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Summary  
 
Background  

One-carbon metabolism plays a central role in cellular energy metabolism, in part via 

regulation by the fatty acid-responsive nuclear receptor PPARα. Increased plasma 

concentrations of several one-carbon metabolites have been associated with increased risk of 

various chronic diseases. Diets high in fat or high in carbohydrates are popular approaches to 

induce weight loss, where these approaches have reported to yield similar weight loss but 

different responses in blood lipids. Dietary factors are known to affect one-carbon 

metabolism, where the regulation of diet composition has not been investigated. More recent 

research into effects of diet macronutrient composition on markers within one-carbon 

metabolism is needed, as it may help understand how the macronutrients differentially 

influence cellular metabolism and associated health effects.   

 

Objective 

The objective of this thesis was to determine the response of two isocaloric diets for fat loss 

that mainly contrast in fat and carbohydrate content on plasma one-carbon metabolites and 

related B-vitamin markers. We hypothesize greater effects on the plasma outcome metabolites 

by consuming a diet more concentrated in fat compared to a diet more concentrated in 

carbohydrates due to increased PPARα-activation by dietary fatty acids.  

 
Materials and methods 

Plasma samples of one-carbon metabolites and B-vitamin markers were measured in plasma 

from thirty-eight men with abdominal obesity during a 12-week randomized controlled trial 

(FATFUNC) conducted in January to May 2013 in Bergen, Norway. Participants were 

randomized to consuming a diet low in fat, high in carbohydrate (LFHC, n = 18), or a diet 

very high in fat and low in carbohydrates (VHFLC, n = 20). Blood samples were available at 

baseline, week 8, and week 12. The diets were similar in energy (8750 kJ/d) and protein 

content (17 E%) and differed mainly by carbohydrate and fat content. Body weight loss was 

on average similar for both groups (-12.2 kg LFHC, -11.8 kg VHFLC). Tendencies in plasma 

concentrations of outcome metabolites were presented by descriptive statistics and by direct 

graphic visualization, to assess potential non-linear trends. Between-group differences after 

12 weeks were assessed by linear regression adjusted for baseline values. Standardized mean 

difference (SMD; Cohen’s d) was calculated for each metabolite to provide effect estimates. 
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Results  

At the end of study, the VHFLC diet lowered the mean plasma concentrations of methionine 

(-2.15 µmol/L [-4.29, -0.02]), total homocysteine (-1.05 µmol/L [-2.19, 0.1]), cystathionine (-

0.08 µmol/L [-0.15, -0.01]) and raised the mean plasma concentrations of dimethylglycine 

(DMG) (0.45 µmol/L [-0.04, 0.94]) and serine (9.03 µmol/L [0.08, 17.99]) compared to the 

LFHC diet. No large between-group effect estimates were observed for the outcome 

metabolites, although the lower plasma concentrations of cystathionine were on the threshold 

(SMD = -0.74) of what is considered a large effect. For the other outcome metabolites, we 

observed large uncertainty in the estimates as evident by the wide 95 % compatibility 

intervals.  

 

Conclusion  

In conclusion, these data indicate that in the context of weight loss, following a VHFLC diet 

may lead to a small decrease in plasma methionine, total homocysteine and cystathionine, and 

slightly higher DMG and serine compared to following a LFHC diet. Although the groups 

differed sharply in fat and carbohydrate content, the observed differences were small, and 

largely inconclusive, likely due to the limited sample size. Thus, more research is needed to 

determine the effect of diets differing in carbohydrate and fat on these metabolic pathways, 

preferably in larger samples as well as outside the weight loss context. Further, the clinical 

relevance of these differences merit further study, to increase our knowledge regarding the 

health effects of these dietary approaches to weight loss.  
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1. Introduction 
1.1 One-carbon metabolism 
One-carbon metabolism includes a range of complex biosynthetic reactions involving a cycle 

of one-carbon units. This cycle of one-carbon units is important for epigenetic regulation, 

amino acid synthesis, and synthesis of new molecules (1). Elevated blood concentrations of 

several metabolites within the one-carbon metabolism have been reported to increase the risk 

of several chronic diseases (1). As many components in the one-carbon metabolism are 

derived from the diet, what you eat may be important in regulating the one-carbon network 

and might therefore also play a potential role in disease prevention. This section will 

introduce the processes within one-carbon metabolism, divided into three subsections, namely 

the methionine-homocysteine cycle and the transsulfuration pathway, the folate cycle, and the 

choline oxidation pathway.  

 

1.1.1 The methionine-homocysteine cycle and the transsulfuration pathway 

Methionine is an essential amino acid obtained from dietary sources such as egg, fish, dairy 

products, nuts, and sesame seeds (2). Within one-carbon metabolism, methionine is the 

precursor for the global methyl donor S-adenosylmethionine (SAM) (Figure 1) (3). SAM is 

formed from methionine in a reaction catalyzed by methionine adenosyltransferase (EC 

2.5.1.6) and donates its methyl group to different methyl acceptors in reactions catalyzed by 

different methyltransferases (2). This transfer of methyl groups to methyl acceptors is called 

transmethylation, which is essential for synthesis and modification of various molecules,  

such as creatine, phosphatidylcholine (PC), neurotransmitters, DNA, RNA, and other proteins 

(2,4). When SAM donates a methyl group to a target molecule, it forms a more stable bi-

product called S-adenosylhomocysteine (SAH). As SAH inhibits further methylation, the 

ratio of SAM to SAH may be an index of methylation capacity (4,5). SAH will rapidly 

metabolize to adenosine and homocysteine (Hcy) by the enzyme adenosyl-homocysteinase 

(EC 3.3.1.1) (3). Hcy is an amino acid derived from all transmethylation reactions of SAM, 

which further proceeds into the circulation or metabolizes within the cell. Of the various 

SAM-dependent methyltransferases, synthesis of creatine and PC are believed to be major 

sources of Hcy production (3).  
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Figure 1. A simplified overview of the methionine-Hcy cycle and the transsulfuration pathway. Hcy 

is a product of all methylation reactions from SAM derived from methionine. Hcy may enter the 

transsulfuration pathway for cysteine formation or be remethylated to methionine by accepting a methyl 

group from the folate cycle or the choline oxidation pathway. BHMT indicates betaine-homocysteine 

methyltransferase; CBS, cystathionine beta-synthase; CGL, cystathionine γ-lyase; DMG, dimethylglycine; 

Hcy, homocysteine; mTHF, 5-methyltetrahydrofolate; MS, methionine synthase; SAM, S-

adenosylmethionine; SAH, S-adenosylhomocysteine; THF, tetrahydrofolate. 
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Hcy metabolism includes the processes where Hcy is being remethylated back to methionine 

or catabolized in the transsulfuration pathway, reactions located within the cytosol (6). Hcy 

can be remethylated through two distinct metabolic pathways by donating a methyl group 

from either the methyl donor betaine from the choline oxidation pathway, or the methyl donor 

5-methyltetrahydrofolate (mTHF) from the folate cycle (5,6). Betaine derived from choline 

can donate a methyl group to Hcy by the enzyme betaine-homocysteine methyltransferase 

(BHMT; EC 2.1.1.5), a reaction confined mainly in the liver and kidneys. mTHF from the 

folate cycle donates a methyl group to Hcy by the cobalamin-dependent enzyme methionine 

synthase (MS; EC 2.1.1.13), a process occurring in all tissues. Betaine, choline, and folate can 

be obtained from the diet, leaving dietary intake of these compounds a factor influencing 

remethylation capacity. Based on the interconnection between these compounds through 

remethylation of Hcy, disturbances in one of these compounds may lead to changes in the 

other. However, under normal conditions, remethylation is evenly distributed between the two 

pathways (7).  

 

Hcy is catabolized to the amino acid cysteine in the transsulfuration pathway. This reaction is 

performed by two pyridoxal- 5´-phosphate (PLP) dependent enzymes cystathionine !-

synthase (CBS; EC 4.2.1.22) and cystathionine "-lyase (CGL; EC 4.4.1.1), located mainly in 

the liver and kidneys (8). CBS catalyzes the irreversible reaction where Hcy and serine form 

the intermediate cystathionine, whereas CGL utilizes cystathionine to generate cysteine and 

a-ketobutyrate (6). Cysteine is a rate-limiting component of the antioxidant glutathione, an 

antioxidant with an array of functions within the body (9). Transsulfuration is favored in 

conditions of inflammation and oxidative stress to increase glutathione concentrations (8), 

and at adequate methionine levels, due to the reduced activity of remethylation enzymes, 

combined with increased activity of CBS (6). Besides one-carbon metabolism, cysteine can 

be obtained through endogenous breakdown of proteins or by consuming most dietary protein 

(10).  

 

Metabolites within the methionine-Hcy cycle and the transsulfuration pathway are transported 

in the circulation. Circulating Hcy is primarily bound to sulfur-containing protein compounds, 

where plasma measurements include all species of circulating Hcy, referred to as total Hcy 

(tHcy) (3). Elevated plasma tHcy, also called hyperhomocysteinemia, occurs in situations of 

excess Hcy production, reduced Hcy clearance, or a combination (6,11). 

Hyperhomocysteinemia has been linked to several diseases, such as cancer (12), neural tube 
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defects (13), neurological and cognitive conditions (14), insulin resistance (15), osteoporosis 

(16), and type 2 diabetes (17). Elevated plasma tHcy is also an established marker for 

increased risk for developing cardiovascular disease (CVD) (18). The role of lowering tHcy in 

disease prevention has been discussed, as therapeutic approach with folate, vitamin B6, and 

vitamin B12 supplementation has successfully decreased tHcy levels, however, it has failed to 

lower the risk of future CVD events in patients with heart disease (19,20). The role of B-

vitamin approaches to lower tHcy in long-term disease prevention in questioned, as short-

term treatment with folic acid was observed to be efficient for stroke prevention in healthy 

adults with hypertension (21). The clinical relevance of tHcy as a marker rather than a 

causative factor remains unclear (22).  

 

The transsulfuration metabolites has been linked to chronic diseases, where increased plasma 

cystathionine concentrations have been linked to risk factors such as body max index (BMI) 

and unfavorable lipid profiles (23), as well as increased acute myocardial infarction and 

mortality risk (24). Increased cysteine concentrations have been associated with fat mass, 

obesity, and insulin resistance (25,26). The role of dietary intake of cysteine and methionine 

have also had its attention regarded disease prevention, as restriction of dietary sulfur amino 

acids has shown to be beneficial by increasing lifespan, reduce adiposity and improve insulin 

sensitivity in animal models (9). The role of methionine and cysteine restriction in disease 

prevention have also been suggested to beneficial in humans (27,28).  

 

1.1.2 The folate cycle 

The folate cycle refers to the cycle where folate is converted into different forms with 

tetrahydrofolate (THF) as a backbone. In one-carbon metabolism, the folate cycle is 

interconnected to Hcy remethylation by using mTHF as a methyl donor, forming methionine 

and THF (Figure 2). The cycle proceeds as THF may accept a methyl group from serine in a 

reversible reaction catalyzed by the PLP-dependent serine hydroxymethyltransferase (SHMT; 

EC 2.1.2.1), yielding 5,10-methylenetetrahydrofolate (MTHF) and glycine (29). 

Alternatively, THF may accept a methyl group derived from formate in a three-step reaction 

catalyzed by the niacin-dependent enzyme complex methylenetetrahydrofolate dehydrogenase 

1 (MTHFD1; EC 6.3.4.3, 3.5.4.9, and 1.5.1.5), which also forms MTHF (1). MTHF may 

further be utilized for mTHF formation, a reaction catalyzed by the riboflavin- and niacin- 

dependent enzyme MTHF reductase (MTHFR; EC 1.5.1.20), completing the folate cycle as 

mTHF donates a methyl group to Hcy and regenerates THF. SAM regulates the activity of 
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MTHFR by binding at high intracellular concentrations and further inhibiting its activity, 

which further yields less mTHF for remethylation, while the opposite regulation is observed 

when the intracellular levels of SAM is low (29). The folate cycle exists in parallel in the 

mitochondria and cytosol, which are connected by formate as folate metabolites are not able 

to cross cell membranes. Formate carries one-carbon units derived from serine, glycine, and 

choline oxidation metabolites from the mitochondria into the cytosolic one-carbon pool (1).  

 

 

 

 

 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The role of folate in Hcy remethylation. THF is the biologically active form of folate 

which may accept a methyl group from either formate or serine forming MTHF. MTHF may further 

yield mTHF, which are utilized for Hcy remethylation forming methionine and THF. Abbreviations; 

Hcy, homocysteine; THF, tetrahydrofolate; mTHF, 5´methyl tetrahydrofolate; MTHF, 5, 10- 

methylene tetrahydrofolate; MTHFD1, methylenetetrahydrofolate dehydrogenase 1; SHMT1, serine 

hydroxymethyltransferase 1.  
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1.1.3 The choline oxidation pathway 

The choline oxidation pathway covers the oxidating steps of choline to betaine, 

dimethylglycine (DMG), sarcosine, and glycine (Figure 3). Choline is a quaternary amine 

occurring both in water and lipid-soluble forms with various functions including cholinergic 

neurotransmission, lipid transport and membrane synthesis (30). Choline is synthesized de 

novo in the liver from phosphatidylethanolamine by the SAM-dependent enzyme 

phosphatidylethanolamine N-methyltransferase (PEMT; EC 2.1.1.17). However, this 

biosynthetic synthesis is not sufficient to meet choline requirements. The choline content is 

richest in foods of animal origin, including meat and meat products, eggs and milk, where less 

concentrated amounts are present in some plant-based food sources as pulses, nuts and beans 

(31). The main fate of both dietary and endogenous choline is the conversion to PC, 

accounting for ~95% of the total choline pool (32). For choline to enter the choline oxidation 

pathway, PC is converted to free choline by phospholipase D (EC 3.1.4.4). Free choline may 

be oxidized to betaine in a two-step reaction catalyzed by choline dehydrogenase (EC 

1.1.99.1) and betaine aldehyde dehydrogenase (EC 1.2.1.8), reactions mainly located in the 

liver and kidneys (30,31). Betaine is an osmolyte in the kidneys regulating cell volume, which 

alternatively may diffuse to the cytosolic compartment to act as a methyl donor for Hcy 

remethylation (30). Betaine requirements can be met through adequate dietary choline intake 

or by consuming betaine-rich sources such as refined and whole grain wheat, or attributable 

sources as sugar beets, shellfish, and spinach (33,34). The remethylation is catalyzed by 

BHMT, which transfers a methyl group to Hcy forming methionine and DMG (30).  

 

The choline oxidation pathway proceeds as DMG diffuses back into the mitochondria to yield 

sarcosine and glycine. These demethylation reactions are catalyzed by two riboflavin-

dependent enzymes, namely DMG dehydrogenase (DMGDH; EC 1.5.8.4) and sarcosine 

dehydrogenase (SARDH; EC 1.5.8.3). Sarcosine is usually rapidly demethylated to form 

glycine and MTHF using THF as substrate (35). Glycine has several fates; conversion back to 

sarcosine by the SAM-dependent enzyme glycine N-methyltransferase (GNMT; EC 2.1.1.20), 

catabolism through the three-enzyme complex glycine cleavage system (GCS; EC 1.4.4.2, 

2.1.2.10 and 1,.8.1.4), or conversion to serine by SHMT. GCS decarboxylate glycine to 

ammonia, carbon dioxide, the reduced form of nicotinamide adenine dinucleotide with a 

hydrogen atom (NADH), and a one-carbon group (36). GCS comprises three enzymes, each 

dependent niacin, vitamin B6, and folate as cofactors (37). The conversion to serine is 

through the enzyme SHMT. SHMT2, which is located within the mitochondria, appears to be 
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more active and distributed compared to the cytosolic SHMT1, which is mainly presented in 

the liver and kidneys (38). Cytosolic SHMT1 has been seen to operate in the direction of 

serine synthesis, while mitochondrial SHMT2 promotes glycine synthesis (39). Serine can be 

synthesized from glucose, connecting glucose metabolism to one-carbon metabolism (1). 

Other roles of glycine include the formation of creatine, purines, glutathione, and heme (1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The role of choline in one-carbon metabolism. Endogenous or dietary choline may convert 

to betaine in a two-step reaction catalyzed by CHDH and BADH. Betaine serves as a methyl donor for 

Hcy remethylation forming methionine and DMG, where the latter diffuses into the mitochondria to be 

metabolized to sarcosine and glycine. BADH, betaine aldehyde dehydrogenase; BHMT, betaine 

homocysteine methyltransferase; CHDH, choline dehydrogenase; DMG, dimethylglycine; DMGDH, 

dimethylglycine dehydrogenase; GNMT, glycine N-methyltransferase; Hcy, homocysteine; PC, 

phosphatidylcholine; PE, phosphatidylethanolamine; PEMT, phosphatidylethanolamine N-

methyltransferase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SARDH; sarcosine 

dehydrogenase; SHMT, serine hydroxymethyltransferase. 
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Circulating concentrations of choline oxidation metabolites have been linked to the risk of 

several diseases. Increased levels of plasma concentrations of choline have been associated with 

an increased risk of CVD events in patients with established CVD (40). Additionally, both high 

and low plasma concentrations of betaine have been associated with an increased risk of cardiac 

events (41). Elevated plasma DMG has been associated with future acute myocardial infarction 

and increased mortality in patients with coronary heart disease (42), whereas plasma glycine 

has been associated with decreased risk of acute myocardial infarction in patients with 

suspected angina pectoris (43). Regarding cancer biology, higher plasma concentrations of 

choline and betaine may reduce the risk of colorectal cancer (44), where higher plasma 

sarcosine and glycine concentrations have been associated with reduced prostate cancer risk 

(45). Both serine and glycine have been at the center of attention as targets in cancer therapeutic 

interventions (46). Glycine has also been associated with lifestyle factors such as body weight,  

where low plasma levels have been observed in patients with obesity and type 2 diabetes (47). 

In addition, plasma glycine concentrations have been observed to increase following 

improvement in insulin sensitivity (47).  

 
1.2 Role of B-vitamins in one-carbon metabolism  
B-vitamins are essential water-soluble compounds required as cofactors in an array of 

biological processes, including one-carbon metabolism (Figure 4). The B-vitamins of 

importance relative to this thesis will be presented in this chapter.  



 

 

 

1.2.1 Riboflavin  

Riboflavin, known as vitamin B2, is a central B-vitamin in human metabolism, mainly 

through its derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) 

(48). FMN and FAD are involved in redox-reactions by acting as cofactors for enzymes called 

flavoproteins (48). Flavoproteins have various functions, including energy metabolism and 

metabolism of other B-vitamins, such as folate, niacin, vitamin B6, and cobalamin. In one-

carbon metabolism, riboflavin functions as a cofactor for MTHFR in the folate cycle and for 

several enzymes in the choline oxidation pathway (49–51). Riboflavin binds to choline 

dehydrogenase to synthesize betaine from choline. Further, riboflavin is needed as a cofactor 

Figure 4. Overview of one-carbon metabolism and related B-vitamins. All B-vitamins utilized as cofactors in one-carbon 

metabolism are shown in orange circles. BADH, betaine aldehyde dehydrogenase; BHMT, betaine homocysteine 

methyltransferase; CBS, cystathionine beta-synthase; CGL, cystathionine γ-lyase; CHDH, choline dehydrogenase; DMG, 

dimethylglycine; DMGDH, dimethylglycine dehydrogenase; GNMT, glycine N-methyltransferase; Hcy, homocysteine; MS, 

methionine synthase; mTHF, 5´methyl tetrahydrofolate; MTHF, 5, 10-methylene tetrahydrofolate; MTHFD1, 

methylenetetrahydrofolate dehydrogenase 1; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PEMT, 

phosphatidylethanolamine N-methyltransferase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SARDH; 

sarcosine dehydrogenase; SHMT, serine hydroxymethyltransferase; THF, tetrahydrofolate. 
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for DMGDH and SARDH, which forms glycine from DMG in the mitochondria (50). In the 

methionine-Hcy cycle, riboflavin is a cofactor for the enzyme methionine MS reductase 

(MSR; EC 1.16.1.8), which reactivates MS after oxidation in the folate-mediated Hcy 

remethylation (51). Riboflavin is present in food of animal origin like milk, cheese and eggs, 

and certain vegetables, legumes, fruits and cereals (48). In the blood, riboflavin circulates 

primarily as free riboflavin bound to albumin and specific immunoglobulins (48). Free 

riboflavin traverses the cell membrane where it is converted to its coenzyme forms FMN and 

FAD by flavokinase (EC 2.7.1.26) and FAD synthase (EC 2.7.7.2), both widely distributed in 

tissues (48). To assess riboflavin status, plasma concentrations of FMN and free riboflavin are 

considered useful biomarkers, while plasma concentrations of FAD may not reflect vitamin 

status as its seem to be tightly regulated and relatively unresponsive to changes in riboflavin 

intake (52).  

 

1.2.2 Niacin  

Niacin (vitamin B3) is a generic term for nicotinamide (NAM), nicotinic acid, and 

nicotinamide riboside (53,54). These compounds are naturally present in food, where NAM is 

more concentrated in meat and fish products while NA is more concentrated in plant foods. 

Within the cell, all the three vitamers synthesize nicotinamide adenine dinucleotide (NAD), 

which is utilized as cofactor to various enzymes primarily in redox reactions in pathways such 

as glycolysis, Krebs cycle, and fatty acid synthesis (53,54). Dietary tryptophan is also an 

attributable source of niacin, as tryptophan can be catabolized to NAD through the kynurenine 

pathway. This pathway requires riboflavin, vitamin B6, and iron as cofactors, and deficiency 

of these cofactors may therefore impair niacin synthesis from tryptophan (53). The 

requirement of niacin is given as niacin equivalents, which combine the total dietary intake of 

niacin metabolites including tryptophan (53). Niacin circulates in plasma mainly as NAM or 

nicotinic acid bound to plasma proteins. In one-carbon metabolism, NAD assists as a cofactor 

with riboflavin to the enzymes MTHFR and MSR (49,51). Niacin is also essential for the final 

conversion of choline to betaine (55). Niacin can be methylated to N1-methyl nicotinamide 

(mNAM), a SAM-dependent reaction that is the breakdown route of niacin (56). Higher levels 

of mNAM have been reported in cases with coronary artery disease and have suggested to 

have anti-inflammatory functions (56).  
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1.2.3 Vitamin B6 

The term vitamin B6 covers six different compounds, including pyridoxine, pyridoxamine, 

pyridoxal (PL), and their derivatives pyridoxine 5´-phosphate, pyridoxamine 5´-phosphate, and 

PL 5´phosphate (PLP) (57). PLP is accounted as the active vitamer by serving as a cofactor in 

various reactions, the majority in amino acid metabolism (57). In one-carbon metabolism, PLP 

has a catalytic function in the two reactions in the transsulfuration pathway and in the 

conversion of glycine and serine through SHMT in the folate cycle. Vitamin B6 is connected 

to riboflavin, because the enzyme pyridoxine-5´phosphate oxidase (EC 1.4.3.5) uses FMN as a 

cofactor when converting pyridoxine 5´-phosphate and pyridoxamine 5´-phosphate to PLP. As 

mentioned previously, vitamin B6 is also essential in the synthesis of niacin from tryptophan. 

All B6-vitamers are widely distributed in foods, where good dietary sources include food of 

animal origin, beans, nuts, fruits, and vegetables (58). In plasma, vitamin B6 is present as PLP 

(70-90%), PL (8-30%,) and the excretion metabolite 4-pyridoxic acid (57). PLP is 

dephosphorylated by alkaline phosphatase (EC 3.1.3.1) to PL, which is the form that traverses 

cell membranes (57). Plasma PLP has been a standard assessment method for vitamin B6 status. 

However, plasma PLP is sensitive for factors such as smoking, inflammation, albumin 

concentrations, and alkaline phosphatase activity (57). Thus, assessment methods other than 

plasma PLP could be implemented in these cases, such as total B6, including both plasma PL 

and PLP (57). 

 

1.2.4 Folate 

Folate is a term covering all the reduced forms of vitamin B9. Folate is naturally present in 

foods such as dark green vegetables, mushrooms, legumes, peanuts, and certain fruits, mainly 

as mTHF (37). The oxidized form of the vitamin is folic acid, which is a synthetic form used in 

supplements and fortified foods because of its higher bioavailability compared to natural 

reduced folate. Fortification programs with folic acid are implemented in several countries, 

where flour, grains, cereals and juices are additional sources of the vitamin. Both dietary folate 

and folic acid are metabolized to dihydrofolate within cells and further reduced to THF, which 

is the active form of the vitamin. This reaction is catalyzed by the niacin-dependent enzyme 

dihydrofolate reductase (EC 1.5.1.3) (59).  

 

Further, THF may be utilized for DNA synthesis, thymidylate synthesis, or purine synthesis. 

Relative to this thesis, the folate forms are involved in the remethylation of Hcy to methionine, 

as described in section 1.1.2. The remethylation links folate metabolism to cobalamin, as the 
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cobalamin-dependent MS is the only enzyme capable of convert mTHF to THF (60). Since 

folate and cobalamin are interconnected by Hcy-remethylation, plasma folate concentrations 

are affected by cobalamin status as cobalamin-deficiency causes lower plasma folate 

concentrations and vice versa (60). Low dietary folate intake has been reported to increase 

plasma tHcy concentrations, whereas supplementation has been seen to improve 

hyperhomocysteinemia in both healthy people and individuals with heart disease (37). In the 

circulation, the majority of folate is found as THF, mTHF and 10-formyl THF bound to proteins 

or in free form. Serum concentrations of folate have been shown to reflect recent dietary intake 

of the vitamin and further act as a nutritional biomarker. Additionally, folate concentrations in 

erythrocytes may function as an assessment of folate status as they attain folate during the 

erythropoiesis phase, reflecting tissue folate stores the last 2-3 months (37).  

 

1.2.5   Cobalamin 

Cobalamin is a generic term that covers all corrinoids with a corrin nucleus, where 

methylcobalamin and adenosylcobalamin are known as the biologically active forms of the 

vitamin. Cobalamin functions as a cofactor in two enzymatic reactions within the body, which 

are catalyzed by cytosolic MS and the mitochondrial methylmalonyl CoA mutase (EC 5.4.99.2) 

(61). MS has cobalamin as a prosthetic group, depending on a methyl group from mTHF to 

form methylcobalamin and THF (61). As methylcobalamin is formed, MS transfers the methyl 

group bound to methylcobalamin to Hcy forming methionine and free cobalamin (61). 

Cobalamin is easily oxidized, which leads to inactivation of MS until reactivation by the 

riboflavin- and niacin-dependent enzyme MSR. As cobalamin and folate are closely 

interconnected in remethylation, deficiency of either of the vitamins reduces the activity of MS, 

and thus, may lead to accumulation of Hcy (60). Cobalamin deficiency may also cause 

accumulation of methylmalonic acid (MMA), formed from hydrolysis of methylmalonyl CoA. 

Methylmalonyl CoA is an end product of oxidation of odd chain fatty acids and amino acids, 

which can be further converted to succinyl CoA by the adenosylcobalamin-dependent enzyme 

methylmalonyl CoA mutase (61). Accumulation of plasma MMA has been shown to be a more 

specific marker of cobalamin deficiency compared to accumulated plasma tHcy, due to tHcy 

levels being affected by folate status. However, plasma MMA has been suggested to be 

influenced by other factors than cobalamin deficiency, such as age, sex and kidney function 

(62), as well as genetic variation (63).  
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Nutritional deficiency of cobalamin may also arise by inadequate intakes of foods of animal 

origin, including meat, fish, milk, and eggs, which are primarily dietary sources of the vitamin. 

These products contain mostly the hydroxo- and adenosylcobalamin form, while vitamin 

preparations mainly contain the cyanocobalamin form (61). About 20-30 % of the circulating 

cobalamin are bound to transcobalamin (holotranscobalamin), whereas 80% are believed to be 

transported by haptocorrin. Holotranscobalamin can be recognized and taken up by target cells, 

where all forms of cobalamin are believed to be metabolized to the biologically active forms. 

Haptocorrin cannot be taken up by cells and may function as circulating storage (61). As 

circulating cobalamin mostly comprises cobalamin bound to haptocorrin, total serum 

cobalamin may not be reflective of status. Holotranscobalamin measurements may reflect 

vitamin activity, while the functional markers tHcy and MMA may reflect cobalamin function. 

Thus, assessment of cobalamin status could include the use of multiple indices, such as plasma 

tHcy and MMA combined with total serum cobalamin concentrations, including 

holotranscobalamin.  

 
1.3 Diet  

1.3.1 Different diets and circulating biomarkers 

Previous studies indicate that consumption of a low fat, high carbohydrate (LFHC) diet have 

similar effects on weight loss and improvements of body composition compared to a very high 

fat, low carbohydrate (VHFLC) diet (64–66). However, individual variation has been observed 

in the response to diets differing in fat and carbohydrate content on blood lipids (64,67). 

Individuals replacing ~6.5 energy % (E%) saturated fatty acids (SFA) with poly-unsaturated 

fatty acids (PUFA) were reported to improve both low-density lipoprotein (LDL) cholesterol 

and high-density lipoprotein (HDL) cholesterol after 8 weeks compared to the control group 

(68). Studies where individuals consumed a VHFLC diet found that women trended to respond 

with decreasing mean changes of LDL-cholesterol concentrations, while men showed the 

opposite response (64). Different responses to diets differing in fat and carbohydrate content 

by gender have been observed elsewhere, suggesting a role of genetic traits in diet response 

(69). In addition, in individuals with overweight, more favorable changes in LDL cholesterol 

were observed in the group consuming a diet low in fat for 1 year, while more favorable changes 

in HDL cholesterol and triglycerides were observed for the group consuming a diet low in 

carbohydrates (66). Since restriction of either fat or carbohydrates are popular strategies for 

managing the increasing prevalence of overweight and obesity, there is a need to increase the 

knowledge of diet composition response on other circulating markers.  
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1.3.2 Dietary regulation of one-carbon metabolism   

There is also increasing evidence on the importance of dietary habits in regulating one-carbon 

metabolism as diet provide substrates, methyl groups, and B-vitamins. Intake of complex 

carbohydrates and proteins has been associated with lower plasma tHcy, while the intake of 

fat, processed meat, and sugar-rich foods has been associated with higher plasma tHcy (70). 

Smoking (71), coffee, and caffeine (72) have been reported to increase plasma tHcy, while 

high intakes of fish and eggs may have a lowering effect (73). Dietary intake of B-vitamins 

influences plasma concentrations of tHcy, such as folate and cobalamin, as mentioned in 

previous sections (20). Intake of whole grains rich in betaine has been associated with 

elevated plasma betaine (33,74). Preliminary data from the Western Norway B-vitamin 

intervention trial (Lysne, V et al, unpublished) observed that an increase in protein intake was 

strongly associated with higher plasma levels of vitamin B6, folate, riboflavin, niacin, and 

cobalamin and lower plasma levels of tHcy and MMA in patients with diagnosed stable 

angina pectoris, where no such associations were found for the intake of fat and carbohydrate. 

However, a randomized controlled trial replacing ~6.5 E%	dietary SFA with PUFA observed 

higher concentrations of glycine, serine, cystathionine, and riboflavin, and lower 

concentrations of cysteine and cobalamin compared to the control group, suggesting a role of 

fatty acid composition (68). The role of fatty acid composition has been investigated in 

several studies. Krill oil rich in n-3 PUFAs and PC was reported to reduce plasma tHcy and 

further increase the concentration of choline oxidation metabolites, such as fasting plasma 

choline, betaine, DMG, and sarcosine (75). In healthy individuals, a plant-based diet high in 

PUFAs and naturally low in methionine and cysteine was reported to increase plasma tHcy 

levels compared to a plant-based diet high in SFA, methionine, and cysteine (28). Similar 

results were reported in individuals consuming a vegan-based diet restricted in dietary 

methionine and cysteine, compared to a vegan diet rich in methionine and cysteine (27).   

 

A higher dietary fat intake has been reported in rodents to increase plasma cysteine and 

induce gene expression of BHMT and GNMT (76), and lower levels of hepatic CBS and CGL 

(77). High intake of dietary protein showed to increase hepatic concentrations of CBS (78), 

whereas rats fed a glycine-supplemented diet responded with increased activity of SHMT and 

GCS, which respectively convert glycine to serine and catabolize glycine (79). Excessive 

intake of dietary methionine has reported decreasing plasma betaine and serine 

concentrations, and further decrease flux in their respective reactions (80). Dietary fatty acids 
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have been shown to active the nuclear receptor peroxisome proliferator-activated receptor 

(PPAR)α, a key regulator of energy metabolism (81). Animal studies of PPARα-activation 

have reported effects on one-carbon metabolites and B-vitamins (82–84), providing a 

potential mechanism through which dietary fatty acid may influence these metabolic 

pathways. To summarize, dietary composition has been clearly shown to influence one-

carbon metabolism, resulting in altered circulating concentrations of one-carbon metabolites 

and markers of B-vitamin status.  

 

1.4 Aim and hypothesis  
Plasma metabolites within the methionine-Hcy pathway and choline oxidation pathway are 

associated with risk of major lifestyle diseases. Supported by evidence implicating a role of 

diet in regulation of the one-carbon metabolism, more study is a needed to elucidate the 

effects of diet composition on plasma concentrations of one-carbon metabolites. As previous 

studies observe changes in many circulating markers in response to diets differing in fat and 

carbohydrate composition, we hypothesize that this may also be true for metabolites related to 

one-carbon metabolism. Thus, this present thesis aims to explore how two isocaloric diets, 

contrasting in fat and carbohydrate content, affects plasma one-carbon metabolites and related 

B-vitamin markers. Specifically, we hypothesize that participants consuming a diet with high 

fat content shows greater changes in levels of these metabolites and markers, which may be 

mediated by PPARα activation in response to fatty acid exposure.  
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2. Materials and methods 
2.1 Study design  
The population under study comprised participants who completed the 12-week diet 

intervention study FATFUNC (ClinicalTrials.gov Identifier: NCT01750021) performed in 

Bergen, Norway, from January to May 2013. FATFUNC was a randomized controlled trial 

aiming to observe the metabolic effects of two isocaloric weight loss diets differing in fat and 

carbohydrate composition (67). The trial was conducted according to the guidelines of the 

Declaration of Helsinki and approved by The Regional Ethics Committee. Details regarding 

study design, recruitment of participants, and data collection procedures were described in 

more detail in the original trial (67). 

 

2.2 Participants   
Men with abdominal obesity aged 30-50 years were recruited to FATFUNC by a newspaper 

ad (67). Regarding body composition, the inclusion criteria were BMI > 29 kg/m2 or ≥25% 

body fat, waist circumference > 98 cm, and stable body weight (<5% change) before 

intervention startup. Other inclusion criteria were normal blood glucose levels defined as 

fasting blood glucose < 7mmol/L. Participants with any form of severe disease, food allergies, 

used regular medication (alkalizing gastric buffers were accepted), consumed alcohol >2 units 

per week, or weight reduction attempts the previous 6 months were excluded. The participants 

had two prescreening meetings before the intervention startup, where the randomization was 

conducted in the latter. Information on group allocation was announced to the participants 

after the baseline measurements. All participants provided written informed consent on 

potential risks and benefits. Of the 46 participants who met the inclusion criteria and 

completed the study, plasma analysis of one-carbon metabolites and related B-vitamin 

markers were available for n = 18 in the LFHC diet group and n = 20 in the VHFLC diet 

group. Figure 5 provides an overview of the complete selection process. 

 

 

 

 

 

 

 



 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 5 Flow diagram of the study selection. Of the 46 participants included for randomization, n = 18 in the LFHC diet group and n = 20 in the VHFLC 

diet group met the inclusion criteria for analysis of one-carbon metabolites and B-vitamin markers. LFHC, low fat, high carbohydrate, VHFLC, very high fat, 

low carbohydrate. 



 

2.3 Diet interventions  

2.3.1 Diet composition  
For the intervention period of 12 weeks, 18 participants in the LFHC diet group consumed on 

average 51 E% from carbohydrate, 17 E% from protein, and 29 E% from fat, where 20 

participants in the VHFLC diet group consumed on average 11 E% from carbohydrate, 17 E% 

from protein, and 71 E% from fat. Both diet groups had the same food profile and consumed 

the same primary sources of fats, carbohydrates, and proteins. The diets were similar in 

energy content (8750 kJ/d) and energy protein (17 E%), allowing to compare responses of 

two diets contrasting only in carbohydrate and fat. In both groups, the most consumed fat 

sources were butter, extra virgin olive oil, and cream, while the most consumed sources of 

carbohydrates were bread/baguettes, vegetables, rice, berries, and juices without added sugar. 

Regarding protein sources, the most consumed sources were meat and meat products, eggs 

and egg products, and cheeses. The contribution of PUFAs was on average equal in both 

groups (4.6 E% LFHC, 5.2 E% VHFLC). In general, the diets contained minimal highly 

processed foods and plant oils with high amounts of ω-6 fatty acids. They were recommended 

to eat two fish meals per week and avoid foods with poor food quality, such as hydrogenated 

vegetable fat, sugar, and to consume ≥500 g of fruits, berries, and vegetables every day. 8 

weeks before the intervention startup, they were instructed to use vitamin and mineral 

supplements daily (Solaray Spektro without iron, provided by Au Naturel (UK)).  They had a 

limited consumption of alcohol (0.3 E% LFHC, 0.2 E% VHFLC) and a limited intake of 

foods added with sugar (0.8 E% LFHC, 0.1 E% VHFLC).  

 

The diets differed in the volume of food consumed, as the LFHC group consumed twice the 

volume of food as the VHFLC group (2126 g/day compared with 1234 g/day) to meet the 

energy requirements. The fat composition did also differ between the groups, where the 

contribution of SFA was 12 E% and 34 E% for the LFHC and VHFLC, respectively. The 

intake of monounsaturated fatty acids (MUFA) was also higher in the VHFLC group 

compared to the LFHC group, 22.9 E%, and 8.1 E%, respectively. Regarding carbohydrates, 

the LFHC group had a higher consumption of fiber (2.8 E%) compared to the VHFLC group 

(1.6 E%). Overall, the diet groups consumed the same food products throughout the 

intervention, only varying in the quantity of carbohydrates and fat.  
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2.3.2 Dietary adherence   
The dietary data were assessed by using self-reported food records by using www.diett.no 

(operated by Dietika). They got a recipe booklet with information of the nutrient content and 

instructions for meal preparation for all meals (breakfast, lunch, dinner, supper, snacks), where 

the meals were designed according to the macronutrient profile of each diet group. The 

participants collected diet records for 5 consecutive days (including weekends) at baseline and 

5 days including weekends each month the entire intervention. They also recorded the physical 

activity level (frequency, duration, intensity) throughout the study, which reflected their 

habitual physical activity level. The physical activity level throughout the study were reported 

to be on average similar in both groups (67).  

The dietary adherence was verified using respiratory exchange ratio (RER), a tool to assess the 

substrate utilized for energy fuel. Complete carbohydrate oxidation was referred to as RER = 

1, where the ratio of oxygen consumed and carbon dioxide molecules produced are equal, while 

an RER = 0.69-0.73 was referred to as complete fatty acid oxidation. The dietary adherence 

were considered as good (67), and the RER for the VHFLC group and for the LFHC group 

were 0.85 and 0.84 at baseline, and 0.80 and 0.82 after 12 weeks, respectively.  

 

2.4 Biochemical Assays   
All circulating one-carbon metabolites and B-vitamin markers assessed in FATFUNC were of 

interest in this thesis. Blood samples were conducted at four study visits: at baseline and after 

4, 8, and 12 weeks. However, circulating one-carbon metabolites and B-vitamin markers were 

unfortunately not assessed at week 4, leaving samples from baseline, week 8, and week 12 

eligible for analysis.  

 
2.4.1 Blood samples 
All analyses were performed according to standardized procedures at the Laboratory of Clinical 

Biochemistry and the Hormone laboratory at Haukeland University Hospital, Bergen. Blood 

samples were taken in venous blood and stored at -80 degrees Celsius after preparation. All 

blood samples, including whole blood, plasma, and serum, were collected in a fasting state 

(overnight or ≥10 h) between 08.00 am, and 11.30 am, with only small amounts of water 

allowed. All blood samples collected were measured simultaneously (67).  
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2.4.2 Analysis of metabolites  
As one-carbon metabolites and B-vitamin markers are transported in the circulation, plasma or 

serum measurements are standard assessment methods. In FATFUNC, the analysis of all 

plasma and serum metabolites was done by trained personnel at Bevital A/S (Bevital, Bergen, 

Norway, www.bevital.no). Plasma one-carbon metabolites and B-vitamin markers assessed in 

FATFUNC and quantification methods are listed in Table 1, which also provides intraclass 

correlation coefficients (ICC) and an overview of defined reference ranges of normal plasma 

and serum values for the metabolites (www.bevital.no). However, it should me mentioned that 

the reference ranges are based on reported measurements from various cohorts and may not 

reflect all populations. 
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Table 1. Overview of plasma one-carbon metabolites and B-vitamin markers assessed in FATFUNC, 

analytic methods, and reference ranges in plasma/serum levels.    

Plasma metabolite Analytic method ICC Values in plasma/serum* 

 
Methionine-Homocysteine cycle  

   

Methionine GC-MS/MS 0.33 18-50 µmol/L 

Total homocysteine (tHcy) GC-MS/MS  0.72 5-15 µmol/L  

Cystathionine GC-MS/MS 0.63 <0,4 µmol/L 

Total cysteine (tCys) GC-MS/MS  150-350 µmol/L 

Choline oxidation pathway    

Free choline  LC-MS/MS 0.36 5-12 µmol/L 

Betaine LC-MS/MS 0.65 20-60 µmol/L 

Dimethylglycine (DMG) LC-MS/MS 0.64 1,5-5 µmol/L 

Sarcosine GC-MS/MS 0.68 0,7-2,3 µmol/L** 

Serine GC-MS/MS 0.71 95-125 µmol/L 

Glycine GC-MS/MS 0.81 200-300 µmol/L 

B-vitamin markers    

Riboflavin LC-MS/MS 0.79 5-100 nmol/L 

Flavin mononucleotide (FMN) LC-MS/MS 0.69 3-30 nmol/L 

Nicotinamide (NAM) LC-MS/MS N/A 100-600 nmol/L 

1-methylnicotinamide (mNAM) LC-MS/MS N/A 20-250 nmol/L 

Pyridoxal 5´-phosphate (PLP) LC-MS/MS 0.70 15-150 nmol/L 

Pyridoxal (PL) LC-MS/MS 0.62 5-150 nmol/L 

4-Pyridoxic acid (PA) LC-MS/MS 0.58 10-200 nmol/L 

5-Methyl-tetrahydrofolate (mTHF) LC-MS/MS N/A >7,5 nmol/L  

Cobalamin (sB12) Microbiological assay 0.82 >150 pmol/L 

Methylmalonic acid (MMA) GC-MS/MS 0.81 <0,26 µmol/L 

Source: www.bevital.no 
*Plasma/serum values in this table are based on plasma concentrations observed or reported in 
various cohorts and should not directly be referred to as normal reference ranges, as population 
characteristics such as gender, age, ethnicity vary across study populations.  
**Sarcosine cannot be measured by GC-MS/MS by all suppliers because sarcosine may be present in 
EDTA-tubes. Abbreviations; GC-MS/MS, Gas Chromatography-Tandem mass spectrometry; ICC, 
intraclass correlation coefficient; LC-MS/MS, liquid chromatography coupled to tandem mass 
spectrometry.  
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Quantification of metabolites was performed at Bevital AS (www.bevital.no) (85–89). 

Methionine, tHcy, cystathionine, total cysteine (tCys), serine, glycine, and sarcosine were 

quantified by gas chromatography-tandem mass spectrometry (GC-MS/MS) (85). Free choline, 

betaine, and DMG were quantified by liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS) (86). LC-MS/MS was also used to quantify B-vitamins, such as 

riboflavin, FMN, NAM, mNAM, PLP, PL, PA and mTHF (87,88). Regarding cobalamin, GC-

MS/MS were used to quantify plasma MMA, while serum B12 (sB12) was quantified by 

microbiological assays (89). The within-person reproducibility of the plasma measurements is 

expressed as ICC. In other words, it means how a single measure may represent long-term 

exposures within a subject, whereas ICC < 0.40 indicated poor reproducibility, 0.40-0.75 

indicates fair to good reproducibility, while ICC > 0.75 indicates excellent reproducibility (57).   

2.5 Statistical Analyses and Presentation of Data  
Plasma concentrations of outcome metabolites and baseline characteristics are presented as 

means (standard deviation, SD) for continuous variables and counts (%) for categorical 

variables. We chose to use Pearson correlation analysis at baseline to evaluate potential 

relationships between the outcome metabolites. As we aim to explore the response of two 

contrasting diets on plasma concentrations metabolites in a 12-week intervention, our main 

results are presented graphically. We used linear regression adjusted for baseline to assess the 

between-group differences in plasma concentrations of the outcome metabolites after 12 weeks. 

The results are given as mean differences (95 % compatibility intervals) with a p-value. In line 

with the recently highlighted misconceptions regarding the interpretation of p-values and 

statistical significance (90,91), the p-values are reported and interpreted as a continuous 

measure of compatibility rather than dichotomized intro the arbitrary categories “significant” 

and “non-significant”. In line with recent research, we emphasize using effect sizes to estimate 

statistical inference and 95% compatibility intervals (CI) to express variation and uncertainty 

in the data. As separate analyses of changes from baseline within each group may be 

misleading, we have focused on the direct between-group comparisons of the follow-up at 12 

weeks (92). At last, we calculated the standardized mean difference (SMD) for each metabolite 

where the effects were regarded as small, medium, or large according to the conventional 

cutoffs of 0.2, 0.5, and 0.8 (93). All statistical analyses and data presentation were performed 

using R (94), version 4.0.2 (https://www.R-project.org), using the packages and codes within 

“tidyverse” (95), “xlsx”, “broom”, “effsize” and “corrr”. 



 34 

3. Results  
3.1 Baseline characteristics  
Of the 46 randomized participants in the FATFUNC study, plasma samples of the outcome 

metabolites were available for 18 participants in the LFHC diet group (mean ± SD age 40.2 

± 4.5 years) and 20 in the VHFLC diet group (40.2 ± 5.5 years). 12 participants were classified 

as smokers based on plasma cotinine-levels ≥ 85 nmol/L, 6 participants (33.3%) and 6 

participants (30.0%) in the LCHF diet group and VHFLC diet group, respectively. As reported 

in the original study (67), the BMI (-3.7 kg/m2 LFHC, -3.6 kg/m2 VHFLC), body weight (-12.2 

kg vs. -11.8 kg) and waist circumference (-12.18 cm vs. -10.6 cm) decreased on average equally 

from baseline to intervention end in both groups. The mean plasma metabolite concentrations 

were within normal reference ranges defined in Table 1 throughout the study except for NAM 

which were > 600 nmol/L in both diet groups. Descriptive characteristics of the study 

participants and mean plasma concentrations of the outcome metabolites at baseline, week 8, 

and week 12 is presented in Table 2. The correlation analysis between the metabolites at 

baseline is presented in Figure 6. An overview of the mean plasma concentrations of the 

outcome metabolites throughout the intervention are visualized in Figure 7. In this figure, some 

extreme values were excluded due to large variation in plasma values. However, it should be 

noted that all values are included for statistical analysis and that this exclusion were just for 

visualization purposes. Between-group differences and SMD are presented in in Table 3. An 

overview of the main effects of two diets contrasting in fat and carbohydrate content on plasma 

one-carbon metabolites is presented in Figure 8.



 

 

Table 2. Baseline and follow-up characteristics and plasma values for one-carbon metabolites and B-vitamin markers in participants from the FATFUNC study1. 

 

                   Total population 
                           n = 38 

LFHC 
n = 18 

VHFLC 
n = 20 

 
Baseline Week 8 Week 12  Baseline Week 8 Week 12 Baseline Week 8 Week 12  

Population characteristics            

Age, y 40.2 (5.00)   40.2 (4.50)   40.2 (5.53)   
          
Weight, kg 112 (11.6) 103 (10.5) 100 (9.90) 111 (13.8) 101 (12.5) 98.8 (11.8) 114 (9.47) 104 (8.36) 102 (7.93) 

BMI, kg/m2 33.9 (2.99) 31.0 (2.78) 30.3 (2.64) 33.6 (3.62) 30.7 (3.39) 29.9 (3.29) 34.1 (2.35) 31.3 (2.13) 30.6 (1.90) 
          
Waist circumference, cm  116 (8.58) 107 (8.93) 104 (8.96) 116 (10.4) 107 (10.1) 104 (10.4) 116 (6.84) 108 (7.93) 105 (7.65) 

Smokers2, n (%) 12 (31.5%)   6 (33.3%)   6 (30.0%)   

One-carbon metabolites          

Met, µmol/L 28.0 (6.62) 26.5 (5.26) 25.0 (3.81) 28.7 (4.33) 27.4 (4.41) 26.3 (3.71) 27.4 (8.23) 25.6 (5.91) 23.8 (3.59) 

tHcy, µmol/L 9.89 (1.99) 10.8 (2.15) 10.5 (2.67) 9.82 (2.09) 11.2 (2.48) 11.0 (3.26) 9.96 (1.95) 10.5 (1.79) 10.1 (1.99) 

Cysta, µmol/L 0.22 (0.14) 0.20 (0.12) 0.18 (0.11) 0.20 (0.048) 0.24 (0.14) 0.22 (0.14) 0.23 (0.20) 0.17 (0.099) 0.15 (0.047) 

tCys, µmol/L 320 (31.8) 320 (30.3) 318 (28.6) 326 (36.1) 330 (26.6) 324 (28.4) 315 (27.2) 310 (30.9) 313 (28.3) 

Choline, µmol/L 10.1 (1.57) 9.40 (1.55) 9.19 (1.69) 10.3 (1.76) 9.35 (1.67) 9.17 (1.69) 9.86 (1.40) 9.43 (1.47) 9.21 (1.73) 

Betaine, µmol/L 34.3 (6.57) 40.1 (8.97) 40.3 (9.48) 35.0 (6.45) 40.4 (8.54) 39.7 (8.13) 33.7 (6.78) 39.7 (9.55) 40.8 (10.7) 

DMG, µmol/L 4.13 (1.23) 4.62 (1.29) 4.46 (1.09) 4.06 (0.76) 4.49 (1.02) 4.18 (0.74) 4.20 (1.56) 4.74 (1.50) 4.72 (1.30) 

Sarc, µmol/L 2.81 (0.46) 2.80 (0.47) 2.72 (0.38) 2.89 (0.45) 2.86 (0.52) 2.80 (0.33) 2.73 (0.47) 2.75 (0.42) 2.66 (0.41) 

Ser, µmol/L 105 (16.7) 123 (23.2) 118 (15.6) 107 (18.9) 119 (21.9) 114 (14.9) 102 (14.7) 126 (24.5) 121 (15.8) 

Gly, µmol/L 201 (31.3) 227 (36.4) 218 (33.2) 211 (28.1) 235 (33.7) 228 (33.9) 192 (31.9) 219 (37.9) 210 (30.8) 
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1Variables are given as mean (standard deviation) except of smoking, which is given as n (%) 
2Smokers are identified by plasma cotinine > 85 nmol/L 
BMI, body mass index; Cysta, cystathionine; DMG, dimethylglycine; FMN, flavin mononucleotide; Gly, glycine; Met, methionine; MMA, methylmalonic acid; 

mNAM, 1-methylnicotinamide; mTHF, 5-methyl-tetrahydrofolate; NAM, nicotinamide; PA, 4-pyridoxic acid; PL, pyridoxal; PLP, pyridoxal 5´phosphate; sB12, 

serum B12; Sarc, sarcosine; Ser, serine; tCys, total cysteine; tHcy, total homocysteine. 

 

 

 

 

B-vitamin markers 

Riboflavin, nmol/L 32.6 (20.0) 20.9 (23.6) 18.2 (14.2) 37.2 (24.8) 18.3 (14.5) 18.9 (18.2) 28.4 (13.9) 23.4 (29.8) 17.7 (9.73) 

FMN, nmol/L 18.2 (7.78) 17.0 (8.02) 14.5 (5.42) 19.7 (9.31) 16.9 (10.6) 15.1 (6.53) 16.9 (6.02) 17.0 (4.88) 14.1 (4.31) 

NAM, nmol/L 791 (172) 886 (221) 641 (139) 821 (176) 883 (260) 643 (139) 764 (168) 889 (187) 639 (143) 

mNAM, nmol/L 200 (72.4) 115 (54.0) 139 (46.9) 202 (56.6) 119 (63.0) 145 (57.8) 198 (85.7) 112 (45.9) 133 (34.9) 

PLP, nmol/L 109 (56.0) 102 (54.2) 80.8 (35.9) 113 (61.3) 88.1 (42.0) 75.8 (34.5) 105 (52.2) 114 (61.7) 85.3 (37.4) 

PL, nmol/L 26.1 (19.1) 20.8 (17.3) 14.7 (8.01) 30.5 (24.1) 20.1 (16.0) 16.4 (10.3) 22.1 (12.3) 21.4 (18.7) 13.1 (4.98) 

PA, nmol/L 66.5 (55.8) 40.0 (30.0) 31.2 (17.3) 80.0 (70.1) 39.4 (25.9) 34.1 (19.5) 54.3 (36.6) 40.5 (33.9) 28.6 (15.2) 

mTHF, nmol/L 15.3 (6.75) 14.6 (7.04) 15.8 (7.11) 15.5 (4.77) 15.2 (6.23) 16.0 (7.40) 15.1 (8.26) 14.0 (7.82) 15.6 (7.03) 

sB12, pmol/L 527 (121) 506 (118) 460 (108) 566 (136) 511 (127) 455 (103) 496 (99.4) 501 (113) 464 (114) 

MMA, µmol/L 0.14 (0.049) 0.13 (0.029) 0.13 (0.031) 0.14 (0.054) 0.13 (0.031) 0.13 (0.036) 0.14 (0.045) 0.13 (0.026) 0.12 (0.025) 



 

3.2 Correlation between plasma metabolites 
To evaluate the intercorrelations between the metabolites of interest, Pearson correlation 

coefficients between the metabolite concentrations at baseline are reported in Figure 6. 

Strongest correlations were those for methionine and cystathionine (r = 0.80), riboflavin and 

PA (r = 0.73), and PL and PA (r =0.86), riboflavin and PL (r =0.66), PLP and PL (r = 0.65), 

PLP and PA (r = 0.61), cystathionine and MMA (r =0.53). Other prominent correlations were 

for serine and glycine (r = 0.48), tHcy and tCys (r = 0.48), choline and betaine (r = 0.43), 

glycine and NAM (r = 0.43) and riboflavin and PLP (r =0.38).   
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Figure 6.  Correlation matrix of plasma one-carbon metabolites and related B-vitamin markers measured at 
baseline in the FATFUNC-study. Red color reflects positive correlation while blue color reflects negative correlation. 

Cysta, cystathionine; DMG, dimethylglycine; FMN, flavin mononucleotide; Gly, glycine; LFHC, low fat, high 

carbohydrate Met, methionine; MMA, methylmalonic acid; mNAM, 1-methylnicotinamide; mTHF, 5-methyl-

tetrahydrofolate; NAM, nicotinamide; PA, 4-pyridoxic acid; PL, pyridoxal; PLP, pyridoxal 5´phosphate; sB12, serum 

B12; Sarc, sarcosine; Ser, serine; tCys, total cysteine; tHcy, total homocysteine. 
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3.3 Plasma concentration of metabolites   

3.2.1 One-carbon metabolites  
At baseline, the mean plasma concentrations of tHcy, cystathionine, choline, betaine, DMG, 

and serine were on average similar in both diet groups, while the mean levels of methionine 

(~1.3 µmol/L), tCys (~11 µmol/L), sarcosine (~0.16 µmol/L), and glycine (~19 µmol/L) were 

slightly higher in the LFHC group (Table 2). From baseline toward 12 weeks, parallel trends 

in the groups were observed for decreasing mean plasma methionine, choline, and sarcosine, 

and increasing trends of plasma tHcy, betaine, DMG, serine, glycine (Figure 7). Divergent 

trends were observed in the groups for plasma cystathionine and tCys. At the end of study, the 

VHFLC group had lower levels of methionine (-2.5 µmol/L), tHcy (-0.9 µmol/L), 

cystathionine (0.07 µmol/L), tCys (-11 µmol/L), sarcosine (-0.14 µmol/L) and glycine (-18 

µmol/L), while higher levels of choline (0.04 µmol/L), betaine (1.1 µmol/L), DMG (0.54 

µmol/L) and serine (7 µmol/L).  

 

Results from our linear regression analysis indicated the strongest response toward decreasing 

plasma methionine (-2.15 µmol/L, 95% CI [-4.29, -0.02]), tHcy (-1.05 µmol/L, [-2.19, 0.1]), 

cystathionine (-0.08 µmol/L, [-0.15, -0.01]) while increasing plasma DMG (0.45 µmol/L,  

[-0.04, 0.94]), and serine (9.03 µmol/L, [0.08, 17.99])) in the VHFLC group compared to the 

LCHF group at 12 weeks (Table 3). Based on the wide compatibility intervals, the trends for 

the other one-carbon metabolites were more uncertain. The SMD (Cohen´s d) estimates 

indicated no large between-group effects (SMD > 0.8), whereof plasma concentrations of 

cystathionine were on the threshold (SMD = -0.74). Medium effect estimates were indicated 

for plasma methionine (SMD =-0.68), glycine (SMD = -0.57), and DMG (SMD = 0.51). 



 

 Figure 7.  Plasma concentrations of biomarkers within the one-carbon metabolism and related B-vitamins in participants from the FATFUNC study. 
Points are the observed values, and the lines reflect the mean trend within the two diet groups. Red lines reflect the plasma metabolite trends for the LFHC diet 

group, while the black lines for the VHFLC diet group. Cysta, cystathionine; DMG, dimethylglycine; FMN, flavin mononucleotide; Gly, glycine; Met, methionine; 

MMA, methylmalonic acid; mNAM, 1-methylnicotinamide; mTHF, 5-methyl-tetrahydrofolate; NAM, nicotinamide; PA, 4-pyridoxic acid; PL, pyridoxal; PLP, 

pyridoxal 5´phosphate; sB12, serum B12; Sarc, sarcosine; Ser, serine; tCys, total cysteine; tHcy, total homocysteine. 

 
 
 
 



 

Table 3 Changes in plasma metabolites after 12-weeks diet intervention  

Variables are given as mean plasma concentration (SD). 
1Model adjusted for baseline metabolite concentration. 
2Standardized mean difference (SMD) is estimated by Cohen´s d  
95% CI, 95% compatibility interval; Cysta, cystathionine; DMG, dimethylglycine; FMN, flavin 
mononucleotide; Gly, glycine; LFHC, low fat, high carbohydrate Met, methionine; MMA, methylmalonic 
acid; mNAM, 1-methylnicotinamide; mTHF, 5-methyl-tetrahydrofolate; NAM, nicotinamide; PA, 4-
pyridoxic acid; PL, pyridoxal; PLP, pyridoxal 5´phosphate; sB12, serum B12; Sarc, sarcosine; Ser, 
serine; tCys, total cysteine; tHcy, total homocysteine; VHFLC, very-high fat, low carbohydrate.  
 
 
 

 LFHC VHFLC VHFLC vs. LFHC (95% CI)1 P SMD2 (95% CI) 

Met, µmol/L 26.3 (3.71) 23.8 (3.59) -2.15 (-4.29, -0.02) 0.05 -0.68 (-1.36, -0.01) 

tHcy, µmol/L 11.0 (3.26) 10.1 (1.99) -1.05 (-2.19, 0.1) 0.07 -0.34 (-1, 0.33) 

Cysta, µmol/L 0.22 (0.14) 0.15 (0.047) -0.08 (-0.15, -0.01) 0.02 -0.74 (-1.42, -0.06) 

tCys, µmol/L 324 (28.4) 313 (28.3) -5.39 (-19.94, 9.17) 0.46 -0.41 (-1.08, 0.25) 

Choline, µmol/L 9.17 (1.69) 9.21 (1.73) 0.31 (-0.6, 1.23) 0.49 0.02 (-0.64, 0.68) 

Betaine, µmol/L 39.7 (8.13) 40.8 (10.7) 2.2 (-3.07, 7.47) 0.4 0.12 (-0.54, 0.78) 

DMG, µmol/L 4.18 (0.74) 4.72 (1.30) 0.45 (-0.04, 0.94) 0.07 0.51 (-0.16,1.18) 

Sarc, µmol/L 2.80 (0.33) 2.66 (0.41) -0.09 (-0.32, 0.15) 0.45 -0.37 (-1.04, 0.29) 

Ser, µmol/L 114 (14.9) 121 (15.8) 9.03 (0.08, 17.99) 0.05 0.45 (-0.22, 1.11) 

Gly, µmol/L 228 (33.9) 210 (30.8) -8.73 (-28.92, 11.47) 0.39 -0.57 (-1.24,0.11) 

Riboflavin, nmol/L 18.9 (18.2) 17.7 (9.73) 2.59 (-5.35, 10.52) 0.51 -0.09 (-0.74, 0.57) 

FMN, nmol/L 15.1 (6.53) 14.1 (4.31) 0.49 (-1.99, 2.97) 0.69 -0.19 (-0.85, 0.47) 

NAM, nmol/L 643 (139) 639 (143) 22.47 (-55.72, 100.67) 0.56 -0.03 (-0.69, 0.63) 

mNAM, nmol/L 145 (57.8) 133 (34.9) -12.6 (-44.11, 18.9) 0.42 -0.27 (-0.93, 0.39) 

PLP, nmol/L 75.8 (34.5) 85.3 (37.4) 12.46 (-6.28, 31.19) 0.19 0.26 (-0.4, 0.93) 

PL, nmol/L 16.4 (10.3) 13.1 (4.98) -2.23 (-7.44, 2.97) 0.39 -0.41 (-1.08, 0.25) 

PA, nmol/L 34.1 (19.5) 28.6 (15.2) -1.43 (-11.75, 8.89) 0.78 -0.32 (-0.98, 0.35) 

mTHF, nmol/L 16.0 (7.40) 15.6 (7.03) -0.11 (-3.87, 3,64) 0.95 -0.05 (-0.71, 0.6) 

sB12, pmol/L 455 (103) 464 (114) 36.93 (-13.23, 87.09) 0.14 0.09 (-0.57, 0.74) 

MMA, µmol/L 0.13 (0.036) 0.12 (0.025) -0.01 (-0.03, 0.01) 0.33 -0.3 (-0.97, 0.36) 



 

3.2.2 B-vitamin markers  
At baseline, the LFHC group had slightly greater levels of the mean concentrations of all the 

B-vitamins compared to the VHFLC group (Table 2). From baseline toward week 12, there 

was an overall decreasing response in mean plasma concentrations of all the B-vitamin 

markers in both groups, expect of mTHF and MMA which were rather stable. Parallel trends 

are observed for most of the markers, while some different tendencies in the groups are 

observed for plasma riboflavin, FMN, PL, PLP and sB12 (Figure 7). At the end of study, the 

VHFLC group had higher levels of PLP (9.5 nmol/L) and sB12 (9.0 pmol/L) and slightly 

lower levels of riboflavin (-1.2 nmol/L), FMN (-1 nmol/L), NAM (-4 nmol/L), mNAM (-12 

nmol/L), PL (-3.3 nmol/L), PA (-5.5 nmol/L), mTHF (-0.4 nmol/L) and MMA (-0.01 µmol/L) 

compared to the LFHC group.  

 

Results from the linear regression indicated largest between-group differences for higher 

plasma PLP (12.46 nmol/L, 95% CI [-6.28, 31.19]), sB12 (36.93 [-13.23, 87.09]) and lower 

plasma PL (-2.23 nmol/L [-7.44, 2.97] and mNAM (-12.6 nmol/L [-44.11, 18.9]) in the 

VHFLC group compared to the LFHC group (Table 3). As evident by wide 95% 

compatibility intervals, large uncertainty was observed for all B-vitamins. The SMD estimates 

indicated no between-group effects for the B-vitamin markers, where plasma PL were on the 

threshold to what is considered a medium effect (SMD = -0.41). The most pronounced 

between-group effects in diet response were for the one-carbon metabolites, which is 

visualized in Figure 8.   
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Observed changes in plasma concentrations of one-carbon metabolites by consuming a VHFLC diet compared to a LFHC diet for 12 weeks. The 

red arrows indicate higher while the blue arrows indicate lower plasma concentrations in the VHFLC group compared to the LFHC group. Effect sizes are visualized 

by opacity where the opaque red and blue arrows reflect strong effect estimates > 0.8, brighter red and blue arrows reflect medium effect estimates > 0.5, and the 

transparent arrows reflect small > 0.2. No arrow reflects no effect (choline and betaine). DMG; dimethylglycine; tHcy, total homocysteine.  

 



 

5. Discussion  
5.1 Principal findings  
In this 12-week randomized controlled trial among men with abdominal obesity, we observed 

lower mean plasma concentrations of methionine, tHcy, cystathionine and higher mean plasma 

concentrations of DMG and serine in participants consuming a VHFLC diet compared to a 

LFHC diet. We observed lower plasma concentrations of cystathionine on the threshold of what 

is considered a large effect, while the observed effect on the other metabolites were small. The 

95 % compatibility intervals were wide and pointed both directions causing some uncertainty 

in the estimates.  

 

5.2 Methodological aspects and considerations  

5.2.1 Study design  
This study was a randomized controlled trial, of where the participants were randomized to 

diets sharply contrasting in fat and carbohydrate content. Randomization, a procedure where 

participants have the same probability to be assigned to an intervention (96), balances both 

known and unknown prognostic factors with the purpose to distribute factors other than the 

exposure of interest equally. This minimizes the effect of potential confounder variables, which 

are variables affecting the exposure or outcome of interest without being under study, as they 

are equally distributed in both diet groups. By using this study design, it allows us to better 

investigate the causal effects of test interventions on outcomes of interest, and not just 

associations (97). Notably, when testing effects of dietary interventions that deviate 

substantially from the habitual diet, the time of exposure may need to be limited to a short 

period of time to ensure sufficient adherence (97). Thus, the present results reflect short-term, 

more acute responses to diet exposure, and not necessarily long-term responses.  

 

Also previous comparable randomized controlled trials reporting effects of diet composition on 

plasma one-carbon metabolites were of similarly short duration (27,68,98). A general limitation 

in these kinds of diet studies is the lack of blinding or double blinding, referring to when neither 

the participants nor the researchers know which of the participants receives the intervention 

(96). Blinding helps minimize bias, in particular researcher bias, which is present when the 

researchers may unknowingly or with intention influences the research, such as increasing the 

likelihood of a positive outcome in a group expected or hoped to have such effects (99). It opens 
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for bias introduced by differential treatment of groups or when assessing outcomes (99). Studies 

not implementing blinding have found to report greater effects of the treatment than those 

studies reporting to implement blinding (99). However, blinding is by nature a challenge in 

nutritional research, as placebo does not exist for diet composition and that participants 

obviously see what foods they consume (100). Although blinding is more difficult in nutritional 

research, it is not impossible and measures can be taken to reduce the associated bias. Ideally, 

all individuals involved in the study could possibly be blinded to some extent (99). First, 

randomization can be implemented by someone not involved in the study rather than the 

investigators. Furthermore, blinding when collecting data and samples could also reduce the 

risk of researcher bias by reducing ascertainment of the outcomes (99). This also implies to the 

current study, as the researchers were not blinded when performing statistical analyses and the 

interpretation of the results. Participants can also be blinded by certain ways, such as obtaining 

less information about the group they are allocated to, or less information about the other diet 

intervention group. This could prevent bias, as awareness of group assignment and knowledge 

of the intervention may affect behavior and responses to the trial (99). For instance, a participant 

aware of losing weight in a trial may probably lose more weight than he would when not being 

aware that this is an outcome of interest, which may bias the efficacy of the intervention.  

 

Another consideration in nutrition research is the use of self-reported dietary data. In the current 

study, the participants reported their diet intake by using food records. This dietary assessment 

instrument is considered a reactive tool, meaning that the usage of food records itself influence 

changes in dietary habits (100), where this awareness of being observed may reduce the energy 

intake and further may deviate the diet intake from the true intake (101). However, in the 

context of a dietary intervention trial, this can be utilized to remind the participants to follow 

their diets and further increase the compliance, which should be considered a strength. Indeed, 

the compliance were considered as good in the original trial (67), as only 2 of the 38 included 

participants did not report their food intake, further supported by the expected differences in  

RER estimates which reflect the rate of fat oxidation.  

 
 
5.2.2 Diets  
An important feature in the current trial was to reduce potentially dietary factors influencing 

circulating markers. A limitation in nutritional research is that we are always exposed to diet 

where different dietary habits and the nutritional status may be an influencing factor on the 
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outcome of interest (100). The strength in the current trial is the control of factors in the diet 

that potentially could lead to between-group differences in plasma concentrations of the 

outcome metabolites. The diets were similar in protein (E%) and energy content (8750 kJ), only 

varying in quantity of fat and carbohydrates. Another feature was the consumption of the same 

food products. Health effects depend partly by types and sources of carbohydrates and fat, 

where an intake of different sources of fat and carbohydrates varying in quality could lead to 

differences. Thus, as these factors affect both groups equally, there is unlikely that these factors 

contribute to differences in plasma concentrations of the outcome metabolites. Another 

important feature is that the LFHC diet reflect an average Norwegian diet (18% protein, 34% 

fat and 43-44% carbohydrates) (102), allowing to control the effects of a VHFLC diet to a diet 

that is considered as normal in the Norwegian population. However, consuming different 

quantity of the same food products may lead to differences in the micronutrient intake, which 

possibly could be a factor explaining the observed between-group differences.  

 
 
5.2.3 Outcomes  
The outcome metabolites studied were quantified at three measurements points, allowing us to 

address short-term acute changes. When interpreting markers in blood samples, some 

considerations need addressing. First, the outcome metabolites were assessed in a fasting state 

(>10 h). Plasma concentrations has reported to vary in response to diets, where for instance 

variation in plasma concentrations of cystathionine has been reported in response to meal intake 

(103), and decreasing plasma concentrations of PLP have been reported within hours after a 

high carbohydrate intake (57). Thus, the most reliable measurements are believed to be in a 

fasting state. However, variation in plasma concentrations have still been detected even after 

long-term fasting where metabolites show different response to the fasting duration (104), 

which may be a contributing feature explaining some of the observed variation in the plasma 

estimates. To reduce this variation, the most optimal would be to ensure that the fasting state, 

the time since the last meal to the sampling, are equal for each participant. Secondly, 

intraindividual variation may also be a factor influencing plasma metabolites. However, as 

indicated by the good to excellent ICC for the outcome metabolites, the within-variation in the 

plasma measurements may not be explained by random fluctuations, but rather other 

influencing factors such as weight loss and effects of diet exposure.  
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Another aspect when interpreting circulating markers is the uncertainty of what the plasma 

concentrations reflect. For instance, plasma concentrations of choline have previously not 

reported to be affected by dietary choline intake (105). Accordingly, we did not observe any 

between-group differences in plasma choline. However, diet may still activate metabolic 

responses within the body that are not detectable in plasma, where a higher intake of choline 

may compensate by reducing the endogenous production. Changes in plasma might reflect 

changes in tissue distribution, cellular release to the circulation, renal excretion, production, 

expenditure, and storage, and not necessarily increased or decreased flux through one-carbon 

metabolism. We cannot precisely know what metabolic process or distribution of the metabolite 

the observed plasma concentration reflects. Decreasing methionine levels may not necessarily 

mean increased uptake in tissues, it might also reflect reduced availability. Metabolites are also 

distributed in different metabolic tissues, where an increased uptake in one tissue may lead to 

a decrease in another. The complexity increases as the demand of metabolites are determined 

by an interaction of various factors such as genetics, environmental factors, stress level, 

biological factors, and gut microbes. Thus, the role of diet exposure on the metabolic phenotype 

may be different between individuals and across populations. 

 

5.2.4 Bias  

Selection Bias 

Bias is unavoidable in clinical research, which is any deviation leading to conclusions that 

necessarily is not correct, whereof the errors arising when selecting or allocating the study 

participants in a trial is referred to as selection bias (106). Due to the randomization, the risk of 

allocation bias is minimized, meaning that the results should not be influenced by systematic 

differences in who was assigned to which group (96). However, an aspect of selection bias 

under consideration is attrition bias, referring to the bias induced by the loss of study 

participants after the randomization process (96). In the current study, n = 8 participants 

withdrew after randomization (n = 4 in LFHC group, n = 4 in VHFLC group). This could 

potentially bias the results as the characteristics of the 8 participants that withdrew could have 

differed compared to participants completing the study. Another phenomenon under 

consideration is a variant of nonresponse bias called the healthy volunteer effect (107). 

Participants volunteering to trials are more likely to be health-conscious (e.g., not smoking, 

consume healthier food, higher level of exercise). If all included participants are generally more 

health-conscious, they may not represent other populations consisting of less health-conscious 
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people nor be representative toward the source population. If selection bias is present, it may 

decrease the external validity, where the results observed in the population under study may be 

less generalized into other populations (96).  

 
Information bias  

Information bias is the error occurring when collecting data and measuring the exposure or 

outcome of interest, which may deviate the results from the truth (106). Regarding the current 

study, information bias may be of concern when analyzing the outcome metabolites in form 

of random measurement error. Random measurement error are errors fluctuating both 

positively and negatively around the true value to different extent, that combined are expected 

to give an average of zero (96). Such errors would reduce the precision resulting in wider 

compatibility intervals surrounding the effect estimates. However, Bevital has reported great 

within- and between-day reproducibility (www.bevital.no), limiting the potential uncertainty 

related to the analytic variation. In addition, the uncertainty related to intraindividual 

fluctuations in metabolite concentrations is not regarded a major issue in the current study, as 

indicated by the good to excellent ICC.   

 

5.2.4 Statistical methods 
As we mainly wanted to explore the response of diet exposure on plasma concentrations of the 

outcome metabolites, descriptive statistics and graphic presentation of data were considered as 

useful approaches to observe the direct changes and potential between-group differences (108). 

For simplicity, we used arithmetic means to characterize the tendencies and standard deviations 

(SD) to describe the variance. As metabolites typically follows a log-normal distribution (108), 

we could have selected other parameters, such as geometric mean (geometric SD) or median 

(percentiles). This could better represent the true distribution of the plasma metabolites, but the 

interpretation is more complicated. Nevertheless, future studies could beneficially consider the 

log-normal distribution approach (108).  

 

Results are presented as mean difference (95% CI). In line with recent recommendations from 

American Statistical Association (91) and others (90), we interpret p-values as a continuous 

measure of compatibility between the data and the corresponding null hypothesis of no 

between-group differences. Accordingly, we did not dichotomize the results into categories of 

statistical significance. Interpreting results in terms of the presence or absence of statistical 

significance have some major limitations, such as erroneously interpreting two results to be in 
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conflict when one is significant while the other not, when they may be largely consistent. In 

the current thesis, this dichotomization would declare the between-group differences for 

plasma methionine (p = 0.05) as significant, while for tHcy (p = 0.07) as not significant, 

which would be misleading as they are trending the same direction. We emphasized the use of 

CI, which contains a range of parameter values more compatible with the data compared to 

the values outside the CI, and thus provide information on both the magnitude and direction 

of any potential difference, not just whether the difference is different from zero (90). The 

calculations of SMD were also considered as a good approach, as it allows to compare the 

effects on a common scale. The conventional cutoffs of what is considered a small, medium, 

and large effects should, however, be interpreted with caution. SMD is a continuous effect 

measure, and the cutoffs should be used as a starting point when interpreting results, and not  

should be interpreted with caution, as an effect may still be large even though it is not a bright 

line rule.  

 

An important feature in our linear regression analysis was the adjustments of the end values at 

12 weeks for baseline values. When analyzing continuous outcomes such as plasma biomarkers, 

the baseline concentrations is a major predictor of the follow-up concentrations. An extreme 

value is likely to be closer to the mean in the next measure, a phenomenon referred to as 

regression to the mean (109). Unadjusted comparisons between groups may therefore be 

biased, and the recommended approach is to include the baseline value as a covariate (109). 

However, in the context of being an RCT, it should not necessarily make a big difference, as 

we could expect the groups to be similar at baseline. However, in smaller studies we could 

always expect some differences, which we see for some metabolites such as sB12 (566 pmol/L 

in LFHC, 496 pmol/L in VHFLC), PA (80 nmol/L vs. 54 nmol/L) and NAM (821 nmol/L vs. 

764 nmol/L), where the adjustment for baseline was considered a good approach. The main 

objective of this study was to compare the two groups, and hence we did not include any 

analysis of within-group change from baseline, as this has previously been shown to be a 

misleading approach to analyze RCT-data (92).  

 

A major limitation in the current study is the limited sample size, where the smaller data 

provide less precision when estimating parameter estimates such as mean difference, as the CI 

is constructed using the standard error of the mean, which is directly influenced by sample 

size. Therefore, the large uncertainty in the observed differences may be related to the 

relatively small sample size, leaving the data largely inconclusive as evident by the p-values 
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and the wide 95% CIs. However, we cannot rule out the possibility of there being an effect of 

the diets, but a larger population would be needed to make more definitive inferences. Indeed, 

our effect estimates provided information of the magnitude on the between-group differences, 

which could be meaningful and should aid future large-scale studies to provide more insight 

into the role of diet composition. 

 

5.3 Discussion of main findings   
The most obvious explanation of the observed between-group differences of lower plasma 

methionine, tHcy, cystathionine and greater DMG and serine levels in the VHFLC group 

compared to the LFHC group may be due to the different amount of food consumed, which 

could provide different quantities of methyl groups, substrates, and B-vitamins. Both groups 

had on average the same protein (17 E%) and energy (8750 kJ/d) intake throughout the study. 

However, the VHFLC group consumed twice the amount of energy derived from animal 

products compared to the LFHC group, such as meat and meat products (24 E% vs. 9.8 E%), 
fish (2.8 E% vs. 1.4 E%), and eggs (6.6 E% vs. 3.3 E%). Animal products are in general high 

in amino acids, riboflavin, niacin, vitamin B6, and cobalamin, and we would expect that a 

higher intake of these metabolites in the VHFLC group. A higher intake of methionine would 

provide more methionine available for SAM synthesis, and thus yield Hcy more favored to 

enter the transsulfuration pathway. As we observed a greater decrease in plasma methionine (-

2.15 µmol/L) in the VHFLC group compared to the LFHC group, it might be indicative of 

larger Hcy production. We observed increasing levels of plasma tHcy through the 

intervention in both groups, which might be indicative of increased Hcy production, of where 

the slightly lower plasma tHcy levels (-1.05 µmol/L) in the VHFLC group compared to the 

LFHC group may be reflective of greater flux through the transsulfuration pathway. This may 

also explain the observed trends in plasma cystathionine. Cystathionine is produced in a 

condensation of Hcy and serine catalyzed by CBS (6). The higher intake of animal products in 

the VHFLC group, and thus higher dietary intake of methionine and serine, may have 

contributed to a higher availability of serine and Hcy to condense to cystathionine. Since we 

observed a greater decrease in plasma cystathionine (-0.08 µmol/L) in the VHFLC group 

compared to the LFHC group, it might suggest a greater flux in the transsulfuration pathway 

in the first group compared to the latter. This may also be supported by the higher plasma 

levels of serine (9.03 µmol/L) in VHFLC diet compared to the LFHC diet at the end of study, 
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where the greater serine levels may be reflective of the higher serine intake during the 

intervention.  
 

The observed between-group difference for plasma tHcy may also be due to differences in B-

vitamin intake, as plasma tHcy are inversely associated with folate, vitamin B6, and 

cobalamin. Folate and vitamin B6 are widely distributed in foods, while cobalamin is mainly 

present in foods of animal origin. Thus, the higher intake of cobalamin-rich animal products 

in the VHFLC group are most likely to be a contributing factor for the lower plasma 

concentrations of tHcy observed in this group compared to the LFHC group. This may be 

supported by the more delayed decrease in sB12 in the VHFLC group compared to the LFHC 

group, which may be due to the higher intake of animal products. Another influencing factor 

of plasma tHcy is smoking, as a dose-response relationship between smoking cigarettes and 

plasma tHcy has been implicated (110), suggesting that there might be between-group 

differences in the number of cigarettes smoked. Although the smokers were equally 

distributed in both diet intervention groups (30% in VHFLC group, 33.3% in LFHC group), 

the LFHC group had higher plasma cotinine levels at all measurement points, where the 

greatest difference was observed at 8 weeks (409 nmol/L in the LFHC group, 259 nmol/L in 

the VHFLC group, data not shown). Thus, increasing level of plasma tHcy in both diet groups 

may be influenced by smoking, whereof the higher levels observed in the LFHC group may at 

least partially result from higher recent smoking exposure as reflected by the higher cotinine 

levels.  

 

The higher levels of DMG (0.45 µmol/L) observed in the VHFLC group may be due to the 

higher dietary intake of fat compared to the LFHC group. Short-term and long-term PPARα-

activation has reported to decrease DMG catabolism by downregulating DMGDH and 

SARDH and further increase plasma concentrations of DMG (82,83,111). As dietary fatty 

acids are reported to bind and activate PPARα (81), the higher intake of fat in the VHFLC 

diet group may increase the activity of PPARα, and may further explain the higher plasma 

levels of DMG observed in this group compared to the LFHC group. Notably, we observed 

similar increasing trends of plasma DMG concentrations in both diet groups in the first 

interval (0-8 weeks), where it declined for the LFHC group while stabilized in the VHFLC 

group in the last (8-12 weeks). As plasma DMG increased similar in both diet groups toward 

week 8, PPARα-activation by dietary fat might not fully explain the observed alterations in 

this interval, as we would expect a stronger activation in the VHFLC group and further higher 
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plasma DMG. However, as PPARα are involved in energy metabolism and essential in 

starvation (112), it is plausible that the increase in both groups are mediated by some PPARα-

activation as a response to weight loss, of where the observed between-group differences from 

week 8 toward week 12 are due to different PPARα-mediated adaptions to diet. Thus, it may 

be likely that other metabolites also are affected different PPARα-mediated adaptions to diet 

such as plasma serine, since plasma serine have reported to increase in animals treated with 

PPARα-agonists (113). However, since we did not measure PPARα- expression or activity, 

this remains speculation. In addition, the higher increase of plasma DMG may also be due to 

the lower plasma concentrations of riboflavin and FMN observed in both groups, as both 

DMGDH and SARDH are flavoproteins (50). 

 

Other diet interventions have observed higher plasma cystathionine and serine by replacing 

~6.5 E%	dietary SFA with n-6 PUFAs in healthy subjects compared to control group after 8 

weeks (68). This is consistent with the observed increase in plasma serine in the current study, 

but in contrast with the observed decrease in plasma cystathionine. They observed no 

between-group differences by improving fat quality on plasma tHcy (68), while another study 

reported alterations in plasma tHcy in a context of weight loss by consuming a diet composed 

of 32E% from fat, 17E% from protein, and 47E% from carbohydrates in women with 

overweight (98). Plasma tHcy were reported to increase toward 8 weeks and further flattened 

toward 16 weeks, compared to a similar diet supplemented with betaine (98). As we also 

observed an increase of plasma tHcy toward week 8 in both groups, which were rather stable 

toward week 12, this trend may be consistent to our findings. However, tHcy has reported to 

increase in the context of weight loss (114,115). Decreasing plasma concentrations of 

methionine and cystathionine has also been reported in response to weight loss (114), which 

is consistent to the observed tendencies in current study. We observed a positive correlation 

between methionine and cystathionine at baseline (r = 0.80), which may suggest that the 

metabolites respond similarly to metabolic changes. Lower plasma concentrations of serine 

has been associated with visceral obesity (116), and thus, increased circulating levels of serine 

may be a response to weight loss. The weight loss may be likely to explain the similar 

tendencies observed for the metabolites in both groups. However, as the weight loss were on 

average similar in each group (-12.2 kg LFHC, -11.8 kg VHFLC), the weight loss is not likely 

to explain the observed between-group differences in plasma concentrations.  
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In addition to the context of weight loss, the participants under study had metabolic syndrome 

which also could be a contributing factor for the observed tendencies. Individuals with 

metabolic syndrome have been observed to have increased risk of oxidative stress and low-

grade inflammation (117), and metabolic markers related to oxidative stress and inflammation 

were found to improve in response to weight loss (117). Regarding one-carbon metabolism, 

increased oxidative stress has been reported to inhibit remethylation and activate 

transsulfuration (118,119). Thus, improvements of oxidative stress may influence the flux of 

Hcy being remethylated or catabolized in the transsulfuration pathway, and further be a factor 

influencing the plasma concentrations of metabolites. PPARα activation are believed to 

increase in response to weight loss (112), and reported to reduce both inflammation and 

oxidative stress (120,121). Thus, these regulations may partially explain the observed 

alterations in plasma concentrations of the metabolites, such as for plasma DMG (119). 

 

Another factor that may influence the plasma concentrations is the usage of vitamin 

supplements. The participants used vitamin supplements containing B-vitamins 8 weeks prior 

the intervention, which may explain the overall decreasing mean trend for the B-vitamin 

markers from baseline toward week 12 in both groups. The decreasing trends in plasma 

concentrations may reflect a natural decrease as a response to the discontinuation of vitamin 

supplements. As mentioned, the decreasing trend of plasma concentrations of the B-vitamins 

may also be a contributing factor for the observed increase in plasma tHcy in both groups due 

to the inverse association with folate, vitamin B6, and cobalamin. This natural decrease may 

also indicate that the plasma concentrations were higher than it would have been in 

participants not using supplements. Further, if the participants used supplements during the 

trial, it might also explain some of the observed variation in plasma concentrations. However, 

the usage was not reported. Overall, as both groups received the same vitamin supplements, it 

is unlikely to explain between-group differences.  

 

 
 



 

6. Conclusion and future perspectives 
In this exploratory study among men with abdominal obesity, we observed decreasing plasma 

levels of methionine, tHcy, and cystathionine while increasing DMG and serine by 

consuming a diet more concentrated in fat compared to a diet more concentrated in 

carbohydrates for 12 weeks. However, the observed between-group differences were 

considered small. Uncertainty in the data is mainly believed to be caused by the small sample 

size, leaving the findings inconclusive. The observed direction and tendencies of most plasma 

concentrations are suggested to be mainly a response to weight loss. Thus, future studies 

should preferably include a larger sample size and investigate the effect on the metabolites 

outside the weight loss context. Further, dietary effects should be explored in both sexes, 

collecting both genetic information as well as repeated blood samples, to disentangle the 

dietary regulation of one-carbon metabolism. The clinical relevance of the findings at this 

point is uncertain. Since higher concentrations of several one-carbon metabolites have been 

associated with increased risk of chronic diseases, future studies on the effect of dietary 

composition are warranted.  
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