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Abstract 

In this work, the effects of multiple sclerosis (MScl) treatments were investigated by 

quantitative proteomics. First, the effects of the anti-inflammatory drug Fingolimod 

was studied to see if the drug affected central nervous system (CNS) repair in a non-

inflammatory MScl mouse model. Next, the cerebrospinal fluid (CSF) proteome was 

investigated to learn more about the treatment response and mechanism of action in the 

CNS of MScl patients treated with the anti-inflammatory drug Natalizumab. 

Proteomic analysis identified over 6000 proteins in the frontal right hemisphere of the 

mouse model. Abundance changes of these proteins were measured during de- and 

remyalination and confirmed the global proteome effects of the disease model known 

from previous studies. The analysis showed no benefit of Fingolimod on myelination, 

which was also supported by histological analyses of brain sections in the corpus 

callosum. However, the proteomic approach did detect a novel reduction in one of the 

drug receptors known to be expressed in several cells in the brain. 

CSF samples from MScl patients in Czech cohort with a relapsing-remitting (RRMS) 

disease course was sampled at the beginning of, and after approximately two years of 

treatment. Proteomic changes during treatment were then related to disease processes 

in RRMS by comparison to online datasets in CSF-PR. The findings confirmed the 

known anti-inflammatory effect of Natalizumab, but also revealed previously unknown 

effects of the treatment on neurological proteins and metabolism.  

Finally, targeted proteomics assays were created based on biomarker candidates from 

existing literature, with the long-term goal of defining a biomarker panel for clinical 

use. Proteins linked to known disease processes were selected based on, e.g., peptide 

uniqueness, inter- and intra-day stability and optimal digestion time, in order to design 

robust assays that can be compared over time. 
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1. Introduction 

1.1 Multiple sclerosis 

Multiple sclerosis (MScl) is a chronic disease of the central nervous system (CNS) that 

causes neurological disability in young adults 1. It was first illustrated by the Scottish 

pathologist Robert Carswell in 1838 2, and further characterized and defined by the 

French neurologist Jean-Martin Charcot in 1886 3. The disease generally refers to the 

multiple scars or plaques visible in the brains and spinal cord of those affected by the 

disease. It does not have a single underlying cause, but is rather a result of both genetic 

and environmental factors 1, and although much research has been conducted since the 

discovery of MScl, there is still uncertainty about many aspects of the disease. 

1.1.1 Epidemiology and etiology of multiple sclerosis 

MScl is the most common disabling disease to affect young adults besides trauma. The 

disease affects women more frequently than men, and the disease prevalence increases 

with increasing distance from the equator 1. Globally, the estimated number of people 

with MScl is 2.3 million, with the highest prevalence in Europe and North America 4. 

Norway has a prevalence of 203 per 100 000 inhabitants, one of the highest reported 

worldwide 5. The average disease duration is 30 years, during which MScl patients 

have an increased risk of developing comorbidities such as depression, anxiety, fatigue, 

suicide and certain autoimmune diseases, thus greatly affecting the quality of life (as 

reviewed in 6). MScl patients in Norway is expected to have their lifespan shortened 

by an average of seven years compared to the general population 7. 

MScl is in part hereditary, as shown by increased occurrence of the disease within 

families 1, for example, a meta-study from 2015 estimated 50% joint hereditability 

between twins 8. This hereditary component is mainly due to genetic variation of 

immune system components such as the major histocompatibility complex 9 and the 

genes IL7R and IL2RA 10, however additional genetic variants have also been found 

11.  
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This genetic factor could explain the global distribution of MScl, although immigration 

in childhood from low-risk to high-risk areas also increases the disease prevalence of 

the immigrants to that of their new country 12, 13, a factor that cannot be explained by 

genetics alone. Some argue that this could be caused by reduced sun exposure in the 

high latitude areas, as low vitamin D levels has been linked to increased MScl 

susceptibility 14, 15, and furthermore the hygiene hypothesis speculate that low exposure 

to infections during childhood in high latitude areas might lead to unfortunate immune 

responses later in life and increase the risk of developing MScl 16, 17. Specific infections, 

in particular the Epstein-Barr virus infection, commonly known as mononucleosis and 

usually appearing in early adolescence, increases the risk of developing MScl, possibly 

due to molecular mimicry to myelin 18. Additional MScl risk factors include obesity 

and smoking 1. 

1.1.2 Disease development and diagnosis 

MScl as drawn by Robert Carswell in 1838 illustrates the characteristic scars or plaques 

that can be seen in the post-mortem spinal cord and brain of MScl patients. This 

scarring is due to damage of myelin sheets and axons in the CNS 1. Myelin sheets 

function as electrical insulators that allow the nerve signal to rapidly transmit down the 

axon, allowing normal neurological function. Damage of the myelin sheet leads to a 

disturbance in nerve cell signal conduction in the area of the brain or spinal cord where 

it occurs, and can manifest in the patient as a variety of symptoms depending on the 

site of demyelination and the extent of inflammation 1. This damage is believed to be 

caused by the patient’s own immune cells, but how this immune response is initialized 

is however debated 1, 19, 20. Myelin damage early in the disease course can manifest as 

an acute episode called a clinically isolated symptom (CIS). However, patients 

experiencing CIS do not always develop clinical definite MScl (CDMS), and the 

conversion rate varies between 40% to 85% in published studies 21-23. In any case, the 

damage in the CNS shows up as scarring or plaques in the white matter of the CNS, 

visible by magnetic resonance imaging (MRI). For those that do develop MScl, this 

scarring increases, and accumulation of damage can lead to escalation of disability and 

neurodegeneration over time 1.  
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The International Panel on Diagnosis of Multiple Sclerosis released the McDonald 

criteria for diagnosing MScl in 2001 24, later revised 25, 26. The criteria include a 

combination of MScl plaques or lesions in the CNS as seen by MRI, as well as clinical 

history and observations of oligoclonal bands in the cerebrospinal fluid from the 

patients – indicating ongoing inflammation in the CNS. There is currently no single 

test that can be used to diagnose MScl.  

1.1.3 Disease categories 

The majority of patients with CDMS have relapsing-remitting MScl (RRMS), a disease 

course characterized by neurological relapses, driven mainly by inflammatory activity 

and demyelination, and remission during which the symptoms commonly disappear 

either partially or fully due to the restricted ability of the CNS to self-repair. The 

remaining patients have a more progressive development of disability mainly due to 

noninflammatory mechanisms referred to as progressive MScl (PMS). In addition, 

there is primary progressive MScl (PPMS), which is progressive from disease onset 

that affects less than 10% of patients, and secondary progressive MScl (SPMS), which 

usually follows RRMS as the periods of remission becomes scarcer and the disability 

progression is continuous 27.  

1.1.4 Treatment options 

There is currently no available cure for MScl, albeit in recent years autologous 

hematopoietic stem cell transplantation (HSCT) has proven promise as a possible cure 

of the disease, where studies show suppression of disease development for 4-5 years in 

70-80% of the patients 28. A recent study of thirty patients receiving HSCT in Norway 

between 2015 and 2018 reported no mortality, however other severe side effects were 

found, including autoimmune thyroid disease and symptoms of ovarian failure 29. This 

treatment is therefore currently only recommended for aggressive and highly active 

refractory RRMS, as it is still considered experimental, and more large-scale studies 

are needed 28, 30.   

The first drug used in the treatment of MScl was interferon beta 31, shown to delay the 

transition between CIS and CDMS 32. In recent years, there has been an increase in the 
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number of drugs available to treat MScl (as reviewed in 30, 33) (Figure 1). The majority 

of the available drugs work by reducing the immunological damage to the CNS by 

preventing relapses and are authorized to treat RRMS. As each drug is accompanied 

by side effects, risk stratification of possible adverse events is important in guiding 

treatment decisions prior to drug administration 30, 33. 

 

Figure 1: Treatment options for RRMS in multiple sclerosis. 1 Can treat SPMS, 2 can treat PPMS, 

* seldomly used due to adverse side effects. Figure based on 30, 33. 

Early treatment by more effective therapies such as Fingolimod, Natalizumab or 

Alemtuzumab decreases the risk of developing SPMS compared to, for example, 

interferon beta 34, and thus patients are commonly treated by such therapies early in the 

disease course. Due to the number of available treatment options and the heterogenous 

disease development, there is a strong need for clinical markers to better guide 

treatment decisions and facilitate drug switching. The two treatments of most 

importance to this work are outlined below. 

Natalizumab 

Natalizumab is a monoclonal antibody that targets the surface molecules, more 

specifically the α4β1 integrin 35, on leucocytes, thereby inhibiting both the recruitment 

of immune cells across the blood-brain barrier 36 and the activity of immune cells in 

the CNS 37. As Natalizumab hinders the migration of leucocytes to sites of 

inflammation in general, it is also used to treat Crohn’s disease, an inflammatory bowel 

disease 38. Natalizumab treatment of RRMS patients has been shown to reduce the 

mean annual relapse rate by 68% after one year, and the number of active lesions by 

92% over two years compared to placebo 39.  
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The successful reduction of immune activity by Natalizumab can lead to opportunistic 

infections of the common John Cunningham virus (JCV), potentially leading to 

progressive multifocal leukoencephalopathy (PML) and, in some instances, death 40. 

For this reason, the Natalizumab-containing drug Tysabri was withdrawn from the 

market in 2005. However, the drug was re-approved in 2006, arguably because of the 

drug’s effectiveness on aggressive RRMS 41. Patients are now commonly screened for 

JCV infection prior to, and during Natalizumab treatment 33. JCV negative patients 

seldom develop PML, but in positive patients, the risk of developing PML increases 

after two years of treatment 33.  

In-line with the reduction in immune cell recruitment, immunological proteins are also 

reduced in the cerebrospinal fluid (CSF) of patients undergoing Natalizumab therapy 

42, while a second study have found a change in neurological proteins 43. Due to 

inconsistent findings, the effect on neurological proteins is considered secondary to the 

effect of immune modulation 42, 44, and additional studies are still needed to investigate 

the overall effects of Natalizumab in order to identify potential individual differences 

in drug response and possibly enable early drug switching. 

Fingolimod 

Fingolimod is another treatment of RRMS. Phosphorylated Fingolimod is an agonist 

for the sphingosine-1-phospate receptors (S1PRs), facilitating its downregulation and 

subsequent sequestration of lymphocytes within lymph nodes 45, and hindering their 

migration to the CNS. Fingolimod has been shown to reduce the annual relapse rate by 

approximately 50%, and the disability progression by approximately 30% 46, 47. Even 

though the drug is primarily known to affect lymphocyte homing, several cell types in 

the CNS express S1PRs, including microglia 48, astrocytes, neurons 49, and 

oligodendrocytes 50. As it has been shown that Fingolimod crosses the blood-brain 

barrier 48, 51, 52, it is hypothesized to have additional beneficial effects beyond the 

reduction in immune activity, in particular related to remyelination 53, 54. 
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1.2 Multiple sclerosis animal models 

To investigate disease mechanisms in MScl, several animal model diseases are 

available 55-57. Animal models enables the investigation of disease aspects on CNS 

tissue directly, which is seldom possible to the same extent in humans due to obvious 

ethical reasons. MScl has however not been detected in animals, and none of the animal 

models fully reflect the disease pathology observed in humans 56. Nevertheless, several 

mouse models exist that portray different pathologies related to MScl, including 

inflammation and demyelination, and several findings in mouse models have been 

translated to the human disease. For example, experimental autoimmune 

encephalomyelitis (EAE) has proven a valuable model to study the effects of different 

drugs on CNS inflammation 58, and famously led to the discovery of the three MScl 

drugs Glatiramer acetate, Mitoxantrone and Natalizumab 55, 58. As most of the drugs 

treating MScl is modulating the inflammatory aspects of the disease, developing drugs 

that promote repair by stimulating remyelination has recently led to an increased 

interest in demyelination models 59, 60. Several such models are now available (as 

reviewed in 57), but given that toxin-induced demyelination by cuprizone is the 

approach used in this work, it will be the focus in the following.  

1.2.1 Cuprizone 

Cuprizone is a dietary-fed copper chelator that facilitates region-specific demyelination 

in mice 61. The demyelination is due to the copper dependency of mature 

oligodendrocytes, the cells that make and maintain the myelin sheets. Even though the 

exact mechanism behind oligodendrocyte death is not known, recent studies have 

linked iron-mediated cell death to the oligodendrocyte apoptosis 62. Following 

apoptosis, microglia are recruited and myelin is phagocytosed. If the cuprizone 

administration is stopped after 5-6 weeks, remyelination is initiated and near complete 

after a few weeks. Whereas cuprizone administration for 12 weeks can be used to study 

chronic demyelination 61. Thus, the cuprizone model enables studies of both de- and 

remyelination depending on the duration of the cuprizone administration. 
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1.3 Proteins  

1.3.1 Proteins and proteomes 

Proteins are essential for the function of every cell in the body, and are built up of 

covalently bound amino acids that are folded into three-dimensional structures. The 

sequence of amino acids is determined by genetic information, and the expression of a 

protein is based on strict regulation of the genome and its transcripts. The genome is 

defined as the complete set of genetic material present in a cell or organism, and the 

mapping of the first human genome was completed in 2003 63. As a protein complement 

to the genome there is the proteome, a term coined in 1994 64, which describes either 

the complete list of proteins expressed in an organism, or the expression of proteins at 

a given time in a specific cell or tissue. It is important to note that while the genome is 

more or less identical in every cell in the body, and more or less constant throughout 

life, the proteome is highly dynamic 65. This is famously represented by the larvae and 

the butterfly; the genome is (predominantly) the same for both the young larvae and 

the mature butterfly, but the protein expression is different and thus responsible for the 

massive phenotypic change.  

The Human Proteome Project (HPP) was launched in 2010, aiming to detect all of the 

proteins coded by the human genome 66. As of late 2020, 90.4% of the 19 773 predicted 

proteins have been detected 67. This is however only the start, as most proteins have 

different activity based on, for example, cellular location, genetic splicing and post-

translational processing. The different forms of a protein coded from the same gene are 

commonly referred to as proteoforms, and the total number of proteoforms is still 

unknown 68, 69. 

Proteomics is defined as the large-scale study of proteins and their function 70 and can 

be applied to study protein-protein interaction, protein structure, and protein expression 

and regulation in both health and disease 69. Proteomics can be focused on the 

quantitative or qualitative analysis of a few proteins through methods such as Western 

Blot, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC) and 

OLINK, or the simultaneous identification and quantification of thousands of proteins 
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through mass spectrometry (MS). As IHC and MS are used in the work included in this 

thesis, these two approaches will be the focus of this thesis. 

1.4 Cerebrospinal fluid 

1.4.1 Biology  

The cerebrospinal fluid (CSF) is a transparent colorless fluid that surrounds the CNS 

(Figure 2), and is produced by the choroid plexus in the brain ventricles. It has a high 

turnover, as approximately 500mL is produced every day, albeit only 125ml is present 

in the body at any given time. CSF is of great importance for CNS function. 

Mechanically, it works as a cushion both reducing the weight of the brain on itself and 

the spinal cord and as a protective shock absorber. Importantly, CSF also maintains 

CNS homeostasis by removing waste products from the CNS, can be used to reduce 

ischemic pressure, and is an important regulator of the sleep-wake cycle. The content 

of CSF is largely similar to that of plasma, mainly consisting of water and salts. This 

is due to passive and active transport of molecules across fenestrated capillaries and 

the blood cerebrospinal fluid barrier in the endothelial cells of the choroid plexus. The 

majority of its molecules are, in fact, blood-derived (80%) while the remaining 

constituents are CNS-derived. The concentration of several salts and metabolites are 

however different between the two body fluids, indicating tight control of CSF 

constituents 71.  

 

Figure 2: The cerebrospinal fluid (dark blue) in the brain. The red arrows show the direction of 

flow. CSF also surrounds the spinal cord (not shown). From Creative commons. Servier Medical Art 

by Servier is licensed under a Creative Commons Attribution 3.0 Unported License. 
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1.4.2 Cerebrospinal fluid proteins 

The protein concentration in CSF is approximately 350 mg/mL, about 200 times lower 

than in plasma. Similar to plasma, the majority of the total protein amount in the CSF 

is made up of a few proteins. In fact, 14 proteins comprise close to 80% of the proteins 

in the CSF, with the most common being serum albumin, which comprises 60% on its 

own 72. However, low abundant proteins detected in the CSF show that it has a dynamic 

range of up to ten orders of magnitude 72, 73. As CSF is close to the CNS and important 

for CNS homeostasis, it can be used to detect changes in the abundance of neurological 

proteins. However, these are commonly of much lower abundance than the high 

abundant blood proteins. As the dynamic range of CSF excels that obtained by some 

analytical methods 74, depletion of high abundant proteins prior to analysis and 

fractionation procedures are commonly performed to quantify proteins of lower 

abundance. Depletion of the most abundant proteins in CSF prior to proteomic analysis 

has recently proved a valuable strategy for the detection of over 3300 proteins in CSF 

75. The CSF proteome has been published in several online repositories 76, 77.  

1.5 Biomarkers 

A biomarker is defined by the U.S. Food and Drug Administration and the National 

Institutes of Health as “A defined characteristic that is measured as an indicator of 

normal biological processes, pathogenic processes or responses to an exposure or 

intervention” 78. In other words, the definition of a biomarker is quite broad, and spans 

many types of biological evidence and molecules. Given that the proteome is highly 

dynamic and changes due to external and internal factors, proteins can thus be 

biomarkers of both normal and pathological processes.  

Protein biomarkers are in current use in diagnosis and treatment of a wide variety of 

diseases, enabling faster diagnosis and guiding treatment decisions. The most famous 

clinical protein biomarker is perhaps the routine measurement of C-reactive protein in 

blood upon a doctor’s visit due to a runny nose. If this protein is over a specific 

threshold, it implies a bacterial infection, thereby determining whether the patient 

receives a prescription for antibiotics. In order to be useful in clinical practice, the ideal 
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biomarker should be easily and reliably measured by tests across multiple locations, 

exhibit high specificity and sensitivity, be cost effective, and correlate to the disease 

biology 79. 

Several types of biomarkers are available, and their meaning is explained and reviewed 

in 78. Of importance for this work are diagnostic, monitoring, predictive and prognostic 

biomarkers. Diagnostic biomarkers are largely self-explanatory. Monitoring 

biomarkers are used to measure the response of a drug or environmental agent, 

predictive biomarkers are used to separate responders from non-responders prior to 

therapeutic intervention, and finally, prognostic biomarkers identify the likelihood of 

certain disease progression in patients with a specific disease.  

1.5.1 Biomarker discovery, verification and validation 

Commonly, protein biomarker discovery is performed in small sample cohorts, 

quantifying up to thousands of proteins. Potential biomarkers from the discovery are 

then verified in a set of 10-50 patient samples, followed by validation of the most 

successful biomarkers in 100-500 samples, prior to additional clinical validation in 

500-1000s of samples 80, 81, preferably in multiple independent studies prior to 

inclusion into clinical practice 79, 80. Furthermore, it has long been realized that the “one 

biomarker - one disease” model may not be appropriate, and that rather a panel of 

biomarkers will be needed to guide treatment decisions and monitor disease activity 82, 

83, adding yet another layer of complexity to biomarker validation.  

1.5.2 Sample material and biomarker discovery 

A wide variety of tissue and fluids can be used in the search for biomarkers. As MScl 

affects the CNS, brain and spinal cord tissue from model diseases can be investigated 

to find biomarkers of inflammation, myelination and other processes relevant for the 

disease. CNS tissue is, for obvious reasons, however rarely obtained from human 

patients, even though it can yield valuable information about CNS pathology 84. For 

the investigation of the human disease, biomarkers are optimally detected in samples 

that can be obtained by clinical routine analysis, for examples body fluids such as 



 23 

blood, urine and even tears have all been used as sample material in MScl biomarker 

discovery 85-87.  

Due to the CSFs close proximity to the CNS, the CSF proteome is widely studied to 

identify biomarkers in neurological diseases, and has proven useful for the analysis of 

neurological pathology 85. However, as CSF sampling requires a lumbar puncture, it is 

mainly performed for diagnostic purposes 88. Thus, biomarkers discovered in CSF 

should optimally be detected in blood for routine analysis. Of note, several clinically 

applicable biomarkers for MScl in current use are detectable in serum, detecting 

specific antibodies against Interferons and Natalizumab for treatment response, or 

against viruses such as John Cunningham virus in Natalizumab treatment 79 (Table 1). 

Table 1: Example of protein biomarkers of MScl in clinical use. Based on 79. 

Protein Fluid Biomarker 

type 

Biological function Interpretation 

IgG Serum/CSF Diagnostic Sign of intrathecal IgG 

synthesis 

Evidence of ongoing CNS 

inflammation 

Anti-AQP4 Serum Diagnostic Aquaporin 4 antibodies are 

present in neuromyelitis 

optica 

Discriminates between 

neuromyelitis optica and 

MScl 

Anti-NZ Serum Treatment 

response 

Antibodies developed 

against Natalizumab 

treatment 

At risk of treatment failure 

Anti-IFNB Serum Treatment 

response 

Antibodies developed 

against Interferon beta 

treatment 

At risk of treatment failure 

Anti-JC-

virus 

Serum Treatment 

response 

JC virus infection can lead 

to PML in patients 

receiving Natalizumab 

Risk of developing PML 

during Natalizumab 

treatment 

Anti-VZV CSF/Serum Treatment 

response 

Varicella zoster virus 

infection fatal in 

fingolimod trial 

Vaccination prior to 

receiving Fingolimod if 

test is negative 

1.5.3 Cerebrospinal fluid biomarkers in multiple sclerosis 

Most famously, oligoclonal bands (OCBs) in the CSF is used in the diagnosis of MScl 

as it implies intrathecal synthesis of immunoglobulin G, that can be used for diagnostic 
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purposes 79. Albeit useful, it is not exclusive to MScl as any inflammatory process in 

the CNS will produce these bands, e.g., meningitis. Furthermore, the relevance of 

intrathecal synthesis of IgG in MScl was discovered in 1942 89, and IgG as measured 

by OCB and IgG index is the only protein biomarker in CSF currently used in the 

routine diagnosis of MScl 79. Of note, Anti AQP4 antibodies are used in the diagnostic 

process to discriminate MScl from neuromyelitis optica.  

Extensive research has been performed to find protein biomarkers for MScl that are 

detectable in CSF 42, 90-100 (as reviewed in 101). However, few, if any, of the proposed 

biomarkers have yet been sufficiently validated for use in clinical practice. 

Furthermore, many of the proposed biomarkers in MScl have also been proposed as 

biomarkers in other neurological diseases. As MScl is a disease characterized by both 

inflammation and neurodegeneration, it is not a surprise that the proposed biomarkers 

reflect these two processes. In particular, the chitotriosidase and chitinase-like protein 

1 and 2 are expressed by microglia and macrophages, and used as biomarkers of 

inflammation (as reviewed in 102). The most famous of these proteins is chitinase 3-like 

protein 1 (CH3L1), that already in 2010 was discovered as a prognostic marker for the 

conversion of CIS to CDMS 103. CH3L1 is expressed in a wide variety of cells, 

including astrocytes, and has shown biomarker potential in Alzheimer’s disease (AD), 

Amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury, Creutzfeldt-Jacob 

disease (CJD) and Parkinson’s disease (PD). Similarly, chitotriosidase (CHIT) is 

increased in MScl, AD, ALS, traumatic brain injury and CJD, and CHI3L2 is increased 

in MScl and ALS (as reviewed in 102).  

Neurofilaments are the major constituent of neuron cytoskeleton, and occur in three 

versions: light, heavy and medium. Neurofilament light (NF-L) and heavy (NF-H) have 

been associated with inflammation-mediated, and acute ongoing axonal damage, 

respectively (as reviewed in 104 and 105). NF-L is proposed as a monitoring biomarker 

of drug-mediated effects on axonal damage 106, and a marker for poor prognosis 107-109. 

Similarly, NF-H has been seen in progressive MScl, and found to be a predictive 

biomarker for disability progression and brain atrophy 110, 111. Neurofilaments have 

been found increased in AD patients compared to controls 112, and are also affected by 
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several other neurological diseases such as PD 113, ALS 114 and CJD 115. NF-L has also 

been found to be increased in the CSF of COVID-19 patients with neurological 

symptoms 116. 

Thus, the current status of protein biomarker discovery for MScl is that it generally 

lacks the proper validation and verification of the suggested candidates. Additionally, 

the disease-specificity of the most relevant biomarkers seem to be poor. Overall, there 

is a general lack of studies investigating the specificity and abundance of these proteins 

across the different neurological diseases.  

1.5.4 Proteomic studies of the cuprizone animal model 

Relatively few proteomic analyses of the MScl mouse model cuprizone have been 

performed. In particular, in a study published in 2009, proteomic analysis of cuprizone-

fed mice revealed a decrease of myelin proteins such as claudin-11, a marker for 

oligodendrocytes, and myelin-associated-glycoprotein after six weeks demyelination. 

Furthermore, the astrocyte and gliosis protein glial fibrillary acidic protein (GFAP) 

increased during demyelination and decreased during remyelination. After six weeks 

of cuprizone administration, several mitochondrial proteins were changed. Thus 

showing that proteomics could detect cuprizone-induced changes 117-119. A more recent 

proteomic study detected microglia activation in the cuprizone model after six weeks 

demyelination, and confirmed little overlap between the animal models cuprizone and 

the inflammatory model EAE 120.  

1.5.5 Natalizumab monitoring treatment biomarkers from 
proteomics 

Few mass spectrometry-based studies have been published investigating the proteome 

of patients during treatment 42, 121. The effect of the Natalizumab treatment on the CSF 

proteome have been previously studied, and indicated that Immunoglobulin heavy 

constant mu (IGHM), haptoglobin and CHI3L1 could be possible treatment biomarkers 

as they decreased after one year of treatment 42.  
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1.6 Mass spectrometry-based proteomics 

Mass spectrometry-based proteomics can be split into two main approaches: top-down 

and bottom-up. In top-down proteomics, intact proteins are investigated by mass 

spectrometry, while in bottom-up proteomics, proteins are cut into smaller entities 

called peptides prior to the mass spectrometry analysis. The analysis of proteins 

through peptide-surrogates in bottom-up proteomics is currently more common than 

the top-down approaches, as peptides are more easily separated by liquid 

chromatography, are commonly within the mass range observable by the mass 

spectrometer, and are more easily identified by mass spectrometry than full length-

proteins 122.  

In addition to these two main approaches, peptides that are already in the sample, e.g., 

waste products or signal peptides, can also be analyzed by mass spectrometry. These 

methods, often referred to as peptidomics, have gained popularity over the last years, 

for example as a means of conserving information about naturally occurring peptides 

(endopeptidome) in Alzheimer’s disease 123, 124. 

The peptide-centric approach is however not without its challenges, as peptides are not 

necessarily unique to one protein (referred to as the protein inference problem), thus 

significantly increasing the complexity of the downstream data analysis 125. Cutting 

proteins into peptides can also introduce variation in peptide abundances between 

samples 126. Furthermore, only rarely is the full protein sequence detected, making it 

challenging to investigate the different proteoforms 127. Though several advances have 

been made in the top-down approach in recent years 128-131, bottom-up proteomics still 

dominates the field of mass spectrometry-based proteomics, and will be the focus in 

the following. A generalized view of the bottom-up mass spectrometric workflow can 

be seen in Figure 3. 
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Figure 3: General workflow for the identification of proteins in bottom-up mass spectrometry. 

1.6.1 Liquid chromatography 

Liquid chromatography (LC) is a technique commonly used in analytical chemistry to 

separate or isolate molecules. Many different versions are available, depending on the 

analyte to be isolated and the sample type used. During analysis, the peptides to be 

analyzed are loaded onto an analytical column containing a hydrophobic stationary 

phase, where the peptides will interact with varying affinity to the solid phase, mainly 

based on their hydrophobicity and length. Typically, a gradient of solvent (mobile 

phase) with increasing hydrophobicity is applied to the analytical column, allowing the 

migration of peptides through the analytical column based on their solubility in the 

mobile phase. As the solid solvent is hydrophobic and the mobile phase is polar, it is 

the opposite of normal phase chromatography, and consequently the method is termed 

reverse-phase chromatography 132. Furthermore, as the flow of the mobile phase is 

controlled by pumps, it is called high performance liquid chromatography (HPLC) 133.   

The chromatographic gradient can be optimized to reduce the number peptides that co-

elute from the column, thereby increasing the number of peptides that can be identified 

by the mass spectrometer. The resolution of LC columns was further enhanced by 

nano-LC, nano referencing the flow rates in nanoliter/min as opposed to the commonly 

used microliter per minute HPLC setups. Nano-LC columns have a small internal 

diameter allowing optimal peak separation and analysis of low amounts of sample 134. 

Importantly, chromatographic separation should be stable across runs so that the time 

it takes from sample injection to the measurement of the peptide by the mass 

spectrometer under the given chromatographic conditions (i.e., peptide retention time) 
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is comparable 135, 136. Reproducible chromatography is important to ensure analytical 

stability in LC-based mass spectrometry. 

1.6.2 Mass spectrometry 

A mass spectrometer consists of an ion source, a mass analyzer and a detector. The 

output from a mass spectrometer is a set of mass spectra, where a molecule’s mass to 

charge ratio (m/z), is plotted against its intensity, commonly used as a measurement of 

abundance 122. The mass spectrum can be used for identification and quantification of 

a variety of molecules, including metabolites, peptides and proteins. Within the field 

of proteomics, there are several types of mass spectrometers varying in mass accuracy, 

speed, sensitivity, and mass range, depending on the components used.  

Mass spectrometry analyses of macromolecules such as peptides, proteins and lipids 

became possible through the invention of soft ionization techniques in the 1980s, 

allowing the ionization of such molecules without resulting in fragmentation. The two 

ion sources most commonly used in proteomics are matrix assisted laser desorption 

ionization (MALDI) and electrospray ionization (ESI) 122.  

In MALDI, the sample is immersed in a crystalline matrix, and ionized by laser 

pulsation. Historically, MALDI has been used in the analysis of low complexity 

samples 122, however, it can also be combined with histology, immersing tissue in the 

crystalline matrix followed by mass spectrometry analysis, as is done in MALDI 

imaging mass spectrometry (as reviewed in 137). Given that the sample is intact 

following analysis, MALDI imaging enables histological examination of the tissue 

even after MALDI-MS. Furthermore, three-dimensional maps can be made of the 

protein expression in the investigated tissue.  

Unlike MALDI, ESI ionizes samples in their liquid state, and is commonly coupled to 

the continuous flow of LC columns. Molecules eluting from the analytical column is 

subjected to high voltage, the resulting ions are dispersed as a fine spray of charge 

droplets, followed by solvent evaporation and ion entry into the mass analyzer. 

Notably, there is a battle for the charges for the eluting peptides in ESI, meaning that 
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the optimal sensitivity for such systems is obtained when only a low number of analytes 

elutes from the analytical column at the same time 138.  

The mass analyzer separates the molecules by their mass to charge ratio (m/z), and the 

detector registers the number of ions for each m/z value, thereby collecting the data 

needed to generate the mass spectrum. Commonly the mass analyzer and detector are 

integrated. There are several types of mass analyzers. Typically, MALDI is coupled to 

time-of flight mass analyzers (MALDI-TOF). The first TOF analyzers appeared 

commercially in the 1960s, and their use expanded after the introduction of the soft 

ionization techniques mentioned above. Here, molecules are dispersed by their speed 

across an electric field in vacuum, where small molecules travel with the highest 

velocity and therefore reach the detector first.  

In 2005, the first Orbitrap mass spectrometer was released commercially. In the 

Orbitrap, ions are trapped in an electrostatic field, orbiting an axial electrode. The 

oscillations of the charged molecules are detected, and transformed into mass spectra 

using Fourier transformation 139, 140. The Orbitrap has an unparalleled mass accuracy, 

but is slower than the TOF technology. A third mass analyzer, namely the quadrupole 

consists of four electrodes that, in addition to measuring the mass of ions, work in 

concert so that only ions within the selected mass range is stable in the electrostatic 

field. Mass spectrometers containing different mass analyzers, hybrid mass 

spectrometers, are commonly equipped with a quadrupole as the first mass analyzer. 

For example, the TOF has been coupled to a quadrupole, creating a Q-TOF that can be 

linked to a wide variety of ion sources including ESI. Also, the Thermo Q-Exactive 

series contain both a quadrupole and an Orbitrap mass analyzer.  

Tandem mass spectrometry 

In the beginning of mass spectrometry proteomics, the mass and intensity of peptides 

were collected and used for protein identification, through a method called peptide 

mass fingerprinting 141. However, as all peptides are built from combinations of the 

same twenty amino acids, several non-identical peptides can have identical masses, and 

the method was therefore limited to the analysis of low complexity samples.  
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In tandem mass spectrometry, referred to as MS/MS, information about the amino acid 

sequence of a peptide is collected, increasing both the identification confidence and 

throughput. Specifically, an MS-scan (MS1) is collected for the intact peptide which is 

then isolated and transported to a collision cell. Here, the peptide is fragmented, 

commonly by gas bombardment, generating different fragments (Figure 4) depending 

on the method of fragmentation. As the ion types affect the observed mass, they are 

essential for correct peptide identification in subsequent data analysis. Importantly, the 

fragment is dependent on retaining a charge during fragmentation to be observable by 

MS/MS. Common collision cells include collision induced dissociation (CID) and 

higher-energy CID (HCD), collision methods that both result in mainly b-and y-ions, 

and Electron-transfer dissociation (ETD) that result in mainly c- and z-ions.  

 

Figure 4: Nomenclature for sequence ions of peptides in mass spectrometry. Here, the peptide 

bonds connecting a four amino acids long peptide is shown, the variable side chains of the amino acids 

are designated R1-R4, the possible ions that can be generated are indicated. N-terminal ions a-c are 

complementary to C-terminal ions x-z. For instance, breaking of the peptide bond between the carbonyl 

and nitrogen between residue R1 and R2 creates the ions b1 and y3.  

Following fragmentation, the variably-sized fragments are transported back to the mass 

analyzer for a second MS scan (MS2). Depending on the sample complexity and 

analysis strategy, millions of mass spectra can be collected for each sample. 
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Data-dependent and data-independent mass spectrometry 

High-throughput mass spectrometry can have different approaches in selecting 

peptides for fragmentation, commonly called data-dependent and data-independent 

acquisition, DDA and DIA, respectively. In DDA, the most intense ions in an MS1 

spectrum are selected for isolation and sequential fragmentation by the mass 

spectrometer. Thus, information from the MS1 spectrum is used to pick precursors for 

fragmentation on the fly. Precursors not selected for fragmentation thus cannot be 

identified downstream in one isolated sample. Due to the degree of randomness of the 

method and chromatographic dependency, the peptides targeted for fragmentation in 

one sample are not necessarily targeted for fragmentation in all samples in an 

experiment, or even in multiple injections of the same sample 142-144.  

Certain mass spectrometry methods aim to fragment everything in each MS1 spectrum. 

Here, all peptides (precursors) within a pre-determined mass window are collectively 

fragmented, yielding complex MS2 spectra containing fragments from multiple 

precursors. As this approach is not dependent on the signal observed in the MS1 

spectrum, it is therefore called data-independent acquisition (DIA) (Thermo) or 

Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH)(SCIEX). 

These methods quantify peptides based on their MS2 intensities, and have increased 

quantification accuracy compared to DDA methods 145. Several techniques exist, all 

with different names 146, 147, but the principle is the same: aiming to include all of the 

peptide information in the sample.  

Notably, narrow window DIA can achieve quantification of the proteome with superior 

dynamic range 148. As mass spectrometers get faster, it is estimated that the isolation 

window will approximate those used in DDA for all the peptides in a sample. However, 

this is not yet possible without multiple sample injections. Albeit promising, DIA is 

currently limited by its ability to identify low abundant peptides, and the development 

of tools to ensure precise identification, among others 146. In this thesis, data-dependent 

mass spectrometry is used. 
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1.6.3 Quantitative proteomics 

Quantitative proteomics aims to quantitatively compare proteins between samples, e.g., 

comparing the abundance of one or more proteins between healthy and diseased 

subjects. Quantitative proteomics can further be divided into two different approaches, 

namely discovery and targeted proteomics. Discovery proteomics utilizes the high-

sequencing speed of mass spectrometry, enabling analysis and quantitative comparison 

of thousands of proteins across samples, while targeted analysis utilizes the selectivity 

and sensitivity of mass spectrometers, quantifying fewer pre-determined targets with 

high accuracy even at low concentrations across samples. Notably, methods are also 

available that combine the two, in particular DIA challenges this separation. 

Furthermore, peptides can be labelled prior to analysis either by isobaric (TMT, 

iTRAQ) or metabolic incorporation of stable isotopes (Stable Isotope Labeling by/with 

Amino acids in Cell culture (SILAC)), or not labeled at all (label-free). As TMT and 

intensity-based label-free quantification (with and without an internal standard) are 

used throughout this thesis, they will be the focus in the following. 

Tandem mass tag 

Tandem mass tags were first introduced by Thomson et al. in 2003 149. The method 

quantified peptides in multiple samples directly in the MS2 spectra, and showed 

increased signal to noise and fewer missing values compared to traditional MS1 

quantification 149. This was achieved through the use of tandem mass tags (TMT) that 

chemically label individual samples during sample preparation prior to LC-MS/MS 

analysis. The chemical tag consists of an amine-reactive group, mass normalizer and a 

mass reporter. During labelling, the amine-reactive group enables covalent linking of 

the tag to primary amines (the N-terminal and lysine amino acids) of peptides or 

proteins in the sample. The elemental composition and collective mass of tag is the 

same for all TMT reagents in a kit, ensuring that peptides with different labels are 

equally affected by sample preparation 149. Therefore, the samples can be combined 

after individual labelling which minimizes variation introduced by downstream sample 

preparation, and enables extensive sample fractionation.  
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As the placement of heavy nitrogens and carbons vary in the mass reporters (and the 

balancing mass normalizer), the mass reporters have different isobaric masses that are 

distinguishable by high-resolution mass spectrometry. During fragmentation in LC-

MS/MS analysis, the mass reporters are cleaved off prior to MS2 acquisition. 

Resultingly, the peptide fragmentation in the high molecular area of an MS2 spectra is 

used for peptide identification, while the mass reporters in the low molecular area are 

used for relative quantification of the peptide across the individual samples (Figure 5). 

Furthermore, given an extra fragmentation of the highest intensity MS2 peaks, peptides 

can be quantified in the MS3 spectrum. 

 

Figure 5: Peptide identification and quantification by tandem mass tags. Samples are individually 

labelled and simultaneously analyzed by LC-MS/MS. The spectrum is used for peptide identification 

and the sample-specific mass reporters in the low m/z area enables relative quantification.  

The number of samples that can be tagged in one kit has recently expanded to 16 150. 

Quantification of more than 16 samples by TMT is also made possible by so-called 

TMT multiplexing – a method where several TMT kits are used, and identical reference 

samples within each kit is used to enable comparison of samples across TMT 

experiments.  
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Intensity-based quantification – extracted ion chromatograms 

Commonly, a peptide elutes from the analytical column in a retention time interval, 

during which the mass spectrometer measures the peptide several times. In intensity-

based quantification, a continuous curve is fitted to the discrete measurements of 

intensity over time, called an extracted ion chromatogram (XIC). Integration of the area 

under the curve for the ion intensity over time is subsequently used for quantification. 

An XIC can be estimated for MS1 signals and MS2 fragment spectra, depending on the 

analytical approach. The high mass accuracy and speed of the mass spectrometer 

enables accurate quantification, even in complex samples 151. A simplified XIC and an 

example of an experimentally-derived MS2 XIC can be seen in Figure 6A and B, 

respectively.  

 

Figure 6: Extracted ion chromatograms. A) Simplified view of intensity-based quantification in MS. 

The intensity for a given mass is collected over time and extracted from MS spectra as discrete 

datapoints (dots). An ion chromatogram is extracted (an XIC), and the abundance calculated as the 

area under the curve (AUC). B) Example of XICs generated from MS2 spectra of a peptide as seen 

during targeted data analysis. Here, the eluting peptide is represented by XICs of seven fragment ions 

(one color each). Picture: A) Homemade, B) Skyline 152. 

Label-free discovery proteomics 

Discovery proteomics aims to quantify as many proteins as possible in a sample and is 

commonly used in the exploratory search for disease biomarker candidates 153. In label-

free quantification, peptide abundances are calculated from MS1 signals, using MS2 

solely for identification. This quantification method is vulnerable to changes in 
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chromatography, and off-line fractionation is usually avoided, commonly yielding 

fewer identified and quantified proteins than experimental workflows that allow 

extensive fractionation. However, label-free analysis requires few samples preparation 

steps, and enables the analysis of a large number of samples, and is, perhaps, the most 

straightforward way to perform discovery-based LC-MS/MS 154. 

Targeted proteomics 

In contrast to discovery proteomics, targeted proteomics aims to quantify a limited set 

of pre-selected targets with great sensitivity, reproducibility and quantitative accuracy 

155. Whereas discovery proteomics is usually applied to scan the proteome to find 

possible biomarkers for a specific disease, targeted proteomics is commonly used for 

the validation and verification of biomarker candidates. Here, one or more fragment 

ions are measured to get an accurate estimate of abundance for the peptide across 

samples. Commonly, several peptides are measured for each protein.  

Targeted experiments can be conducted for relative or absolute quantification of 

analytes, depending on the addition and purity of internal standards. Filling a niche 

between antibody-based detection, such as ELISA, and discovery proteomics, targeted 

proteomics was selected as Method of the Year in the prestigious journal Nature 

Methods in 2013 155. Several targeted proteomics techniques are available, namely 

MS1 targeted methods such as selected ion monitoring (SIM), and MS2 targeted 

methods such as single reaction monitoring/multiple reaction monitoring 

(SRM/MRM), and parallel reaction monitoring (PRM) 156. As MS2 targeted methods 

are used in this thesis, it will be the focus in the following. 

SRM/MRM is performed on triple-quadrupole instruments. In these methods, each 

peptide fragment is pre-selected and measured individually by mass spectrometry. In 

PRM on the other hand, all fragments are analyzed together, yielding MS2 spectra 

similar to that obtained by MS/MS. Resultingly, only peptide masses have to be 

specified prior to analysis, making the procedure less cumbersome. As the PRM 

method is commonly conducted using hybrid mass spectrometers such as quadrupole 
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orbitrap or quadrupole TOF instruments, PRM has a higher mass accuracy and 

consequently higher selectivity than SRM/MRM methods 156, 157. 

Targeted quantification using internal standards 

Depending on the aim of the targeted experiment, internal standards can be added to 

normalize differences introduced during LC-MS/MS analysis and improve quantitative 

accuracy 126. Such internal standards are usually synthetic peptides labelled with stable 

isotopes analogous to the peptides of interest. Commonly, stable isotopically labelled 

peptides (SIL-peptides) are identical to the peptide of interest, except that the C-

terminal amino acid (lysine or arginine in tryptic peptides) contain carbons and 

nitrogens with an extra neutron. This subtle difference adds to the mass of the synthetic 

peptides, otherwise maintaining their biochemical properties. Therefore, the synthetic 

standards will be similarly affected by chromatography and mass spectrometric 

analysis as the endogenous analyte, but the mass difference will be observable by mass 

spectrometry.  

The SIL-peptide(s) can thus be used to normalize differences in abundance introduced 

by technical variance. During data analysis, the endogenous peptide is compared to that 

of the SIL-peptide added in known amount to determine the amount of endogenous 

peptide in the sample (Figure 7). Depending on the purity of the internal standard, it 

can be used to determine the concentration of a peptide in a clinical sample (absolute 

quantification), or it can be used for accurate relative quantification 126. 
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Figure 7: Intensity-based quantification of the peptide DYAEVGR from human haptoglobin 

during Natalizumab treatment. The endogenous peptide (XIC in red) elutes simultaneously as the 

stable isotope labelled (SIL) peptide (XIC in blue). A) Prior to treatment, the endogenous peptide is 

more abundant than the SIL-peptide. B) during treatment the abundance of the endogenous peptide 

decreases. Figure: Skyline 152. 

Calibration curves 

It is important to determine the lowest concentration where a specific peptide can be 

quantified under the given experimental conditions. Commonly, a calibration curve is 

generated, varying the concentration of the peptide in question, keeping the levels of 

the corresponding SIL peptide constant, and measuring the signal response from the 

mass spectrometer. As the endogenous peptide is often inherent to the matrix one wants 

to measure, calibration curves are commonly generated in a surrogate matrix. At a 

certain concentration, the analyte is discernibly higher than the background noise. This 

concentration value is commonly referred to as the level of detection (LOD. 

Furthermore, the level of quantification (LOQ) and the upper level of quantification 

(ULQ) are the lowest and highest concentration where the analyte can be accurately 

quantified, respectively. The LOQ and ULQ delimits the linear area of the graph, 

spanning the concentrations of analyte that can be used for quantification. Commonly, 

calibration curves span at least two orders of magnitude and rarely are both the LOQ 

and ULQ detected. Several statistical methods exist to estimate the LOD and LOQ 158, 

159. An example of an experimentally generated calibration curve can be seen in Figure 

8. 
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Figure 8: Calibration curve for the peptide TNQVNSGGVLLR of the protein complement 

component C1q subcomponent C. The calibration curve was based on processed duplicates. The 

measuring points used in the estimation of the weighted regression line is in black, whereas excluded 

points are in grey. A) Full calibration curve. B) The same calibration curve as in A, but zoomed to give 

a better impression of linearity in the low fmol area. 

1.6.4 Sample preparation 

Bottom-up mass spectrometry can be used to analyze a multitude of biological samples 

such as blood, urine, CSF, and cell lines. Common steps in sample preparation are 

outlined in Figure 9, and include protein denaturation, reduction of cysteine bridges 

followed by alkylation and trypsination. Finally, the sample is desalted prior to LC-

MS/MS analysis. If proteins are in a matrix that interfere with trypsination, processing 

steps might be required prior to sample preparation. Similarly, if labelling strategies 

are applied, the sample preparation can also include labelling and fractionation steps. 
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Figure 9: Sample preparation steps in bottom-up proteomics. 

Protein digestion 

Sample preparation for bottom-up mass spectrometry include sample denaturation and 

alkylation followed by digestion of proteins into peptides. The transition from protein 

to peptides is commonly facilitated by the addition of trypsin, an endopeptidase that 

cut protein sequences C-terminally to the basic amino acids lysine (K) and arginine 

(R). Trypsin digestion results in an estimated average of 61 peptides per protein with 

an average of nine amino acids in length, optimal for mass spectrometry analysis 160. 

Furthermore, tryptic peptides include at least one basic residue (i.e., R or K) that 

enhances peptide ionization and peptide fragmentation 160. However, the extensive use 

of trypsin commonly restricts the sequence coverage obtainable by mass spectrometry, 

and the proteins observable 161. Several alternate proteases can be used, depending on 

the protein or proteoform you wish to study. Alternate proteases commonly yield 

longer peptides than trypsin 162, as such, combining these enzymes with trypsination 

can increase the number of identifications 163. In any case, the digestion step is time-

consuming commonly extending sample preparation by 16h.  The time it takes for 

peptides of the same protein to be fully cleaved varies, however, and for some peptides, 

prolonged incubation times leads to peptide degradation or chemical modification 

which decreases the peptide signal, while other peptides are not fully cleaved even after 

prolonged incubation times (Figure 10). 
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Figure 10: Optimal digestion time vary greatly for peptides of the same protein and affect peptide 

and protein quantification. Mean of three processed replicates is represented for digestion times 1, 

5, 16, 25 and 30 hours. Error bars represent the minimum and maximum values. The signal is for each 

peptide is normalized by an internal standard (L/H). Dotted lines indicate a difference in peptide 

quantification of more than 20% after 16 h digestion. A) Quantification of two peptides representing 

the protein immunoglobulin J chain show that one peptide (light blue) is readily trypsinated with little 

increase after only one hour, whereas the other peptide (pink) increases throughout the measured time 

interval. B) Quantification of two peptides of the protein complement C1q subcomponent subunit C 

behaves similarly (dark blue, red) and is readily trypsinated after 16h, whereas the third peptide (green) 

decreases after incubation times longer than 5h. 

Sample preparation in experiments aiming to determine the absolute concentration of 

analytes is dependent on controlling this digestion step to get an accurate quantification 

of the peptides 126. Similarly, quantification between, for example, disease groups are 

dependent on insignificant variation in enzyme digestion. To ensure complete tryptic 

digestion, sample proteins are denatured and cysteine residues alkylated prior to 

enzymatic digestion during sample preparation (Figure 9). A viable way to account for 

variation introduced by digestion, is to use SIL peptides that have to be digested prior 

to detection, thereby able to account for differences in protein digestion downstream 

126.  

SIL peptides for targeted experiments 

Depending on the biochemical properties and chromatography of the peptide, equal 

analyte concentrations yield different intensity signal. SIL peptides are commonly 
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added in the same concentration as the endogenous analyte. Estimation of an 

approximate SIL concentration equal to that of the endogenous peptide in the sample 

(1:1) should be performed prior to analysis. As peptide concentrations can be sample-

specific, these estimates are commonly performed on sample pools. Subsequently, SIL 

peptide mixes are generated prior to sample preparation. The SIL mix is added to the 

samples, either prior to enzymatic digestion, sample clean-up or directly prior to 

MS/MS analysis. The addition step is determined by the type of SIL-peptides and the 

solution they are in. Some SIL peptides require enzymatic cleavage, either due to a 

chemical tag (e.g., peptides from jpt), peptides flanking the peptide sequence, or that 

the entire protein is heavy. Other SIL peptides do not need enzymatic cleavage, but are 

in a solution that can interfere with chromatography. Adding the standards early in the 

workflow will allow them to account for more of the variation introduced by the sample 

preparation 126.  

As PRM-MS methods mainly measure peptides of interest that are hypothesized to be 

different between samples, global normalization methods to adjust for technical 

variance is commonly not performed. Therefore, this targeted analysis is quite 

vulnerable to biases introduced by sample preparation prior to addition of SIL peptides, 

and to differences in the addition of SIL peptides themselves. Here, reproducibility can 

be greatly enhanced by automation and pipetting robots. In any case, including 

processed replicates, e.g., replicates of the same sample that have been prepared 

individually, will give an indication of technical variation and reproducibility. 

Furthermore, including proteins in the targeted study that are hypothesized not to 

change can serve as an additional verification of discovery results. 

Fractionation 

In the early days of MS/MS, two-dimensional gel electrophoresis was used to separate 

proteins prior to trypsination and MALDI-MS analysis 122. By adding this fractionation 

step, the complexity of the sample was reduced and more peptides and proteins could 

be identified downstream. Due to improvements in technology, liquid chromatography 

has largely replaced two-dimensional gel electrophoresis as it is generally more 

sensitive and has better reproducibility 94. 
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Additional methods to reduce sample complexity can also be introduced prior to LC-

MS/MS analysis. For example, sample fractionation can be performed at the protein 

level, either by molecular weight cut-off filters 123 or through immunodepletion of high 

abundant proteins in a sample 75. Fractionation can also be performed at the peptide 

level via off-line LC exploiting the chemical abilities of the peptides. In particular, 

mixed-mode (MM) LC systems can separate peptides based on more than one physical 

property, e.g., by combining reverse-phase chromatography with cation or anion 

exchange chromatography (SCX and AX, respectively) 164, 165. Furthermore, 

enrichment strategies are recommended for the analysis of post-translational 

modifications and can be performed at both the protein and peptide levels, often in 

combination with off-line fractionation methods 166.  

Thus, depending on the analysis, fractionation steps can either enrich the sample for 

the proteins or peptides of interest, and/or be used to increase the proteome depth by 

decreasing the sample complexity. However, adding additional sample preparation 

steps affect the analysis downstream by introducing variation between samples. Thus, 

fractionation is most often avoided in quantitative label-free analyses, but is commonly 

performed downstream of sample collection in chemical labelling strategies such as 

TMT. 

1.7 Immunohistochemistry 

Histological sections are commonly used to investigate biopsies and guide treatment 

decisions 167. With this approach, thin tissue sections can be stained by a wide number 

of histological stains to envision tissue structures or cell populations of interest. For 

example, the staining Luxol fast blue (LFB) can be used to envision myelin in formalin-

fixed material 168. Immunohistochemistry (IHC) uses highly specific antibodies to 

detect proteins of interest on histological sections and is often combined with 

histological staining to determine the cellular localization of the proteins of interest 167. 

Furthermore, quantitative or semi-quantitative scoring systems are used to compare 

biological events across histological sections 169, 170. Thus, IHC can be used to 
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investigate the effect of drugs on de- and remyelination in the CNS by measuring 

established markers of demyelination and macrophage activation in mouse models. 

1.8 Bioinformatics in quantitative proteomics 

1.8.1 Identification and quantification 

In label-free discovery proteomics, several thousand MS1 and MS2 spectra can be 

collected in a single tandem MS run, and thankfully, software tools are available to 

untangle the information gathered in these spectra. The identification of peptides is 

performed by bioinformatics tools called search engines 171. Commonly, the user 

provides a database for the spectra to be searched against, expanded with non-existent 

protein sequences called decoys 172. The search engine then matches the in silico 

digested protein sequences to the experimentally gathered spectra and gives each 

comparison a score to imply identification confidence. Several search engines have 

been developed for this purpose (e.g., 173-176).  

Subsequent analysis of the results uses the decoy hits to set an identification score 

threshold commonly allowing 1% false discoveries. This score on the level of peptide-

spectrum matches (PSM) is then combined to the peptide and protein level. Thus, 

protein identification is a statistical exercise, with false/true positives/negatives that 

does not require manual input. As this identification procedure may pose somewhat of 

a black box problem, software tools should allow the inspection of identifications and 

provide open-source bioinformatic pipelines 177. An example of an identified MS2 

spectrum with annotation (annotated mass spectrum) and the peptide identified can be 

seen in Figure 11A and B, respectively. 
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Figure 11: Annotated mass spectra of the peptide AALAHSEEVTASQVAATK from human 

plectin. A) MS2 spectra with m/z values (x-axis) and intensities (y-axis). The b and y ions used to 

identify the peptide are shown in red, mass values not used for identification are in grey. B) The 

sequence of the peptide identified by the mass spectrum in A. The annotated b and y ions and their 

spectrum intensity are represented by bars in blue and red, respectively. Picture: PeptideShaker 178, 

with modifications. 

In label-free discovery proteomics, retention time alignment is pivotal for correct 

identification and quantification of peptides across runs 179. Furthermore, algorithms 

perform signal normalization, reducing technical variability 154, 179. Resultingly, 

bioinformatics tools are key for both identification and quantification of high-

throughput label-free discovery data. Software often covers the entire pipeline of both 

identification and quantification such as the freely available MaxQuant 180 and the 

Trans-Proteomic Pipeline 181, or commercial software such as Proteome Discoverer 

(Thermo) and Progenesis LC-MS (Waters). 

Though advances have been made in the identification and quantification of PRM data, 

it is still largely based on manual assessment of peak quality made possible by software 

such as Skyline 152, 182. Here, identification is based on peptide elution, fragment order 
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and mass accuracy compared to previously stored annotated spectra, stored in a spectral 

library. Also, if a SIL peptide is added, it provides additional identification confidence. 

The transparency of the results thus removes black box issues common for high-

throughput discovery proteomics and low-throughput immune-assays.  

Online storage of data from discovery and targeted proteomic experiments have 

become increasingly popular, and in some instances demanded, via repositories such 

as PRIDE 183 and Panorama 184, allowing data sharing and re-analysis 185, thereby 

increasing the transparency of mass spectrometry-based proteomics experiments. 

1.8.2 Functional analysis and data visualization 

The identification and quantification of a large number of analytes can be 

overwhelming for any researcher. Helped largely by statistical approaches, the dataset 

is commonly reduced to proteins that are changed between the measured groups. With 

the growing amount of literature on protein function and interaction, retrieving the 

information for several hundred proteins can be an immense task. Luckily, databases 

exist that collect information about protein interactions, functions and/or cellular 

location taken from literature and structure this knowledge into freely available 

databases that allow a researcher to investigate whether their protein, or list of proteins 

of interest have a specific biological interpretation. The databases are overwhelmingly 

gene-centric, hence information about proteoforms is largely overlooked. Furthermore, 

the researcher is dependent on these databases being updated 186, correctly annotated 

and containing the proteins of interest.  

Several freely available tools exist for this type of annotation. Perhaps most widely 

used is the UniProt Knowledgebase 187, an online repository for protein information 

including function and sequence information. Sequence databases from UniProt is 

commonly used in the analysis of discovery proteomics data. Furthermore, the Gene 

Ontology (GO) database 188, 189, aims to provide a standardized vocabulary for the 

annotation of the biological function, cellular process, and molecular function of genes. 

The release from February 2021 contained close to eight million annotations of 44 000 

terms for 1.5 million gene products and close to 5000 species (geneontology.org/stats).  
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As well-known to most cellular biologists, protein functions are commonly structured 

into larger reaction chains termed pathways. Here, protein interactions are manually 

curated from literature and stored into specialized databases. Commonly, these 

interactions are further curated and included in larger frameworks like Reactome 190, 

191, KEGG 192 and the commercially available Ingenuity Pathway Analysis (QIAGEN). 

Recently, the Reactome database has been expanded to include individual reactions for 

isoforms and post-translational modifications, through a tool called PathwayMatcher, 

thereby increasing the granularity of the pathway information 193. 

Determining the significance of the annotation of both GO terms and Reactome 

pathways is commonly done by overrepresentation analysis (as detailed in 194). In this 

approach, proteins in the dataset are first matched to a database, and in a subsequent 

analysis a biological process or pathway can be enriched in the list of input proteins, 

compared to what is expected from the background. Hence, providing a background 

(e.g., all proteins in your sample) is of importance and should be provided if allowed 

by the tool.  

Commonly, the results are provided to the user as a table containing the enriched terms 

or pathways. Though databases aim to be visual and interactive, it is commonly hard 

to inspect such data. The Cytoscape software platform 195 enables the creation and 

analysis of protein-protein networks, and integration with experimental abundance data 

that allow visual inspection and user interaction. Furthermore, it provides visualization 

of the most interesting findings for inclusion in the resulting publication. Protein-

protein interactions are commonly illustrated as interaction networks where the protein 

(gene) is a node, and the interaction is a line between two nodes. Two examples of this 

type of visualization can be seen in Figure 12.  

Finally, the STRING 196 database aims to link information stored in databases such as, 

but not limited to BIND, DIP, GRID, HPRD, IntAct, MINT, and PID, curated data: 

Biocarta, BioCyc, GO, KEGG, and Reactome, and even literature abstracts, to enable 

generation of protein networks based on the combined evidence of physical and 

functional interactions.  
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Figure 12: Visualizing the annotation of pathways and biological functions. Each gene is 

represented by a sphere (node), and the functional interaction between them is a line (edge). The node 

is labelled by the gene name. A) The Reactome pathway “complement cascade” overlain with 

abundance data from a proteomics experiment. Here, many but not all proteins in this pathway were 

measured in the dataset, and the proteins that were trusted to change (FDR<0.05) were reduced. B) A 

STRING network show that many of the proteins in the query list are known to interact functionally 

or physically. GO biological process (GOBP) enrichment reveal that many proteins in this network 

have neurological function. Picture: ReactomeFIViz, StringApp, Cytoscape. 

1.8.3 Databases for protein biomarkers 

Knowing how the proteins in your dataset have been changed in previous studies of the 

same disease can provide valuable information for biomarker discovery studies. 

Commonly, the results of MScl biomarker studies are presented as a short list of the 

most changed proteins, and the full dataset is either stored in large supplementary tables 

or in online repositories such as PRIDE. Therefore, a large effort is needed to see 

whether the proteins have previously been found affected by the disease. Furthermore, 

it is also highly interesting to know whether the proteins have been found changed in 

related diseases.  

Due to the increase in data accompanying proteomics experiments, this information is 

not always easily accessible in a journal’s publication format. As an example, the 

proteins that are found not to change can be highly valuable information for these types 

of analyses, but rarely makes it into the short protein list in the publication. To address 

this issue, CSF-PR 2.0 97 collected the results from MS-based proteomics studies of 



 48 

neurological diseases. Mainly MScl, but also AD, PD, and ALS. When launched in 

2017, the database included 85 datasets with over 2000 proteins, and has since been 

expanded to include 128 datasets with over 4000 quantified proteins. The datasets have 

been extracted from published literature and supplementary tables, and made accessible 

in a user-friendly resource, allowing the user to browse through MS-based proteomics 

results based on the disease, protein or study of interest. When available, even 

information down to the peptide level is provided. Furthermore, the results can be 

exported, and even compared to the user’s own dataset 197.  

Other databases are available to help the selection of proteins and peptides for targeted 

assays by collecting information from online repositories, even streamlining the 

generation of SRM/MRM assays against FDA approved biomarkers 198. Thus, 

collection of proteomics data in such databases provides easy access to complex data 

and offers information that can be used in future proteomics experiments, in particular 

for targeted assays and biomarker validation. 
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2. Aims of the study 

The overall aim of the work presented in this thesis was to get a better understanding 

of the effects of the two MScl treatments Fingolimod and Natalizumab. First, through 

the investigation of the effects of Fingolimod treatment on de- and remyelination in the 

MScl mouse model cuprizone. Next, by building robust PRM-assays to investigate a 

selected set of MScl biomarker candidates known to be affected by the disease. And 

finally, use the developed assays to investigate the disease-relevance of proteome 

changes in MScl patients receiving Natalizumab treatment.  

The aim for each study was as follows:  

Paper I: Investigate if there is an additional benefit of Fingolimod treatment in the 

CNS, by comparing the proteome of Fingolimod-treated mice to placebo in the de- and 

remyelinating mouse model cuprizone.  

Paper II: Build robust assays against promising MScl biomarker candidates, with the 

long-term goal of creating a panel of biomarkers to be used for disease-monitoring in 

clinical practice. 

Paper III: Investigate proteome changes of patients undergoing Natalizumab 

treatment by proteomics discovery, verify the changes, and interpret the findings in an 

RRMS context by comparison to online datasets in CSF-PR 2.0.  
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3. Summary of papers 

Paper I: To investigate the effect of Fingolimod on the remyelination process, 

cuprizone was fed to C57Bl/6 mice which were then treated by Fingolimod or placebo 

to investigate the effect on de- and remyelination via quantitative proteomics and 

immunohistochemistry (IHC). The mice were fed 0.2% cuprizone chow for six weeks 

to facilitate demyelination prior to switching to normal chow for the investigation of 

re-myelination. The effects of Fingolimod to placebo were investigated after six weeks 

of demyelination, and then one and three weeks after reintroducing normal chow 

(remyelination). Proteomics analysis revealed a downregulation of sphingosine 

receptor 1 in the brain of Fingolimod-treated mice at all timepoints, and IHC analysis 

detected an increased number of oligodendrocytes after three weeks of remyelination. 

The combined evidence from IHC and proteomics analysis however showed no 

significant differences of Fingolimod treatment on the degree of remyelination, axonal 

loss or damage compared to placebo. 

Paper II: To utilize the information in the CSF-PR 2.0 database, biomarker candidates 

from the database were selected for assay generation to enable high quality 

quantification for future validation of biomarker candidates. Specifically, 25 proteins 

and 72 peptides were selected for assay-building based on the CSF-PR score, suitable 

dynamic range of the assay and biological annotation. The peptides were subsequently 

evaluated based on the inter- and intra-day trypsination reproducibility, optimal 

trypsination time, and ability to discriminate between MScl and other neurological 

diseases (OND) in a pilot study. Resultingly, 37 peptides from 21 proteins were 

included in the assay, including proteins with immunological and neurological activity. 

The development of calibration curves and the determination of the linear area was 

performed for 17 of the peptides. 

Paper III: To investigate the effect of Natalizumab on the CSF proteome, CSF was 

sampled from patients undergoing Natalizumab treatment and investigated by 

discovery and verification proteomics. Proteomics discovery of 56 patients undergoing 

Natalizumab treatment revealed changes in immunological and neurological proteins 
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including many known biomarker candidates in MScl and proteins involved in 

metabolism. The protein changes were compared to RRMS vs OND datasets in the 

CSF-PR database, and the disease-relevance of the changed proteins were examined. 

The observed changes in metabolism-related proteins were not reported to be changed 

between RRMS vs OND and seemed to be treatment-specific. Additionally, proteins 

that were commonly decreased in RRMS continued to decrease during treatment, 

perhaps reflecting on-going disease processes not affected by the treatment. Most of 

the changes seen during the treatment were confirmed by PRM verification. Overall, 

the study verified the biomarkers suggested from previous studies and further 

suggested additional processes to monitor in MScl treatment. 
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4. Methodological considerations 

4.1 Brain area selection  

For the investigation of the effect of Fingolimod on de- and remyelination in Paper I, 

brain tissue was lysed. In this experiment, the frontal right hemisphere, including 

corpus callosum, of the cuprizone-affected mouse brains were analyzed by TMT-mass 

spectrometry. As the demyelination in cuprizone is specific to certain brain regions, 

i.e., corpus callosum 61, other areas of the brain could also have been investigated. 

Furthermore, a study showed that demyelination is present in the cortex, albeit 

remyelination is scarce in this area 199. Direct investigation of the corpus callosum by, 

for instance, laser capture microdissection could potentially detect more specific 

changes in the area most affected by cuprizone de- and remyelination. In contrast, the 

proteomic analysis of the frontal right hemisphere shows global differences to the brain 

proteome upon de- and remyelination by cuprizone in an area consisting of 

approximately half glia and half neurons 200. The global proteomics approach has 

previously been successful in studying de- and remyelination in the cuprizone model 

117, indicating that effects would be visible also by using this approach. 

4.2 Patient selection 

In Paper III, patient CSF samples were received from the Czech-republic for 

proteomics discovery and verification of protein changes during the MScl treatment 

Natalizumab. Investigation of patient and sample information revealed differences 

between a wide range of clinical factors including time of sampling, previous 

treatment(s), disease aggressiveness and duration. The majority of patients were 

sampled at the end of the treatment; however some patients were sampled after 

treatment cessation. As the recommended wash-out period after Natalizumab treatment 

is 12 weeks prior to switching to other treatments 201, patients were included based on 

whether the second sample was sampled during this time frame. 
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Furthermore, the patients were under the influence of different MScl treatments when 

first sampled. As it was unclear from the literature how and if the changes in the CSF 

proteome would be differently affected by these clinical factors, the experiment was 

designed such that the group of patients under the effect of interferon beta treatment 

when first sampled (constituting the largest group) was divided into two groups based 

on controlled randomization of clinical variables and included in both the discovery 

and verification studies. The remaining patients were included in the proteomics 

discovery group.  

Efforts were also made during the sample preparation to ensure that differences 

between patient groups were not introduced by technical variation. Therefore, patients 

were randomized based on known clinical variables between each step of the sample 

preparation in the discovery study 202. 

4.2.1 Removal of outliers 

During the investigation of patient samples in Paper III, some of the patients were 

removed from the study following inspection of the mass spectrometry analysis. The 

following patients were removed in the discovery study due to interferences. One of 

the samples was removed as it had a total ion current during mass spectrometry analysis 

that resembled a cell line more than CSF, increasing the total number of identified 

proteins by approximately one thousand. A second sample was removed as an update 

of patient information revealed that he/she was not treated by Natalizumab, and finally, 

a third sample was removed as it was unclear which sample had been sampled first. 

The removal of these three patients was based on sample and patient information, and 

not the quantitative measurements. However, one additional patient was removed in 

the verification study as the results were consistently irregular across the peptide fold 

changes, indicating that an error was introduced prior to the addition of SIL peptides. 

Removing outliers from an experiment should be done with care, as it can give a false 

impression of the biological variability. Therefore, the statistical results with and 

without this sample was added to the supplementary information in the final version of 

the manuscript.  
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4.2.2 Pooling of samples 

Pooled samples were used in the proteomics discovery of the effects of Fingolimod on 

de- and remyelination in Paper I, and in the testing of peptide stability in Paper II. The 

pooling of samples is debated, as it arguably makes it impossible to assess individual 

differences. However, sample pooling is often a trade-off between cost and benefit. A 

study comparing technical to biological replicates and sample pooling in DIGE 

experiments concluded that sample pooling of mouse brain samples did not lead to 

systematic biases of the results, as the mean of individual measurements were equal to 

the value of the pooled sample 203. This was considered to be due to small biological 

differences in the mouse brains, and due to the use of internal standards leading to a 

narrower range of values after the division by a reference. Thus, this study implies that 

the pooling strategy of mouse brain samples in a TMT experiment accurately reflects 

the average of the individual samples.  

Notably, pooling a larger number of samples reduces the number of replicates needed 

203. In the Fingolimod study, each sample pool consisted of two mice, and three pools 

were measured for each condition across the two TMT experiments. Optimally, more 

biological samples could have been used in the pooling strategy, but this was not 

available from the experiment. Furthermore, individual mice could have been 

measured either by label-free methods or by increasing the number of TMT kits in the 

experiment, however, identification of low-abundant proteins through extensive 

sample fractionation was deemed more important. In any case, using this pooling 

strategy, the findings should be confirmed by individual analysis in future studies as 

data at the individual sample level is lost when pooling.  

In Paper II, sample pools were used for extensive testing of peptides in the generation 

of assays. Here, CSF from the disease category other neurological diseases (OND) was 

used to test the peptide stability. The pooling strategy ensured that there was enough 

CSF to test the different assay metrics in a relevant patient category without using 

valuable MScl patient CSF. Furthermore, the repeated analysis of the OND sample 

pool provided a well-known reference sample to assess LC-MS/MS stability during 

patient analysis, a requirement in a Tier two assay 126. However, some proteins are 
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commonly lower in neurological controls than in MScl patients, which could explain 

the poor performance of some of the peptides in the tests prior to assay generation.  

4.3 Quantitative proteomics 

4.3.1 Reproducibility 

Throughout the work presented in this thesis, mass spectrometry-based proteomics is 

used to identify and evaluate biomarker candidates. Due to great improvements in 

technology resulting in increasingly more sensitive and faster mass spectrometers, an 

increasing amount of peptides and proteins can be identified and quantified by LC-

MS/MS. The target of many studies has been to quantify as many proteins as possible. 

However, the quality of the quantification has perhaps not been looked at in enough 

detail.  

Reproducibility can include every step in the pipeline, or it can be used for the mass 

spectrometry analysis, the sample preparation or the data analysis alone. A study 

published in 2015 showed that even when different laboratories were given the same 

dataset, the groups yielded widely different results following statistical testing 204, 

possibly due to the lack of standardization of analysis pipelines. Therefore, selecting 

biomarkers that were based on more than one study was an important part of the 

biomarker selection process in Paper II. 

4.3.2 Tandem mass tag 

As TMT quantification can be considered more accurate than label-free methods 149, 205 

and is compatible with sample fractionation, it was used for the investigation of the 

brain proteome of Fingolimod-treated cuprizone-fed mice in Paper I. As peptide 

quantification is based on reporter ion abundance, co-isolation of peptides is a common 

source of quantification error in TMT experiments. Here, peptides other than the one 

identified in the MS2 spectrum can affect the reporter ion signal. This phenomenon is 

called TMT ratio compression 206, and can largely be reduced through MS3 

quantification that also improves quantification accuracy, however this approach has 

reduced precision and a lower number of identifications compared to MS2-based 
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quantification 207. TMT MS2 quantification was used in the investigation of de- and 

remyelination in Paper I.   

TMT multiplexing 

The TMT strategy is limited by the number of samples that can be analyzed 

simultaneously by a single kit. In a TMT multiplexing approach, two or more TMT 

kits are therefore combined for sample analysis. This method was used in Paper I for 

the analysis of the effect of Fingolimod in CNS during de- and remyelination. In this 

method, one of the TMT reagents in each kit was used to label a common reference 

sample, enabling comparison of samples across kits. However, combining kits have 

been shown to introduce technical variation, showing that the quantification accuracy 

achieved by TMT is not reproduced when several batches are combined if this effect is 

not normalized for prior to analysis 208.  

Such a batch effect was apparent in in Paper I, as principal component analysis of the 

log2 transformed intensities clearly separated the samples into batches on the first 

component, showing that the greatest source of variability in the data was from 

technical variation. This could be explained in part by the low biological variation 

observed in mouse brains 203, and the quantification of over 6000 proteins where the 

majority were thought not to change between Fingolimod and placebo. Furthermore, 

the IHC results indicated little or no difference between mice in histological sections 

of known markers of myelination and inflammation. However, to investigate if this 

technical variance was masking any potential biological findings, a normalization 

approach available at the time was tested to remove the batch effect 209, but the samples 

still separated into the batches even after using this scaling. This could be due to the 

above factors.  

To further investigate the removal of the batch effect, available literature was searched. 

Numerous approaches have been introduced for the removal of batch effects in 

microarray data, but as the number of samples from each condition was not the same 

in both TMT experiments (i.e., being an unbalanced experiment), many of the 

approaches could not be used 210. Finally, batch removal using linear modelling through 
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the R package LIMMA was used as recommended 210. Following the adjustment, the 

data was analyzed to find the most changed proteins. After the paper was published, 

several additional methods have since been developed to handle batch effects in 

proteomics studies 208, 211.  

4.3.3 Sample fractionation 

As the brain proteome is estimated to express over 16 000 proteins (Human Protein 

Atlas 212), efforts were made to quantify proteins of low abundance, e.g., surface 

receptors. In Paper I, samples labelled by TMT were extensively fractionated prior to 

LC-MS/MS analysis. In short, mixed-mode reverse-phase anion exchange off-line 

chromatography fractionated each TMT experiment into 58 fractions that were 

subsequently analyzed by LC-MS/MS. This method was chosen as it has proven 

superior to peptide separation by MM-SCX methods 165, with the added benefit of 

avoiding additional sample desalting following fractionation.  

4.3.4 Selecting a label-free discovery approach 

Label-free proteomics discovery was selected for quantification of the proteome of the 

56 patients receiving Natalizumab treatment in Paper III. An isotopic labelling strategy 

combined with immunodepletion or off-line fractionation as in Paper I would have 

quantified more of the CSF proteome. Furthermore, as the patients are their own 

controls, the batch effect will likely be minimal as long as both samples from the same 

patient were included in the same TMT experiment. However, a label-free approach 

enables the analysis of a large number of samples, and ensures the possibility to remove 

samples without affecting the rest of the sample set, should for instance, new clinical 

data become available. Thus, the strategy to include as many patients as possible while 

remaining flexible greatly affected the experimental design and choice of 

quantification strategy. 

4.3.5 Technical variation in label-free discovery 

As the label-free discovery strategy in Paper III is vulnerable to changes in 

chromatography and sample preparation, the patient samples were all processed 
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simultaneously and quality control samples were included to assess inter- and intra-

person variability.  

The quality controls were analyzed by mass spectrometry prior to running individual 

patient samples, showing that approximately the same number of proteins were 

identified and quantified across the twelve processed replicates (84% proteins 

identified in all samples) with the quantified proteins having an average inter-person 

CV following normalization of 27%, and an average intra-person variability of 18-

22%. This ensured that the sample processing had been successful up to this point. 

Furthermore, as the quality control samples were randomized also in other sample 

preparation steps, such as desalting, it gave an estimate of the total technical variation 

that could be expected from the sample preparation step using the selected workflow.  

Following individual analysis, the quality control samples were combined and injected 

every 8-12 patient sample to assess technical variability during LC-MS/MS. This 

strategy proved useful for evaluating LC-MS/MS performance. Furthermore, the 

quality control samples contributed to normalization and retention time alignment 

during data analysis by MaxQuant. Using the MaxQuant QC program PTXQC 213 

showed an alignment success of at least 96% across all samples.  

4.3.6 Individual differences in treatment response 

In Paper III, the proteome changes in patients receiving Natalizumab treatment were 

investigated. It would be highly interesting to investigate whether individual changes 

could be associated with clinical endpoints such as relapses or MRI activity. However, 

this would require clinical information to an extent that was not available for the 

patients in the study. Therefore, only a comparison across the entire patient group was 

performed. In this approach, proteins that are possibly determinant for a low number 

of patients, or subgroups, will be missed. However, the study shows the general effect 

of Natalizumab on the CSF proteome, and suggests possible proteins that could be of 

interest for future individual analysis. 
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4.4 PRM assay building 

4.4.1 PRM versus ELISA 

The perhaps most interesting protein biomarkers in CSF are the neurofilaments and 

chitinase 3-like protein 1 (CHI3L1). However, for various reasons, they are not easily 

measured by PRM. In the case of neurofilament heavy, it is highly phosphorylated, 

making peptide selection laborious. In addition, these proteins are of low abundance in 

CSF. Therefore, an ELISA strategy could perhaps provide more accurate quantification 

of these proteins. The ELISA strategy is however quite low-throughput, dependent on 

high quality antibodies 214, 215, and often requires relatively large volumes of CSF. High 

quality antibodies are most likely available for these proteins, but not for many of the 

other proposed biomarkers in MScl, and not in a multiplexed way. In addition, we did 

not have a large amount of CSF from each patient, hence PRM was selected instead.  

4.4.2 PRM method 

The biomarker candidates in Paper II had widely different dynamic ranges within CSF, 

and the selection of a PRM method to measure these proteins was therefore a trade-off 

between sensitivity, selectivity and throughput. As the PRM assays would be used to 

measure a large number of peptides accurately between patient groups, a “wide-screen” 

approach as suggested in 157 was adapted to a 90 min chromatographic gradient. 

A smaller test was performed to investigate whether the signal of the peptides with the 

lowest abundance could be increased by increasing the fill time, as suggested in 216. In 

this test, the AUC of peptides with lowest abundance showed a modest signal increase, 

even when the time spent on ion collection was as suggested for low throughput-high 

sensitivity experiments (Figure 9A). In addition, the XIC of these peptides were in 

some cases very low even with the longer fill time (Figure 9B). Indicating that some 

peptides cannot be precisely quantified by PRM in the ONDs patient group. 
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Figure 9: Doubling of ion collection fill time did not lead to a doubling of peptide signal for 

chitotriosidase or chitinase-like proteins: A) The AUC of the peptides to the displayed proteins. 

Each point is based on the average of two runs. The increase in AUC is modest for the majority of 

peptides even after a doubling of fill time. B) XIC of a CHIT peptide with 240 ms fill time. The signal 

is on the border of what can be quantified.  

4.4.3 Choice of internal standards 

For the generation of assays in Paper II and Paper III, SIL peptides were used as internal 

standards. Heavy labelled tryptic peptides analogous to the endogenous peptide is 

commonly used as internal standards. However, several studies have shown that full 

length synthetic proteins, or peptides with naturally flanking amino acids improves the 

quantification accuracy 217, 218. Optimally, heavy labelled proteins should have been 

used as internal standards as they would have been subjected to the same trypsination 

effect as the endogenous peptide. However, the same studies emphasize that true 

accuracy is elusive in a bottom-up approach, and emphasizes the tight control of 

trypsination 218. Note that the SIL peptide standards used in Paper II and III were of 

different quality and purity.  

4.4.4 Peptide tests and cut-offs for PRM-assays 

For the development of assays in Paper II, deciding on the level of precision was 

important prior to designing the assays. Though the long-term aim of the larger project 

is to develop assays for use in a clinical setting, further verification of biomarker 

candidates is required prior to clinical assay generation for a smaller subset of proteins. 

A best practice guide for assay generation was published by the proteomic community 



 61 

in 2014 126, from where “The Selection of Tier” approach was used to guide the 

experiment design for our own robust assays. In short, Tier 2 assays require labelled 

internal standards to consistently measure relative changes of a large number of 

analytes across samples. The precision required for Tier 2 assays is moderate to high 

(<20-35% CV required), and the within day and day-to-day stability should be 

measured. In addition, interferences from different background matrices should be 

identified, and LC-MS/MS performance monitored.  

In order to ensure precision, controlling trypsination is of great importance 126, 219-222. 

Therefore, peptide surrogates were tested for trypsination stability and optimal 

trypsination time. In line with the tier requirements, a threshold of <20% CV was set 

for peptides to pass/fail stability tests, as also proposed in 222. The testing and inclusion 

of peptides in the assay is on-going, and the area of linearity was determined for only 

a subset of the tested proteins. In order to be a full Tier 2 assay, assessment of 

background interference should be provided, and the linear area defined for all of the 

peptides.  

However, as previously noted, many proteins that are of interest to the disease are less 

abundant in the control group OND. This includes inflammation markers such as 

CHI3L1. Therefore, poor performance of these peptides during assay building could 

be due to too low signal in the reference sample. The linear area of quantification was 

not determined prior to peptide testing as this is laborious and performed in a substitute 

matrix, and was thus only performed for the top performing peptides. In the future, 

technical replicate analysis could provide information about the measurement %CV 

and be used to indicate whether a peptide is too low-abundant in the chosen sample to 

be used for peptide testing. 

4.4.5 Linear area, LOD and LOQ 

Defining the linear area of quantification is important to accurately measure peptides 

by PRM. In the linear area, an increase in analyte signal is proportionate to an increase 

in analyte concentration. In many cases, the limit of quantification is estimated and 
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used as the start of the linear area, i.e., the lowest level of analyte concentration that 

can be accurately quantified 158.  

During the generation of the calibration curves for Paper II, it became apparent that 

many peptides had no detectable background/noise in any of the blank samples using 

the selected PRM-method. Furthermore, if there was noise, it was too low to use as an 

estimate for the level of detection (LOD) and level of quantification (LOQ) with the 

methods suggested in the literature. The variation in the lowest quantified analyte 

concentration was less than <20% CV for most peptides, even in the low amol area at 

the limit of what is expected to be measurable with the sensitivity of the PRM-method 

157. Resultingly, the lowest point in the linear area with a CV <20% was used as the 

LOQ, and was expected to be a good estimate of the actual lower limit of quantification. 

However, the LOD and LLOQ is not determined for these assays, which will be needed 

to calculate the absolute concentration of analytes 126.  

4.4.6 CSF-PR in determining disease-relevance 

As protein changes during treatment by Natalizumab in Paper III could be due to both 

treatment effect and disease progression, the observed changes were compared to 

online datasets in CSF-PR comparing RRMS to OND in order to determine their 

possible effect on the disease. This enabled the comparison of thousands of proteins in 

a straightforward manner, otherwise only possible by an extensive literature search. 

Notably, the datasets in CSF-PR comparing RRMS to OND are mostly based on 

proteomics analysis of CSF sampled during diagnosis. This could be a possible artefact 

in this comparison, as the patients receiving Natalizumab are possibly further in the 

disease development than the RRMS cases in the CSF-PR database.  

The patients in the Natalizumab study showed a high heterogeneity in treatment 

duration and RRMS disease progression. In particular, categories of proteins that were 

not changed by treatment but that were changed by RRMS could indicate disease 

processes that are changed early in the disease course but that are not as active in later 

stage of the disease. Proteins changed only by the treatment could be due to similar 

reasons. However, it is estimated that the diagnosis of MScl is in any case later in the 
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disease course than the start of pathophysiological processes, and therefore time of 

diagnosis could be a poor estimate of disease onset 223-225. Optimally, MScl patients 

receiving placebo treatment should have been used as controls in this study to more 

accurately determine the effects of Natalizumab. This was not possible due to ethical 

considerations, as previously noted in 42.  
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5. Discussion 

This thesis is part of a larger MScl project aiming to find biomarkers of clinical use for 

MScl patients. The work presented in this thesis has focused on using quantitative 

proteomics to identify protein changes that could shed light on treatment effects for the 

two drugs Fingolimod (Paper I) and Natalizumab (Paper III) and their influence on 

disease processes in MScl. Furthermore, information from previous biomarker studies 

have been used to generate a biomarker assay that can monitor disease processes in 

patients in a manner that is comparable over time (Paper II). 

5.1 Monitoring disease processes in multiple sclerosis  

5.1.1 Effects of Fingolimod on remyelination  

In Paper I, TMT-based proteomics was used to investigate whether the MScl drug 

Fingolimod affected the brain proteome in an MScl animal model. The results from 

both TMT-MS and IHC showed no difference in the established markers of de- and 

remyelination. Furthermore, few changes were observed in the proteome of the 

Fingolimod-treated mice compared to placebo. Thus, no beneficial effect on 

remyelination was observed in this study. However, proteins quantified by proteomics 

showed concordance with the expected changes during de- and remyelination, 

including a decrease of GFAP and an increase of myelin proteins such as proteolipid 

protein (PLP), Myelin-associated glycoprotein (MAG) and Myelin-associated 

oligodendrocyte basic protein (MOBP) during remyelination, thus indicating the same 

effects as previously observed by global brain proteomics in the cuprizone model 117.  

Quantitative proteomics showed that the S1PR1 receptor and the g-protein subunit 

GNG5 was less abundant in Fingolimod-treated mice than in placebo both during 

demyelination and remyelination. Thus, we concluded that the drug enters the brain 

and affects the brain proteome. As the front part of the brain was examined by 

proteomics, it is not known which cell type that the downregulation is prominent in, or 

if the proteins are enriched in areas of de- and remyelination. Furthermore, as cuprizone 

demyelination is lesion-specific, perhaps investigating these proteins in demyelinated 
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areas could reveal both the cell type(s) involved, and relevance to lesion formation and 

repair.  

Of note, Siponimod, a next-generation S1PR modulator, has shown to reduce 

demyelination, axonal damage and microglia activation in the cuprizone model 226. 

However, as Siponimod was administered with cuprizone in this study, the observed 

beneficial effects on neuronal processes might be due to the anti-inflammatory effects 

of the drug.  

5.1.2 Effects of Natalizumab on inflammation, neurological 
processes and metabolism 

In Paper III, the anti-inflammatory drug Natalizumab appeared to affect several 

processes beyond inflammation. The protein changes representing these processes 

were compared to previously published studies of RRMS versus controls showing 

substantial overlap in which proteins were affected, but also some uniqueness. Some 

processes were affected in the same direction and others in opposite direction between 

these two comparisons. Particularly interesting were proteins that were decreased in 

RRMS versus controls and increased after the treatment, including proteins involved 

in neurological processes. This association has not been this extensively documented 

before, and could imply previously unknown beneficial effects of the treatment.  

Protein markers of de- and remyelination were not explicitly investigated in Paper III, 

however, several myelin proteins were detected but showed no significant difference 

in the proteomics discovery study except the oligodendrocyte-myelin glycoprotein that 

were modestly increased by the treatment. As Natalizumab is not known to affect 

remyelination, it was not expected to change the myelination processes. 

In addition, Paper III also identified changes in metabolism that could be relevant to 

include as PRM assays in the future in addition to those generated in Paper II. It is not 

known if the changes in metabolism proteins are due to the Natalizumab treatment, or 

due to a disease process in RRMS that is not affected by treatment. As such, it is not 

known if this change in metabolism is beneficial. Including the proteins measured in 

the verification study in the assay of Paper II, for example, peptides representing 
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LDHA, LDHB, GC and APOL1, could enable further investigation of these changes 

and their role in MScl. 

5.1.3 Monitoring multiple sclerosis by mass spectrometry-based 
proteomics 

The balance between inflammation, neurological processes, metabolism and de- and 

remyelination is complex and not fully understood. Investigations in mouse models are 

valuable to shed light on these mechanisms individually. However, the transferability 

not only to MScl but to changes in the CSF proteome gives findings in animal models 

a longer path to clinical validation. Thus, protein changes observable in CSF of MScl 

patients were the obvious starting point for selecting proteins for assay generation in 

Paper II.   

Proteomics discovery studies have detected protein changes between RRMS and OND 

patient groups, including several proteins with neurological or immunological activity 

beyond the most validated biomarkers, e.g., neurofilaments and chitinase-like proteins 

94. Furthermore, proteomics approaches have revealed additional processes to be 

afftedted by MScl beyond inflammation and neuronal activity, including extracellular 

matrix organization and cell adhesion 92. Albeit less well documented, and further away 

from clinical verification, investigating the changes of proteins, other than the most 

validated biomarkers mentioned above, representative for disease processes could 

reveal more of the disease pathology. Notably, proteomics approaches have previously 

been successful in determining subgroups of patients with fatigue 91, indicating an 

added value of including multiple protein markers per process. Furthermore, many of 

these proteins have not previously been found to change in other neurological diseases 

as determined by CSF-PR 2.0, and could thus, in contrast to the neurofilaments and 

chitinase-like proteins, be disease-specific.  

Several of the assay peptides were measured in the verification process in Paper III. 

These included peptides representatives of the proteins neurexin 1-3, neuronal cell 

adhesion molecule and glutamate receptor 4, all with neurological function, and 

immunoglobulin J chain and chitinase-3-like protein 2, both with inflammation 

activity, among others. All of these were changed by the Natalizumab treatment as 
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proved by the discovery study, and many were also verified by PRM-MS. In Paper III 

this finding was therefore used as a determination of disease-relevance for the proteins 

as they have also been found to be affected in RRMS. However, with respect to Paper 

II, it implies that the assay peptides can reflect processes relevant in MScl beyond the 

categories they were selected to distinguish (MScl vs OND).  

5.1.4 Protein changes across neurological diseases 

As mentioned, changes in chitinase-like proteins and neurofilaments are used in the 

investigation of several neurological diseases, thus are not specific for MScl.  

During the analysis of the results in Paper III, the glycolysis proteins LDHA, LDHB 

and PKM were increased during treatment with Natalizumab according to the 

discovery study, and largely confirmed by the verification study. Furthermore, CHI3L1 

and IGKC that both are increased in RRMS vs controls were found as decreased in our 

study. Interestingly, these five proteins were included in a biomarker panel for proteins 

differentiating between AD and non-AD in a recent study 227. 

Of note, the biological meaning of these proteomic changes as part of the Natalizumab 

treatment is still unknown, and should be investigated further. The patient samples 

were provided by our collaborators at the Charles University and General University 

Hospital in Prague in the Czech Republic, and clinical data from the patients at the date 

of sampling could be available at a later stage and enable correlation analysis between 

protein changes and clinical endpoints. In any case, the common relevance of these 

proteins in Natalizumab treatment and AD further confirms that many of the same 

processes represented by the same proteins are affected by different neurological 

diseases. Absolute protein abundance values collected across the disease groups and 

treatment options would enable comparison to see if certain protein levels, or changes 

in protein levels, are associated with disease development in MScl and/or AD.  
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5.2 Verification strategy 

5.2.1 Database dependencies for biomarker selection 

For the analysis of possible biomarker candidates in Paper II and for the analysis of 

discovery data in Paper III, several tools for biological annotation were used to guide 

the selection of candidates for further verification. The approach largely verified that 

the majority of changes in MScl are due to changes in proteins with neurological and 

immunological activity, and proteins were selected to represent these processes. One 

of the strengths of proteomics discovery is that the investigation of the proteome is 

exploratory and thus not dependent on an initial hypothesis. However, comparing 

proteins and selecting the ones that are the most biologically relevant to include for 

verification is, in many cases, hypothesis-driven. Furthermore, it is known that the 

proteome is not equally studied, possibly biasing the selection of biomarker candidates 

by favoring proteins with more data 228. This bias is hard to avoid, as proteins with 

known relevance to the disease are most often picked for downstream verification.  

Databases were extensively used in the selection of proteins for the generation of assays 

in Paper II and for the verification experiment in Paper III. Here, biological function 

was among the factors emphasized, for the above-mentioned reasons. However, 

proteins that are consistently different between patient groups are also interesting 

biomarker candidates, independent of their biological interpretation. As such, 

collection of data from several studies might increase the likelihood of identify novel 

biomarker candidates, and strengthen their candidacy for further verification. 

5.2.2 A rectangular biomarker verification strategy 

A recent study used a discovery approach to identify proteins that were altered in AD 

by comparing the results from several discovery studies in CSF to find a biomarker 

panel 227. This “rectangular” approach was suggested by Geyer et al. to substitute the 

traditional “triangular” biomarker pipeline, as protein changes in the triangular 

approach commonly could not be subsequently verified 229, possibly due to the 

proteomic discovery identifying changes that are exclusive to the discovery population 

as they are commonly based on few samples. The creation of a biomarker panel based 
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on several discovery studies, they argue, increases the chance of removing study-

specific confounders and detect more robust protein changes. Thus, accumulation of 

discovery studies over time will build up a database of proteomic patterns in response 

to health and disease that can be associated to different health states. 

This rectangular approach is unconventional, but when applied to AD, it identified a 

panel of proteins that changed similarly in three different discovery studies comparing 

AD to non-AD 227. These proteins showed good correlation to the available literature, 

as proteins within the neuronal system, inflammation and metabolism were affected by 

AD.  

In essence, this approach is similar to the approach in Paper II, where proteomics 

analyses of several cohorts are combined in the CSF-PR resource. We believe this 

strategy is the best way to ensure that the most promising candidates are chosen for 

verification. However, the number of possible biomarkers from CSF-PR was high. 

With more studies being added to the CSF-PR database, further refinement of the 

biomarker panel is possible. 

Interestingly, the suggested rectangular approach could result in plasma proteome 

profiling by proteomics entering a clinical setting 227. This is opposed to the triangular 

approach where the endpoint is to measure a biomarker or a biomarker panel by more 

targeted methods. This thought is intriguing; however, it is dependent on extensive 

standardization of mass spectrometry-based methods and experiment design not 

currently available.   

5.2.3 Quantification of low-abundant biomarkers 

It has been argued that a distinction should be made between detectable and 

quantifiable peptides in mass spectrometry-based experiments. The linear area of 

quantification is not commonly determined in a discovery approach, as such, the 

magnitude of change cannot be accurately estimated at the level required for a 

quantitative approach 230. Pino et al. emphasize that the assessment of linearity is not 

necessarily needed for discovering differences between samples, but it is a requirement 

when estimating the magnitude of the difference 230. 
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Typically, low-abundant proteins such as CHI3L1 and CHIT are often quantified in 

proteomics discovery studies, however, quite paradoxically, the protein is seldomly 

quantified by the more sensitive PRM method. This was observed during the peptide 

stability tests performed in paper II, and was emphasized by the quantification of these 

proteins in Paper III. In the discovery study of Paper III, CHI3L1 and CHIT were 

significantly reduced by the Natalizumab treatment, but during verification, it became 

clear that the most changed protein, CHIT, could not be quantified by PRM as it was 

lower than the estimated LOQ in most samples.  

This has led us to wonder if these proteins are too low-abundant to get a quantifiable 

measurement of peptide fragments, as needed in a PRM approach. During peptide 

testing, the signal for these low-abundant peptides increased with decreasing collision 

energy. In this case, more accurately quantifying the unfragmented peptide, perhaps by 

selected-ion monitoring, would be more appropriate for the quantification of these low 

abundant peptides. In this case, the linearity of the peptide signal should be assessed in 

order to determine if the difference in abundance is quantifiable, as mentioned above. 

Alternately, these proteins are commonly measured by ELISA assays, and can 

supplement the PRM-MS analysis.  

5.3 Signal or noise 

5.3.1 Technical vs biological variation 

During the analysis of Paper I, the apparent batch effect between TMT experiments 

was a greater source of variation than that of the biological variation. This was also 

noted in the paper of Karp et al. 203, indicating that monitoring of the technical 

variability should be used to inform the selection of the number of biological replicates 

to include in the study, and thus ensure that technical variability does not overshadow 

the biological changes.  

Upon discovering the batch effect introduced by combining TMT-experiments in Paper 

I, the data was heavily investigated based on the available literature at the time to 

properly manage this technical variability. This resulted in three different datasets, one 
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with the traditional t-test, one with internal reference scaling (as proposed in 209), and 

one after the batch effect was removed by linear modelling (final dataset). These 

approaches confirmed many of the same proteins as changed between Fingolimod and 

placebo. In particular, the downregulation of the S1PR1 receptor and the g-protein 

GNG5 in Fingolimod-treated mice was observed across the datasets, indicating a 

robustness of the observed changes.  

However, since publication of Paper I, additional improved methods have been 

proposed for dealing with batch effects. In particular, one approach has been 

incorporated into the MaxQuant pipeline 211. Thus, in future studies, the batch effect 

can hopefully be more effectively managed. 

Evaluating the biological signal compared to an estimate of both biological and 

technical noise is commonly done by power calculations. Thus, aiming to find the 

number of patients required to be able to identify a given change in the data with a 

given confidence. Notably, the CSF proteome has been found to be variable both 

between and within patients 231, and could greatly benefit from such an analysis 91. 

However, this effect is not necessarily the same across proteins in a dataset, as some 

proteins are markedly more variable than others 231. Thus, individual assessment of 

variability based on technical replicates can identify proteins that are more precisely 

quantified with the selected approach and help guide biomarker selection.  

The technical variation was monitored by the addition of quality control (QC) samples 

during the analysis of CSF from Natalizumab patients in Paper III. The QC samples 

were mainly used as a control of sample preparation, however, the estimates of 

technical variation could also be included in the analysis and selection of proteins for 

downstream verification.  

Technical variation was also monitored for each peptide in Paper II. From the various 

investigation of peptide stability used in the paper, there are many measurements of 

variation that were used to include or exclude peptides from the final assay including 

inter- and intra-day variation. Thus, we have good estimates of how these peptides are 

affected by the technical variation introduced by the analytical pipeline. Including these 
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estimates in the evaluation of protein changes in patient samples to determine the effect 

size needed to discern noise from real biological differences is an intriguing thought, 

and could aid further refinement of proteins in the developed biomarker assays. 

5.3.2 Absolute relative quantification 

Creating absolute assays that can measure the absolute abundance of proteins and 

peptides could make proteomic results more comparable over time. In principle, adding 

an internal peptide with known concentration should provide an absolute measurement 

of the peptide in the sample that can be used to calculate protein abundance.  

However, a study by Shuford et al. compared the quantification of three different 

peptide standards (tryptic SIL peptides and peptides with flanking amino acid residues) 

to that of full-length recombinant protein SIL 218. The results were discouraging – the 

quantification of the protein varied not only between different denaturing conditions, 

but also greatly between the internal standards used, confirming that both sample 

preparation and the choice of internal standard have a great impact on the peptide 

quantification. Even the full length SIL protein did not accurately quantify the protein, 

arguably due to dissimilarities in tryptic digestion between the endogenous and heavy 

labelled standard. The results were however comparable within each denaturing 

condition and calibrator, implying that all standards can be used for relative 

quantification.  

For the development of absolute assays in Paper II, controlling the tryptic digestion 

was considered essential. The best performing peptides showed great digestion stability 

after 16 hours, and low inter-day variaition, enabling precise measurement of the 

peptide in the pipeline. However, it could be argued that the assay only precisely 

measures the peptide product under the given condition.  

Notably, these limitations are also evident from ELISA measurements, with different 

kits/antibodies quantifying the same protein yielding very different results 114, 232, and 

thus the quantification accuracy as observed by antibody-based assays may only be 

directly comparable within the same experiment 114, 214, 232.  
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Interestingly, Shuford et al. also utilized a well-prepared external calibrator with 

known concentration of the analyte, which greatly improved quantification accuracy 

218. The use of an external calibrator has also been suggested by the MacCoss lab, for 

standardization of proteomics results over time and across labs 233. As this has been 

shown to greatly improve the quantification accuracy, this approach could have been 

combined with internal standards to ensure comparable quantification over time for the 

assays developed in Paper II. However, true quantification accuracy in absolute terms 

is most likely an elusive goal, also for targeted assays of the highest quality 126. 
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6. Conclusion 

In this work, several neurological and immunological proteins were included in a high 

precision assay with proteins reflecting MScl disease processes. The protein assay can 

be used in wide-screen protein verification studies with precision that enables 

comparison over time. The inclusion of additional biomarkers in the assay is dynamic 

and on-going, with the long-term goal of monitoring multiple neurological diseases in 

a clinical setting. However, the assay is already capable of monitoring disease relevant 

processes, as indicated by the verified protein changes in the Natalizumab study. 

Furthermore, quantitative proteomics was used to investigate treatment 

effect/mechanisms of two different drugs treating MScl. First, by investigating the 

effect of Fingolimod on the CNS proteome in an MScl animal model, and second by 

investigating proteome changes in the CSF of MScl patients undergoing Natalizumab 

treatment. The former indicated no direct effect of demyelination in the mouse model, 

while the latter confirmed that MScl is a disease driven by neurological and 

immunological processes partly affected by treatment, and implicated that metabolic 

changes, in particular steroid metabolism and glycolysis, should be investigated and 

monitored in future research.  
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7. Future perspectives 

The downregulation of S1PR1 and GNG5 as an effect of Fingolimod treatment 

confirms that the drug crosses the blood-brain barrier, and thus functions inside the 

brain. Albeit studies have shown that de-and remyelination processes can be observed 

in a global proteomic approach, perhaps investigating the localization of S1PR1 and 

GNG5 in mouse brains could give a further indication of whether these proteins are 

functionally linked, and which cell population that are most affected, thus indicating 

possible downstream effects that were not obtainable by the global approach. In 

addition, investigating Siponimod in a similar fashion could be interesting, to further 

study the effect of this drug on the myelination processes. 

The proteomic changes observed during Natalizumab treatment highlighted the 

previously known processes affected by the drug, in addition to new processes not 

previously linked to the treatment. Associating these verified protein changes to 

individual patient information of clinical relevance (such as MRI activity, relapses or 

disability progression) could help identify clinically relevant biomarkers to monitor 

during Natalizumab treatment, and in particular to potentially facilitate early drug 

switching. Furthermore, the study of paired CSF samples has proven valuable for the 

detection of disease mechanisms other than the well-documented neurological and 

inflammation processes. As such, it would be of great interest to investigate paired CSF 

samples also in future studies to learn more about MScl disease mechanisms. 

In order to widen the processes monitored by the assays, markers for both 

demyelination and metabolic changes could be added to the assays generated in Paper 

II. Use of an external standard would also be of interest, to ensure even better 

comparability over time. Furthermore, work to standardize and collect information 

from the PRM studies, allowing for easy access to the underlying data, should be 

developed to keep track of, for example, which peptides that have been tested and the 

variation for each peptide. This could be done in parallel to running patient samples, 

thus helping to optimize and standardize both the laboratory methods and the data 

collection, to further facilitate comparison over time. 
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Supplementary tables 

Table S1. Antibodies used for immunohistochemistry specified. 

 

Target 

antigen 

Species, 

type 

Working 

dilution 

Incubation 

time/ 

Temperature 

Demasking Provider 

PLP Mouse, 

monoclonal 

1:1000 24h/4°C Citrate Serotec 

GFAP Rabbit, 

monoclonal 

1:2000  ½h/ RT  Tris-EDTA Dako 

(Agilent) 

NOGO-A Rabbit, 

polyclonal 

1:1000 1h/RT Citrate Chemicon, 

Temecula  

MAC-3 Rat,  

monoclonal 

1:200 24h/RT Citrate BD 

Biosciences  

CD3 Rabbit, 

polyclonal 

1:500 ½h/RT Tris-EDTA Dako 

APP Mouse, 

monoclonal 

1:2000 24h/4°C Citrate Merck  

NFL Mouse, 

monoclonal 

1:1600 1h/RT Tris-EDTA Merck 

 

RT = room temperature 

 

PLP: anti-Proteolipid Protein 

GFAP: anti-Glial Fibrillary Acidic Protein  

NOGO-A: anti-Neurite Outgrowth Inhibitor Protein A 

CD3: cluster of differentiation 3 

APP: anti-Alzheimer Precursor Protein A4, clone 22C11 

NFL: anti-phosphorylated Neurofilament light  

 

 

 

 

 

 

 



 

 

 

 

 

Table S2.  

Pooling strategy for the proteomics experiment. 
 

Fingolimod Placebo Reference 

DM 1RM 3RM DM 1RM 3RM 
 

2 biological 

samples 

TMT 126 

2 biological 

samples 

TMT 127N 

2 biological 

samples 

TMT 128N 

2 biological 

samples  

TMT 129N 

2 biological 

samples 

TMT 130C 

2 biological 

samples 

TMT 130N 

36 

samples 

TMT 131 

2 biological 

samples 

TMT 127C 

2 biological 

samples 

TMT 128C 

2 biological 

samples 

TMT 129C 

2 biological 

samples 

TMT 128C 

2 biological 

samples 

TMT 129C 

2 biological 

samples 

TMT 130C 

36 

samples 

TMT131 

2 biological 

samples  

TMT 126 

2 biological 

samples 

TMT 127C 

2 biological 

samples 

TMT 127N 

2 biological 

samples 

TMT 128N 

2 biological 

samples 

TMT 129N 

2 biological 

samples 

TMT 130N 

 

 

The brain samples (n=6 in each condition) were randomized and divided into 3 mini-pools. Each 

condition was represented in both TMT 10 plex experiment 1 (White) and 2 (Blue). One reference 

pool containing equal amounts of each brain lysate was included in each TMT 10-plex to enable 

comparison in the post analysis. 

 

Table S3.  

Proteins significantly different (p<0.01 log2 FC Fingolimod - Placebo >20%) after 6 weeks of 

demyelination. 

Accession Description Gene short log2 FC p-value 

O08530 Sphingosine 1-phosphate receptor 1  S1pr1 -0.54 0.0000005 

Q7M6Z0 Reticulon-4 receptor-like 2  Rtn4rl2 0.21 0.0002 

Q80SZ7 

Guanine nucleotide-binding protein 

G(I)/G(S)/G(O) subunit gamma-5  Gng5 -0.45 0.0003 

Q8CJ61 

CKLF-like MARVEL transmembrane 

domain-containing protein 4  Cmtm4 -0.29 0.0003 

Q6PGG6 

Guanine nucleotide-binding protein-like 3-like 

protein  Gnl3l -0.43 0.0005 

Q8BUV8 Protein GPR107  Gpr107 -0.47 0.001 

Q922W5 

Pyrroline-5-carboxylate reductase 1, 

mitochondrial  Pycr1 -0.35 0.001 



Q8K209 G-protein coupled receptor 56  Gpr56 -0.39 0.002 

E9Q5K9 YTH domain-containing protein 1  Ythdc1 -0.26 0.002 

Q810B8 SLIT and NTRK-like protein 4  Slitrk4 -0.22 0.003 

Q9CX11 rRNA-processing protein UTP23 homolog  Utp23 -0.29 0.003 

O89020 Afamin  Afm -0.68 0.003 

P46662 Merlin  Nf2 -0.32 0.003 

Q3UHF7 Transcription factor HIVEP2  Hivep2 -0.23 0.004 

Q8BHR8 UPF0705 protein C11orf49 homolog  1 SV=1 -0.26 0.004 

Q5RJH6 Protein SMG7  Smg7 -0.34 0.006 

Q6PDY0 Coiled-coil domain-containing protein 85B  Ccdc85b 0.22 0.007 

Q62313 

Trans-Golgi network integral membrane 

protein 1  Tgoln1 -0.22 0.008 

Q8CI11 Guanine nucleotide-binding protein-like 3  Gnl3 -0.23 0.009 

Q91W92 Cdc42 effector protein 1  Cdc42ep1 -0.46 0.009 

A2AV25 Fibrinogen C domain-containing protein 1  Fibcd1 -0.32 0.010 

 

 

 

 

 

Table S4.  

Proteins significantly different (p<0.01, log2 FC Fingolimod – Placebo >20%) after 1 week of 

remyelination. 

 

 

Accession Description     Gene short   log2 FC p-value 

O08530 Sphingosine 1-phosphate receptor 1  S1pr1 -0.84 0.000000003 

O35448 Lysosomal thioesterase PPT2  Ppt2 -0.49 0.000004 

Q80SZ7 

Guanine nucleotide-binding protein 

G(I)/G(S)/G(O) subunit gamma-5  Gng5 -0.47 0.0001 

O55236 mRNA-capping enzyme  Rngtt -0.21 0.002 

Q8BHK1 Magnesium transporter NIPA1  Nipa1 -0.21 0.002 

Q9QXN3 Activating signal cointegrator 1  Trip4 0.28 0.003 

Q9D1G2 Phosphomevalonate kinase  Pmvk -0.33 0.004 

Q9CR24 

Nucleoside diphosphate-linked moiety 

X motif 8, mitochondrial  Nudt8 0.28 0.004 



Q3TRM8 Hexokinase-3  Hk3 -0.38 0.004 

Q9WTQ8 

Mitochondrial import inner membrane 

translocase subunit Tim23  Timm23 0.22 0.005 

Q9DC04 Regulator of G-protein signaling 3  Rgs3 0.22 0.005 

Q8BNA6 Protocadherin Fat 3  Fat3 0.25 0.005 

Q69ZN7 Myoferlin  Myof -0.28 0.006 

Q00623 Apolipoprotein A-I  Apoa1 -0.24 0.007 

Q8CFJ9 WD repeat-containing protein 24  Wdr24 -0.23 0.009 

Q8BGS7 

Choline/ethanolaminephosphotransferase 

1  Cept1 0.20 0.009 

 

 

 

 

Table S5.  

Proteins significantly different (p<0.01, log2 FC Fingolimod – Placebo >20%) after 3 weeks of 

remyelination.  

Accession Description Gene short log2 FC p-value 

O08530 Sphingosine 1-phosphate receptor 1  S1pr1 -0.87 0.000000002 

Q9WVA4 Transgelin-2  Tagln2 0.21 0.0005 

Q9JHK5 Pleckstrin  Plek 0.21 0.001 

Q80SZ7 

Guanine nucleotide-binding protein 

G(I)/G(S)/G(O) subunit gamma-5  Gng5 -0.39 0.001 

P08207 Protein S100-A10  S100a10 0.58 0.001 

O88878 AN1-type zinc finger protein 5  Zfand5 0.43 0.001 

Q8CAM5 Ras-related protein Rab-36  Rab36 0.49 0.002 

Q9CX11 rRNA-processing protein UTP23 homolog  Utp23 0.31 0.002 

Q9JJR9 Nuclear receptor-interacting protein 3  Nrip3 0.26 0.002 

Q8BWU8 Ethanolamine-phosphate phospho-lyase  Etnppl 0.27 0.002 

Q8VCM7 Fibrinogen gamma chain  Fgg 0.28 0.002 

P97433 Rho guanine nucleotide exchange factor 28  Arhgef28 -0.40 0.002 

P31649 

Sodium- and chloride-dependent GABA 

transporter 2  Slc6a13 0.44 0.003 

Q8BFR6 AN1-type zinc finger protein 1  Zfand1 -0.30 0.003 

Q9QXE0 2-hydroxyacyl-CoA lyase 1  Hacl1 -0.26 0.003 



Q8R5F3 O-acetyl-ADP-ribose deacetylase 1  Oard1 0.24 0.003 

Q08091 Calponin-1  Cnn1 0.62 0.003 

Q9CQ28 Diphthine--ammonia ligase  Dph6 0.31 0.004 

Q63959 

Potassium voltage-gated channel subfamily 

C member 3  Kcnc3 0.21 0.004 

Q8VC16 Leucine-rich repeat-containing protein 14  Lrrc14 0.20 0.004 

Q64339 Ubiquitin-like protein ISG15  Isg15 -0.23 0.005 

Q9D658 Protein tyrosine phosphatase type IVA 3  Ptp4a3 -0.29 0.006 

Q64345 

Interferon-induced protein with 

tetratricopeptide repeats 3  Ifit3 -0.25 0.006 

Q9EP71 Ankycorbin  Rai14 0.23 0.006 

P28653 Biglycan  Bgn 0.46 0.006 

Q8K353 

Cysteine-rich and transmembrane domain-

containing protein 1  Cystm1 0.27 0.007 

Q9CZE3 Ras-related protein Rab-32  Rab32 0.40 0.008 

P37804 Transgelin  Tagln 0.71 0.009 

Q8BHG9 CGG triplet repeat-binding protein 1  Cggbp1 0.22 0.009 

Q9ES52 

Phosphatidylinositol 3,4,5-trisphosphate 5-

phosphatase 1  Inpp5d -0.27 0.009 

 

 

 

 

 

 

 

 

Table S6A  

Histochemistry and immunohistochemistry data from the midline of corpus callosum. 

 

Controls 

 

 Healthy Control    Cuprizone Control   

 Mean and Median  SD Mean and Median SD p 

LFB       0.3       0.0     0.5           1.5      1.5 0.5 0.036 

PLP     90.2     91.9  5.5          71.3    64.1  13.7 0.13 

GFAP       0.7       0.5  0.3            1.8      1.5    0.6 0.024 

MAC-3       0.0       0.0  0.0          14.0    15.0    6.6 0.018 

NOGO-A     29.8     29.5   16.4          15.5    15.5  12.0 0.21 

NFL     90.9     91.0     2.6          63.2    64.9  24.9 0.041 

APP       0.0       0.0 0.0       29.0     28.5  17.1 0.002 

CD3       0.5       0.0    1.2         1.0       1.0 1.0 0.46 

 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 



Table S6B  

Histochemistry and immunohistochemistry data from the midline of corpus callosum. 

 

6 weeks of cuprizone exposure  

 

 

 

 

 

 

 

 

 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

 

 Fingolimod   Placebo  

 Mean and Median  SD Mean and Median SD p  

LFB        1.8       2.0  0.5         2.0       2.5    0.7  0.38 

PLP      64.3     66.7   16.4       57.1     65.2  22.9  0.64 

GFAP        1.8       1.8  0.7         1.8       2.0    0.8  0.93 

MAC-3      21.8     22.0  4.0       12.1     10.0    7.3 0.058 

NOGO-A      10.0       5.0  9.5         6.4       7.0 1.5  0.58 

NFL       80.7     84.4   13.1       78.9     82.2  12.4  0.81 

APP       18.8     18.5     1.9       22.5     20.5 8.1  0.80 

CD3          0.0       0.0  0.0         0.2       0.0 0.4  1.00 



Table S6C  

Histochemistry and immunohistochemistry data from the midline of corpus callosum. 

 

1 week of remyelination 

 

 

 

 

 

 

 

 

 

 

 

 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

 

 

 

 

  

     

 Fingolimod   Placebo   

 Mean and Median  SD Mean and Median SD p  

LFB       2.2       2.0  0.3       2.1        2.0    0.4   1.00 

PLP     50.8     39.5   28.4 51.8     54.8  23.8 0.96 

GFAP       2.1       2.0  0.6       1.8        2.0    0.5 0.36 

MAC-3     14.0     12.5  9.1     10.0        9.0 5.8 0.42 

NOGO-A     24.2     22.0  9.2     30.0      29.0 8.5 0.31 

NFL     79.9     81.6  8.5     85.1      85.2 7.9 0.30 

APP       7.0       5.0   5.2     13.5      15.5 8.3 0.25 

CD3         0.8       0.0   1.5       0.5        0.5 0.6  0.79 



Table S6D  

Histochemistry and immunohistochemistry data from the midline of corpus callosum. 

 

3 weeks of remyelination 

 

 

 

 

 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

  

 Fingolimod   Placebo   

 Mean and Median  SD Mean and Median  SD p  

LFB       1.7       1.5  0.3       1.3       1.3  0.7     0.40 

PLP     71.6     70.9  4.8     62.6     57.6   12.0     0.28 

GFAP       1.8       1.5  0.5       1.8       2.0     0.3     0.81 

MAC-3       5.4       5.0  3.5     10.4       9.0     5.0     0.10 

NOGO-A     30.0     32.5  9.9     31.4     29.0     7.5     0.90 

NFL     84.7     85.5  4.4     88.6     90.9  4.0      0.26 

APP       5.7       5.0   3.9       4.2       2.0   3.5     0.35 

CD3         0.4       0.0  0.6       1.0       0.5  1.4     0.76 



Table S7A  

Histochemistry and immunohistochemistry data from the secondary motor cortex 

 

Controls 

 

 Healthy Control   Cuprizone Control   

 Mean and Median (SD) Mean and Median (SD) p 

LFB          1.4        1.5    1.3          3.0        3.0 0.0 0.15 

PLP          7.9        7.3 5.9          0.9        1.1 0.4 0.053 

GFAP          0.0        0.0 0.0          2.0        2.0 0.0 0.008 

MAC-3          0.0        0.0 0.0        14.0        5.0 6.6 0.018 

NOGO-A        10.3        9.0 4.3          4.5        4.5 6.4 0.004 

NFL        16.2        5.5  16.0        13.1      12.6 9.6 0.697 

      

 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

  



Table S7B  

 

6 weeks of cuprizone exposure  

 

 Fingolimod  Placebo   

 Mean and Median (SD) Mean and Median (SD) p  

LFB           3.0       3.0 0.0          2.9         3.0 0.2   1.0 

PLP           1.0       1.0    0.3          2.9         1.8 2.7 0.128 

GFAP           2.4       2.5 0.6          1.7         1.5 0.8 0.160 

MAC-3         21.8       5.5 4.0        12.2         4.0 7.5 0.530 

NOGO-A           0.7       0.0 1.2          7.2         8.0 5.8 0.084 

NFL            9.4       8.7 4.3        19.9       19.2 5.2 0.005 

 

 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

  



 

Table S7C 

 

1 week of remyelination 

 

 Fingolimod  Placebo   

 Mean and Median (SD) Mean and Median (SD) p 

LFB          2.5        3.0    0.9          2.8        3.0 0.3 0.773 

PLP          2.1        2.3 0.8          4.7        4.9 3.7 0.481 

GFAP          1.6        1.5 0.3          1.9        2.0 0.5 0.171 

MAC-3        14.0        4.5 9.1        10.0        2.5 5.8 0.065 

NOGO-A          4.2        3.0 2.7          4.5        4.5 2.6 0.749 

NFL        21.1      19.7  12.0        16.1      16.9 8.2 0.419 

 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

  



Table S7D  

 

3 weeks of remyelination 

 

 Fingolimod  Placebo   

 Mean and Median (SD) Mean and Median (SD) p 

LFB          2.4        2.5 0.7          2.5        2.5    0.6   1.0 

PLP          3.3        2.0 3.2          3.8        2.6 2.6 0.662 

GFAP          1.2        1.0 0.3          1.0        1.0 0.5 0.643 

MAC-3          5.4        1.0 3.5        10.4        0.0 5.0 0.784 

NOGO-A          5.2        3.5 4.3          1.6        2.0 0.6 0.032 

NFL        14.0      13.4 7.1        12.9      13.7 3.8 0.824 

 

 
p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

 



Supplementary figures  

 

Figure S1A 

Study design.  

 

 

 

 
 

                                             

 

Supplementary figure 1.  

The figure shows the timeline for the experiment, including cuprizone exposure. Fingolimod or 

placebo was given by gavage daily from week five until euthanasia. Cuprizone controls and healthy 

controls were euthanized after 5 and 9 weeks, respectively. Brain samples for cuprizone mice treated 

with fingolimod or placebo were prepared for immunohistochemistry and proteomics at three different 

time points, 6 weeks of demyelination (DM), 1 week of remyelination (1RM) and 3 weeks of 

remyelination (3RM).  

1 2 3 4 5 6 7 8 9
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Figure S1B 

 

 

Regional sampling sites for histochemistry and immunohistochemistry in the mouse brain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Red: Supplementary motor cortex (M2), green: Medial corpus callosum (cc), blue: Lateral corpus 

callosum (cingulum, cg), yellow: Deep gray matter –striatum (CPu), grey: 2nd somatosensory cortex 

(S2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

Figure S2 

 

 
 

Supplementary figure 2: Distribution of the average protein log2 abundances prior to statistical 

analysis in limma. The averages are based on three pools, each containing two biological replicates. 

DM= six weeks of demyelination, 1RM= one week of remyelination, 3RM = three weeks of 

remyelination.  

 

 

 

 

 

 

 



 

Figure S3 

 

 

Supplementary figure 3: The average log2 abundances based on three pools, each containing two 

biological replicates and their standard deviation. NOGO-A: Neurite Outgrowth Inhibitor Protein A, 

GFAP: Glial Fibrillary Acidic Protein, MAC-3: macrophages and microglia, APP: amyloid precursor 



protein A4, NFL: phosphorylated neurofilament light. DM= six weeks of demyelination, 1RM= one 

week of remyelination, 3RM= three weeks of remyelination.  

Figure S4. CD3 immunopositivity 

A)  

 

  

0

1

2

3

DM 1RM 3RM

M
e

a
n

 n
u
m

b
e
r 

o
f 

C
D

3
 

im
m

u
n

o
p

o
s
it
iv

e
 c

e
lls

 

CD3  

Fingolimod Placebo



B)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Healthy control Cuprizone control 

Fingolimod Placebo 

DM 

1RM 

3RM 

CD3 



Figure S4. CD3 immunoreactivity 

A) Number of CD3 immunopositive cells in the fingolimod and placebo group after 6 weeks of 

demyelination, 1 week of remyelination and 3 weeks of remyelination. We did not find a difference 

between the fingolimod and the placebo group at any time point. Cell counts are provided as mean 

number of cells per 0.0625 mm2, in the midline of the corpus callosum. Error bars: ±1 SD. 

 

B) CD3 and hematoxyline stained sections. DM= six weeks of demyelination, 1RM= one week of 

remyelination, 3RM= three weeks of remyelination. All images at 40x. 

  



Supplementary methods 

 

LC-MS analysis of TMT-labeled samples 

About 0.5 µg tryptic peptides were injected into an Ultimate 3000 RSLC system (Thermo Scientific, 

Sunnyvale, California, USA) connected to a Q-Exactive HF equipped with a nanospray Flex ion 

source (Thermo Scientific, Bremen, Germany). The sample was loaded and on a pre-column Acclaim 

PepMap 100, 2cm x 75µm i.d. nanoViper column, packed with 3µm C18 beads at a flow rate of 

3µl/min for 5 min with 0.1% TFA (trifluoroacetic acid, vol/vol). Peptides were separated during a 

biphasic ACN gradient from two nanoflow UPLC pumps (flow rate of 0.250 µl/min) on a 25 cm 

analytical column (Easy-Spray 802, 25cm x 75µm i.d. PepMap RSLC column, packed with 2µm C18 

beads (Thermo Scientific). Solvent A was 0.1% FA (vol/vol) in water, and solvent B was 100% ACN. 

The fractions were applied different LC-methods depending on their elution from the mixed mode 

column. 

 

LC-gradients for the TMT-labeled fractions in the LC-MS analysis 

The mixed mode fractions were applied different LC-gradients depending on their elution from the 

mixed mode column, solvent A was 0.1% FA (vol/vol) in water and solvent B was 100% ACN. 

Fraction 1-6 had a gradient of 5 % B 0-5 min, then 5-12 % B 5-65 min, 12-30 % B from 65-87 min, 

30-90 % B from 87-92 min, 90 % B from 92-102 min, 90-5 % B from 102-105 min and held at 5% B 

until the end. Fractions 7-36 had a gradient of 5 % B from 0-5 min, 5-7 % B from 5-5,5 min, 7-22 % B 

from 5.5-65 min, 22-35% B from 65-87 min, 35-90 % B from 87-92 min, 90 % B from 92-102 min, 

90-5 % B from 102-105 min, 5 % B from 108-120. Fractions 37-60 had a gradient of 5 % B 0-5 min, 

5-7 % B from 5-5,5 min, 7-40 % B from 5,5-87 min, 40-90 % B from 87-92 min, 90 % B from 92-102 

min, 90-5 % B from 102-105 min, and 5% from 105-120 min.  

 

 

 

  



Mass spectrometer settings 

The mass spectrometer was operated in the data-dependent-acquisition mode to automatically switch 

between full scan MS1 and MS2 acquisition. The instrument was controlled through Q-Excative HF 

Tune 2.4 and Xcalibur 3.0. MS1 spectra were acquired to detect precursors in the scan range 375-1500 

m/z with resolution R = 60,000 at 200 m/z. The automatic gain control (AGC) had an ion target of 3e6 

and a maximum injection time (IT) of 50 milliseconds (ms). The 15 most intense precursors with 

charge states 2 or higher and above intensity threshold 5e4 were sequentially isolated. The target AGC 

value for MS2 was 1e5, aquired at R = 30,000. The ions were collected with IT 45 ms and fragmented 

with a normalized collision energy of 32 %. The precursor isolation window was 1.6 m/z, and with 

isolation offset of 0.3 Da. A dynamic exclusion of 30 seconds was used to prevent precursor re-

sampling and to maximize the number of sampled precursors. Lock-mass internal calibration was 

used, and isotype exclusion was on. 

 

 

Quantification of TMT data in Proteome Discoverer 

Following LC-MS analysis, data from the two TMT-10 plex experiments were collected and analyzed 

in Proteome Discoverer 2.0 (Thermo Scientific), using Sequest HT, and MS Amanda (version 

1.4.4.2822) and the SwissProt Mus musculus downloaded 15.10.2015 (canonical sequences not 

including isoforms) and the cRAP contaminants database from 30.01.2015 

(ftp://ftp.thegpm.org/fasta/cRAP/). The following settings were used for both search engines. Trypsin 

was set as the enzyme, and maximum two missed cleavages were allowed. TMT tagging of N-

terminals and lysines were established as a fixed modification, in addition to carbamidomethylation of 

cysteine. Oxidation of methionine was set as a variable modification. The fragment mass tolerance 

was set to 0.01 Da for MS Amanda and 0.02 for Sequest HT. The identification deviance was set to 10 

ppm for MS1 precursors. The PSM validation from all search engines was performed using Percolator, 

with a strict and relaxed target FDR of 0.01 and 0.05, respectively. TMT 10-plex was set as the 

quantification method with the integration tolerance 20 ppm and the integration method most 



confident centroid. All samples were normalized to the reference sample within each TMT 10-plex 

using Proteome Discoverer. Unique peptides were used for quantification.  

The two 10-plexes were merged globally by search engine type, and PSMs with low confidence were 

discarded. The reporter ion isotopic distribution provided with the TMT kit was used to minimize 

cross-contamination in the TMT channels. The co-isolation threshold was set to 50%. The reporter 

abundance was based on a signal to noise values when available, if not intensities were used. The 

average signal to noise threshold was set to 10 s/n. Only proteins identified with unambiguously 

identified high confidence peptides (FDR <1%) were used. The datasets were normalized to the total 

peptide amount.  The resulting quantified proteins were filtered so that only master proteins were 

exported for analysis.  

 

Statistical analysis in R 

Prior to data upload to R, contaminants and proteins containing missing values were removed. 

The dataset was analyzed by the statistical software limma (Ritchie et al., 2015), where the batch 

effect was taken into account. Specifically, a linear model with the function abundance = 

condition+batch (condition = Placebo DM, Placebo 1RM, Placebo 3RM, Fingolimod DM, Fingolimod 

1RM, Fingolimod 3RM) (batch = 0 or 1 depending on the TMT experiment) was generated before 

empirical Bayes statistics (Smyth, 2004) on the resulting values for condition. Proteins with a p-value 

<0.01 and a log2 FC >0.2 or <-0.2 was considered significant. Benjamini Hochberg correction was 

used to adjust the p-values for multiple comparisons (q-value <0.05). The graphics package ggplot2 

(H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009) was 

used to generate figures. Gene Ontology Biological process enrichment analysis was carried out for 

the proteins considered to be significantly different in Panther (Mi, Muruganujan, Ebert, Huang, & 

Thomas, 2019; Thomas et al., 2006). The R script used for statistical analysis and graphics is publicly 

available at https://github.com/RagnhildRLereim/Fingolimod. 
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The supporting information for this paper is printed in the following. Files that are too 

large/not suited for the format of this thesis are in bold below. These files are available for 

download via the journal home-page: 

https://link-springer-com.pva.uib.no/article/10.1186/s12014-020-09296-5#Sec43  

 

 

Table S1: 133 proteins significantly changed (=/± 50%) between MS and Non-MS from 

CSF-PR. Quantified in minimum two studies, and changed in same direction in 

minimum two studies. 

Table S2: 287 proteins significantly changed between MS and Non-MS, but that were 

quantified in only one study in CSF-PR. 

Table S3: 120 proteins from Table S1 found in the DDA protein depth experiment. 

Table S4: All 1194 identified proteins from DDA protein depth experiment. 

Table S5: Data from the peptide stability experiment. 

Table S6: Data from the trypsin digestion experiment. 

Table S7: Data from the PRM RRMS vs. OND experiment. 

Table S8: Full table of all tested peptides with essential results from each test and 

whether they passed or failed the tests. 

Table S9: Overview of the tests for stability, digestion and MS vs. OND experiments, for the 

25 proteins. The colours and numbers refer to the peptides passing the specific test. Green: 

protein passed with two or more peptides; yellow: passed with one peptide; and, red: either 

no peptides passed (0) or none were tested (-). 

Figure S1: Digestion profile plot across all time points for all peptides. – Modified to include 

title and to be printed on fewer pages 

Figure S2: Scatter plots comparing peptide amount (ratio L/H) at all times points tested in the 

digestion experiment.  

Figure S3: Calibration curves for 17 assay peptides that passed all quality control tests. – 

Modified to include title and to be printed on fewer pages 

Figure S4: Representative transition peaks from the Skyline analysis. A and B show typical 

examples of used transitions. The transition intensity, integration limits, retention time and 

mass error (ppm) is illustrated. C and D show examples of how 1-3 transitions were often 

much higher than the rest. Peak smoothing (Savitzky-Golay) was used in Skyline, which 

notably does not affect the quantification. 

 



Accession  Protein Name Stability Digestion MS vs. OND 

P51693 Amyloid-like protein 1 3 2 2 

P61769 Beta-2-microglobulin 2 1 1 

P55290 Cadherin-13 3 2 2 

P16070 CD44 antigen 3 2 1 

P36222 Chitinase-3-like protein 1 0 - - 

Q15782 Chitinase-3-like protein 2 2 2 2 

P10645 Chromogranin-A 3 3 3 

P12111 Collagen alpha-3(VI) chain 3 3 1 

P02747 Complement C1q subcomponent subunit C 3 2 0 

P00736 Complement C1r subcomponent 4 1 0 

P54764 Ephrin type-A receptor 4 3 2 2 

Q6MZW2 Follistatin-related protein 4 3 3 3 

P48058 Glutamate receptor 4 3 1 1 

P01591 Immunoglobulin J chain 2 1 1 

Q92876 Kallikrein-6 3 1 1 

P32004 Neural cell adhesion molecule L1 3 2 2 

Q9ULB1 Neurexin-1 3 2 2 

Q9P2S2 Neurexin-2 3 3 3 

Q92823 Neuronal cell adhesion molecule 3 3 3 

Q99983 Osteomodulin 2 2 0 

Q9UHG2 ProSAAS 1 1 1 

P23468 Receptor-type tyrosine-protein phosphatase delta 3 2 2 

O00584 Ribonuclease T2 2 1 1 

P13521 Secretogranin-2 3 2 2 

Q6UXD5 Seizure 6-like protein 2 2 1 1 

 

Supplementary Table 9: Overview of the tests for stability, digestion and MS vs. OND experiments, 

for the 25 proteins. The colours and numbers refer to the peptides passing the specific test. Green: 

protein passed with two or more peptides; yellow: passed with one peptide; and, red: either no 

peptides passed (0) or none were tested (-). 
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P16070 : CD44 antigen
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P51693 : Amyloid−like protein 1
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Q9ULB1 : Neurexin−1
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Q92876 : Kallikrein−6
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P10645 : Chromogranin−A
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P32004 : Neural cell adhesion molecule L1
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O00584 : Ribonuclease T2
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P12111 : Collagen alpha−3(VI) chain
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Q6MZW2 : Follistatin−related protein 4
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Q6UXD5 : Seizure 6−like protein 2
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P02747 : Complement C1q subcomponent subunit C
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Q99983 : Osteomodulin
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P01591 : Immunoglobulin J chain
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P23468 : Receptor−type tyrosine−protein phosphatase delta
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P55290 : Cadherin−13
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Q15782 : Chitinase−3−like protein 2
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P00736 : Complement C1r subcomponent
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P54764 : Ephrin type−A receptor 4
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Figure S2. Scatter plots comparing peptide amount (ratio L/H) at all times points tested 
in the digestion experiment. 
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Supplementary Figure 4 
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Supplementary Figure 4: Representative transition peaks from the Skyline analysis. A and B 
show typical examples of used transitions. The transition intensity, integration limits, 
retention time and mass error (ppm) is illustrated. C and D show examples of how 1-3 
transitions were often much higher than the rest. Peak smoothing (Savitzky-Golay) was used 
in Skyline, which notably does not affect the quantification.  
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