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Abstract

The popularity of electric vehicles has seen significant growth in the latest years. More elec-

tric vehicles are connected to the grid, and the load is increased consequently. The electric

vehicle battery can be employed as a storage device for the grid by utilizing a bidirectional

dc-dc converter. This process, referred to as vehicle-to-grid, requires an implemented con-

trol system for controlling the power flow between the battery and grid. By delivering power

back in the grid when required, the peak load on the grid can be reduced.

In this thesis the functionality and operation of an isolated bidirectional dc-dc converter

for use with battery applications are reviewed, and a simulation model of a dc-dc converter

with dual active bridge topology is implemented. Next, a control system with single phase

shift modulation is implemented in the simulation model to regulate the power flow be-

tween the battery and grid. Finally, the transient response of the battery model utilized in

the simulation is compared to a physical battery prototype system, which is constructed and

implemented. The adaptable battery design allows for various voltage levels by connecting

individual packs in series or parallel, depending on the requirement. The battery system is

intended as a proof of concept, which can be developed further.

A conference paper presenting the transient response comparison between the battery pro-

totype designed in this thesis and a supercapacitor is submitted for review for the IEEE ICEC-

CME 2021 conference.



iv

Acknowledgment

First, I wish to thank my thesis advisor Vegard Steinsland for his help and guidance with my

thesis and for providing helpful feedback and support over this unique period. Secondly,

I wish to thank my fellow student Marius Reigstad for close collaboration, helpful motiva-

tion, and constructive discussions around the thesis. The collaboration made it possible to

achieve an paper for the IEEE ICECCME 2021 conference. This process has been very infor-

mative and educational and will benefit me with other projects in the future. Finally, I wish

to thank my family for supporting me and allowing me to focus entirely on the project.

F.S.



v

Contents

Abstract iii

Acknowledgment iv

List of Figures x

List of Tables xi

Acronyms xii

Symbols xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 5

2.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Non-Isolated Bidirectional DC-DC Converters . . . . . . . . . . . . . . . . 5

2.1.2 Isolated Bidirectional DC-DC Converters . . . . . . . . . . . . . . . . . . . 8

2.1.3 Dual Active Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Phase Shift Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Inductor Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Soft Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Loss analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



vi CONTENTS

2.3.2 Charging Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 State-Of-Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Battery Management System . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 MathWorks Matlab®and Simulink®v9.8 . . . . . . . . . . . . . . . . . . . . 27

2.4.2 KiCad v5.1.7 and KiCad Libraries V1.4 . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Visual Studio Code v.1.55 and PlatformIO v5.1.1 . . . . . . . . . . . . . . . 27

3 Method 28

3.1 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Leakage inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.4 Switching devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.5 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Simulation in Matlab®/Simulink® . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 DAB Converter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Battery Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Prototype Battery System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Battery Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Measurement PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 BMS PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Results 46

4.1 Isolated bidirectional dc-dc converter simulation . . . . . . . . . . . . . . . . . . 47

4.1.1 Battery Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 Powerflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.3 Soft switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Physical battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Discussion 61

5.1 Converter Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.2 Power Transfer Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.3 Soft Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Battery Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Conclusion 67



CONTENTS vii

References I

A IEEE ICECCME 2021 Conference Paper

Submitted For Review XII

B IEEE SEST 2021 Conference

Approved Abstract XVIII

C DAB Converter Simulation Model XXI

C.1 Converter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXII

C.2 Stateflow subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXIII

C.2.1 Stateflow subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXIV

C.3 Control subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXV

C.3.1 PI subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXVI

C.3.2 Signal generator subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . XXVII

C.3.3 Calculation subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXVIII

C.4 User Interface subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXIX

C.5 Scopes subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXX

C.6 Matlab Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXI

C.6.1 Initialize file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXI

C.6.2 PI selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXII

C.6.3 Figure selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXII

D Battery Simulation Model XXXIII

D.1 Battery simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXIV

E Prototype Design With PCB XXXV

E.1 Measurement Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXVI

E.1.1 Sensor Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXVI

E.1.2 Supply schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXVII

E.1.3 Copper Layout Front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXVIII

E.1.4 Copper Layout Back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXIX

E.2 BMS Control Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XL

E.2.1 Electric Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XL

E.2.2 Copper Layout Front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XLI

E.2.3 Copper Layout Back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XLII

E.3 BMS Sensor Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XLIII

E.3.1 Electric Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XLIII

E.3.2 Copper Layout Front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XLIV



viii CONTENTS

E.3.3 Copper Layout Back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XLV

F Laboratory test equipment XLVI

Index XLVII



ix

List of Figures

1.1 Simplified concept model of a bidirectional dc-dc converter . . . . . . . . . . . 1

2.1 Non-isolated bidirectional dc-dc converter topologies . . . . . . . . . . . . . . . 7

2.2 Isolated bidirectional dc-dc converter topologies . . . . . . . . . . . . . . . . . . 10

2.3 Isolated bidirectional dc-dc converter with a dual active bridge topology. . . . . 11

2.4 Operating waveform of the primary(vac1 ) and secondary(vac2 ) ac voltages aligned

with the leakage inductor voltage(vLK ) and current(iLK ) waveform. . . . . . . . 14

2.5 Simplified equivalent circuit diagram of the dual active bridge. . . . . . . . . . . 14

2.6 Dual active bridge equivalent topologies between time period t1 and t2. . . . . 17

2.7 Phasor diagram for the ac voltages and the leakage inductor voltage and current. 18

2.8 Discharge characteristic of a Li-ion battery . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Battery current and voltage characteristic during cc/cv charging mode. . . . . . 24

3.1 Simulation model of the isolated bidirectional dc-dc DAB converter. . . . . . . 33

3.2 User interface for controlling and supervising the simulation isolated bidirec-

tional DAB converter model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Simplified battery simulation model for testing the battery response. . . . . . . 37

3.4 Physical battery prototype system . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 PCB for current and voltage measurement . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Battery management system block diagram . . . . . . . . . . . . . . . . . . . . . 41

3.7 BMS controller for controlling the battery management system . . . . . . . . . . 42

3.8 BMS sensor for balancing and sensing a battery cell . . . . . . . . . . . . . . . . 43

3.9 Complete prototype battery system and laboratory test equipment . . . . . . . 45

4.1 Battery current and PI output presented with their transient response and their

following steady state ripple with a battery charging current of 4 A . . . . . . . . 48

4.2 Battery voltage and current characteristic while transitioning from CC to CV

mode, including the associated steady state voltage ripple while in constant

voltage. The battery voltage level is kept at 200 V while in CV mode. . . . . . . . 50



x LIST OF FIGURES

4.3 Battery current and PI output presented with their transient response and their

following steady state ripple with a battery discharging current of 10 A . . . . . 52

4.4 Primary and secondary ac voltages, presented with the current and voltage

over the leakage inductor, while the converter is charging and discharging . . . 54

4.5 Simulated and calculated output power between maximum and minimum phase

shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Characteristic of the drain-source and gate-source voltage presented with the

switching current over the S1 MOSFET, transitioning between the ON- and

OFF-state while charging and discharging. . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Characteristic of the drain-source and gate-source voltage presented with the

switching current over the S5 MOSFET, transitioning between the ON- and

OFF-state while charging and discharging. . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Voltage and current response from battery prototype pack and battery simula-

tion with current steps of 2, 4, 6, an 8 A . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Comparison between the simulated and calculated output power as a function

of the phase shift presented as percent from fig. 4.5a and as radian from fig. 4.5b 64

F.1 Laboratory components and test setup . . . . . . . . . . . . . . . . . . . . . . . . XLVI



xi

List of Tables

2.1 Comparison between non-isolated bidirectional converter topologies . . . . . 7

2.2 Comparison between isolated bidirectional converter topologies . . . . . . . . . 9

2.3 C-rate for charging/discharging a 1Ah battery . . . . . . . . . . . . . . . . . . . . 24

3.1 Parameters for the dual active bridge simulation model. . . . . . . . . . . . . . . 28

3.2 Performance parameters for SiC MOSFET IMZA65R027M1H . . . . . . . . . . . 31

3.3 PI regulator values from the control section of the DAB simulation model . . . 34

3.4 Nominal specification of the total battery prototype pack . . . . . . . . . . . . . 38

3.5 Nominal specification of a single lithium-ion cell . . . . . . . . . . . . . . . . . . 38

3.6 Laboratory test equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 9500-08 T programmable load function setting . . . . . . . . . . . . . . . . . . . 45

4.1 Simulated modes from the converter simulation . . . . . . . . . . . . . . . . . . 46

4.2 Battery response parameters while charging with constant current . . . . . . . . 47

4.3 Battery response parameters while charging with constant voltage . . . . . . . . 49

4.4 Battery response parameters while discharging with constant current . . . . . . 51

4.5 Power flow parameters from the converter simulation model . . . . . . . . . . . 55

4.6 Battery current response from lab test setup . . . . . . . . . . . . . . . . . . . . . 59



xii

Acronyms

Generell

BMS battery management system 26, 38, 39, 41, 43

CCCV constant current - constant voltage 23

DAB dual active bridge 8–10, 12–14, 16, 18, 19, 28–30, 32, 38, 53, 56, 64

DHB dual half bridge 8, 9

DPS dual phase shift 12, 13, 64

EPS extended phase shift 12, 13

EV electric vehicle 6, 10, 22, 29

HEV hybrid electric vehicle 22, 29

HFB half full bridge 8, 9

HV high voltage 10

IBDC isolated bidirectional DC-DC converter 8, 10

Li-ion lithium-ion 22, 23, 26

NaS sodium sulphur 22

NiMH nickel-metal-hydride 22

OCV open circuit voltage 24, 25

PCB printed circuit board 27, 38, 39

PPU power processing units 8

PWM pulse width modulation 12, 43

SiC silicon carbide 30, 31

SOC state of charge 23–26, 33, 34, 36, 47, 49, 51

SOH state of health 26

SPS single phase shift 12, 17, 32, 64

TPS triple phase shift 12, 13, 64

UPS uninterruptible power supply 6, 9

VRF vanadium redox flow 22

ZVS zero voltage switching 10, 16, 17, 56, 65



xiii

Symbols

Components

Ae (cm3) Transformer core volume 21

Cbat (F) Charge capacity of the battery 25

Cs (F) Output capacitance of the MOSFET 16

L (H) Inductor 13, 16, 18, 20, 29, 30

LK (H) Leakage inductor 14, 15

Pv (W/cm3) Transformer core loss per unit of volume 21

QG (F) Total gate charge of the MOSFET 31

RAC ,i nd (Ω) AC winding resistance in the inductor 21

RAC1 (Ω) AC winding resistance in the primary coil 21

RAC2 (Ω) AC winding resistance in the secondary coil 21

RDC ,i nd (Ω) DC winding resistance in the inductor 21

RDC1 (Ω) DC winding resistance in the primary coil 21

RDC2 (Ω) DC winding resistance in the secondary coil 21

Rmax (Ω) Maximum DC resistance in individual strands 21

Ron (Ω) On resistance of the MOSFET 20, 31

Electrical

EC (J) Energy stored in capacitor 16

EL (J) Energy stored in inductor 16

i2 (A) DC current out of the converter 25, 30

Iac1 (A) Primary AC current 21

Iac2 (A) Secondary AC current 21, 30

iC 2 (A) Capacitor current 30

Iφ (A) Instantaneous value of il 20

Idi o (A) Diode rms current 20

ID (A) Drain current in MOSFET 31

I1 (A) Instantaneous value of il 20

iL (A) Inductor current 13–18, 53

Imos (A) MOSFET rms current 20



xiv Symbols

I0 (A) Instantaneous value of iL 20

Isw (A) Current at switching time 19, 56

Pac (W) Skin effect loss 21

Pcond (W) Conduction loss 20

Pcopper (W) Copper loss 21

Pcor e (W) Core loss in a transformer 21

Pi nd (W) Inductor loss 21

Pout (W) Power out from converter 13, 30

Psw (W) Switching loss 19

V1 (V) DC voltage in to the connnverter 13, 15, 20, 30

V2 (V) DC voltage out of the converter 13, 15, 20, 30

Vac1 (V) AC voltage on the primary side 13–15, 17, 18, 53

Vac2 (V) AC voltage on the secondary side 13–15, 17, 18, 53

VDS (V) Voltage over MOSFET 16, 31, 56

V f d (V) Forward voltage drop over diode 20

VL (V) Inductor voltage 13–15, 17, 18, 53

Vsw (V) Voltage at switching time 19

General

fsw (H z) Switching frequency 13, 15, 19, 21, 30

ω ( rad
s ) Angular frequency 18, 20

n (−) Ratio between secondary and primary 13–15, 30

GS (−) Gate signal to the MOSFET 56

H (−) Ratio of individual strands 21

N (−) Number of strands 21

Ns (−) Number of parallel conductors 21

Di (mm) Diameter of individual strands 21

Do (mm) Diameter of cable 21

N (−) Voltage ratio between primary and secondary 17, 18

φ (r ad) Phase Shift 12, 13, 15, 20, 30

to f f (s) Time interval during OFF switching 19

ton (s) Time interval during ON switching 19



1

1 Introduction

1.1 Background

In 2020 the market share of new battery electric vehicles in Norway surpassed 50 percent for

the first time[1]. This market share is a substantial increase from 42 percent in 2019[1]. While

more electric cars rapidly come available, the load on the power grid consequently increases

as more cars connect to the grid. Most electric car chargers sold today are unidirectional,

as they only deliver power from the grid to the car. With the introduction of a bidirectional

charger, the power can flow both between the car and the grid. By using the car as a storage

element, the maximum load on the system can be reduced.

Other typical applications for bidirectional dc-dc converter include regenerative power sys-

tems and uninterruptible power supplies. Renewable power generation such as wind and

solar, are dependent on a fast and stable dc link. A battery and supercapacitor are often

combined to achieve this characteristic.

Figure 1.1 shows a simple concept and power flow of the bidirectional dc-to-dc converter.

The secondary side dc voltage can be increased/decreased depending on both the config-

uration and control method of the converter. The main benefit of a bidirectional converter

is the ability to transfer power in both directions between the primary and secondary sides.

As will be discussed later in this thesis, there are many different topologies and strategies to

achieve this power transfer.

i1 i2v1 v2DC/DC

PRIMARY SECONDARY

Figure 1.1: Simplified concept model of a bidirectional dc-dc converter



2 CHAPTER 1. INTRODUCTION

1.2 Literature Review

For many power-related systems, the bidirectional dc-dc converter has become a compelling

option, as improvements to the system in addition to improved performance are often pos-

sible. Energy storage devices such as batteries rely on a converter for transmitting the power

flow efficiently. A study examining a bidirectional dc-dc converter for an energy storage sys-

tem with galvanic isolation is presented in [2]. A 200 V 2.6 kJ laboratory model is applied

to verify the design and reveal limitations on the dc voltage range. Similarly in [3], a new

zero voltage switching bidirectional dc-dc converter for fuel cell and battery application is

proposed. By improving the zero voltage switching strategy, the losses will be lower, thus

increasing the efficiency. A purely simulated model is presented in [4], where a simulation of

dual active bridge converter for energy storage system is designed.

The power conversion aspect of the bidirectional dc-dc converter is an essential element.

In [5], an overview of a dual active bridge isolated bidirectional dc-dc converter for high

frequency link power conversion system, is presented. This study utilizes a high-frequency

transformer for achieving a compact and low-cost alternative. Included in the overview is

a comparison between different control strategies and soft switching possibilities. These

strategies will influence the power conversion, depending on the complexity and efficiency

of the strategy. A bidirectional isolated dc-dc converter as a core circuit of the next gener-

ation medium voltage power conversion system is presented in [6]. This paper introduces

silicon carbide for power switching devices. These devices are a developing technology with

high potential. Adopting the microgrid is the focus in [7], where extended phase shift con-

trol of isolated bidirectional dc-dc converter for power distribution in microgrid is presented.

Likewise in [8], modeling and control of a dual active bridge for energy storage in dc micro-

grid applications are presented. This paper presents design for filters for both the input and

output to contain the current ripple to the energy storage.

The bidirectional dc-dc converter performances will vary depending on the control and switch-

ing strategy. The short-time-scale transient response in a bidirectional dc-dc converter uti-

lizing single phase shift modulation is presented in [9]. This study shows the relation be-

tween phase shift and power and the mitigation of phase shift error through control. A

phase shift control of mitigating the circulating current and achieving zero voltage switch-

ing is presented in [10]. The paper introduces dual phase shift modulation to improve the

performance of the single phase shift. Similarly, triple phase shift modulation is presented

in [11]. The study achieves full zero voltage switching for a broad range with a description

of the control strategy applied. A comparison between the different phase shift modulations

is presented in [5]. The theoretical overview showcases the difference in control strategy,

characterization, and optimizations for the various modulations.
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Loss calculations are an essential factor in the design process of a bidirectional dc-dc con-

verter. An analysis of the power flow between the input and output is presented in [12]. The

proposed calculations are beneficial for the preliminary evaluation of power losses. The cal-

culations are based on average currents and will thereby be approximate. Estimated losses

are also provided in [13]. This estimation is achieved by simplifying the model. A similar pro-

cess is performed in [14], where an estimation of the switching and core losses is presented.

Most of the papers studying the power flow and losses in the bidirectional converters only

study a specific part of the converter. When a transformer is introduced to the topology, the

reactive power may become a problem. This dilemma is studied in [15], where a design is

proposed to eliminate reactive power and increase the converter’s efficiency.

The battery characterization is an fundamental factor to consider when designing a control

system. Different battery types and chemistries display various charging and discharging re-

quirements and characteristics. The handbook of batteries, third edition[16] presents prin-

ciple of operation in addition to showcasing information and characterization about numer-

ous battery varieties. In addition, the handbook presents battery performance requirements

for electric vehicle applications. The technological developments in batteries are constantly

improving, which is the focus of the study in [17]. The paper presents battery developments

with real-world applications and compares the performance of the different battery types.

Lithium-ion batteries are commonly utilized for electric vehicle applications. A novel adap-

tive technique for estimation the li-ion model parameters are presented in [18]. The study

utilizes the calculated parameters for state-of-charge estimation and presents the equivalent

circuit elements.

1.3 Objective

This thesis aims to design a simulation model of a isolated bidirectional dc-dc converter, im-

plement a control system for regulating the power flow, and compare the transient response

of the simulated battery model with a physical battery system.

• Implement an isolated bidirectional dc-dc converter simulation model in Matlab®

/Simulink®for use with electric vehicle applications.

• Implement a control system for regulating the bidirectional power flow between the

input and output of the bidirectional converter simulation.

• Design a battery prototype system, implement an external balancing system as a proof

of concept, and compare the battery prototype’s transient current and voltage responses

with the simulated battery model.
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1.4 Thesis Structure

This thesis is structured into six chapters, introduction, theory, method, results, discussion

and conclusion. Chapter 2, Theory, is built to provide information and explain the relevant

theory of the thesis. First different bidirectional dc-dc converter topologies are present and

analyzed, and the dual active bridge topology is presented as the primary converter topology.

The operation of the converter is presented with modulation and significant characteristics

of the topology. Next, the typical battery types are presented, with a focus on the lithium-

ion battery. The characteristic and charging method is presented with an explanation of the

state-of-charge and battery management system. Lastly, the software tools applied in this

thesis are displayed. Chapter 3, Method, is written to explain the simulation model imple-

mentation and the design process of the physical models. Firstly the parameter selection is

presented with justification for each selection. Then the simulation models of both the dc-

dc converter and simplified battery are presented and explained. Next, the battery prototype

pack is introduced, and the protection systems to prevent damage to the pack. Finally, the

test setup for testing the prototype battery pack is presented. Chapter 4, Results, showcases

the results from the operation of the converter simulation and battery pack. The bidirec-

tional dc-dc converter simulation results include charging and discharging responses, power

flow between the bridges, and the soft switching capabilities of the converter. The physical

battery test compares the transient response of the prototype with the simulated battery

in Simulink. Chapter 5, Discussion, discusses the simulation models and the test results.

Chapter 6, Conclusion, contains the main aspect of the paper, and summarizes findings.

Appendix, includes supporting documentation of relevant records. appendix A showcases

the submitted conference paper for the IEEE ICECCME 2021 conference.appendix B display

the approved abstract for the IEEE SEST 2021 conference. appendix C presents the simu-

lated converter model and source code. appendix D displays the simulated battery model.

appendix E show the full design of the laboratory prototype with PCB schematic and copper

layouts. appendix F presents the test setup components.
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2 Theory

This chapter is divided in four sections; Topology, Operation, Battery and Software tools. In

2.1 Topology, different bidirectional topologies are presented and compared. In 2.2 Opera-

tion, the function and operational characteristic of the dual active bridge is explained. In 2.3

Battery, different battery types are presented and the lithium-ion characteristic is presented.

In 2.4 Software tools, the version and types of software used in this thesis is presented.

2.1 Topology

Today most electric vehicle battery chargers are designed with unidirectional powerflow [19].

While unidirectional chargers has simpler topologies, bidirectional chargers offer greater

benefits with power flow in both directions. This opens up possibilities of vehicle-to-grid,

where the battery can deliver energy to the grid. Bidirectional converters can be separated

into two different groups, non-isolated and isolated topologies. These groups are described

below and examples of common topologies are provided.

2.1.1 Non-Isolated Bidirectional DC-DC Converters

Converters without galvanic protection are presented as non isolated converters. Without

the need of magnetic isolation, they have a simple topology and small physical size. In ad-

dition they don’t have to take magnetic interference into consideration. These bidirectional

topologies differ from the unidirectional topologies by an additional controllable switch to

their diode. Often a antiparallel diode is attached to the main switch [20].

Some of the more common non isolated bidirectional converters are "buck and boost", "buck-

boost" and "cuk". Other topologies are focused on boosting the voltage, such as "cascaded",

"interleaved" and "switched capacitor" topologies. The "buck and boost" topology pre-

sented in fig. 2.1a performs as an buck converter from input to output and as an buck in the

opposite direction. It has a low number of components, with only two controllable switches

and a single inductor. However a disadvantage with this topology is its lack of input current

continuity. This type of converter has previously been used for photovoltaic systems[21] and
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for uninterruptible power supply (UPS) [22]. The ratio between the input and output voltage

is given as 1/(1−D) where D is the duty cycle. The "buck-boost" topology illustrated in fig.

2.1b have a higher degree of flexibility than the buck and boost with its power transfer. This

is due to its ability to boost or buck the voltage in both directions. The output voltage of this

topology will be reversed, with a negative output for a positive input. The voltage ratio will

then be −D/(1−D). Photovoltaic System[23].

The "cuk" topology shown in fig. 2.1c has the advantage in continuity of both the input cur-

rent and output current. This is due to its increased component count, with a dual inductor

setup. The series capacitor between the inductors acts as a energy storage, by storing the

energy from the input before it is transferred to the output. The voltage can then be in-

creased or decreased depending on the duty cycle. In addition the inductors decreases the

current ripple of the converter [20]. Similarly to the buck-boost topology, the output volt-

age polarity is reversed, and the voltage ration can be set as −D/(1 − D). A bidirectional

"cuk" converter is designed in [24] for the use in a electric vehicle (EV). Other common ap-

plications are with energy storage as demonstrated in [25]. The "cascaded", "switched" and

"interleaved" topologies are based on the concept of voltage boosting. The cascaded topol-

ogy presented in fig. 2.1e consists of two bidirectional buck-boost converters connected in a

cascaded formation. By cascading two converters, the voltage can be further increased to a

higher level. In addition the current stress and ripples are reduced, this enables the converter

to operate with a higher power rating. However with the increased number of controllable

switches, the switching losses of the converter will subsequent increased. The voltage ration

of this topology is similar to the basic buck and boost topology with 1/(1−D).

A "interleaved" formation is shown in fig. 2.1f. Here two inductors located between the con-

trollable switches are connected together. This type of topology is often used to increase

efficiency and filter reduction. As the frequency current ripple are reduced due to the inter-

leaving, the filter can be decreased to a smaller size. There are several uses for this type of

converters including automotive and high power applications. [26]. The "switched capaci-

tor" topology illustrated in fig. 2.1d does not require a inductor to operate. This provides the

advantage of a lower component count and reduced weight. This technique is often used

to increase the converters voltage boosting ability [20]. Of all the non isolated bidirectional

converters listed, there are two different topologies that are equipped for EV. Buck-boost and

the cascaded topologies both have qualities that fits this purpose [27].
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Table 2.1: Comparison between non-isolated bidirectional converter topologies

Topology Notes Ratio

Buck and Boost
+ Low component count
– Current discontinuity

1/(1−D)

Buck-Boost
+ Flexibility
– Reversed voltage

−D/(1−D)

Cuk
+ Current continuity
+ Low ripple

−D/(1−D)

Switched
+ No inductor
– Boosting ability

2

Cascaded
+ High power rating
– Higher losses

1/(1−D)

interleaved
+ High efficiency
– Small filter

1/(1−D)

v1

v2

(a) Buck and boost

S1

v1 v2

(b) Buck-boost

v1 v2

(c) Cuk

v1

v2

(d) Switched capacitor

v1 v2

(e) Cascaded

v1

v2

(f) Interleaved

Figure 2.1: Non-isolated bidirectional dc-dc converter topologies
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2.1.2 Isolated Bidirectional DC-DC Converters

Isolated bidirectional converters adds a level of security in the system, with a physical sep-

aration of the primary and secondary side. The gap between input and output is created

through magnetic isolation in the transformer. This creates additionally complexity to the

system and an increased component count. The main principle of an isolated bidirectional

DC-DC converter (IBDC) is the transformation from dc to ac then back to dc. The isolated

topologies can be split into two subcategories, basic and full/half bridge converters. Com-

mon basic isolated systems include flyback, cuk and push-pull. While for the full/half bridge

some of the main topologies are the dual active bridge (DAB), dual half bridge (DHB) and half

full bridge (HFB). The flyback topology shown in fig. 2.2a, is often adopted due to its simplic-

ity. It is based on a non-isolated buck-boost topology, where the inductor is substituted for

a transformer. However one of the main challenges with this topology is the discontinuity of

the input current. The voltage ratio will is comparable with the non-isolated topologies, but

with a added N-component due to the voltage transformation. For this flyback topology, the

ratio will be N D/(1−D). It is primarily used in low power applications, such as cell phones,

TVs and personal computers [28].

The isolated cuk topology in fig. 2.2b has the advantages of continuous input and output

current. In addition the coupling of the different inductors, reduces the current ripples in

the converter. The topology is similar to the non-isolated cuk, where a transformer is in-

serted between the controllable switches. Compared to the flyback, the topology has an

increased component count, but will be able to achieve higher efficiency. The voltage ratio

will however be the same, N D/(1−D). One of the main application for this topology is high

efficiency power processing units (PPU) [29]. A push-pull topology is displayed in fig. 2.2c,

this also has the ability of continuous output current. Contrary to the other isolated bidirec-

tional converters mentioned, this topology utilizes a multi-winding transformer. In addition

the number of switches is increased from two to four, to achieve the desired functionality.

The voltage ration can therefore be simplified to N D . A converter based on this design is

presented in [30], for automotive applications.

When higher level of power is required, half/full bridge topologies are often desired. The

voltage ration of the these converters are heavily dependent on the selected control scheme,

and can therefore not be generalized. One of the more popular isolated bidirectional con-

verters is the DAB topology in fig. 2.2d [20]. This popularity is partly due to its high efficiency

and power density coupled with its buck/boost capability. Its therefore often used in bidi-

rectional chargers for electrical vehicles [31]. The DHB displayed in fig. 2.2e is similar to

the DAB, but with less controllability. In each bridge two of the switches are replaced with

capacitors, this reduces the switches from eight to four. This makes it more ideal for the use
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with lower power applications, as the switching losses will be reduced [32]. The HFB topol-

ogy shown in fig. 2.2f, is a combination of the DAB and the DHB converters. Two of the

controllable switches are replaced by capacitors only on the primary bridge. This allows for

simpler control requirements while still having the ability for buck-boost conversion. It is

therefore often used with UPS systems [20].

Table 2.2: Comparison between isolated bidirectional converter topologies

Topology Notes Ratio

Flyback
+ Basic
– Current discontinuity

N D/(1−D)

Cuk
+ current continuity
+ Low ripple

N D/(1−D)

Push-pull
+ Current continuity
– High component count

N D

DAB
+ High power rating
– Current discontinuity

Depending on control

DHB
+ High power rating
– Higher losses

Depending on control

HFB
+ High efficiency
– Current discontinuity

Depending on control
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v1 v2

(a) Flyback

v1 v2

(b) Cuk

v1

v2

(c) Push-pull

v1 v2

(d) DAB

v1 v2

(e) DHB

v1 v2

(f) HFB

Figure 2.2: Isolated bidirectional dc-dc converter topologies

2.1.3 Dual Active Bridge

First proposed by Doncker et al. in 1988 [33], the DAB is today one of the most popular IBDC

topologies [20]. It has a seamless bidirectional flow, coupled with a wide voltage range. In

addition the DAB has the ability to achieve zero voltage switching (ZVS), significantly de-

creasing the switching loss. This makes it an excellent choice for controlling both charging

and discharging of a battery in an EV.

Figure 2.3 showcase the topology of the DAB converter. The symmetrical layout of the con-

verter, makes it uncomplicated to achieve bidirectional power flow. The DAB is as the name

suggest separated into two active bridges, the high voltage bridge and the low voltage bridge.

Each bridge is constructed by four controllable semiconductor switches. Separating the two

bridges are a high frequency transformer with galvanic isolation. An energy transfer induc-

tor can be placed on either side of the transformer, but are often placed on the high voltage

(HV) side due to the lower current value. Capacitors are placed at both the input and output

to decrease the current and voltage ripples.

The high frequency transformer allows for an reduction in both the size and weight of the

converter. Due to the high frequency, the magnetizing inductance can be neglected [34].

Therefore a simplified model is often used, for power calculations. This is explained in more
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detail later in section 2.2.5 (loss analysis). MOSFET devices are often used for the control-

lable switches, this is because of their drain-to-source output capacitance and intrinsic body

diode [34]. IGBT may also be used, but with the need of extra components as capacitors. In

bidirectional converters he number of controllable switches is proportional with the power

transmission [35]. Since the DAB is utilizing eight switches it is capable of transmitting large

amounts of power, and is therefore able to be used in high power applications.

S1

S2

C1

i1

S3

S4

L
S5

S6

S7

S8

C2

i2

V1 vac1 vac2
V2

HV Bridge LV Bridge

Figure 2.3: Isolated bidirectional dc-dc converter with a dual active bridge topology.
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2.2 Operation

Each bridge in the DAB produces a specific wave voltage, with their semiconductor switches.

These waves can be modulated to achieve the desired power flow between the bridges. Dur-

ing operation of the DAB there are two modes available, boost and buck. Boost mode is

defined as power flow from the low voltage side to the high voltage side. Accordingly buck

mode occurs during power flow in the opposite direction, where there is power flow from

high to the low voltage side.

2.2.1 Phase Shift Modulation

Both pulse width modulation (PWM) and phase shift modulation are frequently used as

switching strategies for the DAB converter. Each bridge produces a specific wave, which

is modulated differently based on the selected switching strategy. One of the simplest and

most common phase shift strategies is the single phase shift (SPS) modulation [2], [9], [36],

[37].With this technique each bridge produces a square voltage wave which are half a period

out of phase with each other. These waves are set with a constant duty cycle of 50 %.

The power flow is controlled by phase-shifting the square wave voltages of either bridge

in front or behind the other bridge. This SPS modulation is implemented by delaying the

gate signals for the controllable switches of the desire bridge. By phase-shifting the pulses,

the power flow from one bridge to the other can be controlled. The power will therefore

flow from the lagging to the leading bridge. The only variable that needs to be controlled

to change the power flow is consequently the phase shift (φ). The phase shift is ordinarily

displayed as radians while calculating but may be presented as seconds or percent for more

natural visualization. It is valid between -π and π rad. The maximum amount of power will

however be transferred while the phase shift is π/2, or 50% of the max allowable value in

the positive perspective. As only the delay between the bridges are controlled, soft switching

of the controllable switches experience reduced range of motion. Another issue with SPS is

the circulating current generated in the circuit, this is more closely explained in section 2.2.4

(soft switching).

Other phase shift modulation have been researched to improve the range of soft switching,

in addition to minimizing the circulating current. Dual phase shift (DPS), extended phase

shift (EPS) and triple phase shift (TPS) modulation all have a benefit towards SPS, but have

increased levels of complexity. EPS [7], [38]–[40] introduces a inner phase shift in the primary

bridge in addition to the outer phase shift. The duty cycle of the primary voltage wave can

then be controlled. This creates a three level output ac wave on the primary bridge, instead

of the square voltage wave of SPS. With this methodology soft switching range is increased.
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In DPS [15], [41]–[43] the inner phase shift is added to both bridges, but the values are kept

identical to each other. The duty cycle of the square waves can then be controlled on both

bridges. In addition, DPS can be implement simpler then EPS, due to the symmetry of

the model and voltage waves. Furthermore the dynamic performance can be substantially

higher. TPS [11], [44]–[46] increases the controllability with three degrees of freedom. Both

bridges inner phase can then be controlled individually. This methodology has the highest

advantages relevant to efficiency soft switching operating range. However, due to its com-

plexity it is rarely used and there exist no unified standard for implementation [5].

2.2.2 Power Flow

As stated earlier, the DAB converter has bidirectional properties. It can therefore transfer

power in and out of the converter. Depending on the power flow direction, the converter

has two states, buck and boost [47]. When transferring power from the primary bridge to the

secondary bridge, the converter is in buck mode. Where it is supplying power from a high

voltage level to a lower voltage level. This mode of operation has positive power flow, where

the primary leads the secondary voltage wave. This operation is shown in fig 2.4a, where Vac1

and Vac2 are the primary and secondary square voltage waves. In addition the voltage and

current over the inductor VL , iL is displayed. Where the voltage over the inductor experiences

voltage spikes where a wave has a different polarity to the other.

contrary to the buck mode, the converter will be in boost mode when transferring power

from the secondary to the primary. Here the current goes from a low to a high potential,

and the power flow will be negative with respect to the primary. The secondary square wave

voltage will then be leading the primary wave, as shown in fig. 2.4b. This operation inverts

the voltage and current signals for the inductor, which is visualized by comparing the figures.

In the nominal area of the battery characteristic, the battery voltage is kept close to constant

with a slight deviation. The output power equation can then be simplified and calculated

from eq.(2.1), Pout is the output power, n is the primary to secondary ratio, L is the inductor,

fsw is the switching frequency, and φ is the phase shift. The primary and secondary voltage

is represented as V1 and V2 respectively. The calculated output power will be a product of the

battery voltage and output current from the converter.

Pout =
nV1V2

2L fsw
φ(1−φ) (2.1)
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vac1

vac2

vLK

iLK

t0 t1 t2 t3 t4 t5

(a) Buck mode

vac1

vac2

vLK

iLK

t0 t1 t2 t3 t4 t5

(b) Boost mode

Figure 2.4: Operating waveform of the primary(vac1 ) and secondary(vac2 ) ac voltages aligned
with the leakage inductor voltage(vLK ) and current(iLK ) waveform.

2.2.3 Inductor Characteristic

One of the more important elements of the DAB is the leakage inductance, as it directly con-

nects to the power transfer capabilities previously shown in eq. (2.1). The voltage and current

value characteristics are consequently crucial aspects of the projects. When calculating the

inductor current, the equivalent circuit in fig. 2.5 is commonly used [34], [48], [49].

The circuit consists of two square voltage sources on either side of an inductor. The primary

voltage is set as Vac1 , while the secondary voltage is set as n times Vac2 . The current through

the leakage inductor is calculated by integrating the voltage over the inductor, as shown in

eq. (2.2). Where iL(t0) is the initial current, LK is the inductor and VL is the voltage over the

inductor.

LK

Vac1 nVac2

Figure 2.5: Simplified equivalent circuit diagram of the dual active bridge.
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iL(t ) = iL(t0)+ 1

LK

∫ t1

t0

VLd t (2.2)

The current can be split up in different time intervals, as illustrated above in fig. 2.4. As

the voltage level surge, the current increases in the same direction as the voltage spike. The

voltage and current values of the inductor will be mirrored depending on the power flow

direction. The different currents are then derived as eq.(2.3), (2.4), (2.5), and (2.6). These

equations represent the current in each time interval [48].

iL(t0−1) =iL(t0)+ Vac1 +n ·Vac2

LK
(t − t0) (2.3)

iL(t1−2) =iL(t1)+ Vac1 −n ·Vac2

LK
(t − t1) (2.4)

iL(t2−3) =iL(t2)− Vac1 +n ·Vac2

LK
(t − t2) (2.5)

iL(t3−4) =iL(t3)− Vac1 −n ·Vac2

LK
(t − t3) (2.6)

Due to the characteristic’s symmetry, the current at t0 will be equal to the negative value at

time t2, iL(t0) and -iL(t2). Similarly, the current at t1, and the negative current value at t2

will be the same, iL(t1) and -iL(t3). This is consistent for every period, the values at t4 can

then be replaced by the same values at t0. Time t1 is determined by the amount of phase

shift applied. Therefore, t1 can be represented by eq. (2.7), where the time is a product of the

phase shift and the switching frequency. Time t2 occurs exactly when the first square voltage

wave ends. Since every pulse is set at 50%, the time will be half a period and can thereby

be calculated by eq. (2.8). By combining eq. (2.7), (2.8) with the above equations, they can

be simplified down to eq. (2.9). Where the current is an element of the phase shift and the

switching frequency.

t1 =
φ

2π fsw
(2.7)

t2 =
1

2 fsw
(2.8)

iL(t0) = (nV2 −V1)π−nV2 ·2φ

4πLK fsw
(2.9)
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2.2.4 Soft Switching

One of the DAB converter’s main advantages is its capability to achieve ZVS, which is de-

fined as switching from one state to another while the voltage potential over the switch is

zero. In the DAB, this is possible due to the intrinsic diode and the output capacitance of

the MOSFET. While switching from on- to off-state, the current will flow through the switch

keeping the voltage to zero. Since the switch off is not instant, there will be a slight overlap

with current and voltage. While not achieving ZVS, it can be classified as pseudo-ZVS due

to it almost achieving complete soft switching. During the opposite operation from off- to

on-state, complete ZVS can be achieved.

Figure 2.6 displays the different steps to achieve soft switching during the dead time be-

tween t1 and t2. From step 1, switches S6/S7 experience pseudo-ZVS while turning off. In

step 2, all the switches enter the off-state and the output capacitance of S6/S7 charges up

from 0. Simultaneously the capacitance of S5/S8 discharges. When all the capacitors are

charged/discharged in step 3, the currents pass through the intrinsic diodes of S5/S8. While

the current runs through the diodes, the voltage over the switches is zero, and the switches

turn on. The DAB’s soft-switching ability depends on the energy stored in the primary side

inductor, displayed in eq. (2.10), the output capacitance of the MOSFETs shown in eq. (2.11).

The amount of energy in the inductor must be able to fully charge/discharge both output ca-

pacitors. The minimum inductor current required to achieve soft switching can therefore be

calculated in eq. (2.12) by combining eq. (2.10) and eq. (2.11).

EL = 1

2
LiL

2 (2.10)

EC = 1

2
CsVDS

2 (2.11)

iL ,mi n =
√

2CsVDS
2

L
(2.12)
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S1

S4 S6

S7

v1 v2

(a) Step 1

S1

S4

v1 v2

(b) Step 2

S1

S4

v1 v2

(c) Step 3

S1

S4

S5

S8

v1 v2

(d) Step 4

Figure 2.6: Dual active bridge equivalent topologies between time period t1 and t2.

Maintaining soft-switching might not possible during light loads, as there is not enough load

current to charge the capacitors. For increasing the ZVS-range of the converter, several meth-

ods have been suggested [10],[50],[51]. The majority of these methods are modifying the

switching strategy, allowing for a broader range of soft switching.

As mentioned earlier, circulating current is a known issue with SPS modulation. When the

inductor current iL leads in either direction, it also transmits some power in the opposite

direction. This backward current counteracts some of the positive currents, which in total

equals zero. This aspect is called the circulating current and does not transfer any energy.

For power to be transmitted, the positive current has to be greater than the reverse current.

Figure 2.4 displays this phenomenon earlier in the thesis.

Circulating current can be compared to the reactive current in an ac grid, as it is a pure en-

ergy loss [50]. The transformer and conduction losses will therefore increase with a higher

quantity of circulating current. The voltage gain between the primary side and the secondary

side N , is correlated to the amount of circulating current. The phasor diagram in fig. 2.7 in-

dicated this characteristic.
−−→
Vac1 ,

−−→
Vac2 ,

−→
VL and

−→
iL are the phasors for the relevant voltages and

currents in the model. For calculating the fundamental components and their angles, eq.

(2.13) and eq. (2.14) are used respectively [50].
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Component s





−→
VL =−−→

Vac1 −
−−→
Vac2

−→
iL =

−→
VL

jωL

(2.13)

Ang les





γ+β=π−α
si n(γ)

si n(β)
=

|−−→Vac2 |
|−−→Vac1 |

= N

θ =
π

2
−γ

(2.14)

α

θ β

γ
~vac1

~vac2

~vl k~ilk

Figure 2.7: Phasor diagram for the ac voltages and the leakage inductor voltage and current.

The phasor diagram exhibits the relationship between the voltage gain N and the portion of

reactive power. As N decreases below 0 with a given α, γ will decline while θ increases. As θ

is the angle between −−→vac1 and
−→
llk , it, therefore, leads to an increase in reactive power. There

have been proposed numerous methods to lower the circulating current, thereby improving

the DAB efficiency. Papers [52] and [53] proposes hardware methods where diodes replace

some of the secondary bridge power switches. However, these methods do limit the bidirec-

tional capabilities of the converter. Methods of improving the converter’s switching strategy

are more conventional [54]–[57].
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2.2.5 Loss analysis

When considering losses in the dab, three categories are applied: switching, conduction, and

magnetic losses. The switching losses occur while the controllable semiconductor switches

are turning from one state to another. The conduction losses are the continuous losses while

conducting during nominal operation. Finally, the magnetic losses include the transformer

as well as the losses in the inductor. Each of the loss calculations is show below, divided into

different groups.

Switching loss

As explained above, the switching loss occurs in each semiconductor while it changes state.

The magnitude of the DAB’s switching losses is heavily dependent on whether soft switching

can be achieved or not. The switching loss in eq. (2.15), displays the loss per controllable

semiconductor switch, this equation includes the losses from both the on- and off-switching.

The total switching loss will thereby be a product of the eight controllable semiconductor

switches. The switching loss in eq. (2.16), presents the total loss over both the primary and

secondary bridge. The switching times can be assumed to be equal for both the primary and

secondary bridge, eq. (2.16) can then simplify to eq. (2.17). The values are instantaneous

at the time of switching for each equation. These calculations are furthermore thoroughly

described in [13], [14], [35].

Psw = 1

2
Vsw Isw (ton + to f f ) fsw (2.15)

Psw = 2(Vsw ,p Isw ,p )(ton ,p + to f f ,p ) fsw +2(Vsw ,s Isw ,s)(ton ,s + to f f ,s) fsw (2.16)

Psw = 2(Vsw ,p Isw ,p +Vsw ,s Isw ,s)(ton + to f f ) fsw (2.17)

Psw represents the switching loss in the equations above, first as the loss per semiconductor

in eq. (2.15) then as the total loss in eq. (2.16) and eq. (2.17). Vsw and Isw are the instanta-

neous voltage and current values at the time of the switching operation. Similarly, ton and

to f f are the periods during which the current and voltage switch from one state to another.

The lowercase p and s in the equations are applied to distinguish the primary and secondary

bridge values.
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Conduction loss

The conduction losses apply to the continuous losses during regular operation. The losses,

therefore, include both losses in the resistance of the semiconductor Ron and the voltage

drop over the antiparallel diode V f d . These calculations are derived in [13]. Equation (2.18)

calculates the instantaneous value of the inductor current (I0) when the primary voltage

wave switches polarity from negative to positive. Similarily eq. (2.19) calculates the instan-

taneous value of the inductor current (Iφ) when the secondary voltage wave turns from neg-

ative to positive. These currents are applied to find the rms value, as shown in eq. (2.21) and

eq. (2.20). The diode will be conducting during the t1 period, while the semiconductor will

conduct at between t2, t3, and t4. The duration of these periods is dependent on the phase

shift.

I0 =− (V1 +V2)φ+ (V1 −V2)(π−φ)

2ωL
(2.18)

Iφ = (V1 +V2)φ− (V1 −V2)(π−φ)

2ωL
(2.19)

Imos =
√

t2

3
I1

2 + t3

3
Iφ2 + t4

3
(I0

2 + I0Iφ+ Iφ2) (2.20)

Idi o =
√

t1

3
(I0

2 + I0I1 + I1
2) (2.21)

As shown in the equations above, Imos is the rms value of the semiconductor current. Idi o

is correspondingly the rms value of the current through the antiparallel diode. I1 represents

the instantaneous current when the deadtime period ends. This current will vary depending

on the selected deadtime and semiconductor. Equation (2.22) can then calculate the con-

duction loss by adding together the semiconductor and diode loss. This calculation is per

bridge and has must be equated for both bridges to find the total conduction loss.

Pcond = 4(Imos
2Ron + Idi oV f d ) (2.22)

Magnetic loss

For the magnetic losses, two subcategories are applied, transformer and inductor losses.

The texas instruments (TI), dual active bridge design guide [47], derives and describes these

equations in detail. Transformer losses include the core, copper, and skin effect. The equa-

tion for the core loss is shown below in eq. (2.23).
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Pcor e = Pv Ae (2.23)

The core loss is here a product of the core loss per unit of volume (Pv ) and the transformer

volume (Ae ). For the windings in the transformer, two parameters are of interest, the dc and

ac resistance. The windings’ dc components cause copper loss, which is calculated in eq.

(2.24). Similarly, the ac component causes losses caused by skin effect at high frequencies,

calculated in eq. (2.25).

Pcopper = Iac1
2RDC1 + Iac2

2RDC2 (2.24)

Pac = Iac1
2RAC1 + Iac2

2RAC2 (2.25)

The primary side (Iac1) and secondary side (Iac2) currents represented their respective rms

values. RAC1 and RDC1 are the primary coil ac and dc resistance, respectively. Comparably

RAC2 and RDC2 are the secondary coil resistances. Similarly, with the transformer, the induc-

tors ac and dc resistance is used to calculate the power loss. These resistances can often

be found in the transformer’s datasheet, but may need to be calculated as in the inductor

case. Equations (2.26) and (2.27) can thereby be applied for the calculations of the ac and dc

resistance.

RDC ,i nd = Rmax1.015b1.025c

Ns
(2.26)

RAC ,i nd = RDC ,i nd

(
H +2(

N 2Di
2

Do
2

)(
Di

√
fsw

10.44
)4

)
(2.27)

Rmax is the maximum DC resistance of each strand, while Ns is the number of parallel con-

ductors. The notation of b is the number of bunching operations, furthermore c is the num-

ber of cabling operations. H is the ratio of individual strands, while N is the total number

of strands. Di is the diameter of the individual strands, Do is the diameter of the inductor.

As the inductor is located at the transformer’s primary side, the primary current is used in

calculating the power loss in eq. (2.28).

Pi nd = Iac1
2(RAC ,i nd +RDC ,i nd ) (2.28)
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2.3 Battery

On a commercial scale, there are several types of batteries represented. These batteries in-

clude but are not limited to lead-acid, nickel-metal-hydride (NiMH), sodium sulphur (NaS).

vanadium redox flow (VRF) and lithium-ion (Li-ion) [17]. Each of the battery types has dif-

ferent characteristics and power capabilities. Batteries with lead-acid chemistry are one of

the older battery types which still are utilized and in production. They have high energy ef-

ficiency and a low cost; however, they suffer from low energy density and a slow discharging

rate. Applications where lead-acid often are used involve automotive applications and UPS

systems [58]. NiMH batteries have increased values of both energy and power density com-

pared to the batteries with lead-acid chemistry. The primary downside of this battery type is

a high self-discharge rate and a low coulombic efficiency. The NiMH battery’s primary use

has been portable electronics and has previously been used in hybrid electric vehicle (HEV)

[58].

For the NaS battery, the energy density is high compared to the previous battery types men-

tioned [59]. Another highly beneficial aspect of this battery type is its ability to operate un-

der high temperatures. NaS has been an essential feature in renewable generation, like wind

farms and solar plants [60]. Contrary to the other battery types, the energy and power capac-

ities in the VRF are independent of each other. It has an excellent transient characteristic,

which allows it to switch fast between charge and discharge. These qualities make it desir-

able for applications with variable loads, as renewables[61]. Li-ion is the leading battery in

consumer electronics due to its high energy density and compact form. Additionally, Li-ion

is currently the most common battery in EV and HEV. The battery used in cars will neverthe-

less have a slightly different chemistry than the consumer batteries. The price of the Li-ion

has historically been its main disadvantage. However, the price has decreased as the electric

car development and industry have increased [62]. Due to Li-ion batteries’ popularity within

HEV and EV, its characteristic and charging principle is reviewed further.

2.3.1 Characteristic

Figure 2.8 displays the discharge characteristic curve of a standard Li-ion battery. This char-

acteristic has three different sections; the exponential, the nominal, and the depleted area.

Located between voltages V f ul l and Vexp is the exponential area. In this section, the voltage

decreases exponentially with the battery capacity. The nominal area located between Vexp

and Vnom , is close to linear. This section is the curve’s ideal area and where the battery should

be operating during the nominal operation. The gray section in the figure showcases this

nominal area. The depleted area located between Vnom and Vco , should ideally be avoided
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to prevent battery damage. Here the battery voltage drops before it cuts off at the Vco , the

lower voltage limit. This limit is to prevent the battery from entering deep depletion [63]. By

avoiding the higher and lower state of charge (SOC) values, the battery will have a greater

lifetime and state of health.

V f ul l

Vexp

Vnom

Vco

Qexp Qnom Qmax
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Figure 2.8: Discharge characteristic of a Li-ion battery

2.3.2 Charging Method

Due to Li-ion’s unique characteristics, a charging method that can provide full charge with-

out damaging the battery is required. Li-ion batteries’ most common charging strategy is

the constant current - constant voltage (CCCV)[64]. This method is divided into periods of

constant current and constant voltage, as noted in fig. 2.9. After some time t0, charging is

initiated by the controller. During period t1, the battery is supplied with a constant current

while the battery voltage increases. Initially, the voltage increases rapidly until the capacity

catches up, then the voltage is gradually increased.

At the end of period t1, the voltage has reached its peak level. Here the voltage is kept con-

stant, while the current decreases until the SOC reach 100%. This process’s primary goal is

to achieve a complete charge while still protecting the battery and preventing overcharging.

The constant voltage regime will prolong the charging time, this step may be minimized for

a faster charge time [64]. Another aspect of charging control is the C-rate. This parameter is

the rate at which a battery is discharged compared to its total capacity [65]. A typical exam-

ple used for explaining c-rate is; a 1 Ah battery that will deliver 1 A for 1 hour, as presented

in table. 2.3. Not all C-rates are practical or possible to achieve. As the battery charges and

discharges, the c-rate should not exceed the recommended level for extended periods [65].
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Figure 2.9: Battery current and voltage characteristic during cc/cv charging mode.

C-rate Time

5C 12 m

2C 30 m

1C 1 h

0.5C 2 h

0.2C 5 h

Table 2.3: C-rate for charging/discharging a 1Ah battery

2.3.3 State-Of-Charge

The SOC level represents the amount of charge currently available in the battery. A precise

estimation is essential to prevent damage and reduced lifetime caused by either over or un-

dercharging. A review of the different methods of calculating SOC has been made in [66]. In

this paper, the calculating methods are divided into two primary groups direct and indirect

methods.

The most straightforward approach is the direct method. With this procedure, the physical

properties are measured and then used to calculate the SOC. Coulomb counting and open

circuit voltage (OCV) are examples of this method. The most widely used method for esti-

mating the SOC level is coulomb counting due to its simplicity. This approach calculates the

current time integral, as shown in eq. 2.29 and eq. 2.30. The initial SOC level is required to

be known as only the change in SOC is calculated.
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SOC (t ) = SOC (t0)+∆SOC (t ) (2.29)

SOC (t ) = SOC (t0)+ 1

Cbat

∫ t+t0

t0

i2 ·100%d t (2.30)

SOC (t0) is the initial SOC value, while the ∆SOC (t ) is the amount of change. Cbat is the

rated capacity of the battery, and i2 is the instant value of the current. However, this estima-

tion method has a significant drawback as the error will be accumulative. These errors may

transpire from an incorrect initial state or unexpected changes in the charging/discharging

procedure. Additionally, the accuracy will decrease as the lifespan of the battery deteriorates

[67].

OCV is another direct method, which has benefits from being an uncomplicated approach.

The voltage potential over the poles is measured, the voltage characteristic is then is applied

to estimate the charge. This approach does require the battery to be resting for a significant

amount of time. It is therefore not applicable for active estimation.

The indirect methods combine the measured parameters with a simulated battery model.

With these methods, the SOC level is predicted with a high degree of accuracy. However,

these methods do introduce a greater level of complexity to the system. Model-based, adap-

tive filter-based and adaptive artificial intelligence-based are all alternatives within the indi-

rect methods. The model-based estimation approach works by connecting a battery model

and complex algorithms. The estimation is thereby a product of the actual current and volt-

age values. For the adaptive filter-based methods, a combination of both the indirect method

and the model-based method is deployed. These techniques are adaptive and can correct

any inevitable errors. For the correction, the technique applies a feedback signal from the

output value. The artificial intelligence method is far too complex and demanding to be a

practical method. The choice of SOC estimation is a balance of accuracy and complexity.
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2.3.4 Battery Management System

An essential part of a functional battery operation is the battery management system (BMS).

A BMS’s role is to control a battery’s operation through charging/discharging and standby

monitoring. By controlling and monitoring the battery, the safety for both the battery and

operator is significantly increased. The primary features of a BMS are cell monitoring, cell

balancing, charge protection, charge control, thermal management, SOC, and state of health

(SOH) calculations. Not all of these features are included in every system, but these are com-

mon characteristics[68], [69].

A battery pack incorporates several cells connected in series and parallel to obtain the re-

quired voltage and capacity. As no cell is fabricated perfectly alike, there will be imper-

fections and variations within the cell’s structure. These variations will drive the cell to

charge/discharge at slightly different rates. If a single cell is charging faster than the oth-

ers and reaches its peak voltage, the charging process must stop to prevent damage to the

cell. Therefore, cell monitoring and cell balancing are essential aspects of the BMS to pre-

vent damage to the cells and surroundings.

As mentioned earlier, a reasonable charging control of the battery is crucial to increasing the

lifespan and preventing damage. The battery SOC level should neither be driven too-low or

too-high, where it either enters deep charging or overcharging. Deep charging is where the

SOC is below a recommended percentage, and overcharging is where the battery is charged

over its maximum voltage level. Both of these states can cause irreversible damage to the bat-

tery cells. For Li-ion batteries, temperature control is a critical aspect due to the chemistry of

the battery. The operating temperature is affected by both the external ambient temperature

and the battery’s internal temperature caused by chemical reactions.
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2.4 Software Tools

The software applications used in this thesis is presented in this subsection. The software is

applied on a laptop with a 64-bit windows 10 operating system.

2.4.1 MathWorks Matlab®and Simulink®v9.8

Matlab®is a extensive math based programming application for calculation, programming

and visualization. Simulink®is a Matlab®based graphical environment for designing and

modulation of dynamical systems.

• Simulink v10.2

• Simulink Control Design v5.6

• Simscape v5.0

• Simscape Electrical v7.4

• System Identification Toolbox v9.13

• Stateflow v10.3

2.4.2 KiCad v5.1.7 and KiCad Libraries V1.4

KiCad is an open-source application for designing electronic systems and develop printed

circuit board (PCB)s. KiCad contains a project manager, a schematic editor, a schematic

layout viewer and a gerber viewer.

2.4.3 Visual Studio Code v.1.55 and PlatformIO v5.1.1

Visual Studio Code is a source code editor for programming, it supports most programming

languages but C++ is used in this thesis. The platformIO os a free integrated developer envi-

ronment for managing workflow, and is utilized for simpler software upload.
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3 Method

Matlab®/Simulink®is used to design a simulation model of the dual active bridge isolated

bidirectional dc-dc converter. A 30 V prototype battery system is created and tested with a

laboratory test setup. To protect the battery a external battery management system and mea-

surement card is designed and produced. This chapter is divided into five sections; Param-

eter Selection, Simulation, Battery Design, Battery Protection and Test Setup. In section 3.1

Parameter Selection, the selected values and justification for each selection is presented. In

section 3.2 Simulation, the simulation model function and layout is described in detail. In

section 3.3 Battery Design, the physical battery prototype is showcased. In section 3.4 Bat-

tery Protection, the measurement and battery management card is presented and explained.

The source code, simulation model, and PCB layouts designed and presented in this chapter

is found in Appendix C to E, and are published to separate public repositories on GitHub[77],

[80].

3.1 Parameter Selection

In the design process of the DAB, various parameters have to be selected. The key parame-

ters, switching frequency, leakage inductance, capacitance, are listed below in table 3.1 and

discussed in the following subsections with justification for each parameter.

Table 3.1: Parameters for the dual active bridge simulation model.

Parameter Value

Input Voltage 340 V

Output Voltage 200 V

Charging Current 4 A

Discharging Current 10 A

Switching Frequency 25 kHz

Leakage Inductor 0.289 µH

Input Capacitor 500 µF

Output Capacitor 500 µF
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For the dc bus, an input dc voltage of 340 V is picked. This voltage level is available for

a future physical project of the model. The nominal battery voltage of EV and HEV varies

typically between 200-800 V. The lower value of 200 V input voltage is elected for this thesis.

As the battery module is designed with 18650 lithium-ion cells, the current is limited to 5.2

A charging and 10.4 A discharging. These values are decreased to 4 A charging and 10 A

discharging to decrease any potential damage to the batteries. The selections are described

in detail in the following sections.

3.1.1 Switching Frequency

The functionality of the converter is dependent on the selection of switching frequency. It di-

rectly affects several components as the transformer, leakage inductor, controllable switches,

including the efficiency and power density. With an increased switching frequency, the mag-

netic components’ physical size can be reduced [70]. However, this increase in frequency

leads to an increase in switching losses as the semiconductors switching speed is raised.

Furthermore, the frequency is limited by the skin and proximity effect on the ac side [47],

[49]. The skin effect is a phenomenon where the current flows through the surface of the

conductor. As the frequency increases, the current will therefore flow more towards the sur-

face layer. With the current flowing more in the outer skin, the effective cross-section will be

lower, increasing resistance. Similarly, the proximity effect causes the current to only flow

towards the areas furthest away from nearby conductors. This increase in resistance leads to

an increase in losses and a drop in efficiency. The ability of the converter to both charge and

discharge the battery with a high response are achieved more easily with a higher frequency.

The choice of switching frequency will therefore be a trade-off between efficiency and phys-

ical size. The effect of the frequency on the power flow is shown in eq. (2.1) presented in

section 2.2.2 Power Flow. With a higher switching frequency, the output power from the con-

verter reduces. A compromise between the mentioned parameters has been made, and a

switching frequency of 25 kHz is selected as the primary switching frequency.

3.1.2 Leakage inductor

L denotes the leakage inductance and is one of the critical components of the DAB. Together

with the transformer, the inductance determines the amount of power that can transfer be-

tween the primary and secondary bridge. The inductance size is heavily dependent on the

switching frequency as it is a magnetic component. With a higher switching frequency, the

physical size of the inductance can be decreased considerably. The inductance should be

designed to handle the required power transfer at each specific phase shift. Therefore the

phase shift must be selected where inductance experiences its maximum power. The trans-
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ferred power will be at its peak at 90 degrees or 0.5π radian phase shift. The phase shift

angle is presented as π radian in formula eq. (3.1), where the total inductance is calculated.

With a maximal phase shift of 90 degrees or 0.5π, the total leakage inductance is calculated

as 289 µH. As there will be a small amount of transformer leakage inductance, the induc-

tor must therefore be below the calculated value. This formula are derived from eq. (2.1), in

section 2.2.2.

L = φ(1−φ)V1V2

2 fsw nPout
(3.1)

3.1.3 Capacitors

The capacitors located at the input and output ports of the DAB model are utilized to lower

the voltage ripple of the converter to an acceptable level. The capacitor current(iC 2) will be

a function of the battery current(i2) and the output from the semiconductor switches(Iac2),

as seen in eq. (3.2). The output ripple requirement varies from design and application. For

this design, a low voltage ripple and current ripple of below 2% is desired. From this basis, a

capacitor of value 500 µF is selected through trial and error in the simulation.

iC 2 = Iac2 − i2 (3.2)

3.1.4 Switching devices

Silicon MOSFETs and IGBTs have traditionally been the primary choice for the controllable

switches in DAB converters. Recently progress has been made with silicon carbide (SiC)

MOSFETs, which is a maturing technology. The bandgap in the newer SiC MOSFETs is de-

signed with a substantially wider bandgap than the typical SI MOSFET. In addition, the drift

layer for a specific blocking voltage is up to 200 times less resistive [71]. Advantages with

SiC are a higher breakdown voltage and excellent thermal properties [72] [73]. These advan-

tages increase the theoretical frequency limit by lowering the losses. The physical size of the

converter may also be reduced as the smaller cooling components can be used due to the

efficient thermal conductivity.

A performance comparison between si MOSFETs, IGBTs, and SiC MOSFETs has been made

in [74]. The paper presents a shorter turn-on and turn-off time for the SiC MOSFET. Never-

theless, the conduction losses of the SiC MOSFET were higher than the silicon counterpart.

The SiC still shows the most theoretical promise under higher switching frequencies. The

IGBT performs significantly worse and should not be considered. With SiC, it is possible to

achieve lower switching and conduction losses while operating at high temperatures [75].
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Due to the combined advantages, SiC is preferred as the primary semiconductor switch for

this project. The performance parameters of the IMZA65R027 SiC MOSFET from infineon is

selected for the semiconductor on both bridges. Table 3.2 presents the critical performance

parameters of the device. The rated nominal voltage (VDS) is 650 V with a continuous drain

current (ID ) 59 A at 25 °C. The drain-source on-state resistance (Ron) is 27 mΩ, and the total

gate charge (QG ) is 63 nC. The ID , pulse of 184 A is the pulsed drain current, the maximum

current it can endure over a short period.

Table 3.2: Performance parameters for SiC MOSFET IMZA65R027M1H

Parameter Value Unit

VDS 650 [V]

RON 27 [mΩ]

QG 63 [nC]

ID 59 [A]

ID,pul se 184 [A]

3.1.5 Transformer

Similar to the leakage inductor, the transformer has a dependency on the switching fre-

quency. With higher values of frequency, a more compact and efficient system can be de-

signed. Planar transformers are, consequently, optimal transformers due to their compact

size and ability for higher frequencies. These transformers are constructed with winding

turns of thin copper sheets riveted together instead of the standard wire-wound transform-

ers, which increases the power density. The consistent spacing between the layers makes the

inductance more predictable [47], [76].

Realistic values from a 2 kW planar transformer from HiMAG are selected. This transformer

is not in production, but it can be special ordered if required. The rated voltages are 340 to

200 V with a turn ratio of 28:17. The estimated power core loss is 13 W, while the estimated

winding loss is 4 W.
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3.2 Simulation in Matlab®/Simulink®

The simulation models are designed and simulated with Simulink®, a Matlab®-based graph-

ical programming tool for modeling and simulation. Two simulation models are produced,

the primary bidirectional dc-dc converter model and a simplified simulation model for test-

ing the battery response. The primary model utilizes the DAB topology with a single inductor

in the primary bridge presented in section 2.1.3. The secondary simulation model, is a sim-

plified version of the laboratory test setup. This model showcases the transient response of

the simulated battery model by connecting the battery to a load through a lossless switch.

For the electrical circuit components, the simscape electrical library is utilized for both sim-

ulation models.

3.2.1 DAB Converter Model

Figure fig. 3.1 show, the main simulation model of the isolated bidirectional dc-dc converter

with an DAB topology, and the entire simulation model is found in appendix C and published

in repository [77]. The dc bus is modeled by a constant dc voltage source connected in series

with a resistance. For the low voltage side, the battery is represented by a generic battery

model. This battery is modeled after a lithium-ion battery, with its specific characteristics.

SPS modulation controls the power flow between the bridges. As the converter is operat-

ing in buck-mode, delivering power from the dc-bus to the battery, the phase shift is shifted

positively with regards to the primary bridge. Similarly, when operating in boost-mode, the

phase shift is shifted negatively. PI controllers set the desired phase shift based on the re-

quired state. Out from the PI controllers, the signal is scaled down and fed into a "moving

average" block to smooth the signal by computing the moving average of the input value.

Both bridges require two gate signals each to operate. Four pulse generators create these

square wave signals. Discrete variable time delay blocks are implemented to achieve a phase

shift between the square wave signals. The computed phase shift delay signal sets the amount

of phase shift. A single PI controller signal can control both directions of power by changing

the polarity of the delay signal between the bridges. As the time delay blocks cant delay neg-

ative values, the delay will be set to zero. Only one of the bridges will therefore be delayed,

depending on the polarity. As the converter turns on, the capacitor current increases to a too

high level as the capacitor charges. A pre-charging circuit is therefore required to decrease

the initial current of the converter. The input capacitor is charged to 340 V dc before the bus

is connected to the converter. Similarly, the output capacitor is charged to 184.4 V dc before

the battery is connected. When both the DC-bus and battery are connected to the model,

the operation of the converter can be started.
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Figure 3.1: Simulation model of the isolated bidirectional dc-dc DAB converter.

Stateflow

Several states for operating the converter are defined, OFF, PRECHARGE, ON, CHARGE, and

DISCHARGE. Stateflow is implemented to switch between the different states. The stateflow

blocks can be found in appendix C.2, and appendix C.2.1. During the initializing phase of

the model, it will be in the OFF state. In this state, the converter is switched off, and both the

bus and battery are disconnected. The next possible state is the PRECHARGE state, where

both the input and output capacitor is charged. After reaching the required charged volt-

age, the bus and battery will connect to the converter. When both the bus and battery have

connected, the state switched to ON. In this state, the current and voltage reference is zero,

and the converter can be set to either CHARGE or DISCHARGE mode. In CHARGE mode, the

battery will either deliver a constant current of 4 A or a constant voltage of 200 V depending

on the SOC. While in DISCHARGE mode a discharge current of -10 A is set.

The model can be turned off at any stage of the stateflow if a stop signal is sent. In addition,

an override control can be activated for testing purposes. This control can be activated while

the converter is switched on and will override all the other control signals. The phase shift

can then be set to any level that is required.
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Control

The control tab contains three blocks, PI, SIGNAL GENERATOR, and CALCULATION. This

tab is shown in appendix C.3. The PI block shown in appendix C.3.1 controls the phase shift

to be applied. The phase shift value is regulated by three PI controllers, depending on the

state of the model. A Matlab script switches between the PI controllers, as the model is

either charging with constant current, charging with constant voltage or, discharging. By

having several controllers, each controller can be tuned specifically for a required response.

The implemented Simulink Control Design software calculates the PI gains. This software

computes a linear model of the plant from the input and outputs. The plant represents ev-

ery block in the control loop, apart from the controller. The I/O data are then accumulated

by simulating the model over a short period. From these data, initial gain values are pre-

sented with a target phase margin of 60° and a crossover frequency based on the plant. The

response can then be refined to achieve a faster/slower, or aggressive/robust system. Table.

3.3 presents the gain values for each PI controller. The two controllers with constant current

show apparent similarities, while the constant voltage controller shows considerably greater

values.

Table 3.3: PI regulator values from the control section of the DAB simulation model

Controller Object Proportional Integral

Discharge Current 0.128446793065259 1091.25323028373

Charge CC Current 0.405243677304324 1694.18611330183

Charge CV Voltage 14.1158220351783 266471.123289708

The signal generator block shown in appendix C.3.2 produces two square wave signals for

each bridge. These signals are half a period out of phase of another, as described in sec-

tion 2.2. The time delay blocks then delay either bridge depending on the polarity of the

phase shift signal. The calculation tab calculates the different values presented and used in

the model. This simulation tab can be found in appendix C.3.3. The input and output power

are calculated from the current and voltages; these are then used to calculate efficiency. The

phase shift is recalculated to represent the percent of the total period, as this is more easily

read. The SOC is determined with coulomb counting by calculating the current time integra-

tive. This method is described in more detail in section 2.3.3. The precharge values are only

displayed while precharging to prevent misleading values in the user interface. The model

and measured signal are gathered from a multimeter block to be presented in other parts of

the simulation model.
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User Interface

The simulation includes a user interface window to control and survey the status of the con-

verter model, see fig. 3.2 and appendix C.4. The battery and bus can be connected and dis-

connected from the converter. The status of this is shown by indicator lamps and a figure

of the model that updates accordingly. The figure also presents the power flow direction

while running. The precharge circuitry is shown by the voltage difference between the ca-

pacitors and bus/battery. The capacitors’ charge current is presented similarly; this value

is adjustable by changing the resistor values. After connecting the battery and dc-bus, the

model can be charged or discharged. Lamps indicate the current state of the converter and

available modes. When running, the input and output voltages is presented as instanta-

neous values. In addition, the battery voltage and current are plotted in two scopes. The

actual phase shift is presented with both percent and time delay.

Figure 3.2: User interface for controlling and supervising the simulation isolated bidirec-
tional DAB converter model.
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The SOC, input power, output power, loss, and efficiency are calculated in the calculation

tab and displayed in the user interface as instantaneous values. The respective voltages and

currents calculate the power values, which are again combined to calculate the loss between

the bridges. Depending on the direction of the power flow, these values will update to show

losses from the delivering bridge to the receiving bridge. For testing purposes, the phase shift

can be overridden and manually adjusted to the required level. This mode can be initiated

after connecting the battery and dc bus. This functionality is powerful to get knowledge of

the model and test different scenarios. The value is limited between -50 and 50%. During

regular operation, the phase shift should not exceed -25 to 25%.

Scopes

The scope tab located in appendix C.5, has all the relevant measured signals readily available.

The signals are divided into four sections depending on the type of signal. Extra scopes and

mux are presented, and the measured signals can easily be copied in and used. This system

makes it simple to easy access to every signal without cluttering the model.
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3.2.2 Battery Model

A simplified simulation model is designed to test and compared the transient response of the

simulated battery model with the physical battery prototype created. This secondary model

only focuses on the battery response and not the isolated bidirectional dc-dc converter. The

design shown in appendix D, is constructed by 16 battery cells connected to a load through

an ideal switch. A step signal is sent to the ideal switch, and the following voltage and cur-

rent are recorded. The battery cells are modeled after the physical cells used in the battery

prototype.
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Figure 3.3: Simplified battery simulation model for testing the battery response.
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3.3 Prototype Battery System

For the DAB converter, a 200 V battery pack was initially discussed. Since the converter will

not be constructed, a smaller battery pack prototype for demonstrating the principle is de-

signed. This pack can easily be increased at a later stage by adding more packs in series. The

battery pack is constructed with lithium-ion cells where each cell has a nominal voltage of

3.7 V and a capacity of 2.6 Ah. The battery is designed as two packs of 4S2P, four cells in

series and two in parallel. A total of 16 cells are divided into two packs, which provide a total

nominal voltage of 29.6 V with a capacity of 5.2 Ah. The nominal specification of the total

battery pack and a single cell is shown in section 3.3 respectively.

The lithium-ion cells are distributed evenly in a grid restricted by spacers. The cells are

welded together in the series and parallel formation with nickel by a spot welder. The two

separate packs are then serially connected at the terminals. Several packs can be connected

later in this formation to increase the voltage to the desired level.The battery packs are shown

in fig. 3.4a, and the welding structure is shown in fig. 3.4b.

Chemically no battery cell is entirely identical. Therefore they will charge at slightly different

rates, which may cause irreversible damage to a cell if it becomes overcharged. A battery

balancing system is required to prevent this level of overcharging to the cells. Stuart Pittaway

[78] has designed an open-source BMS, openly available on github [79]. This open-source

BMS project includes a battery protection system and passive cell balancing. In addition, the

open-source BMS system has inbuilt software that connects to the local network to read the

battery values. A separate PCB measurement card is designed to measure the voltage and

current of the pack directly to a microcontroller.

Table 3.4: Nominal specification of the total
battery prototype pack

Parameter Value

Cell(s) 16

Nominal Voltage [V] 29.6

Charging Voltage [V] 33.6

Capacity [Ah] 5.2

Charging Current [A] 5.2

Discharging Current [A] 10.4

Table 3.5: Nominal specification of a single
lithium-ion cell

Parameter Value

Cell(s) 1

Nominal Voltage [V] 3.7

Charging Voltage [V] 4.2

Capacity [Ah] 2.6

Charging Current [A] 2.6

Discharging Current [A] 5.2
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(a) Battery pack
(b) Welding structure

Figure 3.4: Physical battery prototype system

3.4 Battery Protection

For the measurement, battery control, and battery protection, PCBs has been implemented

with the battery prototype pack. A single voltage and current measurement PCB is designed

and built. The BMS PCBs have been implemented accordingly with the instructions pro-

vided on the open-source project page. These include one controller for the entire system

and a single sensor card for each cell pair.

3.4.1 Measurement PCB

For measuring the voltage and currents in the system, a measurement PCB is designed; see

fig. 3.5. The card is designed with the PCB design software KiCad EDA. The schematic is

drawn with the built-in schematic editor in KiCad. Similar to the schematic, the board lay-

out is designed with the PCB designer in KiCad. The entire PCB schematic is found in ap-

pendices E.1.1 and E.1.2 likewise, the front and back copper layout is found in appendix E.1.3

and appendix E.1.4 respectively. The entire PCB design created in this thesis is published to

repository [80]. The designed measurement card allows for voltages up to 60 V and currents

up to ± 50 A.

The circuitry is devised to be powered by a 15 V DC power supply. A dual-element bi-directional

ESD is utilized to protect the supply. In an instant of increased voltage over the nominal

level, the ESD protector’s internal resistance will decrease rapidly to prevent damage to the

circuitry. Out from the main power supply, a 3.3 V signal is produced with the "MIC5225"

dropout regulator. This 3.3 V powers both the voltage amplifier and current sensor. In ad-

dition a 5 V is generated from the 15 V main power supply. The 5 V is produced with a

"TPS82130" step-down converter and is further isolated by transforming up to +6 V through
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a galvanic isolated transformer. The isolated signal is then transformed back down to 5 V

from 6 V by a "TLV704" low-dropout regulator. This signal is thereby galvanic isolated from

the rest of the circuit. The design allows for up to 60 V to be measured. A voltage divider at the

input lowers the voltage to the required level of 0-250 mV. The signal is then filtered through

a small RC filter before it connects to the "AMC1100DUBR" fully-differential isolation am-

plifier. This amplifier has an output that is completely separated from the input by a silicon

dioxide barrier. On the isolation side, it is supplied +5 V isolated, while on the non-isolated

side its supplied +3 V.

For the current measurement, a simple and effective design is implemented with the "ACS758PFF"

current sensor. The sensor is a hall-effect-based linear current sensor that creates a magnetic

field converted to a proportional output voltage. The primary high current side is then iso-

lated from the small control signal. The PFF leadform of the current sensor selected can

measure ±50 A.

TPS82130
Voltage

Regulator

MIC5225
Voltage

Regulator

Trans-
former

text

ACS758PFF
Current

Sensor

TLV704
Voltage

Regulator

AMC1100DUBR
Differential

Amplifier

Low Voltage

.. Side

High Voltage

.. Side

Isolation

Barrier

Figure 3.5: PCB for current and voltage measurement
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3.4.2 BMS PCB

The design of the BMS, is based on a open-source project on Github [79]. This project is

primarily designed by Stuart Pittaway [78], and have been in development since 2015, with

several iterations released. The latest stable release is version 4.40, however version 4.0 is

picked for this project due to its bigger component sizes. The components are in this pre-

vious version possible to hand solder and easier to modify. The code for programming the

sensor and control cards are supplied in a separate repository [81]. Each board is ordered

from JLCPCB, while the majority of the components are supplied from Mouser. The compo-

nent size used for the resistors and capacitors is size 0508. These sizes provide a compact

size while still being placeable by hand.

The system consists of a single control card connected with a sensor per cell. As the con-

nected battery pack is designed as an 8S2P(8 series and 2 parallel), eight sensor cards are

necessary. This layout is displayed in fig. 3.6, where the control and sensor card block dia-

gram is shown. The cards communicate by standard UART serial communication. Each card

has a transmitter port TX and a receiver port RX. The transmitter port of a specific card is

connected to the receiver port of the next card. With this setup, each card can be explicitly

controlled or be control together as a unit. In addition, each sensor card can respond to the

controller with information about the connected battery cell.
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Figure 3.6: Battery management system block diagram
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Control card

A single control card is necessary for each cell pair. The controller is presented in fig. 3.7,

all the schematic and copper layouts are found in appendices E.2.1 to E.2.3. The role of

the control card is to read and control the signals from the entire circuit. The control card

reads the serial signal from the sensor cards. With the help of the IO expander "PCF8574T," a

WeMos d1 mini wifi board reads these signals and converts them to understandable data. To

display these values from the system, the board connects to the local network and sets up a

webpage. All the measured values can be read from this page, and instructions to a specific

sensor card or every card can then controlled.

For programming, the WeMos mini connects to a computer through a micro USB. The code

is supplied in a separate repository on Github[81]. The code editor Visual Studio Code is

used as the interface between the code and the controller. The platformIO integrated devel-

opment environment extension is applied to simplify the programming experience.

WeMos d1 mini

WiFi Board

PCF8574T

IO Expander

Figure 3.7: BMS controller for controlling the battery management system
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Sensor card

Figure 3.8 shows a single sensor card. Eight of these cards are required to achieve the com-

plete BMS. The electric schematic is found in appendix E.3.1, similarily the front and back

copper layout is found in appendices E.3.2 and E.3.3. The "ATTINY841" microcontroller con-

trols each sensor card with 8K bytes in-system programmable flash. The TX signal is isolated

from the circuit by a phototransistor optocoupler. The passive cell balancing system is in-

cluded in each card separately. Two rows of 4 2.2Ω 1W resistors are used to dissipated the

surplus energy. Each row will then have a resistance of 8.8 Ω and dissipate a maximum of 4

W, with a current through the circuit of around 470 mA.

As the cell voltage increases past a variable limit, the microcontroller transmits a gate signal

to an "IRLML6244TRPBF" N-channel MOSFET, which bypasses the current through the re-

sistors. The circuit will operate with either a constant ON signal or a PWM signal. This signal

mode is depending on the voltage difference between the cells. The balancing circuitry is

displayed with a red led light, which will turn on while the MOSFET is conducting and the

cell is discharging. As the battery cell discharges to a lower voltage level, the pack will be

balanced. This cell balancing feature can operate in standby mode without being connected

to a primary controller. In addition to cell balancing, the sensor card measures both the cell

voltage and current level. An option for an external temperature sensor is available, but this

is not required for regular operation.

For programming the microcontroller in the sensor card, a programming device is required.

The USBasp programmer is selected as the bridge between the computer and chip. Like pro-

gramming, the controller card, the platformIO extension with visual studio code is utilized

to upload the code. The code is located in the same code repository on github[81].

ATTINY841
Microcontroller

BALANCING RESISTORS

MOSFET
IRLML6244TRPBF

BALANCING LED

Figure 3.8: BMS sensor for balancing and sensing a battery cell
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3.5 Test setup

The experimental setup for testing the battery depicted in fig. F.1 consists of a programmable

load, charger, battery, BMS, multimeter, and oscilloscope. These components are listed in

table 3.6. For charging the battery up to the required voltage level, an E680 battery charger

from SkyRc is used. The BMS project described in section 3.4.2 is utilized with the battery

during charging to achieve cell balancing. After reaching the required voltage level, the EL

9500-08 T electronic DC load is used to examine the battery response. The load has a max-

imum input voltage of 500 V with an equivalent maximum current of 8 A. These values are

adjustable with intuitive touchscreen controls and settings. The dc load contains a function

generator, which can generate various signal characteristics and apply these to the current.

The function generator is set to the rectangular wave. The adjustable parameters are the

amplitude, offset, and pulse width of both the upper and lower level. These values are shown

in table. 4. With a pulse width of 1ms and a duty cycle of 50%, a frequency of 500 Hz is

achieved. An MSOX3014A oscilloscope measures the current with a CP2100A current probe.

For the voltage measurement, the DP10013 differential probe is used. The current probe has

a bandwidth of 800 kHz and an accuracy of 3% or ± 50 mA while measuring 10 A. Similar the

voltage differential probe has a bandwidth of 100 MHz and an accuracy of ± 2%

Table 3.6: Laboratory test equipment

Type Manufacturer Type

Programmable Load Elektro-Automatik 9500-08 T

Oscilloscope Keysight MSOX3014A

Multimeter Keysight U1242

Diff. Probe Micsig DP10013

Current Probe Micsig CP2100A

Battery Charger SkyRc E680



3.5. TEST SETUP 45

Oscilloscope Programmable load

Battery

Sensor cards

Multimeter

ChargerController card

Figure 3.9: Complete prototype battery system and laboratory test equipment

Table 3.7: 9500-08 T programmable load function setting

Parameter Value Description

Amplitude 2,4,6,8 A Amplitude of generated wave

Offset 0 A Offset of the generated wave

t1 0.01 s Pulse width of upper level

t2 0.01 s Pulse width of lower level
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4 Results

The isolated bidirectional dc-dc converter simulation model, the simplified battery simula-

tion model, and the physical battery prototype system are tested in this chapter. The rele-

vant results from both simulations and the experimental lab setup are inspected and ana-

lyzed. This chapter is divided into two primary sections. Results from the isolated bidirec-

tional dc-dc converter simulation are presented in section 4.1. Three aspects of the model

are displayed, the battery response in section 4.1.1, the powerflow in section 4.1.2 and the

soft switching ability in section 4.1.3. The simulation model is simulated in both buck and

boost mode, as shown in table 4.1. While charging in buck mode, the current reference is set

to 4 A with a constant current. Similarly, the voltage reference is set to 200 V with constant

voltage. While discharging in boost mode, only the current reference of -10 A is applied. The

simplified battery simulation and the experimental battery prototype results are presented

in section 4.2, where the transient response of the models is analyzed.

Table 4.1: Simulated modes from the converter simulation

Reference Reference Value PI Output

Buck Current 4 A 1.6 µs

Buck Voltage 200 V Decreasing

Boost Current 10 A -4.4 µs
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4.1 Isolated bidirectional dc-dc converter simulation

4.1.1 Battery Response

Charging With Constant Current

Figure 4.1 presents the simulated values for both the battery current and PI output of the

secondary bridge during battery charging with a constant current. The battery SOC is at

50%, with a no-load voltage of 184.4 V. At time zero, the reference current is set to 4 A. Some

key parameters from the current and PI output characteristics are exhibited in table 4.2. The

transient response curve of the battery current shown in fig. 4.1a, has a settling time of ap-

proximately 2 ms, with a rise time of 455 µs. The rise time(TR ) is defined as the time differ-

ence between 10 and 90% of the final steady-state value. After 2 ms, the steady-state value

of the current ripple is recorded and presented in fig. 4.1b. The current value varies between

4.05 A and 3.97 A, thereby staying within 2% of the total battery current.

The phase shift response from the PI regulator exhibited in fig. 4.1c is presented as µs. The

period of the square voltage wave is 40 µs, and the maximum allowable PI output will there-

fore be ±10 µs which equals ±25% or π
2 rad. The PI output rises quickly from -0.3 µs, with

a rise time of 29.6 µs. The phase shift overshoots to 1.8 µs before declining, obtaining 12.5

%OS of the 1.6 µs steady-state value. The steady-state value in fig. 4.1d shows a slight vari-

ation of 12 ns between 1.604 µs and 1.592 µs. This variation results in a 0.75% ripple of the

steady state value of 1.6 uS. With a period of 40 µs, 1.6 µs equals 4% of the total period. The

secondary ac voltage wave is thereby phase shifted 4% behind the primary ac wave.

Table 4.2: Battery response parameters while charging with constant current

Parameter Current PI

SS 4 A 1.6 µs

TR 455 µs 29.6 µs

TS 2 ms 1 ms

%OS 0 % 12.5 %

Ripple 2 % 0.68 %
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Figure 4.1: Battery current and PI output presented with their transient response and their
following steady state ripple with a battery charging current of 4 A
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Charging With Constant Voltage

At the end of the battery charging cycle, the lithium-ion cells are top charged to fill the ca-

pacity. A constant voltage is provided to prevent damage to the cells. Figure 4.2 displays the

battery current and voltage response alongside the phase shift output from the PI controller.

Since the constant voltage mode is only applicable for top charging at the end of the charg-

ing cycle, it is not relevant for discharging scenarios. The SOC level is set to 99%, and the

converter model is in charging mode.

The current and voltage response as the model switches from applying a current reference to

a voltage reference is shown in fig. 4.2a. This transition occurs after the voltage has reached

the 200 V limit of the battery. A Matlab script in the control section switches the functioning

PI controller, and the reference is set to 200 V. The voltage goes from an increasing trend to

a stable 200 V. Conversely, the current goes from a steady 4 A to a decreasing trend, as the PI

output is decreasing. The steady-state voltage ripple is shown in fig. 4.2b while delivering a

constant voltage of 200 V. The voltage stays between 200.03 and 199.96 V, which is a ripple

value of 0.035% of the entire 200 V. The PI output presented in fig. 4.2c, shows an increased

instability as the mode switches reference from current to voltage. The average value of the

PI output is decreasing after the transition. The ripple value of the signal is showcased in

fig. 4.2d. Since the signal is constantly decreasing, no stable ripple value is shown. However,

an average ripple of 18.75% can be seen.

Table 4.3: Battery response parameters while charging with constant voltage

Parameter Voltage Current PI output

SS 200 V Decreasing Decreasing

Ripple 0.035% 3% 18.75%
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Figure 4.2: Battery voltage and current characteristic while transitioning from CC to CV
mode, including the associated steady state voltage ripple while in constant voltage. The
battery voltage level is kept at 200 V while in CV mode.
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Discharging With Constant Current

The results in fig. 4.3 show the current and PI output of the secondary bridge, as the model

is discharging. The power flows from the battery to the dc bus, as the negative values indi-

cate. The battery is at 50% SOC, and the reference current is set at a constant value of -10

A at time zero. Figure 4.3a shows the transient response of the battery current. The current

decreases with a steady curve until it settles at the required -10 A. The response time from 10

to 90% of the final value is 757.6 µs. The current reaches a steady state after approximately

1.75 ms. No distinct overshoot of the current is present, as the curve is overstable. A ripple

current between -9.88 and -10.092 A is displayed in fig. 4.3b. This ripple is 2.12% of the -10 A

reference value. The ripple is staying constant within sections, and the majority of the ripple

is thereby lower than the 2.12% would suggest.

For the PI output of the primary bridge, the values in fig. 4.3c show a negative time delay.

This delay is converted to a positive value before it is sent to the phase shift block, as it is

impossible to delay with a negative time. The transient response of the signal drops down

immediately before it curves to a final value of -4.44 µs. This time delay of the generated wave

corresponds with a phase shift of 11.1%. The ripple in fig. 4.3d is low and with a constant

recurring pattern between -3.998 and -4.402 µs. The signal increases with a slow growth

before it drops down and restarts the pattern.

Table 4.4: Battery response parameters while discharging with constant current

Parameter Current PI output

SS -10 A -4.4 µs

TR 757.6 µs 425 µs

TS 1.75 µs 1.25 µs

%OS 0 % 12.5 %

Ripple 2.12 % 0.68 %
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(d) Steady state PI output

Figure 4.3: Battery current and PI output presented with their transient response and their
following steady state ripple with a battery discharging current of 10 A
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4.1.2 Powerflow

Figure 4.4 displays the ac square wave voltages and the notable characteristics of the induc-

tor while charging and discharging the battery. The connected battery is at 50% SOC, with a

no-load voltage of 184.4 V. In fig. 4.4a, the battery charges with 4 A constant current, and the

power flows from the dc bus to the battery. This power flow is achieved by lagging the sec-

ondary voltage wave 1.6 µs or 4% in relation to the primary wave. The primary voltage wave

Vac1 varies between +342.7 and -342.6 V. The transformer decreases the secondary voltage

wave Vac2 to +186.2 and -186.3 V.

Figure 4.4b presents the current and voltage over the leakage inductor. Both the voltage and

current indicates to be in four possible states. As both the ac waves are negative, the voltage

over the inductor is at -20.5 V. The current decreases at a moderate rate until it reaches -3.68

A. As the primary wave turns positive at 0 µs, the inductor voltage spikes to 651.2 V, and the

current increases at a steep rate up to 1.4 A. The length of the voltage spike is dependent on

the amount of phase shift applied. After both ac waves become positive, VL reduces to 20.8 V,

while iL increases with a moderate speed to a peak value of 3.39 A. Next, as the primary wave

becomes negative, the inductor voltage rapidly decreases to -651.2 V, similarily the current

decreases to -1.3 A. This cycle repeats for every period, with slight variations in voltages and

currents.

For the ac waves in fig. 4.4c, the DAB is discharging the battery with -10 A. Since the power

flow is from the battery, the secondary wave is leading the primary. This phase shift between

the waves has a magnitude of 4.44 µs or 11.1%. The secondary side ac voltage changes be-

tween +179.4 and -179.8 V, while the primary side switches between +350.5 and -350.4 V. The

voltage and leakage current of the corresponding values are shown in fig. 4.4d. Similarily to

fig. 4.4b, the current and voltage are separated in four sections, however as the primary side

is lagging, the characteristics are flipped. The relevant currents are -7,-5,8, and 5 A from 0 µs

to 40 µs; similarly, the voltage over the inductor varies between -39.4, -635.7, 39.5, and 635,4

V, respectively.
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Figure 4.4: Primary and secondary ac voltages, presented with the current and voltage over
the leakage inductor, while the converter is charging and discharging
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The maximum allowable PI output in either direction is limited to 2 µs, which is 25% of the

total period. Any increase in phase after this limit will only decrease the output power. Figure

4.5 visualizes this phenomenon by plotting the power output as a function of the phase shift.

The simulated output power is plotted in fig. 4.5a with the phase shift represented as % of the

total period. The output power is shown as a sine wave by increasing the phase shift from

-50 to +50% at a steady rate. From the figure, the maximum and minimum output power is

delivered at 25 and -25%, respectively. The charging and discharging phase shift of 4% and

-11.1% are also shown with the dashed lines. The calculated output power is plotted from

eq. (2.1) with the phase shift represented in radians.
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Figure 4.5: Simulated and calculated output power between maximum and minimum phase
shift

The current, power, efficiency, and phase shift of critical values are listed in table. 4.5. With

a high phase shift between the bridges, the efficiency of the model decreases. The same

statement holds for low values. The highest value of efficiency occurs at approximately 7 to

8% phase shift. With a 4% phase shift, the DAB delivers 773 W to the battery with an efficiency

of 98.82%; the total loss is therefore 11 W. Current drawn from the dc bus is here 2.28 A. A

phase shift of -11.1%, delivers 1800 W to the battery with an efficiency of 98.63% and a loss

of 18 W. The current from the dc bus is -5.09 A.

Table 4.5: Power flow parameters from the converter simulation model

Input Input Output Output Efficiency Phase

Current [A] Power [W] Current [A] Power [W] [%] Shift [%]

-7.21 -2539 -14.67 -2628 97.00 -25

-5.09 -1782 -10 -1800 98.63 -11.1

2.28 784 4.15 773 98.82 4

8.05 2712 13.67 2600 97.09 25
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4.1.3 Soft switching

Decreasing the switching losses is an essential part when applying high switching frequency.

Soft switching in the DAB is achieved with ZVS due to the dead time between the gate sig-

nals, set to 200 ns. For determining the possibility of soft switching, actual voltage and cur-

rent characteristics are analyzed. Figure 4.6 presents the drain-source voltage(VDS), gate

signal(GS), and switching current(Isw ) over the S1 MOSFET while charging and discharging

at the switching time.

In fig. 4.6a, MOSFET S1 is turned on while charging, as the power flow from the primary

bridge to the secondary bridge. The voltage and current drop instantly before the gate signal

goes high, as the output capacitance of the MOSFET discharges. After switching, the current

increases at a quick rate. In fig. 4.6b the MOSFET is turned off with zero drain-source volt-

age. Immediately after switching, the voltage rises, and the current flow is cut. In fig. 4.6c,

MOSFET S1 is turned on while power flow is reverter, thereby discharging. The drain-source

voltage drops to zero, and the current decreases as the converter discharges immediately

before the MOSFET is switched on. In fig. 4.6d the current starts to increase as the capaci-

tance charges, at the height of the current, the drain-source voltage increases. The gate signal

drops shortly before the voltage increases, and ZVS is achieved.

From fig. 4.7 the drain-source voltage, gate-source voltage, and switching current are recorded

over the S5 MOSFET on the secondary bridge. In fig. 4.7a the S5 MOSFET is switched on while

the converter is charging. The drain-source voltage decreases to zero, while the current de-

creases from zero immediately before the gate signal is initialized. In fig. 4.7b the current

increases as the capacitance charge and the drain-source voltage increases. The gate sig-

nal increases while the voltage is zero. In fig. 4.7c the converter is discharging, and power is

flowing from the battery to the dc-bus. The drain-source voltage and current drop instantly

before the MOSFET are turned on. The current then increases at a fast rate. In fig. 4.7d the

MOSFET is turned off before the drain-source voltage increases and the switching current is

cut off. For every semiconductor switch, soft switching is achieved through ZVS while either

charging or discharging.
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Figure 4.6: Characteristic of the drain-source and gate-source voltage presented with the
switching current over the S1 MOSFET, transitioning between the ON- and OFF-state while
charging and discharging.
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Figure 4.7: Characteristic of the drain-source and gate-source voltage presented with the
switching current over the S5 MOSFET, transitioning between the ON- and OFF-state while
charging and discharging.
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4.2 Physical battery

Measurements from the lab test setup described in section 3.5 are presented and compared

with the simplified battery simulation from section 3.2.2. The objective is to display the tran-

sient response under different loads, and is shown in fig. 4.8. The current step is initiated at

time zero, and current levels of 2,4, 6, and 8 A are chosen for each step. Figure 4.8a, show the

current response of the physical battery. The rise time, settling time, overshoot, and under-

shoot of the responses are shown in table 4.6. The battery voltage decreases as the load is

connected; this is shown in fig. 4.8b. The same test is performed on a simplified simulated

model. The current response in fig. 4.8c shows an instant increase in current, with a slight

overshoot. Similarly the voltage response in fig. 4.8d displays a rapid decrease.

Table 4.6: Battery current response from lab test setup

Type 2 A 4 A 6 A 8 A

RiseTime (µs) 11.313 9.5400 8.8175 8.4550

SettlingTime (µs) 21.345 17.980 17.820 24.640

Overshoot (%) 4.0330 4.0164 3.3649 1.7572
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Figure 4.8: Voltage and current response from battery prototype pack and battery simulation
with current steps of 2, 4, 6, an 8 A
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5 Discussion

The discussion is divided into two primary parts. Section 5.1 discusses the primary bidirec-

tional dc-dc converter model and is divided into operation in section 5.1.1, power transfer

capabilities in section 5.1.2 and soft switching ability in section 5.1.3. The second main dis-

cussion is about the battery prototype in section 5.2.

5.1 Converter Simulation Model

The simulation results from chapter 4 have been simulated exclusively in Matlab®/Simulink®.

The electrical components used are from within the specialized power system in the Sim-

scape electrical library. For every component library, there will be a compromise between

complexity and functionality.

5.1.1 Operation

The isolated bidirectional dc-dc converter simulation model is operated in three modes, ex-

cluding the override function. When charging in the constant current and constant voltage

mode, the converter operates as a buck converter. Conversely, when running in the discharg-

ing mode, the converter operates as a boost converter. For each of these modes, a separate

PI controller regulates the phase shift. These controllers are tuned for the specific value and

desired characteristic such that an optimal curve is achieved.

From the results in section 4.1, the transient response and steady-state value of the con-

trolled reference value and the PI output are presented individually. The charging with the

constant current mode is first presented in fig. 4.1, where a reference current of 4 A is ap-

plied at time zero. The PI output is presented in microseconds as it controls the delay of the

signal generator. This PI output increases nearly instantaneously compared to the current,

and reaches an overshoot of 12.5% before it stabilizes after approximately 2 µs. The char-

acteristic from the PI output is shown in the current curve, as the initial slope is steep and

then diminishes, acquiring a rise time of 455 µs and a settling time of approximately 2 µs.

The same repeated ripple style in the PI output captured after reaching a steady-state value
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is distinctly shown in the current ripple. The peak to peak ripple shows a variation of about

2% of the total reference current of 4 A. An output filter may be applied when a more sta-

ble signal with a lower current ripple is required. Similar to the results while charging, the

discharging with constant current presented in fig. 4.3 displays the transient response of the

current and the PI output. A current reference is set to -10 A, at time zero. The current and

PI output response follow each other more closely than when charging. This feature is due

to the tuning of the PI regulator, as the current reference is further from zero. Even as the

curves’ characteristics current and PI output are similar, the current curve lags behind. This

time difference is most measurable by comparing the rise time of both curves. The PI output

rises about 330 µs faster than the current. There will always be a delay between the output of

the PI regulator and the actual change in reference.

The ripple current and PI output show a pattern as the controlled value is held constant. This

connection between the PI output ripple and current ripple is shown for the constant current

modes as the PI output is stabilized. In these simulations the battery is held at 50% SOC

and is either increased or decreased depending on the power flow. The simulated converter

model calculates the SOC with coulomb counting. This is the same method applied in the

external SOC calculation of the simulated battery model. As every parameter is known, and

the environment can be controlled, this calculation method has a high degree of accuracy.

However, it is not adaptive and can not self-regulate. The model-based method described in

section 2.3.3 would therefore be preferred in a physical system.

The constant voltage mode presented in fig. 4.2 differs from the two constant current modes.

This mode will only activate at the end of the charging cycle when the voltage has reached

its highest value to achieve top charging. The voltage, current, and time delay are presented

in this figure. As the battery voltage reaches 200 V, the mode switches from constant current

to constant voltage, and the reference value is set to 200 V. The transition point is shown as

a distinct change in form for every signal. The voltage increases at a moderate rate before it

stabilizes at the upper voltage limit. Conversely, the current changes from a stable level to a

mild decrease. The ripple value increases as the converter changes to constant voltage mode;

this change is also noticeable in the PI output. As the phase shift is constantly decreasing,

the PI controller struggles to decrease the signal without increasing the ripple. Instead of

controlling the phase shift directly with a voltage reference, the ripple may be decreased by

controlling the current reference based on the voltage reference by another PI controller.

This method, however is not applied in the control section due to early design choices. Both

the constant current modes showed a repetitive ripple pattern in both the current and PI

output. Due to the decreasing PI output value, no repetition in the ripple is shown in the

voltage, current, or PI output.
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The simulated converter model shows satisfactory response while charging and discharg-

ing, but for faster transient response and a more stable steady-state output, modular pre-

dictive control(MPC) may be used. With MPC, the model response is predicted in advance,

and control actions are adjusted to achieve the desired characteristic. However, this control

method is more advanced than the implemented PI controller and requires more processing

power. The control method is thereby a compromise between functionality, simplicity, and

efficiency.

5.1.2 Power Transfer Capabilities

The power flow from the simulated converter with relevant ac components is presented in

section 4.1.2. The simulated and calculated output power is plotted as a function of phase

shift in fig. 4.5. The simulated output power is plotted in fig. 4.5a, the phase shift is rep-

resented as a percentage of the total period. The figure shows a sine curve with a minor

imperfection around 0% phase shift. This irregularity is due to limitations of the simulation

as the phase shift changes polarity, the applied PI controllers change. In addition, as the

phase shift is constantly increased from -50, more stress is introduced to the system. The

power capability while charging and discharging are presented in the table. Higher power

output values are achieved with higher values of phase shift, but the efficiency will be low.

The highest efficiency level will be between 4% and 11% at approximately 7%. Therefore, a

high phase shift will increase the overall losses in the model. Likewise, a too low value will

increase the overall losses.

The calculated output power from eq. (2.1) is plotted in fig. 4.5b, the phase shift is repre-

sented as π radian, where 2π is a complete period. The results are compared for the simu-

lated and calculated power outputs, in fig. 5.1. The curves show similar values for low phase

shift values, but with larger amounts, the difference increases. The theoretically calculated

power curve depends on an ideal converter and shows a slightly higher power output than

the simulated. This difference is then exaggerated at the peak value of the phase shift. The

figure also highlights the difference between presenting the phase shift as a percentage and

radians. When calculating equations, the phase shift in this thesis is used as π rad, while a

percentage or seconds are primarily used while visually presenting the results.

Figure 4.4 presents the simulated ac voltages and inductor characteristics while charging

and discharging. The simulated values follow the theoretical characteristic presented in sec-

tion 2.2. The difference in these currents and voltages is due to the model’s phase shift and

power flow. With higher values of phase shift, the gap between the primary and secondary

square voltage waves is increased. The primary bridge will be leading or lagging depend-

ing on the power flow direction of the converter. Similarly, as the phase shift is increased,



64 CHAPTER 5. DISCUSSION

−50 −25 0 25 50

−2,600

0

2,600

Phase Shift [%]

Po
w

er
[k

W
]

-π -0.5π 0 0.5π π

Phase Shift [rad]

Simulated,%
Calculated,rad

Figure 5.1: Comparison between the simulated and calculated output power as a function of
the phase shift presented as percent from fig. 4.5a and as radian from fig. 4.5b

the current peak is increased, but the rate is decreased as the current rises more slowly. The

power transition between the bridges is possible due to the galvanic isolated transformer

between the two bridges. The simulated transformer is limited as its inductance is close to

negligible and has little effect on the simulation. In a practical system, the transformer in-

ductance must be subtracted from the total leakage inductor when selecting the external

inductor. The realistic values from the planar transformer described in section 3.1.5 are lim-

ited to the winding losses and do not describe the magnetic inductance. In addition, the

turn ratio is designed to keep the voltage ratio close to unity during nominal operation. This

decreases the losses as soft switching is more easily achieved.

The SPS switching strategy would struggle to perform with the high-efficiency levels, 98.63

and 98.82% as presented in table 4.5 in a physical DAB converter. More efficient and robust

switching strategies as described in section 2.2.1 can be used to increase efficiency and the

controllability of the converter. TPS will have the most advantageous features compared to

SPS, but it may be hard to achieve due to the high level of complexity of this switching strat-

egy. The DPS modulation features improved efficiency and lower losses without increasing

the complexity too significantly. This switching strategy allows for a higher degree of con-

trollability as the duty cycle is added as a controllable parameter compared to the SPS, which

only controls the phase shift. The circulating current issue with SPS, which directly leads to

increased losses, would decrease while simultaneously increasing the soft-switching range.
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5.1.3 Soft Switching

The zero-voltage switching ability of the dual active bridge converter is a crucial ability to

decrease the switching losses. Without this feature, the switching losses would be too high

due to the high frequency and short period. The voltage and current over the semiconductor

switch S1 on the primary bridge and S5 on the secondary bridge with power flow in both

directions are presented in section 4.1.3. As explained in section 2.2.4 the MOSFET should

theoretically achieve full ZVS while switching on and pseudo-ZVS while switching off when

the power flow is positive towards the semiconductor. However, from the simulation results,

ZVS is achieved for every switch during both charging and discharging. This property is due

to the unrealistic battery response of the simulation model. As the capacitors discharge, the

battery voltage drops instantaneously, and the voltage is zero as the semiconductor switches.

The voltage would drop more gradually in a practical system, and soft switching would be

harder to achieve. This ideal switching is one of the leading causes of the high efficiency and

low losses in the model. The current characteristic depends on the power flow direction, as

shown in fig. 4.6 and fig. 4.7. These figures demonstrate how the characteristic of the switch-

ing current is subject to the charge and discharge state of the converter as the power flow

changes. Compared to the theoretical characteristic attribute, the current flow is operating

as expected, apart from the instant drops.

5.2 Battery Prototype

A prototype of the physical battery system is designed, which can be increased later to the de-

sired voltage level, similar to the simulated converter. The prototype is designed as a 2x4S2P

pack with a peak voltage of 33.6 V. To reach 200 V, six of these battery packs must be con-

nected in series. Due to the uniformity of the system, this process is simple to achieve. A

simulated model of the battery pack is simulated in Simulink/Matlab. The results from the

physical laboratory and simulations are presented in fig. 4.8. The battery prototype is tested

with a 9500-08 T programmable load described in section 3.5. The load is stepped at time

zero to achieve 2, 4, 6 and 8 A discharge current from the battery. The 2 A step shown in

fig. 4.8a displays a distinct response compared to the 4, 6 and 8 A step, as it increases earlier

with a flatter slope. This characteristic is also visible with the voltage curves in fig. 4.8b, as the

voltage decreases ahead of the other. This irregularity may be due to changes within the pro-

grammable load for high current values, as the 4 A step shows signs of a similar curve to the

2 A step. If a larger load had been available, the discharge current responses could be more

comparable since the 8 A is the maximum allowable current through the programmable load.
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The simulated battery is designed with the same setup and parameters as the physical pro-

totype, and the same load test is performed. The current step shown in fig. 4.8c displays an

instant response compared to the physical model. Similarly, the voltage from the simulated

battery shows a rapid decrease, which decreases significantly less than the physical battery.

This comparison between the physical battery and the Simulink model showcase the limita-

tions of the simulated battery model. This model employs the charge and discharge charac-

teristic described in section 2.3.1, where the voltage variation is low in the nominal area and

increases quickly in the exponential area and depleted area. However, the model struggles

with realistic current and voltage responses.

A battery simulation with a realistic response characteristic would benefit the bidirectional

dc-dc converter in validating the converter simulations to a higher degree. The battery re-

sponse is critical when an unstable load is required to be kept at a steady level. A practical

application for this requirement is vehicle-to-grid applications, as mentioned in section 1.1.

For other applications where the battery response will not be quick enough, a supercapaci-

tor is commonly applied together with the battery. The difference in transient response time

between a supercapacitor and battery for stabilization application in a micro-grid is the pri-

mary aspiration for the paper submitted for review for the IEEE ICECCME 2021 conference

and the abstract approved for the IEEE SEST 2021 conference.
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6 Conclusion

This thesis presents the functionality and operation of an isolated bidirectional dc-dc con-

verter for use with electric vehicle applications. By utilizing Matlab®/Simulink®a simulated

converter model with dual active bridge topology is implemented between the grid and bat-

tery model. A control system is implemented, and phase shift modulation is applied for

controlling the bidirectional power flow between the grid and battery. The battery prototype

pack is designed and built, while a battery management system for cell balancing is imple-

mented. The battery prototype system is compared to the simulated battery model from

Matlab®/Simulink®.

The results from the converter simulation show a fast and controlled power flow between

the battery and grid as the battery model charges and discharges accordingly to the lithium-

ion battery characteristics. The battery prototype and the simulated battery model results

showcase the limitations of the simulated battery model as the transient response increases

as an immediate step compared to the physical battery.

Future Work

The simulated control system is functional but can be improved with more advanced con-

trollers, furthermore the practical aspects of the converter can be increased.

• Include model predictive control in the control section for the converter simulation.

• Implement SOC calculations with self regulation.

• Implement DPS to the phase modulation.

• Model verification through a physical design of a DAB converter.

• Increase battery voltage by coupling extra battery packs.

• Design a battery simulation model with realistic response characteristics.
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Abstract—A comparison of different transient responses by a
supercapacitor and battery reacting to a load is presented in
this paper. The main focus is improving energy storage systems
designed to support a DC-microgrid. This is done by introducing
the two storage devices to act as stabilization elements. Through
simulations in Matlab®/Simulink®and physical models, a compar-
ison is achieved. Transient characteristics from the simulations
tend to give a faster response than the physical. Verification on
the error between ideal and physical are analyzed based on the
results.

Index Terms—Renewables, DC-bus, DC-microgrid, energy
storage, battery, supercapacitor, isolated bidirectional DC/DC
converter(IBDC),

I. INTRODUCTION

This paper presents a comparison between the transient
response of a battery and a supercapacitor connected to various
loads. Energy storage and renewable energy production [1]
connected with a DC-microgrid prove necessary for many
applications [2]–[4], due to the unpredictability of renewables,
as they often are dependent on irregular energy sources. In
addition, the transient response in a DC system is more critical
than in a comparable AC system.

The growing trend with wind- [5], [6] and solar-energy [7] is
increasing the demand for energy storage with a low response
time [8]. Combining energy storages with varying response
times may respond faster to DC-microgrid energy demand.
Storage devices as supercapacitors are assumed to react more
rapidly to change in demand than devices like batteries.
Thereby, combining the supercapacitor and the battery in a
system, a faster response time can be achieved when required.

The use of batteries and supercapacitors in combination has
been studied and researched; a paper on energy management
of fuel cell, battery, and supercapacitor is described in [9],
where the systems response time measurements are included.
Similarly, [10] presents batteries and supercapacitors for use in
electric/hybrid vehicles. Each storage device can deliver power
to the DC-bus in a typical energy storage system through
an isolated bidirectional DC/DC converter. A potential model
configuration is shown in Fig. 1 which exhibits a simplified
configuration. With a slightly faster storage device, the overall
response time of the storage system can be significantly
decreased.

DC

DC

+-

Battery/
Supercapacitor

Isolated
Bidirectional
Converter

DC-bus

Figure 1: Model configuration for energy system

One of the principal differences between a battery and
supercapacitor is power density versus energy density [11]–
[13]. While a supercapacitor can release large amounts of
energy in a short period, a battery can store significantly
greater amounts of energy [14]. Therefore the supercapacitor
possesses high power density while a battery has a high energy
density compared to each other. Combining and compromising
the sources provides a high-performance system with fast
transient response.

The battery stores energy as an electrochemical reaction
as opposed to the supercapacitor, which utilizes static charge
[15], [16]. This difference in energy storage is the primary
cause of the unique response times. This paper will showcase
the difference in energy ability and response of the two sources
while responding to a programmable load.

The paper is organized as follows: Section II presents the
model description and laboratory test setup and the design of
the batter and supercapacitor system. Section III presents the
test cases with results. Section IV presents the conclusions.

II. MODEL DESCRIPTION

When comparing the transient response of the storage
devices, they must have a common factor. In this paper, a
requirement of a nominal voltage of close to 30 V is applied.
However, the battery and supercapacitor capacity will vary, as
this was not feasible to match.

Each supercapacitor cell has a maximum voltage of 2.7 V,
thereby 12 single cells must be connected in series to reach a
maximum voltage of 32.4 V and a nominal voltage of 30 V.
The supercapacitor parameters are displayed in table I [18],
while the maximum stored energy and usable specific power
is calculated in (1) and (2), respectively. Compared to the
supercapacitor, the battery has a higher cell voltage of 4.2 V,
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Table I: Supercapacitor Module Specifications

Type Value

Cells in Series 12

Capacitance 30 F

Nominal Voltage 30 V

Maximum Current 20 A

Maximum Power 600 W

DC ESR 38.4 mΩ

Maximum Stored Energy 3.75 W h

Usable Specific Power 3282.56 W/kg

Total SC Weight 0.8568 kg

with a nominal voltage of 3.7 V; therefore, only eight cells
connected in series are required. The battery parameters are
collected from the datasheet [19] and presented in table II.

The supercapacitor and battery parameters showcase the
difference between the storage devices. The maximum stored
energy is significantly higher in the battery, while the usable
specific power in the supercapacitor considerably exceeds the
battery; this corresponds with the assumptions made in the
introduction.

As the voltage requirement is set to 30 V, the supercapacitor
is designed with 12 cells in series. These cells are soldered di-
rectly to a PCB, with built-in balancing and measurement [20].
The passive balancing system is designed with a constantly
discharging current. As a cell charges to a higher voltage level
than the rest, the discharging current increases, causing the
pack to balance. Included in the PCB design is both current
and voltage measurement over the supercapacitor bank.

The supercapacitor is charged up to the required 30 V
with an EA-PS 2032-050 30V laboratory power supply. A
passive cell balancing circuit is designed, to prevent un-even
cell charging. This system balances the cells so that the cells
with higher voltage discharge faster than the other. The PCB
requires a 15 V DC supply to power the circuitry. For this
supply, the mascot 719 DC power supply is utilized.

The battery is design as two 4S2P packs connected in
series, equaling an 8S2P pack. The eight cells in series
produce a nominal voltage of 29.6 V, while the parallel cells
increase the capacity from 2.6 Ah to 5.2 Ah. Contrary to the
supercapacitor, each cell pair of the battery pack is connected
to a sensor PCB connected to a central controller PCB. These
cards are based on an open-source project designed by Stuart
Pittaway [20]. The sensor cards interact through standard
UART serial communication with a single control card. The
external sensor cards have implemented passive balancing.
Instead of constantly discharging the cells, they are only
discharged when the voltage level is too high. This action is
achieved by redirecting the current through a MOSFET when
required.

Emax =
0.5 · C · VR

2

3600
(1)

Pusable =
0.12 · VR

2

ESRDC ·Weight
(2)

Table II: Li-ion Battery Specifications

Type Value

Cells in Series 8

Cells in Parallel 2

Nominal Voltage 29.6 V

Maximum Current 10.4 A

Maximum Power 305.76 W

DC ESR 38.4 mΩ

Maximum Stored Energy 159.92 W h

Usable Specific Power 409.36 W/kg

Total Battery Weight 0.752 kg

The measured cell voltage is presented to the controller
PCB and can be displayed on a local network. This system
requires a 5 V DC supply via a USB charger to power the wifi
controller. However, the balancing circuit will work without
this supply. Due to the unique charging characteristic of the
lithium-ion battery, a constant-current constant-voltage charger
is obliged to charge the battery. For this purpose, a SkyRc
E680 smart charger is applied to charge the voltage to 30 V.

Equipment used during testing is found in table III. The
setup displayed in Fig. 2 consists of a programmable load, the
sources, and an oscilloscope. The load is an EL 9500-08 T
electronic DC load. With a maximum input voltage of 500 V
and a maximum input current of 8 A, it is thereby not limited
by the battery or supercapacitor at 30 V. The load features
a touchscreen and simple control settings, allowing for fast
and easy tests and use. The current mode is set to rectangular
function for the tests, which produces a square wave signal
for the input current.

Programmable Load Power supply 15 V

Oscillo-
scope

Supercapacitor

Multi-
meters

Power
supply
30 V

MCUBMS controller

BMS
sensors

Battery

Bat.
charger

Figure 2: Laboratory test equipment

Table III: Laboratory test equipment

Type Manufacturer Type
Programmable Load Elektro-Automatik 9500-08 T
Oscilloscope Keysight MSOX3014A
Diff. Probe Micsig DP10013
Current Probe Micsig CP2100A
Power Supply Elektro-Automatik EA-PS 2032-050
Power Supply Mascot 719
Battery Charger SkyRc E680
Supercapacitor Maxwell Technologies BCAP0360 P270 S18
Battery Samsung 18650

The controller can adjust the amplitude to reach the required
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current level and change the upper and lower pulse width. For
the test performed, both pulse width is 1 ms, and the current
amplitude increases to 2 A, 4 A, 6 A, and 8 A between each
test. The frequency of the pulse will therefore be 500 Hz, with
a duty cycle of 50%. This square wave signal is measured
with a CP2100A current probe connected to an MSOX3014A
oscilloscope from Keysight. For the voltage measurement, a
DP10013 differential probe is utilized. These probes have an
accuracy of 3% and 2%, respectively.

III. RESULTS

The current and voltage response by the supercapacitor from
the laboratory tests are plotted in Fig. 3. From Fig. 3a, the
current rises steadily from zero to each load current reference
of 2 A, 4 A, 6 A, and 8 A. The plot characteristic from
the currents are displayed in table IV, and are obtained from
Matlab®by utilizing the ”stepinfo” command. The rise time
is the period between 10% and 90% of the steady-state value
and shows the rate of current increase.
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Figure 3: Supercapacitor current and voltage during load
scenarios from physical model

However, it is essential to note the complete response from
time zero when the load is initially connected. The settling
time is the period between the initial step response and a value
within 2% of the steady-state value. The overshoot represent
the maximum percentage the response touches compared to
the steady-state value. The response of the supercapacitor
voltage presented in Fig. 3b shows the decreasing voltage
in response to the current increase. The voltage-drop has a
magnitude of 0.06 V, 0.16 V, 0.2 V, 0.26 V in response
to the load currents. The results from the battery test are
plotted in Fig. 4. The currents are stepped up from zero to
2 A, 4 A, 6 A, and 8 A, similar to the supercapacitor test.
The current transient response is shown in Fig. 4a, while the
voltage transient is shown in Fig. 4b. The plot characteristics
for the current response is listed in table. V. The voltage-
drop is 0.5 V, 1 V, 1.5 V, and 1.93 V, respectively to the
load currents. A comparison between the physical setup and
the modeled simulation in Matlab®/Simulink® is made. The
simulated battery and supercapacitor models utilized are part
of the Simscape electrical library.
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Figure 4: Battery current and voltage during load scenarios
from physical model
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Table IV: Plotinfo for supercapacitor current Fig. 3a

Type 2 A 4 A 6 A 8 A

RiseTime (µs) 10.086 8.2610 7.8208 7.6040

SettlingTime (µs) 52.172 14.547 33.007 24.746

Overshoot (%) 4.0666 4.0535 1.3407 0.7588

Table V: Plotinfo for battery current Fig. 4a

Type 2 A 4 A 6 A 8 A

RiseTime (µs) 11.313 9.5400 8.8175 8.4550

SettlingTime (µs) 21.345 17.980 17.820 24.640

Overshoot (%) 4.0330 4.0164 3.3649 1.7572

The simulated test models are designed to replicate the
physical laboratory tests. The current and voltage responses
from the simulated supercapacitor model are shown in Fig.
5a, and from the physical battery model are visualized in Fig.
6a. The supercapacitor and battery simulations in Figs. 5 and 6
show an almost instant current response. The voltage response
shows an instant voltage-drop for the supercapacitor
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Figure 5: Supercapacitor current and voltage during load
scenarios from simulation model

in Fig. 5b and decreases with 0.08 V, 0.16 V, 0.23 V and
0.31 V, respective to the load currents. The battery voltages
indicate a steady decreasing curve when the current increases,
visualized in Fig. 5b. The battery voltages decrease with
0.13 V, 0.26 V, 0.39 V and 0.53 V respective to the increasing
load currents. The load step is initiated at time zero for every
test and simulation.

IV. DISCUSSION

The physical supercapacitor and battery currents are fairly
similar at first glance, displayed in Fig. 3a and 4a. The battery
currents start to rise slightly before the supercapacitor currents
with an inconsiderably less steep curve. This results in a faster
rise time for the supercapacitor, visualized in table IV and V.
The supercapacitor 8 A load current show a sag after reaching
the reference value at 20 µs. This dip is neutralized shortly
outside the included time plot and indicates increasing times
for larger load. The same behavior is visualized for the battery
current with a slower response. This results in a small over-
shoot and a smaller sag. The characteristic of both the current
and voltage response displays an anomaly for the 2 A.
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Figure 6: Battery current and voltage during load scenarios
from simulation model
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As the load connects, the current rises almost immediately
from the initial pulse at time zero. This characteristic visu-
alizes a delayed response for larger currents. This delay is
explained by the load not responding fast enough. Contrary
to the currents, the difference in voltage response of the bat-
tery and the supercapacitor is more visually noticeable when
comparing Fig. 3b and 4b. The large difference in voltage-
drop explains this visual difference. For the 8 A load, the
supercapacitor stabilize at 300 mV lower and the battery closer
to 1.8 V. This is a significant contrast and originates from
the large power density difference. It will also depend on the
strength of the storage device. Moreover, the supercapacitor
is built with physically larger cells, and another improvement
to this experiment is to make the battery pack larger, with
more cells in parallel, thereby increasing the capacity. This
improvement will make the battery pack more robust and able
to withstand the load better. Both display the same transient
voltage-drop curve with an under-shoot and stabilize when the
current reaches the reference value. The shape of the curve
seemingly originates from the programmable DC-load.

Both physical storage devices are compared with simulated
results of matching parameters. The supercapacitor displays
the largest difference with the simulated supercapacitor’s in-
stant transient response during the same time window. This
will have a significant impact when taking a simulation into a
physical design. The voltage-drop is surprisingly similar with
300 mV. The simulated battery, however, indicates a less ideal
transient voltage response. Compared to the physical battery,
the voltage transients show no under-shoot and a significantly
smaller voltage-drop of 520 mV for the 8 A load. This
indicates a limitation of the simulated battery because of the
large contrast compared to the physical.

V. CONCLUSION

This paper compares the transient responses of both physical
and simulated supercapacitor and battery storage devices. The
contrasts are displayed through physical tests with a pro-
grammable DC-load, and simulations in Matlab®/Simulink®.

The results indicate a slightly faster electric response for the
physical supercapacitor compared to the battery. The physical
battery shows a significant voltage-drop compared to the
supercapacitor, originating from the supercapacitor’s bigger
power density. A significant difference in voltage transient
is visualized between both physical storage devices and their
respective simulations. The simulated storage devices show a
more consistent voltage-drop curve for all loads. Considera-
tions need to be made when taking simulations into physical
prototypes designed for DC-microgrids.
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Abstract—A comparison of the different transient responses of
a supercapacitor and a battery supporting a DC-bus is presented
in this paper. The main focus is to improve energy storage systems
designed to support DC-bus in a microgrid. This is done by
introducing a battery or a supercapacitor to act as a stabilization
element. The two elements will be compared through simulations
in Matlab/Simulink and physical components. Transient charac-
teristics from the simulations tends to give a faster response then
the physical components. A verification on the error between
ideal and physical are analysed based on both simulations and
measurements. The results will be presented in the full text paper.

Index Terms—Renewables, DC-bus, DC-microgrid, energy
storage, battery, supercapacitor, isolated bidirectional DC/DC
converter(IBDC),

I. RELEVANT CONFERENCE SCOPE

This paper fits well into the conference scopes of SEST2021
and the authors agree that the scope prioritization for this paper
is:

1) Energy Storage Systems and Technologies
2) Microgrids, Virtual Power Plants, and Aggregators
3) Renewable Energy and Distributed Generation

II. INTRODUCTION

This paper presents a comparison between battery and
supercapacitor transient response when supporting a DC-bus.
Energy storage together with renewable energy [1] production
and DC-microgrid is proving to be a necessity for many
applications [2]. A growing trend with wind [3] and solar
[4] is increasing the demand for energy storage with a low
response time [5] [6]. By combining different storage devices
the system will be able to respond faster to the DC-microgrids
demand. The faster storage can initially react before the main
storage responds. A paper on energy management of fuel-
cell, battery and supercapacitor is described in [7], where
measurements of the systems response time is included. Both
of the energy storage devices will deliver power to the DC-
bus through a isolated bidirectional DC/DC converter(IBDC).
The model configuration is shown in Fig. 1 and shows how
the two sources are connected. The main difference between
a battery and a supercapacitor is power density versus energy
density [8]. While a supercapacitor can release large amounts
of energy in a short period of time, a battery can store
larger amounts of energy [8]. This is why a supercapacitor

DC

DC

+-

Battery/
Supercapacitor

Isolated
Bidirectional
Converter

DC-bus

Figure 1: Model configuration for energy system

has high power density while a battery has high energy
density compared to each other. This paper will showcase the
difference in energy ability of the two sources through the
response of a dropping DC-bus by supporting the transient
period [8] [9].

III. RESULTS

Simulation results for both the supercapacitor and the bat-
tery can be seen in Fig. 2. Both the voltage and current
response is shown. The voltage level on the DC-bus is set
to 400V and the current load is 1.2 kW. The voltage drops
as a load increase is forced on the DC-bus. When it reaches
roughly 360V the energy system responds. The load current
decreases as the external energy storage takes time to respond.
Simulink simulation shows a small difference in the transient
response from a battery compared to supercapacitor. A voltage
overshoot can also be seen from the battery simulation. As
these are ideal components, a slightly different behavior from
physical components is expected. These will be analysed and
simulated in full paper. From the simulation it is expected that
the supercapacitor will have a faster response than the battery
with physical components [7]. A method based on the cost
benefit for optimal sizing is presented in [10]. The size of a
storage device is dependent on the required power and amount
of time the DC-bus has to be supported [10].

IV. CONCLUSION

With the responses from the Matlab/Simulink simulations,
the supercapacitor and battery shows signs of a different
transient response then the physical measurements. The error
between the physical and simulated model is shown through
this paper. More results from simulations and physical model
will be included in full paper.
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Figure 2: Transient response of battery and supercapacitor
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C DAB Converter Simulation Model

Full simulation model and source code of the isolated bidirectional dc-dc converter designed

in Matlab®/Simulink®. The source files are published to a public repository in [77] and in-

cludes the initalizing file, main simulation file and calculations for the inductor.The files can

be copied and redistributed in any medium or format. The pages in this appendix should be

printed in A3 format to increase readability.
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C.1 Converter Model



Off

stop

prechargeOn

chargeOn

dischargeOn

outputVoltage

inputVoltage

currentReference

voltageReference

piReset

turnOff

Charging

PreCharging

Discharging

constantVoltage

constantCurrent

batteryConnected

dcBusConnected

prechargeBattery

prechargeDCBus

pidReset

Vref

Iref

turnOff

Vout

cv

charging

discharging

cc

DBcon

BAcon

PC

Vin

PCbat

PCbus

C.2. STATEFLOW SUBSYSTEM XXIII

C.2 Stateflow subsystem
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C.2.1 Stateflow subsystem
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C.3 Control subsystem
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C.3.1 PI subsystem
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C.3.2 Signal generator subsystem
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C.3.3 Calculation subsystem
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C.4 User Interface subsystem
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C.5 Scopes subsystem



C.6. MATLAB SCRIPT XXXI

C.6 Matlab Script

C.6.1 Initialize file

1 clear

2 clc

3 % Standard***********************

4 Vin = 345;% V

5 Vref = 200;% V

6 f = 25e3;% Hz

7 P = 1/f;% s

8 Sample = 1e−7;% s

9 Power = 2000;% W

10 % MOSFET parameter***************

11 ron_mosfet_pri = 0.027;% Ohm

12 ron_mosfet_sec = 0.027;% Ohm

13 ron_body_diode_pri = 0.005;% Ohm

14 ron_body_diode_sec = 0.005;% Ohm

15 vf_body_diode_pri = 4;% V

16 vf_body_diode_sec = 4;% V

17 % Batteri parameter**************

18 SOCInit = 0.5;%

19 Vnominal = 171.2% V

20 Irated = 4.2;% Ah

21 % Komponenter********************

22 Lk = 2.04e−4;% H

23 C1 = 0.5e−3;% F

24 C2 = 0.5e−3;% F

25 % PreCharge**********************

26 pcBUS = 400;% V

27 pcBAT = 200;% V

28 % Transformer********************

29 NomPower = 2000;% VA

30 MagInductance = 720e−6;% H

31 LkInductance = 17e−6;% H

32 PrimDCr = 43e−3;% Ohm

33 SecDCr = 16e−3;% Ohm

34 PrimRMS = 248;% V

35 SecRMS = 132;% V
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C.6.2 PI selector

1 function SIGNAL = pidSELECTOR(CHARGING,DISCHARGING,CC,CV,OVERRIDE)

2

3

4 if (OVERRIDE==1)

5 SIGNAL = 4;

6

7 elseif (CV==1)

8 SIGNAL = 3;

9

10 elseif (CHARGING==1)

11 SIGNAL = 2;

12

13 else

14 SIGNAL = 1;

15 end

C.6.3 Figure selector

1 function nr = picture(battCon,busCon,charging,discharging)

2

3

4 if (charging)

5 nr = 1;

6 elseif (discharging)

7 nr = 2;

8 elseif (battCon && busCon)

9 nr = 3;

10 elseif (battCon && ¬busCon)
11 nr = 4;

12 elseif (¬battCon && busCon)

13 nr = 5;

14 else

15 nr = 6;

16 end



XXXIII

D Battery Simulation Model

Full simulation model of the simulated battery model designed in Matlab®/Simulink®. The

pages in this appendix should be printed in A3 format to increase readability.
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D.1 Battery simulation Model



XXXV

E Prototype Design With PCB

The schematic and copper layouts for the measurements and battery management system

PCBs.The measurement card is designed in this thesis and published in repository [80]. This

repository includes all the designs files from KiCad, and can be copied and redistributed in

any medium or format. The BMS cards are pulled from the open source project on GitHub

designed by Stuart Pittaway[78]. The pages in this appendix should be printed in A3 format

to increase readability.



XXXVI APPENDIX E. PROTOTYPE DESIGN WITH PCB

E.1 Measurement Card

The measurement card files are designed in this thesis and the entire KiCad project is pub-

lished in GitHub [80].

E.1.1 Sensor Schematic



E.1. MEASUREMENT CARD XXXVII

E.1.2 Supply schematic
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E.1.3 Copper Layout Front



E.1. MEASUREMENT CARD XXXIX

E.1.4 Copper Layout Back



XL APPENDIX E. PROTOTYPE DESIGN WITH PCB

E.2 BMS Control Card

The PCB design is pulled from the open-source project on GitHub designed by Stuart Pitt-

away[79].

E.2.1 Electric Schematic



E.2. BMS CONTROL CARD XLI

E.2.2 Copper Layout Front
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E.2.3 Copper Layout Back



E.3. BMS SENSOR CARD XLIII

E.3 BMS Sensor Card

The PCB design is pulled from the open-source project on GitHub designed by Stuart Pitt-

away[79].

E.3.1 Electric Schematic
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E.3.2 Copper Layout Front



E.3. BMS SENSOR CARD XLV

E.3.3 Copper Layout Back



XLVI

F Laboratory test equipment

Complete prototype battery system and laboratory test equipment. The connection between

the components are not shown in.

Oscilloscope Programmable load

Battery

Sensor cards

Multimeter

ChargerController card

Figure F.1: Laboratory components and test setup
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