathological stages and will undergo dynamic changes during tumor progression 

(31). 

 

Inflammatory CAFs (iCAFs), myofibroblastic CAFs (myCAFs) and antigen-presenting CAFs are 

three subtypes of CAFs suggested within PDAC. iCAFs and myCAFs are hypothesized to 

differentiate from quiescent fibroblasts. MyCAFs are suggested to require tumor interaction for 

formation and express high levels of α-smooth muscle actin (α-SMA) (32). Depletion of (αSMA+) 

myofibroblast can lead to a poor prognosis. It is hypothesized that the fibrosis associated with type 

I collagen and myofibroblast makes up a protective response from the host, rather than supporting 

the tumor growth. Myofibroblast is a major contributor of the type I collagen in the stroma, and 

extensive ECM remodeling is associated with myofibroblast depletion with a decrease in tumor 

stiffness (33,25). iCAFs are located more distantly away from the tumor, and when induced by the 

tumor cells, express high levels of inflammatory cytokines, most notably interleukin-6 (IL-6) (32). 

iCAF-secreted IL-6 promotes malignancy by EMT activation (34). apCAFs express both low IL-

6 and αSMA. While it expresses MCH class II molecules with the capability to present antigens 

to CD4 positive T-cells, they cannot induce T-cell proliferation (35). Rather than being an endpoint 

for differentiation, it is suggested that all three subtypes of CAFs can interconvert, depending on 

culture conditions and location in the tumor, supporting the hypothesis of interconvertibility 

between the CAF subtypes (36). 

 

In general, PDAC tumor cells (and subpopulations of CAFs) establish an immunosuppressive 

microenvironment to evade immune surveillance by secretion of immunosuppressive chemokines 

and cytokines and recruitment of regulatory immune cells (37). The tumor microenvironment 

contains several types of immune cells, including macrophages, T-cells and dendritic cells. Tumors 

can release colony-stimulating factor-1 (CSF-1) to educate macrophages to promote tumor growth. 
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Previous studies show that there is a correlation between high volume of tumor associated 

macrophages (TAM) and poor prognosis, meaning increased TAM density is associated with 

advanced tumor progression (38). However, the loss of macrophages through inhibition of CSF1 

receptor relates to T-cell activation and tumor regression. The tumor stroma reverts from an 

immunosuppressive environment, resulting in a marked increase in CD8+  cytotoxic T-cells and 

more responsive to therapies (39). Patients with an increase in effector CD4+ T cells and CD8+ 

T-cells show significantly increased survival (40). The release of interleukin-6 increase the 

inhibition of dendritic cell maturation and promotes a progression to a metastatic tumor phenotype 

(41). The maturation of dendritic cells is necessary for T-cell activation by providing a co-

stimulatory signal. Dendritic cell maturation is common within tumors but is inadequate to create 

a potent immunity(42). This indicates that both immunosuppressive immune cells population and 

the levels of immunogenic cells need to be considered to improve patient survival (43). 

 

1.2.1 Non cellular stromal compartments  

As described above, the tumor stroma consists of different kinds of fibrous connective tissue. Non-

cellular constituents of the tumor that exhibit a tumor promoting effect are different types of 

collagen, hyaluronan and laminin. Mechanical properties and stiffness of the ECM is an important 

factor for cell migration speed (44) and can even dictate cellular migration, showing that the ECM 

is not only a track for migration (45). Type I collagen is a defining feature of PDAC with 

pronounced fibrotic reaction (33). Normally the isoform in healthy tissue is a heterotrimer of two 

α1(I) and one α2(I) chains (α12α2) (46). In carcinomas, a homotrimer of  type-I collagen can often 

be observed, which can be degraded and reorganized by collagenases secreted by CAFs. Type I 

collagen can assist the tumor, by increasing proliferation (47), aid migration (48) and create a 

barrier for invasion. Collagen can also promote invasion by induction of the epithelial-

mesenchymal transition (49). Zinc finger transcription factors can suppress different genes that 

play a key role for the epithelial phenotype (50). When type I collagen interact with PDAC, SNAI1, 

a zinc finger transcription factor is induced by TGF-β1 (51). TGF-β1 is found to be frequently 

overexpressed in PDAC and often associated with an advanced tumor state (52). Collagen 

additionally increase the expression of membrane type 1-MMP, which induces high mobility group 

AT expression and phosphorylation of ERK 1/2 which in turn impairs chemotherapeutic efficiency 

(53). 
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Hyaluronan can promote tumor progression at high concentrations (54). Healthy tissues regulate a 

tight balance of degradation and synthesis. In the desmoplastic stroma of PDAC, the content of 

hyaluronan is the highest compared to other tumors (55). It might also have an antiapoptotic effect 

and induce chemotherapy resistance (56). Laminins are proteins in the ECM and a major 

component of the basal lamina. They are heterotrimeric proteins that contain an α-chain, a β-chain, 

and a γ-chain, and the combination of the different chains determine the different laminins (57). 

LAMB3, a laminin subunit has been shown to be expressed at a higher rate compared to normal 

pancreatic cells. Both in vivo and in vitro experiments show that LAMB3 activates the P13K/Akt 

signal pathway, leading to an increase in cell invasion and migration  (58). 

 

Figure 1.1 – Comparison of non-malignant stroma and tumor stroma. Nonmalignant stroma 

consists of an elastic ECM with different types of immune cells, mesenchymal stromal cells 

(MSCs) and fibroblasts. The stroma supports the epithelial tissue, with its cells in a quiescent state. 

The stroma cells maintain homeostasis in both the epithelial compartment and in the ECM. Cancer 

cells can activate the stromal components, making the ECM fibrotic and rigid by altering the forms 

of connective fibers. Activated fibroblasts can increase proliferation and can promote resistance to 

therapies. Fibroblast activated by the tumor microenvironment are known as CAFs. The stroma 

prevents therapies from working and promotes cancer progression metastasis. Figure made in 

BioRender.  
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1.3 Pre-clinical models 

Decades of research have provided insights into the development and pathology of PDAC. 

However, the relevancy of these pre-clinical models should be questioned as the models do not 

truly reflect the environment and structural properties of pancreatic tumors. Development of novel 

cancer treatments can take up to a decade and is very expensive, and most drugs still fail in clinical 

trials.  Resultingly, expansion of existing or development of innovative pre-clinical models should 

be the priority to bypass the current issues of translatability of oncology research (59,60). This is 

especially the case for pancreatic cancers, as the results from previous pre-clinical models do not 

translate well enough to clinical trials.  

 

So why do pre-clinical models for PDAC fail? Even though nearly all PDAC tumors have mutation 

in the K-Ras gene, there is a large heterogeneity between different tumors and within a tumor that 

makes it difficult to establish a sturdy model that covers all the variation observed. PDAC cancers 

also show mutational heterogeneity in the KRAS gene within the same tumor (61). Since most of 

the tumor volume is comprised of fibrous stroma, using pre-clinical models that include host-

derived fibroblasts and considers the stroma could be more productive. Shifting the focus from 

tumor cells themselves to fibroblasts could result in better pre-clinical models that better reflect 

the tumor microenvironment in PDAC. Pre-clinical models are essential for translation cancer 

research and precision medicine. Commonly used pre-clinical models include both in vitro models 

(2D cultures and 3D models) and in vivo models (patient derived xenograft).  

 

1.3.1 Patient-derived cell lines  

One of the first pre-clinical models employed in the study of PDAC were immortalized cancer 

cells from patients, with the first pancreatic cancer cell line developed in the 1960s (62). Over the 

years 20 different PDAC cell lines have been established from primary tumors. Previous studies 

have reviewed the different cell lines and the differences in genotype, phenotype, origin and the 

tumorigenic properties (63). Cancer cells from primary tumor lose their normal cellular 

interactions and do not preserve the original tumor architecture. When cancer cells are cultures in 

non-physiological environment the genetic changes could result in cells that do not reflect the 

originating tumor genetics (64). A major limitation with using patient-derived cell lines is cross 
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contamination by other cell lines or microorganisms without the handler’s knowledge (65). 

Patient-derived cell lines are most commonly studied using 2D cultures. In 2D cultures, cells grow 

on the surface of adherent culture flasks or petri-dishes and are used for performing functional 

tests and assays for simple drugs tests.  2D cell cultures from pancreatic cell lines are inexpensive 

and easy to work with. They do however, come with some significant limitations; the key 

characteristics of tumors are not maintained and the 2D cultures lack the stroma and its components 

that is present in a PDAC tumor in vivo. As a result, different responses to drugs or other signals 

are not realistic. 2D cultures also come with another limitation. On a flat 2D surface the cells have 

access to  unlimited supplies of oxygen and nutrients from the medium, something that is not the 

case for a tumor (66,67). 

 

1.3.2 Patient derived xenograft  

Patient derived xenograft (PDX) was developed to better simulate the complex microenvironment 

of tumors and understand what drives tumor progression. Immunocompromised mice are used for 

engraftment of tumors. Single-cell suspension or solid tumor pieces are obtained from the original 

tumor by biopsy or surgery, then injected either under the skin (subcutaneous) or in the organ the 

tumor derived from (orthotopic). The tumors are able to develop in the mice without the immune 

system destroying it. This is used to study disease development and testing of anti-tumor drugs 

(68). However, most of the time the engraft tumor fail to reflect its original tumor properties (69). 

This method is very expensive compared to more simplistic models, since the take rate is often 

low and the time needed to establish the method is lengthy. Since the method requires 

immunodeficient mice it lacks the functional elements of the immune system. Models using PDX 

have shown that the patient-stroma in tumor xenografts is quickly replaced with murine stroma 

(70), which will result in a change in ECM composition and loss of fibroblast heterogeneity. The 

treatments on immunodeficient mice also often does not work in humans, due to the different 

immune microenvironment. However, the development of PDX was a major milestone in 

oncology research (71,72). 
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1.3.3 3D growth models 

As described before, 2D models do not resemble the physiology, structure, and function of the 

tumor microenvironment (TME) in vivo, nor does it consider the complex interactions between the 

ECM and tumor cells and lacks the intra-tumoral gradients. Therefore, the development of more 

advanced 3D models seem inevitable (73). 3D models can be used to overcome the simplicity and 

limitations of these models and be a bridge between in vitro and in vivo models. The main 

advantage of 3D cultures compared to 2D is that it simulates the tumor microenvironment more 

accurately due to the cell-to-cell interaction and the interaction between cells and ECM, while also 

recapitulating the signaling and differentiation of cells (74,75). Growing cells in a 3D environment 

changes both proliferation and morphology. By growing cancer cell lines in a 3D, the morphology 

of the cells are more reminiscent of the tumor origin (76,77). 3D cultures also make the tumor 

more resistant to chemotherapeutics. The lack of penetrative ability of the drug can result in 

neoplastic cells in the core of the tumor being left untreated or the intertumoral heterogeneity 

causes resistant phenotypes to emerge and proliferate (78,79) As the models increase in 

complexity, more stromal and non-stromal components can be added to represent the tumor 

microenvironment as accurately as possible.  

 
Figure 1.2 -Modelling the TME. Schematic representation of the major pre-clinical models and 

bio-fabrication techniques (a-f) employed to recapitulate TME complexity. For each model 

advantages (blue) and limitations (beige) are reported. Figure taken from Di Modugno et al (80). 
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An important aspect of the different pre-clinical models is how well they recapitulate the ECM 

(80). Figure 1.2 shows advantages and limitations of different pre-clinical models used for 

modelling the TME. 3D spheroid models create a cluster of cells in uniform or heterogeneous cell 

populations with similar limitations for oxygen diffusion to the center that leads to an apoptotic 

core. This resembles the chemotherapy-resistant and hypoxic core of PDAC tumors (81). By 

including stromal components such as PSCs into spheroid models have shown to lead to the 

production of desmoplastic reaction, with tumor cell morphology and tissue architecture (82). The 

cells produce their own ECM which in turn limits the control over the 3D culture environment 

(83). Scaffold-based 3D models are a more complex model that resemble a natural ECM structure 

with fibers and pores. The most common use of a scaffold-based 3D models is Matrigel®, which 

consists of a gelatinous protein mixture that functions as a reconstituted basement membrane, is 

used frequently for stem cell-based differentiation (84). Differentiation can be improved by 

selection of optimal ECM components (85) e.g, by using ECM derived from decellularized organ 

that maintain organ-specific features. The use of bioprinting can create a tissue specific TME and 

is used as a model for several cancer types. However, there is no model for PDAC using bioprinting 

(86). 3D models can be in both static and dynamic conditions. Dynamic conditions are a better 

representation of human physiology, and development of new models could be beneficial in 

optimizing treatments. Microfluidic chips can be utilized as bioreactors to create a uniformly-sized 

spheroids (87) or to guide cell migration by using composite hydrogel microfibers (88). 

Microfluidic devices have demonstrated the ability to modify multiple microenvironment to study 

tumor development or metastasis within the same device (89). Organ-on-a-chip integrated with 

microfluidics have been designed for fine tuning of the microenvironment by altering different 

physical or biochemical signals, and eventually with the complexity of an entire organ. This aspect 

of studying biomolecular characteristics of PDAC appears promising, and conceivably be used for 

personalized treatment testing (90). 
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However, 3D cultures still come with some limitations: These include reproducibility between 

different types of scaffolds, and even between different batches of same scaffold type. 

Additionally,  some 3D gel cultures require precise monitoring and stable conditions of 

temperature and pH, , making these cultures more difficult to use and expensive than other culture 

methods. (91). Current 3D models are simplistic and do lack phenotypic similarity and 

heterogeneity. 3D models are expensive compared to 2D models and scaling up the complexity is 

challenging (92). Of note, even the most complex 3D models still fail to reconstitute the many 

features of living organs that determine their function, such as the intricate active 

microenvironment and interface between tissues (93). The perfect model does not exist and needs 

to be tailored to its specific purpose or application. 

 

The 3D model system utilized in these experiments is an expansion of  a previously described pre-

clinical model using decellularized porcine small intestine and pancreas as biological scaffolds 

(94), that preserve the native ECM and can potentially reflect the complex three-dimensional ECM 

composition more accurately. Providing a flexible, biological relevant system that accentuates the 

significance of the ECM for cellular behavior.  

 

 

 

 

 

 

 

 

 



13 
 

2 Aims 

 

Pancreatic ductal adenocarcinoma (PDAC) is characterized by late-stage detection, vague or no 

symptoms, low responsiveness to treatments and high mortality. While treatment of other cancers 

has improved markedly during the last years, 5-year survival of PDAC patients is still poor. Recent 

research has emphasized the role of tumor stroma, and its importance in impeding the efficacy of 

treatments and accelerate tumor progression.  Innovative pre-clinical models, which take the 

tumor/stroma interaction into account, are urgently needed. To be able to model and understand 

the complexity of PDAC, we seek to establish a novel 3D culture platform for PDAC based on 

decellularized biological scaffolds with these aims:  

 

• Production of decellularized porcine scaffolds for 3D culture. 

 

• Validation and optimization of a novel 3D model system for PDAC based on different 

types of decellularized porcine scaffolds. 

 

• Investigate the effect of dynamic culture conditions. 
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3 Materials and methods 

3.1 Cell culture  

All experiments done within this project were performed with established cells lines. As PDAC 

cell lines, PANC-1 (ATCC CRL-1469), MIA PaCa-2 (ATCC CRL-1420) and BxPC-3 (ATCC 

CRL-1687) cells were used. Furthermore, we used the human pancreatic stellate cell line HPaSteC 

(ScienCell Research Laboratories) kindly provided by Caroline Sophie Verbeke (Institute of 

Clinical Medicine, University of Oslo). 

All cell culture work was done in a laminar flow cabinet using one time use sterile equipment. 

Cells were grown in a 75 cm2 tissue culture flask (VWR International, LLC., Radnor, PA, USA) 

and incubated at 37℃ with 5% CO2. PANC-1 was grown in Dulbecco's Modified Eagle Medium 

(DMEM) high glucose medium (Sigma-Aldrich, Germany) with 1% L-glutamine, 10% fetal 

bovine serum (FBS) and 1% pyruvate. They were split in a 1:5 ratio 2-3 times a week. 

 

 MIA PaCa-2 was grown in DMEM high glucose with 2% L-glutamine, 10% FBS, 2.5% horse 

serum and 1% pyruvate. They were split in a 1:10 ratio 2-3 times a week.  

 

BxPC-3 was grown in Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma-Aldrich, 

Germany) with 2% L-glutamine, 10% FBS and 1% pyruvate. They were split in a 1:4 ratio 2-3 

times a week. 

HPaSteC was grown in DMEM high glucose medium with 1% L-glutamine, 10% FBS and 1% 

pyruvate. They were split in a 1:5 ratio 2-3 times a week.’ 

 

Cells were harvested by removing the medium, washing the cells with phosphate-buffered saline 

(PBS) and adding 20% of trypsin. After 5 minutes incubation at 37℃ all cells can be collected in 

the desired amount of medium.  
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3.2 Lentiviral Transduction of miRFP670 

Transduction is the process of introducing DNA or RNA from a foreign source into a cell by using 

a viral vector. Lentivirus, (a type of retrovirus) can permanently integrate a gene into the genome 

of the host cell. Viruses are often produced inside human embryonic kidney cells (HEK-293T) by 

transfection of multiple vector plasmids. As the technique has developed over the years, so has the 

safety of lentiviral transduction. Three generations of packaging lentiviral plasmids for safety have 

been developed, where the first generation is no longer in use. Lentiviral transduction require three 

major genes; gag, pol and env. Gag is the gene responsible for matrix proteins and a protective 

core, the pol gene is for enzymes including reverse transcriptase and integrase which are necessary 

for genomic integration, while the env gene encodes for surface glycoproteins that enable cell 

entry. Regulatory genes and accessory genes are also commonly used, but are not as essential. The 

second-generation packaging system uses multiple plasmids to deliver the essential genes and 

excludes the regulatory genes. The third generation also uses multiple plasmids but also contains 

a modified transgene plasmid, making it self-inactivating and almost entirely eliminates the 

possibility for hazardous lentiviral recombinant events. This does however result in a lower viral 

yield (95,96). 

 

3.2.1 Plasmid isolation 

To enable confocal imaging of different cell types, pancreatic stellate cells needed to be transduced 

with a fluorescent reporter. miRFP670, a near-infrared fluorescent protein was chosen. As a first 

step, the reporter plasmid must be produced. An agar swab with NEB stable bacteria containing 

the plasmid for pLenti6.2_miRFP670 were re-cultured in a flask with LB broth and incubated for 

16 hours at 37℃. The plasmids were isolated using the HiSpeed Plasmid Maxi Kit (Qiagen, Venlo, 

The Netherlands). The isolation was done according to the manual. Lentiviral vectors were 

synthesized using 3 different plasmids; pLenti6.2_miRFP670, pMD2.G and psPAX2. pMD2.G 

works as a VSV-G envelope expressing plasmid (spike G glycoprotein), while psPAX2 encodes 

gag and pol genes. These are packaging plasmids necessary to produce lentiviral particles. This 

will produce lentiviruses capable of miRFP670 transduction. The pLenti6.2_miRFP670 plasmid 

was kindly provided by Vanessa LaPointe (Addgene plasmid # 113726) 
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3.2.2 Production of miRFP670 virus particles 

A total of 4*106 HEK 293T cells were seeded on a 10 cm cell culture petri dish (Thermo Fisher 

Scientific, Waltham, MA, USA) with 10 ml of DMEM +10% FBS. The cells were incubated at 

37℃ for 16 hours. To improve the transfection of the HEK 293T cells, 23µM chloroquine was 

added to the cells before the lentivirus production and incubated for 5 minutes at 37℃.  To produce 

lentiviruses capable of miRFP670 transduction, A mixture of 971 µl of filtered MilliQ H2O, 

267mM CaCl2, 9µg pLenti6.2_miRFP670, 13.1 µg of psPAX2 and 1.7 µg pMD2.G was prepared, 

to a total of 1500 µl. 1500 µl of 2X Hepes buffered saline was then added and immediately air 

bubbled for 30 seconds using a 2 ml autopipette. The mixture was carefully added to the HEK 

293T cells dropwise until it covered the whole plate. The plate was then incubated at 37℃ for 16 

hours. After 16 hours the medium was changed to DMEM with 10% FBS and incubated at 37℃ 

for 8 hours. To provide higher transduction efficiency, the medium was changed to DMEM with 

30% FBS and incubate for 24 hours at 37℃. The medium from the plate (now containing 

lentiviruses) was collected and filtered through a 0.2-micron filter (VWR International, LLC., 

Radnor, PA, USA) to remove cellular debris. For a second round of virus production, 6 ml of 

DMEM medium with 30% FBS was added to the same plate and incubated for 24 hours. The 

previous step was then repeated.  

 

To determine viral titer, 100 x 103 HEK 293T cells were seeded per well of a 6-well plate (Thermo 

Fisher Scientific, Waltham, MA, USA) and incubated for 24 hours at 37℃. A ten-fold serial 

dilution was performed (total volume =1 ml). The medium from the HEK 293T cells was removed 

and replaced with the dilutions + 0.27µM of polybrene and incubated for 24 hours at 37℃. The 

medium was replaced with 1ml fresh DMEM and incubated for another 24 hours at 37℃. Cells 

were harvested and filtered through a 40nm strainer (VWR International, LLC., Radnor, PA, USA) 

and were resuspended in flow buffer (PBS containing 1% bovine serum albumin) and analyzed 

using the BD Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA). The functional 

titer was determined with a positivity below 10% and assumed 1 positive cell = 1 viral particle. 

Estimated viral titer = 300*103 transducing units/ml. The medium with the viruses was frozen and 

stored in 1 mL aliquots at -80℃. 

 



17 
 

3.2.3 miRFP670 transduction of pancreatic stellate cells (HPaSteC) 

18*103 of HPaSteC were seeded per well of a 6-well plate. They were incubated for 8 hours until 

the cells attached to the plate.  The medium with viruses was thawed and added to one of the wells 

with a multiplicity of infection of 50, meaning 50 lentiviral particles were added per cell of 

HPaSteC. The plate was incubated at 37℃ for 16 hours. The medium was then removed and 

replaced with fresh DMEM medium. The medium was changed and replaced with fresh medium 

every 3 days until the cells were fully confluent. For selection of successfully transduced cells, 

puromycin was then added into the wells in a concentration of 64mM. The plasmid for miRFP670 

contains a gene for puromycin resistance, so cells that have taken up the plasmid will be resistant 

to puromycin. When all the cells in the control well without added viruses had died the transduced 

cells were expanded into a 75cm2 flask.  

 

3.2.4 Purification of miRFP670 expressing HPaSteC with FACS 

Since puromycin selection does not provide a pure population of miRFP670 expressing HPaSteC 

cells, fluorescent activated cell sorting (FACS) was performed to purify a cell population into a 

phenotype-based cell population. In our case, miRFP670 positivity. The cells were cultured to 

around 90% confluency in a 75cm2 flask. Cells were harvested and filtered through a 40nm strainer 

then the cells were resuspended in flow buffer at a concentration of 5 million cells per ml. Sorting 

was done by a trained employee from the Flow cytometry Core Facility at University of Bergen. 

miRFP670 positive cells were collected into a 15 ml falcon tube, centrifuged, and seeded in an 

appropriately sized cell culture flask.Flow analysis was performed using the BD Accuri C6 flow 

and the results were processed using FlowJo V10 (BD Biosciences, San Jose, CA, USA). 
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3.3 Confocal microscopy  

Confocal microscopy differs from a conventional microscope. Both use the reflected light or 

fluorescent light to image the sample, but in confocal microscopy the excitation beam is focused 

on a small spot inside the sample. By using small pinhole aperture, only the light emitted from the 

focal spot of the excitation beam passes through and only that light is detected. The scattered light 

outside the focal point is blocked, allowing for a sample to be imaged at one point at a time (97). 

A spinning-disc confocal microscopy utilizes multiple pinholes or slits, so the fluorescence is 

exited and imaged at several point at the same time. When the disc is spun an image is formed by 

scanning the sample in rows through the pinholes. The spinning disc greatly increases the image 

acquisition speed, allowing for imaging of live specimens. This method allows for great variation 

and optimalization by changing the diameter of the pinholes, the distance between the holes or the 

rotational speed of the disc. The method however, does not give as high resolution as other methods 

(98). Using cell lines with fluorescent genes transduced works great together with spinning-disc 

confocal microscopy, even multiple cell lines can be imaged together with different fluorescent 

reporter genes. However, the cell line needs to be transduced for this to work optimally. This 

method works best for established cell lines and is easily reproducible.  

Green fluorescent protein (GFP) and near-infrared fluorescent protein (miRFP) are such proteins.  

GFP, originally isolated from the jellyfish Aequoria Victoria is excited at ~470nm and emits at 

~510 nm. GFP is the most used fluorophore, and different variations of color and altered 

excitation/emission wavelengths (99). miRFP670 is a near-infrared protein derived from the 

bacterium Rhodopseudomonas palustris, that is excited at 642nm and emits at 670nm. 

 

The Dragonly 505 confocal spinning disk system (Andor Technologies, Inc, Belfast, Northern 

Ireland) with an iXon 888 Lide EMCCD camera was used to image all the scaffolds. All images 

were captured using the FUSION imaging software (Andor Technologies, Inc, Belfast, Northern 

Ireland). 10x objective was used for all experiments.  Z-stack depth was selected between 60-250 

µm depending on scaffold thickness, with a 2µm step size. To provide a sincere overview of the 

entire scaffold, three random areas per scaffold were imaged.  
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3.3.1 Processing of data from confocal microscopy 

The confocal data was processed using the Imaris cell imaging software. (Oxford instruments, 

United Kingdom) The fluorescent signal of the cells on the scaffold is used to display the total 

surface volume covered by the cells. A minimal signal threshold and size of the signal had been 

set to remove background signal from the scaffolds and other noise. The volume data was extracted 

from the Imaris software as an Excel document and can be plotted in GraphPad Prism.  

 

3.4 Decellularized porcine scaffolds 

Porcine intestine and pancreas were collected at the Laboratory Animal Facility, Department of 

Clinical Medicine, University of Bergen. The production of decellularized scaffolds from those 

tissues has been previously described (94). 

 

3.4.1 Decellularization of intestinal scaffolds (SISser) 

The small intestine is composed of three layers. Surrounding the lumen is the mucosa, followed 

by the submucosa and the serosa on the outside. The intestine was cut in approximately 10 cm 

long pieces, the lumen flushed with tap water and inverted using long forceps. The mucosa layer, 

which is now on the exterior side, was scrapped off using forceps resulting in the submucosa as 

the outer layer and serosa as the inner layer. The intestinal tissue pieces were incubated for 24h in 

PBS + 1% P/S at 4℃. The intestinal pieces were then washed 3 times with 1x PBS. 86.6 mmol/L 

of sodium deoxycholate (Sigma-Aldrich, Germany) (DOC solution) was freshly prepared and kept 

cold. For decellularization, the intestinal pieces were filled with DOC solution and sealed on both 

sides with plastic clamps, incubated in DOC solution for 1.5 hours at 4℃. One of the sides was 

opened, refill with PBS and incubated in PBS for 1hour at 4℃. Then the part of the intestine that 

was not decellularized was removed. The intestinal pieces were then incubated for another hour in 

PBS + 1% Penicillin. The PBS + 1% Penicillin was changed 5 times and stirred at 4℃ for 16 

hours. The intestinal pieces were then incubated for 2 hours at 37℃ in DNase 1 solution (166 

µg/ml; Sigma-Aldrich - Germany) in warm PBS with calcium (0.12 mM), magnesium (0.12 mM) 

and 1% Penicillin. The pieces were then put into cold PBS and the PBS was changed 3 times, then 

left at 4℃ for 16 hours. Scaffolds were sterilized by 25kGy gamma radiation from Gammatom. 

(Italy) 
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3.4.2 Decellularization of pancreatic scaffolds (PanMa) 

Production of decellularized porcine pancreas scaffolds is more challenging as a result of the large 

amount of digestive enzymes. Therefore, the dissection of the pancreas needs to be done quickly 

and preferably at low temperatures. The pancreas is removed en bloc with spleen and the ductal 

connection to the intestine. All connective tissue is then carefully removed. The duct which is 

connected to the intestine is carefully exposed and canulated with a 22G needle. Furthermore, 

veins/arteries from the spleen to the pancreas are used for cannulation with 18G needles. 

Cannulation of the duct and vessel systems is necessary in order to allow proper decellularization. 

The decellularization and sterilization process for the pancreas is basically the same as for the 

small intestine (described in section 3.4.1).  

 
Figure 3.1 - Explantation of porcine pancreas.  The Figure shows how the pancreas is extracted. 

3.a shows the pancreas before it was cut out, b shows the pancreas with the spleen connected with 

b1 showing the vein connecting the pancreas and spleen. This is the vein used for cannulation as 

described before. c shows the different ducts used for decellularization. d shows the decellularizing 

process and e shows the completion of the process. Image taken from C. Berger et al (94). 
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3.4.3 Mounting of scaffolds  

In order to enable 3D culture of cells on the decellularized tissues, the scaffolds need to be kept 

bow-taut on a supporting structure. To this end, so called “cell crowns” were designed and 3D 

printed, using biocompatible materials. The scaffolds are attached on the crowns like the skin of a 

drum. Sterile scaffolds were placed on a 10 cm petri dish and flattened using forceps. The intestinal 

tissue was cut from one opening to the opposite using a scalpel blade. The scaffold was opened 

and carefully flipped using forceps, making the submucosa layer facing up. The scaffolds were cut 

into smaller squares, between 1-2 cm2. The bottom part of the crown was placed on top of the 

scaffold and carefully mounted, the crown was then turned, and a ring was placed around it to 

secure the scaffold. Each complete crown was added to a 12-well plate (Thermo Fisher Scientific, 

Waltham, MA, USA) containing 1.5 ml medium. 500 μl of medium was added into the center of 

each crown.   

  

Figure 3.2 – scaffold mounted onto a crown. The image on the left shows how the scaffold is 

mounted on top of the crown, with the ring to secure it next to it. the figure on the right shows how 

the scaffolds are flipped prior to imaging. The cells are seeded on the mucosa layer on the inside 

of the crown. The ring is removed, and the crown is placed onto another crown. The scaffold is 

folded down onto the new crown and a new ring is added to secure the scaffold. The figure was 

created in BioRender. 

 

3.4.3 Cell seeding on scaffolds 

Cell were harvested and counted to make sure the starting number of cells was adequate. To ensure 

proper soaking of the scaffolds with medium, scaffolds were prepared at least 24h prior to the start 

of the experiment. The desired number of cells was centrifuged and then resuspended in 500 µl 

fresh medium. The cells were seeded on the inner part of the scaffolds (submucosa for SISser or 

PanMa respectively). Initially, different cell numbers were seeded to determine optimal conditions. 
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3.4.4 Flipping of scaffolds for imaging 

Since the cells were seeded on the inside of the scaffolds, the orientation of the scaffold must be 

inverted before imaging (Figure 3.2), due to the necessity of cell contact with the imaging plate. 

Each crown was transferred to a 10 cm petri dish and the outer ring was removed. The crown was 

moved on top of a new crown and the matrix on the outside of the crown was folded down onto 

the new one. The old crown was removed, and a new ring was added, leaving the scaffold oriented 

with cells located on the outer surface. The crown was moved back to the 12 well plate containing 

medium, and 500 µl of fresh medium was added to the inside of the crown. When the scaffolds 

were imaged, they were transferred to a 6-well plate with sterile forceps containing 1 ml of fresh 

medium. After imaging they were transferred to a new 12-well plate each containing 1 ml of fresh 

medium. The medium in the center of the crown was also replaced by 500 µl of fresh medium. 

The plate was then transferred back to the incubator at 37℃. 

 

3.5 Dynamic cultures 

Monocultures of PANC-1 with a starting number of 50 x 103 cells were seeded on SISser scaffolds 

and incubated in static conditions. After the cells were cultured in static conditions, the scaffolds 

were transferred to a bioreactor, designed by collaborators at the Fraunhofer Institute Wurzburg, 

Germany. The bioreactors were placed into a Simatic HMI incubator for dynamic culture (Figure 

3.3). Flow speed and pressure could either be in a constant flow or sinus rhythm. The scaffolds 

were incubated for either 3 days or 7 days in static conditions before they were transferred to the 

incubator at 37℃. The scaffolds were cultured for a total of 10 days. Flow speed was set to either 

1.5ml per minute or 3ml per minute with a sinus rhythm. After the experiments, the scaffolds were 

histologically analyzed as described in section 3.6. 
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Figure 3.3 – Schematic of dynamic conditions. The figure shows the silicon bioreactor connected 

to a peristaltic pump and a medium reservoir in a closed loop. From the reservoir, the pump 

delivers medium to the bioreactor harboring scaffolds mounted onto 3D printed chips.  

 

3.6 Histology  

3.6.1 Fixation  

After the final day of imaging, histological analysis was done. Firstly, the medium within and 

outside the crowns was removed and replaced with PBS. 1 ml was added to the wells and 500 µl 

was added to the center of the crown. The PBS was then replaced with 4% paraformaldehyde 

(PFA) and incubated for 1 hour. The PFA was removed, and the crowns were washed again with 

PBS. The crowns were transferred to a 10 cm petri dish. Using a scalpel blade the scaffold on the 

outside of the crown was cut, releasing a circular field of scaffold containing tissue which was 

removed from the crown. The circular scaffold was divided into two pieces and transferred to 

histological cassettes, then stored in until further processed. 

 

3.6.2 Dehydration and embedding  

The scaffolds were dehydrated using a TP1020 tissue processor (Leica Biosystems, Wentzler, 

Germany) The samples were immersed in 2 changes of 80% ethanol, 2 changes of 96% ethanol, 4 

changes of 100% ethanol and 2 changes of xylene for 1 hour each.  
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3.6.3 Mounting of paraffin blocks 

After dehydration, the scaffolds were embedded with paraffin. The scaffolds were placed in a 

metal mold whereby the center of each half of the scaffold was oriented up. Paraffin was added to 

fill the metal mold and subsequently placed on a cold surface to solidify. 

 

3.6.4 Slicing of paraffin blocks 

Before the paraffin blocks were sliced, they were kept in -20℃ for at least 1 hour. The blocks were 

sliced using a RM2155 microtome (Leica Biosystems, Wentzler, Germany). Initially, the blocks 

were trimmed until the surface of the scaffolds cross section became visible on the paraffin block. 

Then 5 µm thick sections were cut and transferred to a 42℃-water bath. The slices were collected 

to a microscopy slides (VWR International, ltd., Radnor, PA, USA).  The sections were let to 

completely dry before staining. 

 

3.6.5 Hematoxylin-Eosin (H&E) staining 

H&E staining was done to provide a comprehensive picture of the tissue’s microanatomy. 

Hematoxylin stains the nuclear components dark blue or purple while eosin stains collagen and 

elastic fibers in a pinkish color.  Before staining the hematoxylin was filtered to remove aggregate 

and an eosin working solution was prepared. 14.5mM eosin Y was diluted in 100 ml of distilled 

water and 400 ml of 96% ethanol. This eosin Y stock solution was further diluted by adding 50 ml 

of the eosin Y stock solution to 150 ml 80% ethanol + 87 mM glacial acetic acid (Sigma-Aldrich, 

Germany)  

 

Deparaffination and rehydration was achieved by: 2x10 minutes incubation in xylene (Sigma-

Aldrich, Germany), 2x5 minutes incubation in absolute alcohol, 1x5 minutes incubation in 96% 

alcohol and 1x5 minutes incubation in 70% alcohol. After a brief wash in MilliQ water, sampled 

were incubated in Harris hematoxylin solution (CellPath, United Kingdom) for 2 minutes, 

followed by 10 minutes of washing in warm tap water. Samples were rinsed with 10 dips in 95% 

alcohol and counterstained in eosin working solution for 1 minute. Finally, sampled were 

dehydrated by 1x5 minutes 95% alcohol and 2x5 minutes of absolute alcohol incubations. Samples 
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were cleared in 2x5 minutes xylene. Xylene based mounting medium (Sigma-Aldrich, Germany) 

was added and the samples were protected by cover slides. 

 

3.6.6 Imaging of stained slides 

The stained histology slides were imaged using a VS120 S6 slide scanner (Olympus Life Science, 

Waltham, MA, USA). Multiple fields of view were captured using the VS-ASW S6 software 

(Olympus Life Science, Waltham, MA, USA) and assembled to get high a resolution image of the 

tissue on the slide. An overview of the slide was acquired at 2x magnification and the parts of the 

slide with tissue were imaged at 20x magnification.  The images were processed using QuPath 

version 0.2.3 (100). 

 

3.7 Treatment with gemcitabine.  

To investigate the effect of the chemotherapeutic drug gemcitabine (GEM), 25 x 103 PANC-1 cells 

were seeded on SISser scaffolds and incubated for 10 days. Various concentrations of GEM 

(Fresenius Kabi oncology Ltd, United Kingdom) 10 µM, 100 µM or 1000 µM were added to the 

cells and incubated at 37℃ for 72h. The medium was changed every 24h and replaced with fresh 

DMEM medium containing GEM. The cells were monitored during the treatment using confocal 

microscopy. Signal quantification and processing was done using the Imaris software as described 

in section 3.3. 

 

3.8 Statistics  

Statistical analysis results were expressed as mean values± standard deviation. Comparisons 

between groups were made using unpaired T-test. Differences where p<0.05 were considered as 

statistically significant. Statistics were analyzed using GraphPad PRISM®v8.4.2(GraphPad 

Software Inc., La Jolla, CA, USA) software.  
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4 Results 

4.1 3D monocultures of PDAC cells on decellularized porcine intestine (SISser) 

The aim of this project is to apply a previously described 3D culture system based on decellularized 

porcine tissue to pancreatic cancer research. We used 3 different established cell lines to establish 

and optimize the model system by determining variation of growth and the invasive potential of 

the different cell lines. For better understanding of the different cell lines, various cell numbers 

were tested. Elucidating comprehensive insights from PDAC cell lines will make the use of patient 

material more predictable, which is much rarer and is not as readily available as established cell 

lines. PDAC cells were seeded on decellularized intestinal scaffolds (SISser), consisting of the 

submucosa and serosa layer. The PDAC cells were seeded on the submucosa layer. The submucosa 

consists of thick, irregular layers of connective tissue with low immunogenicity, suitable for cell 

adhesion, proliferation, and differentiation. Such materials can be used optimally as scaffolds. To 

follow the development of the cell lines over time without the use of additional dyes, we used GFP 

expressing cell lines. The growth of the cells was monitored with confocal microscopy and 

subsequently, the covered surface volume was determined. The signal from the total surface 

volume is derived from GFP expressing cells, and corelates directly with cell numbers. Using 

Imaris software analysis of the fluorescent signal from the cells, the 3D GFP signal was plotted in 

2D and covered surface volume is quantified. Autofluorescence and artefacts are removed by 

setting intensity thresholds and size limits to the GFP signal. The scaffolds were fixed, stained 

with H&E and histologically assessed after the experiments were completed.  

 

4.1.1 PANC-1 monoculture growth  

Scaffolds were seeded with 6 x 103, 12 x 103, 25 x 103, 50 x 103 and 100 x 103 PANC-1 GFP+ cells 

and imaged with confocal microscopy on day 3, day 7, day 10, day 14 and day 21. On day 21 the 

cells were fixed and assessed histologically by H&E staining. Figure 4.1 A shows the PANC-1 

monoculture grew slowly until a certain confluency then the signal intensity rapidly increased. 

Populations of spherical cells grew dispersed with some areas with more dense concentrations. 

The cells grew until the whole field was confluent. All starting concentrations were confluent by 

day 14, except for 12 x 103. By day 21, several of the starting numbers showed a decrease in 

brightness as seen on Figure 4.1. However, the total surface volume was still increasing as seen on 
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Figure 4.2. A plateau was not observed, and the highest GFP signal intensity was observed at day 

21 with the highest starting number of cells. The histological analysis by H&E staining (Figure 

4.3) show that they grow unevenly with several cell layers covering the top of the scaffold. 

Invasion of cells into the scaffold was mostly observed with the higher starting number of cells 

and observed as low as 25 x 103.  

 

 

4.1.2 MIA PaCa-2 monoculture growth  

Cell cultures of MIA PaCa-2 followed the same experimental set-up as with PANC-1. Figure 4.1 

B shows that the MIA PaCa-2 cells are small and circular, eventually dispersing into several small 

colonies of cells until they merged and covered the whole scaffold. Rapid cellular growth occurred 

and  the cells became confluent by day 7 for all starting number of cells except the lowest, as 

shown on Figure 4.1 A. Figure 4.2 show that MIA PaCa-2 cells reach the signal max by day 7 with 
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a starting number of 50 x 103 cells. The signal then decreased for several of the concentrations, 

and most of them stabilized at day 14. The histological analysis by H&E staining (Figure 4.3) 

shows the MIA PaCa-2 cells were the most invasive, showing high invasion at the lowest 

concentration. MIA PaCa-2 also develop the largest invasive colonies. Multiple cell layers can be 

seen invading, with mostly a single layer on the surface of the scaffold.  

 

4.1.3 BxPC-3 monoculture growth 

Cell cultures of BxPC-3 followed the same experimental set-up as with PANC-1. The BxPC-3 

cells grew into big separate circular colonies as seen in Figure 4.1 C. The colonies of cells 

continued to expand and eventually merged, once the field was confluent. Only the three highest 

concentrations of cells managed to grow to a level where the entire field was confluent. The 

brightness from the cells decreased significantly on the last two imaging days, while the total 

surface volume (Figure 4.2) only decreased a little. Figure 4.2 also shows that BxPC-3 cells 

reached the highest total surface volume at day 10 with the 2 highest starting cell numbers. The 

signal intensity was stable for all starting numbers from day 10 to day 21, with the two highest 

slowly decreasing and the others slowly growing.  The histological analysis (Figure 4.3) by H&E 

staining showed that BxPC-3 cells grew as an even thick layer of cells at the top of the scaffolds 

with an increase in cell layers with higher starting numbers. BxPC-3 cells show very little invasion 

potential. With the highest starting number of cells seeded, large invasion-clusters were observed. 

Invasion of single cells was seen as low as 25 x 103, but only a low fraction of cells.  

 

 

 

 

Figure 4.2 – Quantification of cell growth of PDAC GFP+ cell lines on SISser.  The Figure shows the 

growth kinetics of the different cell lines in different starting number of cells (6 x 103, 12 x 103, 25 x 103, 

50 x 103, and 100 x 103). The cell lines are monitored over 21 days and total volume of the GFP signal is 

used to quantify the signal using the Imaris image analysis software. Error bars represents standard 

deviation.  
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4.2 Coculture of PDAC cells and pancreatic stellate cells on decellularized porcine intestine 

(SISser)  

Since PDAC is defined by the desmoplastic stroma, cocultures of pancreatic stellate cells together 

with PDAC cells can provide a more realistic environment than monocultures. With the ability to 

track multiple fluorescently labeled cell lines simultaneously, PDAC cell lines were cultured 

together with pancreatic stellate cells (HPaSteC). The starting number of PDAC cells were chosen 

based on the growth kinetics of the monocultures, so that the cocultures would have similar growth 

kinetics across all PDAC cell lines. PANC-1 and BxPC3 cells were grown in a starting number of 

50 x 103 cells/scaffold together with 12.5 x 103 HPaSteC cells. MIA PaCa-2 cells were grown in a 

starting number of 25 x 103 cells/scaffold together with 6 x 103 HPaSteC cells. For comparison, 

monocultures of all three PDAC cell lines and monocultures of HPaSteC were grown as well. 

Figure 4.3 – H&E-stained slides of monocultures of PDAC cell lines on SISser 

The Figure shows the H&E-stained slides of the different PDAC cell lines, acquired after 21 days in 

culture. The cell lines were seeded with various starting number of cells, ranging from 6 x 103 to 100 x 

103 cells/scaffold. 
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The coculture experiments followed the same set-up as the monocultures, with imaging on day 3, 

day 7, day 10, day 14 and day 21, followed by fixation and histologically assessment by H&E 

staining. 

 

4.2.1 Selection of miRFP670+ pancreatic stellate cells for coculture 

To visualize and track multiple cell lines at once, HPaSteC cells- a human pancreatic stellate cell 

line was transduced with miRFP670. By using two different fluorescent reporter genes both can 

be imaged simultaneously. The transduction of HPaSteC is described in Materials and Methods 

section 3.2. 

 

Figure 4.4 show two different flow cytometry analyses with identical set-up. By using gating, 

populations of cells can be isolated into subpopulations. For this experiment, three gates were 

constructed with area of forward scatter FSC on the X-axis and different variables on the Y-axis. 

From left to right, the first panel shows the area of FSC and the area of side scatter (SSC) of the 

cells, so cellular debris could be removed. The second panel shows FSC area and height, so 

doublets could be removed. The third show the area of FSC with the FL-4 channel, a laser that will 

excite miRFP670 within the cells. Higher emitted miRFP670 will result in the cells being located 

higher on the Y-axis. The upper panel shows wild type HPaSteC without miRFP670 transduced, 

showing a miRFP670 positivity ≈ 0%. The second analysis shows the HPaSteC with miRFP670 

transduced, showing a miRFP670 positivity = 99.1%. 

 

 



31 
 

 

 

4.2.2 Growth pattern of HPaSteC on decellularized porcine intestine (SISser)  

Monocultures of HPaSteC were grown in a starting number of 25 x 103 and 50 x 103 cells/ scaffold 

and grow as dispersed single cells until they covered the whole field. (Figure 4.5 A) The growth 

kinetics between the initially seeded 25 x 103 and 50 x 103 cells/scaffold were minimal. Large 

variations were observed when HPaSteC cells were grown in coculture with PDAC cell lines as 

seen on Figure 4.6. The HPaSteC grown in coculture with PANC-1 grew slowly but steadily over 

the 21 days, while the Coculture with MIA PaCa-2 grew rapidly until day 7 and den rapidly 

declined until the signal almost completely disappeared. HPaSteC cells in coculture with BxPC-3 

grew rapidly until day 10 day and plateaued and grew in densely packed pockets in between the 

BxPC-3 clusters. They also showed similar growth kinetics with the HPaSteC in monoculture, 

reaching the same signal intensity at day 10 and stayed at a plateau thereafter. 
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4.3.1 PDAC cells + HPaSteC cells 

The morphology of PDAC cell lines grown in monoculture (Figure 4.1) and coculture with 

HPaSteC (Figure 4.6 A) is analogous. The PANC-1 monocultures show similarities with the 

cocultures with HPaSteC. Small, dispersed clusters were observed with low cell numbers until day 

10 and a rapid increase in growth by day 14. MIA PaCa-2 cocultures with HPaSteC grew nearly 

identically with dispersed cell clusters as in monocultures. The monocultures did however become 

confluent sooner (day 7 vs day 10). As the two other cell lines, BxPC-3 cells grew nearly 

identically in monoculture as in coculture by forming large cell clusters that grew slowly until day 

7, becoming confluent by day 10.  
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As seen on Figure 4.6 B, the growth kinetics of PDAC cells in monoculture and in coculture with 

HPaSteC are nearly identical. The coculture with PANC-1 and HPaSteC grew a little slower, but 

there was no statistically significant difference between the growth kinetics in monocultures and 

cocultures.  

 

Histological analysis by H&E staining of cocultures from Figure 4.6 C also showed similarities 

from the monocultures (Figure 4.3). PANC-1 + HPaSteC showed similar thick layer of cells on 

top of the scaffolds as seen on monocultures, with more frequent but smaller patches of invading 

cells. MIA PaCa-2 + HPaSteC showed a thin line of cells on top of the scaffold with some cells 

invading as seen on the monocultures. The invasion observed in monoculture is much higher than 

in cocultures. BxPC-3 + HPaSteC showed the similar, even layer of cells on top of the scaffold as 

with monocultures. A slight increase in invasion potential was observed when grown in cocultures. 

In summary: Both growth pattern and growth kinetics are nearly identical. The invasive potential 

was similar with some variations observed.  
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4.3 Coculture of PANC-1 and HPaSteC on decellularized porcine pancreas (PanMa) 

By using decellularized porcine pancreas, the ECM composition is hypothesized to be much more 

similar to human pancreatic ECM compared to the ECM of SISser. PanMa harbors organ-specific 

properties and will help to create a more realistic microenvironment. Decellularized porcine 

pancreas can effortlessly be implemented into the model system using the same experimental setup 

as with SISser scaffolds. Due to limited amounts of PanMa scaffolds available, only PANC-1 cells 

were used. PANC-1 cells were seeded with a starting number of 50 x 103 cells/scaffold in 

monoculture and 50 x 103 cells/scaffold in coculture with 12 x 103 HPaSteC cells/scaffold. The 

starting number of cells were chosen according to the experiments performed on SISser.  

Figure 4.7A and Figure 4.7B show that PANC-1 grow nearly identical in monoculture and 

coculture on PanMa scaffolds. Very low numbers of HPaSteC were observed in the coculture, as 

seen on Figure 4.7A. Histological analysis from Figure 4.7C shows that PANC-1 in monoculture 

and PANC-1 + HPaSteC form the same multi-cell layer on top of the scaffold as seen on SISser 

from Figure 4.3 and 4.6C, but with much less invasion into the scaffold.  
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4.4 Comparison of cell growth on SISser and PanMa scaffolds 

Comparing difference in growth patterns and kinetics of different scaffolds with dissimilar ECM 

properties will show the impact of ECM composition on growth. The physical properties, structure 

and composition of the ECM dictate the interactions between the cells and the matrix, and thus is 

vital for cellular behavior. SISser and PanMa have different ECM composition and biophysical 

properties. PANC-1 cells were seeded with a starting number of cells of 50 x 103 cells/scaffold in 

monoculture and coculture. In coculture, 12 x 103 HPaSteC cells/scaffold were added. Figure 4.8A 

shows the growth kinetics for PANC-1 cells grown in coculture with HPaSteC is nearly identical 

on SISser and PanMa scaffolds, while Figure 4.8B shows a signifcant variation between HPaSteC 

on SISser and PanMa. The total surface volume from HPaSteC on PanMa was much lower at the 

start of imaging compared to SISser, even though same cell numbers were seeded. The total surface 

volume of PanMa covered by HPaSteC cells slowly increased until day 10, then the signal 

decreased before almost disappearing completely, while the HPaSteC signal on SISser grew at a 

consistent rate.  

 

  

 

  

B) A) 
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4.5 Dynamic culture of 3D models 

Since physiological conditions in vivo are not static, a dynamic culture system was tested to 

develop the model system to mimic the microenvironment more accurately. The dynamic 

bioreactor was developed in collaboration with the Fraunhofer Institute (Wurzburg, Germany) and 

described above (Materials and Methods 3.5). To initially assure proper attachment of the cell to 

the scaffolds, PANC-1 with a starting number of 50 x 103 cells were seeded on SISser scaffolds 

and were cultured in static conditions for either 3 or 7 days before transferred into dynamic 

conditions for a total of 10 days with a flow speed of either 1.5ml per minute or 3 ml per minute.  

After the experiments, the cells were histologically analyzed as described in section 3.6. Every 

combination of flow speed and days in static conditions resulted in the same outcome, empty 

scaffolds with no cells.  
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4.6 Gemcitabine treatment efficacy 

To examine applicability of our model system for PDAC therapy, we tested gemcitabine treatment 

efficacy. PANC-1 cells were cultured on SISser scaffolds with a starting number of 25 x 103 

cells/scaffold and kept in culture for 10 days. After the cells were allowed to attach to the scaffold 

and grow for 10 days, gemcitabine was added to the cells in a concentration of 10 µM, 100 µM or 

1000 µM. The medium was replaced each day over 3 days with fresh medium containing the 

respective concentration of gemcitabine. The cells were monitored using confocal microscopy 

starting at the day of the treatment (day 1).  
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Results from the GEM treatment (figure 4.9) showed low to no effect. The control cells without 

GEM showed an increase in signal before and after treatment, while the treated cells kept a stable 

signal throughout the treatment. Only the cells treated with the highest concentration (1000µM) 

showed a small decrease in signal. Small differences in morphology are observed. The treated cells 

were smaller and more dispersed due to loss of cell-cell adhesion.  
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5 Discussion  

Due to the dense stroma and limited vascularity, vague symptoms and poor markers, pancreatic 

cancer is one of the most obstinate cancers to treat with the current treatments available. PDAC 

can also be highly invasive, even at early stages of disease development (101). 

A defining feature of PDAC is the dense and fibrous stroma, including an accumulation of collagen 

rich ECM, significant increase in inflammatory cells as well as pancreatic stellate cell (PSC) 

activation and expansion (20). Studying and recognizing the cell-stroma molecular interactions 

could be the key to overcome the therapeutic resistance (102). 

The low effectivity of treatments combined with the disparity in results between pre-clinical 

models and clinical trials concludes that novel or improved pre-clinical model systems considering 

the tumor cells and tumor microenvironment, are required to improve long-term survival in PDAC. 

Our main objective was to provide a better pre-clinical model by expanding and optimizing a 

previously described approach using decellularized porcine scaffolds.  

 

 5.1 Optimization and expansion of the 3D culture approach 

In the present study, we used decellularized porcine intestine and pancreas as 3D scaffolds for 

repopulation with PDAC cell lines. The internal organs of humans and pigs show several 

anatomical similarities. For the small intestine, the structure and microscopic features are 

comparable. There is however some controversy on the cellular similarities (103). 

In the case of the pancreas, function and location in the body is comparable, but is smaller in 

relations to the human pancreas. The human pancreas is divided into the “tail”, “body” and “head” 

of the pancreas while the pig pancreas consists of three lobules. The amount of literature describing 

the detailed anatomy of pig pancreas is limited, making it difficult to conclude how well the matrix 

composition of pig pancreas compares to humans (104).  

 

The adjacent ECM composition of primary tumors varies according to the tissue type. If a pre-

clinical model system does not account for this, the response to therapies will not be consistent in 

clinical use. The use of decellularized tissues as 3D culture scaffolds provide a remarkable ability 

to recreate the native ECM of the original tissue, while maintaining mechanical properties like 

stiffness and microstructures (105,106). In particular, decellularization of pancreas shows a 
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preservation of macroscopic structure as ducts and vasculature, while preserving ECM constituents 

like collagens and elastic fibers (94). Optimalisation of the decellularization process is crucial, 

since exocrine enzymes of the pancreas have a cytotoxic effect (107).   

 

Despite this, the matrix derived from decellularized porcine organs, both SISser and PanMa work 

well as biological scaffolds.  Using decellularized porcine intestine and pancreas as a 3D model 

system, the biological role of the stroma can be better understood and detecting the crucial 

interactions necessary for PDAC development and chemotherapy resistance. Considering the 

importance of the tumor stroma in PDAC, using PanMa scaffold can provide the most realistic 

environment for further research into PDAC development. The system can also be used to test 

sensitivity to treatments and perhaps in the future be expanded to include other types of the tumor 

microenvironment as well. 

 

The production of SISser scaffolds shows good reproducibility between the scaffolds used in these 

experiments and the scaffolds from the Fraunhofer Institute, where they were originally developed. 

Some areas of the small intestine were however, not suitable for scaffold production, notably the 

intestinal parts (ileum) anterior to the large intestine. The tissue was more tough, and difficulty 

occurred when the mucosa layer was to be removed. The production of PanMa requires the porcine 

pancreas to be removed en bloc with the spleen and a part of the duodenum still connected. 

Removing all the connective tissue and cannulating the duct and vasculature proved to be a 

challenge, especially since it had to be done quickly due to large amounts of digestive enzymes in 

the pancreas. 

 

 Further improvements in the crown design could be beneficial. Since the scaffold needs to be 

flipped before imaging due to the necessity of the cells to be in contact with the imaging plate, 

using crowns that remove the need for flipping could reduce the amount of ruined scaffolds and 

the contamination risk during experimentation. Thereby, mounting of decellularized PanMa onto 

crowns is more challenging than SISser, since the PanMa is not as flat and even as SISser.  
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An important improvement of the method was achieved by use of cell lines expressing fluorescent 

reporter genes. To establish the culture of pancreatic cancer material on the 3D scaffolds, 

visualization of cell growth is indispensable to understand the dynamics over time. 

It further allows the user to easily and cost effectively visualize cultures of cells, both different 

monocultures and cocultures using confocal microscopy. Different cell types grown in coculture 

are easily distinguishable by using fluorescent proteins that have different excitation and emission 

spectrums. We have used different starting number, using three different PDAC cell lines. This 

allowed us to understand how different cell lines behave in 3D culture compared to 2D and thereby 

infer from those data to the use of patient material. The use of confocal microscopy is of great 

benefit to track already labeled cells. However, this is not feasible for primary tumor material due 

to the cells not being labeled with a fluorescent reporter. Labeling of primary tumor cells is also 

not practical since the cells need to be expanded several times, which would lead to the 

differentiation of the tumor cells. Therefore, a thorough characterization of cell lines is 

indispensable for the use of patient material. 

 

5.2 Monoculture growth on SISser 

The different characteristics of each cell line is easily detected using by their GFP expression and 

imaging using confocal microscopy. The confocal microscopy was shown to work well for 

quantification of cell growth over time. It can be used to determine the duration of the experiment 

and the starting concentration of cells for different cell lines with unknown growth patterns. 

The PDAC cell lines used, PANC-1 MIA PaCa-2 and BxPC-3 displayed unique growth patterns, 

comparable to the growth patterns observed in 2D (108). Studies of growth kinetics of the three 

cell lines show that in 2D cultures the different cell lines proliferate at similar rates, while in 3D 

spheroid cultures there is a large variations between BxPC-3 and two other cell lines (90). The 

morphological differences of PDAC cell lines are also enhanced when cultured in 3D (109). In the 

3D model system using SISser scaffolds, MIA PaCa-2 had the shortest doubling time, followed 

by PANC-1 and BxPC-3. Another interesting aspect was the low growth of the lower starting 

numbers, especially for PANC-1 and BxPC-3. The cells appeared to need a certain concentration 

to proliferate at a high rate. This can be explained by the need for cell-to-cell interactions, which 

have been shown to increase proliferation (110).  
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The different cell lines and starting concentrations reach confluency at different time points. After 

the cells grew confluent the signal often plateaued, then either kept stable or slowly decreased. 

This could be because the cells die and the signal is lost or that the cells invade deeper into the 

tissue. As the GFP signal does not travel very well trough tissue and cannot penetrate through the 

scaffold, it can explain the loss of signal. Most of the signal comes from cells located on the top 

of the scaffold surface, but it is difficult to distinguish between the cell signal from cells on the 

surface or cells that have started to invade the scaffold. The different cell lines also have a different 

invasion potential. MIA PaCa-2 cells have the highest invasion potential, at seen from the 

histological experiments from Figure 4.3 and have the most total signal loss, as seen on Figure 4.2. 

The images from Figure 4.1 show that all 3 cell lines decrease in brightness at the end of the 

experiments, while the signal from PANC-1 and BxPC-3 is stable. This indicates that the 

brightness observed does not equal to total signal measured. These results show that both cell line 

and starting number is important for invasion potential. 

 

5.3 Coculture growth on SISser 

To further expand the 3D culture approach, we performed cocultures of pancreatic cancer cells 

and pancreatic stellate cells. Previous studies have shown that PDAC cells grown with SDF-1-

positive CAFs increase proliferation significantly, impacting malignancy and GEM resistance 

(111). However, in our setting PDAC cells grown with HPaSteC showed no increase in 

proliferation. This might be due to cell ratios, surrounding parameters and the length of cultivation. 

The ratio of HPaSteC to PDAC cells was 1:4. As expected, the PDAC cells dominated the field 

when imaging. The HPaSteC often grow into pockets of grouped cells in between the PDAC cells. 

This is especially the case for the BxPC-3 cells in coculture with HPaSteC cells. One possibility 

is the BxPC-3 cells seems to grow on top of the HPaSteC cells, from Figure 4.6 A on day 21 the 

miRFP670 signal is barely visible but the growth kinetics from Figure 4.6 B shows that the signal 

still is high, even though they are not visible on the image. Another possibility is that they form 

clusters and even interact.  Previous studies show that fibroblast can be both tumor promoting and 

tumor suppressive. The depletion of αSMA+ fibroblast in mice led to more invasive tumors and 

decreased survival rate in both PanIN and pancreatic cancer stage. The heterogeneity of fibroblasts 

in the tumor microenvironment could explain why some activated fibroblast have different 

properties (112)(33). 
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PSCs, which are the main source of cancer-associated fibroblasts in PDAC are crucial for the 

deposition of collagen-rich ECM in the tumor stroma and can affect the surrounding stromal cell. 

PSCs, when activated also express TGF-β which is crucial for upregulation of type-I collagen 

expression (113,114). The role of CAFs in PDAC cannot be understated and should be fully 

explored, both the different subtypes of CAFs and the activation of PSCs into CAFs. Targeting the 

stromal compartments or the signaling pathway crucial for  type-I collagen deposits can be the 

pathway to more effective treatments. The results from these experiments also show that a higher 

starting number of PSCs do not translate into an increased growth signal, since cultures from 12 x 

103 to 50 x 103 reach the same signal intensity. It would however be interesting to see how different 

starting number of PSCs influence the growth of PDAC cell lines. These experiments had a 1:4 

ratio between PSCs and PDAC cells, increasing the number of PSCs to an equal amount or even 

more could reveal how much PSCs affect the growth pattern of PDAC cells. 

 

5.4 Comparison between SISser and PanMa  

The growth pattern of PANC-1 cells alone and in coculture was compared using SISser and PanMa 

scaffolds. The main goal of using pancreas as biological scaffolds is to find out to what extend the 

matrix composition and biophysical properties influence tumor cell and PSC growth. Previous 

publication have shown these properties (94). After cultures were established on SISser, we used 

PANC-1 cells on PanMa which more closely mimics human pancreas composition, maintaining 

physical properties like stiffness and cell-ECM interactions. The results from Figure 4.8 show 

remarkable similarities between the two different scaffolds with PANC-1 cells. The same cannot 

be said for HPaSteC, which grew on SISser but barely at all on PanMa.  HPaSteC were only grown 

in coculture with PANC-1 on PanMa, growing HPaSteC on PanMa in monoculture would show if 

HPaSteC can proliferate similarly as on SISser, or if the ECM composition is not suitable for 

HPaSteC.  Even though the process of making SISser and PanMa scaffolds are similar, their 

composition is different. The ECM on PanMa is not as stiff as on SISser, and it has a higher storage 

capacity for water that can act as a reservoir for dissolved molecules. Hepatic stellate cells have 

been shown to require  a stiff ECM to enable differentiation, even in the presence of TGF-β (115). 

Probably, pancreatic stellate cells need a higher degree of scaffold stiffness as well wherefore, 

HPaSteC did grow on SISser and not on PanMa. The different scaffolds have unique mechanical 
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properties, depending on the organ of origin (94). As discussed earlier, CAFs have a profound 

effect on tumor proliferation and chemotherapeutic resistance. But changes in the physical 

properties of the microenvironment also affect the cells within. When the tumor becomes 

desmoplastic it often develops fiber patterns that are aligned, making the ECM stiffer (116). The 

rigidity of the tumor increases the stromal stiffness and tumor cell tension, with small increases in 

rigidity alters tissue architecture and increases growth by ERK-activation (117). Latent TGF-β 

present in the ECM can be activated by mechanical forces (118), the stiffness can as well  promote 

mesenchymal characteristics (119). It is also suggested that CAFs generate more force in response 

to ECM stiffening, working as a positive feedback-loop for more CAF development until a certain 

stiffness-threshold is reached (120). Interestingly, stromal fibroblast harvested in vivo from 

different tumor stages require a 3-dimentional environment to maintain their tumor-associated 

stromal characteristics within in vitro cultures (121). As PANC-1 grew nearly identical in 

monoculture and in coculture with HPaSteC, both on SISser and PanMa, indicate that they do not 

interact with each other in this model system. 

 

5.5 Dynamic culture  

The bioreactor which allowed for dynamic 3D culture was specifically designed for our lab. It has 

not been standardized yet and the microfluidic streams have been modelled but not controlled. A 

comparable system has been used before, culturing colorectal cancer cells on the mucosal layer of 

decellularized porcine intestine (SISmuc), in dynamic conditions. These results showed that 

dynamic cell culture conditions support tumor tissue generation and association with the tumor–

stroma (122). Our dynamic culture experiments were not successful. Several different variations 

in speed and static culture duration were tried, but none proved successful, and no cells were 

observed with histological analysis. This was done with PANC-1 cells grown on SISser, so the 

problem could be that they just do not attach well enough to the scaffold. The moving fluid may 

be responsible making the cells detach, resulting in an empty scaffold. Another reason may be 

poor gas exchange between the medium and the environment, inside the specialized incubator. We 

are convinced that optimizing the conditions within our bioreactor would make dynamic cultures 

possible with our model system and would be very beneficial, creating tumor mimetics. 
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5.6 Future perspectives  

These experiments focus on determining the optimal experimental set up, with focus on 

morphology and growth patterns. The insights need to be further expanded to use patient material.  

A more in-depth characterization by proteome profiling or immunohistochemistry of the PDAC-

PSCs interactions on both SISser and PanMa scaffolds would be interesting, since the activation 

of PSCs on an intracellular level is not fully characterized. Previous studies have shown that PDAC 

cells grown in the secretome of activated PSCs inhibit apoptosis and induced proliferation (123). 

Since our experiments did not show any significant difference between PANC-1 in monoculture 

and cocultures of PANC-1 and HPaSteC, recreating these experiments with factors that activate 

PSCs such as cytokines like TGF-β and platelet derived growth factor or by inducing oxidating 

stress can bring new insights into the importance of the stromal cells (124). 

Detailing the difference composition and biophysical characteristics in ECM of porcine small 

intestine and pancreas to human is important, since the ECM compositions needs to overlap for 

the model system to be relevant. Since patient material is rare and in limited quantity, proper 

characterization of the cell lines and ECM is essential to provide insight how the model will work 

with patient material, so none is wasted.  

 

Exploring the options of immune-present cocultures could give new insight into PDAC biology 

and help explain the unique properties of different immune cells. As discussed earlier; the immune 

cells in PDAC can both be tumor promoting or tumor suppressive, depending on the features of 

the present immune cells. The microenvironment of PDAC also includes a heterogenous 

population of fibroblasts. Including the heterogenous fibroblast population with immune cells 

could provide a more realistic microenvironment. This model system allows the culturing of cells 

both in static conditions and in dynamic conditions. With bioreactors, the ability to control the 

tissue-fluid pressure becomes possible. High intra-tumoral pressure is a defining feature of PDAC, 

which makes treatments less effective. Having the ability to control the pressure within a system 

is crucial for mimicking the microenvironment as closely to a real PDAC environment as possible. 

Shifting from static to dynamic conditions should be a priority, that in the end makes the model 

represent the complex microenvironment more precisely.   
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More work needs to be done to understand the interactions between treatments and cell cultures 

with our model system. Repeated experiments together with cell viability assays such as MTT, 

should be performed, as MTT assays have shown that PDAC cells show a dose-dependent 

reduction in cell viability after exposure to GEM (125). Small morphological differences were 

observed between the treated cells and control, indicating that cell the cells were affected by the 

GEM, even though the GFP-signal was stable.  

 

Chemotherapeutic agents, even with their low effectiveness are currently the best treatment option 

for non-resectable tumors. Once cocultures with immune cells have been established, 

immunotherapies targeting and activating T-cell or monoclonal antibodies or small molecular 

inhibitors targeting growth receptors and checkpoint inhibitors can be implemented. 

The main goal for the development of this 3D model using SISser and PanMa is to predict the 

effectiveness of treatments and tumor response more accurately. Hopefully, novel treatments can 

be applied effortlessly once the system is established. If the response to therapies is more 

accurately determined, this will then subsequently lead to a reduction in animal used in pre-clinical 

models.  

 

In the end, the 3D model system using SISser and PanMa scaffolds shows promise as a pre-clinical 

model, by hopefully being able to maintain the complex microenvironment observed in vivo. 
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