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Abstract

The demand for renewable energy from wind and solar is increasing. These energy sources

are intermittent and unpredictable to a degree and require a stable but fast responding DC-

grid. This is achieved by extending the requirements of the DC-grid to its stabilization ele-

ment and introducing high power density energy storage. The supercapacitor is investigated

in this regard to be utilized as a stabilization element. Its fast electric response makes the

supercapacitor an excellent energy storage device that works well with other energy storage

devices like batteries and fuel cells but also standalone. An isolated bidirectional DC-DC

converter is necessary to control the supercapacitor’s power flow and utilize its advantages

fully.

Firstly, an isolated bidirectional DC-DC converter is simulated and integrated with a super-

capacitor in Matlab®/Simulink® to meet a specific system requirement. The DC-DC con-

verter is presented with the dual active bridge topology and single-phase-shift control strat-

egy. Based on the results, it is investigated if the supercapacitor is a good stabilization ele-

ment for a DC-microgrid.

Secondly, a supercapacitor system with integrated cell management, current and voltage

sensing, over-voltage protection, and compact design is developed. The design is flexible,

where one module can be connected in series or parallel to fit a custom design. In this thesis,

six modules are necessitated to meet the system requirement. It is desirable to first test a

prototype of one module before assembling the entire energy storage. The supercapacitor

prototype is tested in the lab with a DC-load, and its transient response is compared with a

simulated supercapacitor.

A conference paper on the topic of supercapacitor and lithium-ion batteries is submitted for

IEEE ICECCME 2021. This paper presents our results that visualize the difference in transient

response between the simulated and physical energy storage devices.
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1 Introduction

1.1 Background

Renewable energy is a growing trend in today’s society. Power electronics become increas-

ingly more advanced, and renewable energy sources become more integrated into the elec-

trical grid through microgrids [1], [2]. With intermittent energy sources like wind [3]–[6] and

solar [7], [8], fast-responding energy storage is usually required to keep the DC-microgrid

stable [9], [10]. For heavy loads during short intervals, a high power density storage device

is a realistic option. Bidirectional power flow between the microgrid and the energy storage

devices is necessary to handle the intermittent power intervals [11]. Introducing an isolated

bidirectional DC-DC converter between the energy storage device and the DC-microgrid en-

ables high switching frequency and fast response, and ensures electric isolation [12].

1.2 Literature Review

The technology behind the Supercapacitor (SC) has existed for a long time. The first Elec-

trochemical Capacitor (EC) or SC was patented in 1957 by H.I. Becker of General Electronic.

This device had to be immersed in an electrolyte pool and therefore was not very practical.

It could only be applied with a low voltage of 2.5 V or less and had porous carbon electrodes

utilizing a high specific surface area [13]. More patents of similar designs came through over

the years [14]. It was a slow start for the SC, but in 1978, Panasonic marketed a brand called

Goldcaps [15] designed as an energy source for memory backup applications. In 1982 the

Pinnacle Research Institute launched a product called "PRI Ultracapacitor". It was the first

SC with a low Equivalent Series Resistance (ESR) [14], [16]. Later in 1987, a Japanese com-

pany called ELNA launched a product similar to Panasonic. They introduced better electrode

materials and made it possible to increase the capacitance further and decrease internal re-

sistance in the SC [14]. By 1992, Maxwell Laboratories launched the Department of Energy

Ultracapacitor Development Program [14].
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1.2.1 Energy Storage

Introducing energy storage into microgrids and renewable energy is a broadly discussed

topic. New trends in power electronics for the integration of wind and photovoltaic power

electronics are presented in [2], and the SC is included as one of the multiple energy stor-

age devices presented. In [4], the importance of managing intermittency in wind energy

applications is discussed, and a SC is proposed as high power density short term storage. It

also mentions that the SC can reinforce the DC-bus during transients to prevent low voltage

drops. Other energy sources like the lead-acid battery and high-speed flywheel are also con-

sidered. A SC is presented in [5], together with a doubly-fed induction generator, to compen-

sate for the demanded active energy output and the available wind energy input. Another

similar paper in [6] investigates how a SC is used to increase the battery lifetime. The SC can

undergo an order of 106 discharge cycles, while a lead-acid battery has a typical service life

of fewer than 1000 complete cycles. Battery replacement costs can therefore be drastically

reduced by introducing a hybrid energy storage system and utilizing the SC for large power

fluctuations. The topic of introducing small-scale energy storage into residential areas with

photovoltaic solar systems is investigated in [7]. The rooftop solar system with energy storage

can potentially be cost-saving compared to large-scale plants and infrastructure investments

related to energy transportation.

1.2.2 Bidirectional DC-DC Converter

For electrical energy storage devices, a Bidirectional DC-DC Converter (BDC) is essential. It

enables the ability to charge and discharge the energy storage by controlling the direction

of power flow. In [11], a three-port DC-DC converter is presented to control power flow be-

tween the energy storage, load, and a renewable source. The design is flexible, and bidirec-

tional power flow is limited to the ports between the energy storage and load. High efficiency

in the converter is achieved by soft-switching of all three bridges. The DC-DC converter tech-

nology is known for a long time, and in [12] from 1991, a paper on a three-phase BDC is pre-

sented with soft-switching analysis. A large number of BDC typologies are presented in [17],

together with suitable control schemes for the different topologies. The reasonably popular

topology Dual Active Bridge (DAB) is introduced in [18] and presents updated findings on

today’s technology regarding the topology with control. The DAB with switching frequencies

at or below 100 kHz is widely discussed in [19]–[21]. The experimental results in [22] propose

a DAB with 1 MHz switching frequency and low power, and can maintain a 90% efficiency

over 16.7% load.
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1.3 Objective

This thesis intends to create a simulated Isolated Bidirectional DC-DC Converter (IBDC)

model integrated with a SC, implement a control system, and analyze the transient response

of a simulated SC against a physical SC energy storage system.

• Develop a simulated IBDC model to control the supercapacitor power flow and be a

stabilization element for a larger DC-microgrid system.

• Integrate a control system to meet the SC’s unique characteristic, with pre-charge, DC-

bus stabilization mode, and SC charging mode.

• Investigate the SC further by developing a simulated model to understand the required

level of cell balancing.

• Develop an integrated SC system, assemble a prototype to test in the lab, and inves-

tigate the differences between the simulated SC and the physical SC’s transient re-

sponse.

1.4 Structure

2. Theory: This chapter supplies relevant theories regarding this thesis. It starts by show-

ing the main system components to better understand the system before reading the

relevant theory. The SC is explained first, followed by different DC-DC converter topolo-

gies. The DAB is expressed as the primary topology, and appropriate control method

and switching strategies are introduced. Losses related to the DAB are also presented,

followed by the utilized Microcontroller Unit (MCU) and relevant software tools.

3. Method: The method chapter is divided into three parts. First, the methods used in

developing the DAB model in Matlab®/Simulink®. Second, the SC is investigated fur-

ther by simulating a small part of the DAB SC with integrated cell balancing. Lastly,

methods used for developing the physical SC prototype.

4. Results: Results are presented in chronological order based on the method chapter.

Firstly, the simulated IBDC results are displayed and aim to show the DABs function-

ality when integrated with a SC. Following, the simulated SC module, consisting of 12

cells, is developed with passive cell balancing, followed by the physical SC prototype

result.

5. Discussion: This chapter discusses the results from the previous chapter and compare

the findings. The DAB results are compared with each other and analyzed to give an

educated validation regarding to the SC. The main objective is concluded by having
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the SC successfully stabilizing a DC-bus with several levels of charge. The simulated

and physical SC transient response are compared, and an appropriate conclusion is

made.

6. Conclusion: The last chapter summarizes the findings and essential developments.

Future work is suggested based on the goal of achieving a physical IBDC prototype

and assembling a complete SC prototype of higher voltage level.

Appendices: The appendices contains IEEE conference paper submissions and the full

description of the developed simulation models and prototype design documentation.

A ICECCME 2021 Conference Paper: The first appendix contains the conference paper

submitted for review to IEEE ICECCME 2021. It aims to present a comparison between

SCs and Lithium-Ion (Li-ion) batteries and their difference transient response to a DC-

load.

B SEST 2021 Approved Conference Paper Abstract: This abstract is approved for the

SEST 2021 conference and includes the same content as the paper submitted for ICEC-

CME 2021. Due to the covid-19 lockdown of the campus, the physical model develop-

ment was postponed, which resulted in not making the conference deadline.

C Matlab®/Simulink® Diagrams: Complete selection of Matlab®/Simulink® diagrams

related to the developed models.

D Component Parameters: Tables visualizing the datasheet parameters for the relevant

components used in all models.

E Source Code: Initializing code for the Matlab®/Simulink® models, and source code

for the Power/Phase-shift graph in fig. 4.2.

F Integrated Supercapacitor System Design: In this appendix the complete schematic

for the integrated SC system design, is included. It also display the layout of the dif-

ferent copper layers and Surface Mount Device (SMD) components, and finally a 3-D

diagram of the complete design.

G Supercapacitor Module Component List: Lastly, the components used in the physical

SC development, are presented.
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2 Theory

This chapter presents the relevant theories regarding this thesis. Firstly, the SC is explained

together with essential aspects of the energy storage device. Secondly, a brief description is

given of the potential DC-DC converters. This is done to show the selection process of the

most suitable converter before choosing the DAB. The switching device used is mentioned

together with the semiconductor material Silicon Carbide (SiC), which is excellent for high

switching speeds. The control method and switching strategy used are described in great

detail. Aspects regarding the DAB and the chosen switching strategy are also specified to un-

derstand the topology limitations. Improvements to the design can then be realized. Lastly,

the control card used in the physical implementation is described, followed by the relevant

software for the whole thesis.

The block diagram in fig. 2.1 aims to provide an overall understanding of the central ele-

ments in this thesis before reading the following theories. This consists of the SC, the IBDC,

and a DC-bus.

DC

DC

+-

Supercapacitor
Isolated
Bidirectional
Converter

DC-
bus

Figure 2.1: Block diagram of the main system components with the supercapacitor, the iso-
lated bidirectional DC-DC converter, and a DC-bus
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2.1 The Supercapacitor

Batteries have for a long time been the main power supply in high power electronics due

to their significant energy density. They have been the best solution even with a low power

density, relatively long charging time, and limited charging cycles [23]. With the SC/Ultra

Capacitor (UC), it is possible to achieve similar energy storage capabilities of the battery

while maintaining the charge/discharge characteristics of the capacitor [2], [24], [25]. The

voltage of a Li-ion battery has minimal variation in voltage between 20% and 80% State Of

Charge (SOC). For the SC, this is very different, as the voltage will increase linearly with its

SOC. The linear charge makes it easy to predict its SOC but complicates the SC’s control and

use as a controlled energy storage device. The control either has to adjust the power transfer

or compensate for the decreasing voltage with increased current.

The conventional capacitors used in electronics are usually either electrostatic or electrolytic

and have much smaller capacitance than the SC. Capacitance (C ) is calculated in

C = εA

l
, (2.1)

where ε is the permittivity of the dielectric material, A denotes the area of the plates and l

represents the distance between them [25], [26].

A capacitor of one farad will store one coulomb (C) of charge when charged with one volt [25].

SC consists of two electrodes, a separator, and an electrolyte. When charged, ions in the ionic

electrolyte are forced towards the oppositely charged electrodes. The two types of ions are

called anions and cations, respectively, to the anode and cathode. These are located inside

the electrolyte right next to the electrode. This way, the excess charge from the electrically

conducting side of the phase boundary is balanced [27].

Across each phase boundary, there are two layers of opposite polarity of access charge. The

electrodes are made of activated carbon and provide a high surface area leading to large

capacitance. The distance between them is also much smaller in SCs than regular capacitors

[27].

Usually, SC are placed in two groups: double-layer capacitors and electrochemical capac-

itors. The double-layer capacitor applies double-layer effect, a phenomenon originating

on both electrodes from ions in the electrolyte. The electrochemical capacitor also uses

double-layer effect but stores electrical energy by redox reactions on the electrode surfaces

to increase the capacitance. The reversible redox reaction is a combination of oxidation and

reduction where electrons are exchanged between electrolyte and electrode [28], [29].

The extensive practical difference between a battery and a SC is power density versus energy
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density. While a SC can release large amounts of energy in a short period, a battery can store

more significant amounts of energy. This is why a SC has high power density while a battery

has high energy density [30]. The energy stored, denoted by Wc , can be calculated by

Wc =
1

2
CVDC

2, (2.2)

where C indicates total capacitance and VDC expresses total DC voltage [31].

2.1.1 Charging

Charging of a SC is done with either constant voltage or constant current. Both methods

are also used for rechargeable batteries [23]. Constant voltage is usually simpler but takes a

longer time considering the charge current will decrease as the SC voltage increases. With

this method, the current needs to be limited by a pre-charge resistor. The charge current is

limited until the voltage reaches a certain level and the pre-charge resistor is bypassed with

a switch. The SC has a very low ESR which is why the charging current must be limited.

Constant current is more reliable than the constant voltage since the charging current re-

mains constant. Hence, the SC voltage will increase continuously. This method requires a

charger/converter which adjusts the charging voltage.

2.1.2 Sizing

When sizing a SC energy storage, it is important to map the required energy amount. The

energy amount stored in a SC depends on the capacitance, as expressed by eq. (2.2). In [4],

the required energy is chosen to supply enough energy during a low voltage condition. This

energy storage sizing method will vary depending on the target system. The capacitance of

the energy storage system, denoted Cess , can be calculated using

Cess =
2 Er eq

VDC ,r e f
2

, (2.3)

where Er eq indicates the energy required and VDC ,r e f is expressed as the maximum voltage

across the device [4]. Noting that eq. (2.3) is a rearrangement of eq. (2.2).

2.1.3 Aging

SC can undergo a much higher number of charge and discharge cycles than batteries due

to no chemical reaction in the electrodes. However, the organic electrolyte material used

has a low decomposition voltage. A single SC, referred to as one cell, has a limited cell volt-

age of around 2.7 V, and necessitates the connection of multiple cells in series to achieve a
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higher voltage. When doing so, it becomes a real challenge to balance the voltage of each

cell. Alterations in capacitance and ESR of each cell will affect the charging time. There-

fore, cell balancing is crucial to prevent the cells from experiencing overvoltage, which can

significantly reduce its lifespan [27].

2.1.4 Supercapacitor in Series

When connecting multiple cells in series, a higher voltage is reached while the capacitance

is reduced [32], [33]. The total voltage equals the voltage of each cell added together. The

total capacitance equals the capacitance of each cell divided by the number of cells if these

are identical. Both the total voltage, Vtot , and the total capacitance, Ctot , are calculated by

Vtot =V1 +V2 +V3 +·· ·Vn ,

Ctot =
(

1

C1
+ 1

C2
+ 1

C3
+·· · 1

Cn

)−1

,
(2.4)

where Vi and Ci for n number of cells are valid for i = 1, 2, 3, · · · , n [34]. It must be noted

that this capacitance will never be completely identical in every cell.

2.1.5 Life Expectancy

The main factors that will reduce the lifespan of a SC is overvotlage and temperature. In [27],

Texp is expressed as the life expectancy of a SC and is presented by

Texp (U ,ϑ) = c1e

(
U
c2
+ ϑ

c3

)
, (2.5)

where ϑ and U are introduced as the temperature and cell voltage, respectively. c1 − c3

are constant parameters of negative value, derived from a linear relationship between cell-

voltage and life expectancy [27]. By measuring the wear on a SC over a longer time period,

the average life expectancy, Tav , of a dynamic voltage profile, u(t ), can be calculated by

Tav (u(t ),ϑ) = t1 − t0∫ t1
t0

1
Texp (u(t ),ϑ) d t

, (2.6)

where the times t0 and t1 indicate start and finish of the dynamic voltage profile.
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2.1.6 Cell Balancing Circuits

As explained in section 2.1.3, it is important to make sure the voltage of each cell does not

exceed maximum voltage when connecting multiple cells in series. A balancing circuit is

added in parallel to each cell to prevent the SC from experiencing over-voltage. The type of

method can be divided into passive and active, as shown in fig. 2.2. Each circuit shows two

SCs in series for simplicity, which can be a quite large amount [27], [34]–[36]. The passive

method, often consisting of a single resistor in series with a switch, is a cheap and easy way

to protect a SC, seen in fig. 2.2b. When the voltage across a cell reaches a certain voltage, the

switch closes and dissipates some of the energy through the resistor, preventing the voltage

from rising too quickly [35]. It is also common to drop the switch and have a constant power

draw through the resistor, as in fig. 2.2a. The balancing current will increase as the cell

voltage increases.

Active cell balancing requires more work and is more expensive. This method will usually

consist of a DC-DC converter in parallel to each cell, like in fig. 2.2c, actively moving current

between cells when they charge un-even. This method is usually not necessary when using

capacitors of about the same capacitance and quality [32], [34]–[36].

C1 R1

C2 R2

(a) Resistor

C1

S1

R1

C2

R2

S2

(b) Switched resistor

C1

C2

DC

DC

DC

DC

(c) Active

Figure 2.2: Cell balancing methods

2.2 Power Transistor

A switching device with a high switching speed is required to utilize the fast response of the

SC. The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), is a switching device

used in many high-power applications. It is a device that has been used since the early 1980s

and is known for its fast switching capabilities [37].
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2.3 Silicon Carbide

SiC is a semiconductor material and a contender to the traditional Silicon (Si) used in switch-

ing devices. With SiC it is possible to produce MOSFETs at voltage levels up to 10 kV with die

areas greater than 0.64 cm2. According to [38], SiC DMOSFETs can offer a 50% reduction to

power losses with less than half the die size compared to a Si Insulated-Gate Bipolar Tran-

sistor (IGBT). Due to large tail losses and reverse recovery charge of Si devices, the switching

frequency is limited. Higher switching frequencies can be realized with SiC devices [39], [40].

2.4 DC-DC Converter Type and Topology

There are many different types of converters, and it is vital to decide the specific design based

on the desired result. They are classified into two main categories: Isolated and un-isolated

[17]. The different power supplies must be electrically isolated from the DC-grid and loads

in electric vehicles [21] or marine vessels [41]. Another critical decision is to choose between

a basic topology or a full-bridge/half-bridge topology.

2.4.1 Buck-boost

A common DC-DC converter for applications that do not require galvanic isolation is the

buck-boost. It is derived from the unidirectional converters buck and boost, and combined

into one using a bidirectional switch, shown in fig. 2.3a. This results in a basic bidirectional

converter with the ability to buck or boost the voltage. Due to the bidirectional capability,

the converter can provide this for both directions of power flow with a negative output [17].

2.4.2 Switched-capacitor

Another typical un-isolated DC-DC converter is the switched-capacitor topology. The pur-

pose of the switched-capacitor in the converter is to enhance its voltage-boosting capability

further. This topology does not include an inductor, which most converters do (fig. 2.3b).

This makes the converter lighter due to the inductor’s extra weight and avoids magnetic uti-

lization. Also, since there is no inductor, it can be applied a continuous current. The con-

tinuous current is realized by adding multiple switched capacitor converters together. By

combining switches and a capacitor into a cell, multiple cells can be combined into a string,

done in [42]. Two similar strings in parallel can be operated in the anti-phase to achieve

continuous current. One can simply add more cells to further extend the continuous current

operating area [17], [43], [44].
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2.4.3 Cuk

The isolated bidirectional cuk is based on the un-isolated cuk and derived from it. Inductors

on the input and output of the converter ensure that current ripples can be eliminated. This

is recommended for many applications with varying supply current, such as intermittent

energy production. It includes a continuous input and output current based on the voltage

gain of the transformer (fig. 2.3c) [17], [45].

C1 L C2V1 V2

(a) Buck-boost

C1

C3

C2

V1

V2

(b) Switched capacitor

C2 C4

L1 L2
C3C2

V1 V2

(c) Isolated cuk

Figure 2.3: Bidirectional DC-DC converter topologies

2.4.4 Dual Active Bridge

The DAB is a widely used topology and consists of two back-to-back full-bridge convert-

ers, one on each side of a high-frequency transformer. This makes the converter suitable

for applications that require bidirectional power flow. In total, there are eight active power

switches, shown in fig. 2.4 [18], [22]. The many power switches make the converter capable

of transferring large amounts of power, since its power transferring capabilities increase with

the number of power switches [17]. The inductor is placed on the high voltage side bridge.

It is a flexible topology that consists of half-or full-bridges and is either current or voltage

fed. Leakage inductance is directly affected by inductance in the transformer and inductor,

which is crucial to achieving the correct power transfer [19], [22]. Capacitors on both sides of

the DAB should be designed to limit a voltage ripple within a certain percentage, dependent

on the use [46].
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S1

S2

C1

i1

S3

S4

L

S5

S6

S7

S8

C2

i2

V1 v AC1 v AC2
V2

HV Bridge LV Bridge

Figure 2.4: General dual active bridge topology

2.4.5 Electrical Isolation

The two bridges in the DAB is separated by a high frequency transformer which makes it a

IBDC [47]. The galvanic isolation is great for protecting large energy storage systems con-

sisting of batteries or SC connected to a grid [20] and essential in applications for electric

vehicles [21] and marine vessels [41].

2.5 Control Method

There are multiple control methods suitable for IBDC. Different control strategies can be uti-

lized on the same system simultaneously. This way, it is possible to overcome the drawbacks

of a single strategy and draw out multiple benefits.

2.5.1 PID-controller

The Proportional, Integral and Derivative (PID) controller is a well-documented control scheme.

It is used in many applications and might be combined with other schemes. The controller

utilizes three different parts: Proportional, integral and derivative [17]. The proportional

part gives a change to the input signal equal to the control error. The integral part of the

controller applies a change to the input equal to the integrated error. Its main purpose is

to eliminate offset in the output response. As for the derivative part, the input is changed

according to the derivative error. This part is less commonly used than the proportional and

the integral part and is usually used to stabilize the system or speed up a response [48]. One

version of expressing the PID’s control action is described in

KP +K I α(z)+KD
N

1+N α(z)
, (2.7)
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where KP , K I , and KD denote the proportional gain, integral gain, and derivative gain re-

spectively, N expresses the filter coefficient, and α(z) indicates the discrete-time integrator

of the plant [49].

2.6 Switching Strategy

There are multiple strategies when it comes to switching patterns of semiconductor de-

vices. In the journal article [18], an isolated DAB is investigated for the different switch-

ing strategies: Single-Phase-Shift (SPS), extended-phase-shift, dual-phase-shift and triple-

phase-shift. The method SPS is widely used and well documented because of its easy imple-

mentation and simple philosophy [18], [50], [51]. While SPS only focus on shifting the signals

from one bridge with respect to the other, extended-phase-shift extends the control to the

two switch-pairs in the same bridge also. This is referred to as an "inner" phase-shift. Hence,

enabling a third voltage level and reducing the converter losses. Double-phase-shift again

takes the control further, extending the extended-phase-shift principle to both full-bridges.

This "inner" phase-shift is the same for both bridges. With triple-phase-shift, however, the

"inner" phase-shift need not be the same for both bridges and is regulated separately, in-

troducing a third phase-shift signal. The different methods increase the level of efficiency

in the converter and may extend the level of Zero-Voltage Switching (ZVS). This is discussed

further in section 2.6.1.

The switching patterns, voltages and current of SPS is visualized in fig. 2.5. all of the switches

are operated with a 50% duty-cycle (D = 1/2) which gives currents and voltages half-cycle

symmetry. This means that the AC voltages v AC1 and v AC2 of each respective bridge will

switch between positive and negative, as described in

v AC1 (t +Ts/2) =−v AC1 (t ),

v AC2 (t +Ts/2) =−v AC2 (t ),
(2.8)

where t expresses the time and Ts indicates one period [18], [52].

S1 and S4 are operated by the same gate signal which respectively is the opposite of S2 and

S3. By shifting the gate signals of the two bridges with respect to one another the energy

flowing through the DAB will change. Energy flows from the leading to the lagging bridge.

This can be realized by simply delaying the gate signals. Fig. 2.5 shows the principle behind

SPS and the phase-shift angle ϕ between the two bridges [46].

Maximum power transfer will occur when ϕ = π/2 = 0.5 π rad. This is equivalent to 90◦
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S1, S4

iL

vac1 , vac2

S2, S3

S5, S8

S6, S7

ϕ

t0
t1 t2 t3 t4

Figure 2.5: Operating principle of single phase-shift modulation as a switching strategy

phase-shift and will be referred to as the theoretical maximum. The times t0 - t4 repre-

sents one period of SPS. The following analysis requires a lossless model and the statement

Pi n = Pout is correct [46], [52], [53]. Hence, the inductor voltage, VL , is expressed as

VL =V1 −nV2, (2.9)

where V1 and V2 denote the input and output voltages, respectively, and n indicates the turn-

ratio between the input and output. By performing the following integral, a general relation-

ship for the inductor current, iL , is expressed by

iL = IL ,t0 +
1

Lk

∫ t1

t0

VL d t , (2.10)

where IL ,t0 denotes the instantaneous inductor current at time t0 and Lk express the total

leakage inductance. The current, IL ,t0 , is calculated by

IL ,t0 =
π(nV2 −V1)−2ϕnV2

4π fsLk
, (2.11)
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where fs indicates the converters switching frequency and ϕ denotes the required phase-

shift. The inductor current, iL , can then be described from t0 to t2 using the same principle

from eqs. (2.10) and (2.11), representing the first half of the period, expressed as

iL(t ) = (IL ,t0 + (V1 +nV2)t/Lk ∀ t0 < t < t1,

iL(t ) = (IL ,t1 + (V1 −nV2)(t − t1)/Lk ∀ t1 < t < t2,
(2.12)

where IL ,t1 denotes the instantaneous inductor current at time t1. Hence, it is possible to de-

scribe the negative half of the period, as the positive and negative are opposites. The equa-

tion for transferred power can then be derived. Positive and negative power will be P1 and

P2 respectively, described as

P = P1 = P2 =
nV1V2ϕ

(
π−|ϕ|)

2π2 fsLk
∀ −π<ϕ<π. (2.13)

By rearranging eq. (2.13) it is possible to derive an equation for the required leakage induc-

tance, expressed as

Lk =
nV1V2ϕ

(
1−|ϕ

π
|
)

2π2 fsPout
∀ −π<ϕ<π. (2.14)

As mentioned, the maximum power transfer occurs when the phase-shift is ±π/2 [52]. The

maximum power, Pmax , is derived as

|Pmax | =
nV1V2

8 fsLk
f or ϕ=±π

2
, (2.15)

and gives an indicator for the converter’s required leakage inductance. The required phase

shift can also be derived for a given power transfer by rearranging eq. (2.13), expressed as

ϕ= π

2

[
1−

√
1− 8 fsLk |P |

nV1V2

]
∀ P < |Pmax |, (2.16)

where P denotes the average power.
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2.6.1 Soft Switching

A significant advantage of both DAB and SPS is that soft-switching can be realized. ZVS is

possible for most of the switching instances and depends on the amount of energy stored in

the inductor and the converter’s voltage transfer ratio, d , expressed as [46], [51], [54]

d = V1

nV2
. (2.17)

The ZVS phenomenon occurs right before the switches in a bridge go from off-state to on-

state. The energy stored in the inductor will discharge the MOSFETs capacitance during a

small dead-time between the two states. As a result, the voltage across the MOSFET remains

close to zero. This is dependent on EL which indicate the amount of energy stored in the

inductor, expressed as

EL = 1

2
L IL

2, (2.18)

where L indicates the inductance and IL denotes the inductor current. Now, EL has to be

sufficient to charge and discharge the MOSFETs output capacitance, EC , to achieve ZVS for

as many switches as possible, expressed by

EC = 1

2
C VDS

2, (2.19)

where C denotes the MOSFET capacitance and VDS indicates the drain-source voltage. When

the capacitor is fully discharged, the MOSFET’s parallel diode will conduct a small current,

keeping the voltage close to zero as the switch closes [46].
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2.7 Losses Related to Dual Active Bridge

All losses relating to the DAB are presented in this section. Firstly, switching and conduction

losses in the power switches[53], followed by transformer and inductor [46]. The tempera-

ture of the components is an essential aspect of loss and efficiency. For the following equa-

tions to be valid, the semiconductor device has to be adequately cooled, with heat-sinks if

necessary, and kept within its temperature operating limit set by the manufacturer. When

the temperature becomes too high, the efficiency tends to plummet.

Switching losses

The switching losses in a MOSFET is calculated by

Psw = 1

2
VDS IDS ton fs , (2.20)

where VDS and IDS denote the voltage and current with reference drain to source. ton and

to f f indicate the transition times between on- and off-switching. A switching instance of

turn-on will start with the drain-source voltage decreasing and the current increasing. The

two currents calculated in eq. (2.12) can be solved for t0 and t1 and rearranged as

Io =− (V1 +V2)ϕ+ (V1 −V2)(π−ϕ)

4π fsLk
, (2.21)

and

Iϕ = (V1 +V2)ϕ− (V1 −V2)(π−ϕ)

4π fsLk
, (2.22)

where Io and Iϕ denote the instantaneous switching currents at t0 t1, respectively. Eq. (2.20)

can then be solved by setting VDS =V1 and IDS = Io .

Conduction losses

Conduction losses are divided into two parts. The first for PDC , which denote the MOSFET

conduction loss, derived as

PMC = RDS,on IM ,RMS
2, (2.23)

and the second for PDC , indicating the diode conduction loss, derived as
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PDC =VD ID,RMS , (2.24)

where RDS,on identifies the on-resistance for the MOSFET and VD is the diodes forward volt-

age drop. ID,RMS and IM ,RMS are the Root Mean Square (RMS) currents through each respec-

tive component, expressed as

ID,RMS =
√

D1

3
(Io

2 + Io I1 + I1
2), (2.25)

and

IM ,RMS =
√

D2

3
I1

2 + D3

3
Iϕ2 + D4

3
(Io

2 + Io Iϕ+ Iϕ2), (2.26)

where the dead time is D1, denoting the diodes conduction duration. I1 is the current at the

end of the dead time and depend on the duration of D1 and choice of MOSFET driver. The

durations D2 −D4 are all times when the MOSFET is conducting.

Transformer losses

This part is inspired by [46], due to the example of an actual planar transformer from Payton

Planar Magnetics. Losses related to the transformer are divided into three parts: Core, cop-

per, and skin effect. Core loss in the transformer is found by multiplying Pv , denoting core

loss per unit volume, with Ae , the volume of the core, expressed in

Pcor e = Pv Ae . (2.27)

These values will be listed in the core’s datasheet. Copper losses, Pcopper , are calculated by

Pcopper = i AC1
2 +RDC1 + i AC2

2RDC1 , (2.28)

where RDC1 and RDC1 denote the DC resistance in the respective primary and secondary

winding. This resistance is listed in the manufacturer’s datasheet. i AC1 and i AC2 indicates

the primary and secondary AC currents, respectively, and are in this section used as RMS

value. Skin effect is increasing with the switching frequency [55]. As a result, higher switching

frequencies give a higher AC resistance and loss. Losses in the transformer related to AC can

be calculated by
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P AC = i AC1
2RAC1 + i AC2

2RAC2 , (2.29)

where RAC1 and RAC2 denote the transformers primary and secondary AC resistance.

Inductor losses

Losses related to the inductor are from both DC and AC resistance in the coil. With a high

switching frequency, the coils AC resistance will be the most relevant component, consider-

ing increased skin effect and eddy current formation [46].

2.8 Microcontroller - LaunchPad F28379D

Texas Instruments manufacture a number of different control boards, or MCUs, for all kinds

off applications. The C2000 Delfino F28379D LaunchPad is such a board, with two TMS320C28x

32-bit Central Processing Unit (CPU)s. The CPUs run a frequency of 200 MHz which en-

ables high precision. Features, such as 16-bit and 12-bit Analog-to-Digital Converter (ADC)s,

Pulse-Width Modulation (PWM) outputs, and a large number of General-Purpose Input/Out-

put (GPIO)s make it a good choice for fast switching applications [56].

The ADCs used in the Launchpad are successive approximation (SAR) ADCs and have a sam-

pling speed of 40 MHz. Single ended 12-bit or differential 16-bit mode can be selected. The

ADC inputs on the controlcard can handle an input voltage between VREF LO and VREF H I ,

which is set by the card’s supply voltage VDD A and VSS A, and is between 0−3.3V [56]–[58].

The GPIOs use the same supply and reference as the ADCs.

2.9 Software Tools

In this section, the relevant software tools will be introduced. The software is downloaded

and used on a desktop computer with a Windows 10 Pro version 20H2, 64-bit operating sys-

tem.

2.9.1 Mathworks Matlab® version R2020B and Simulink® v10.2

Matlab® is a software tool designed for a large number of uses. With a unique program-

ming language, Matlab® is used to solve advanced equations and problems. Simulink® is

a platform within Matlab® that enables implementation of physical simulation and directly

transferring a concept to code [59]. Essential add-ons during the course of thesis:

• Simulink v10.2
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• Simulink Control Design v5.6

• Simscape v5.0

• Simscape Electrical v7.4

• Embedded Coder Support Package for Texas Instruments C2000 Processors v20.2.0

• System Identification Toolbox v9.13

• Stateflow v10.3

• Simulink Coder v9.4

• Embedded Coder v7.5

• MATLAB Compiler v8.1

• Matlab Coder v5.1

2.9.2 Code Composer Studio V10.1.1

Code Composer Studio (CCS) is an integrated Development Environment Specially designed

to support Texas Instruments’ microcontrollers. It is used to develop and debug embedded

applications as well as run example programs. Features like source code editor, debugger,

project build environment, and optimizing C/C++ compiler are all features found in CCS.

2.9.3 KiCad V5.1.7 and KiCad Libraries V1.4

KiCad is a cross-platform and open-source electronics design automation suite used to de-

velop Printed Circuit Board (PCB)s. Components are placed in a schematic view to connect

the different ports properly. The 3D viewer enables the user to see the PCB visually before

manufacturing. Component libraries can be included with the tool KiCad Libraries.
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3 Method

This chapter describes the methods used during testing and development of the three main

parts of the thesis. Firstly, the methods used for the IBDC model in Matlab®/ Simulink®

together with a SC (section 3.1), is described. Secondly, the SC is investigated further as

a crucial element to the IBDC. A SC design for a 30 V module with integrated cell balanc-

ing (section 3.2) is developed in Matlab®/ Simulink®. Third, a physical prototype of the

SC module is developed with several features of an integrated system (section 3.3). The

Simulink® diagrams, component parameters, source code, and the prototype system de-

sign in this chapter are displayed in appendices C to F. The Matlab®/ Simulink® models

and code are made available in the IBDC_DAB_SC_Matlab-Simulink Github repository [60].

The schematics and layout for the integrated SC system design are included in the Inte-

grated_SC_system_Kicad Github repository [61]. Both repositories are open-access and avail-

able to the public.

The SC used together with the DAB has a voltage level of 180 V. This is achieved by con-

necting six 30 V modules in series. It is divided into respective sections, which in detail de-

scribe the methods used for each part. For the Matlab®/Simulink® implementations, stan-

dard component from the Simscape library (section 2.9.1) is utilized and show satisfactory

results.

3.1 DC-DC Converter Model in Matlab®/Simulink®

The DAB is implemented in Matlab®/ Simulink®. This section dives into the details re-

garding the simulated DAB and aims to prepare the physical development of a IBDC. All

Simulink® diagrams are included in appendix C.1 with the required workspace variables

from appendix E.1. The primary bridge is connected to the SC, while the DC-bus is con-

nected to the secondary bridge, displayed in appendix C.1.1. Therefore, the inductor is

placed on the high voltage side, which differs from fig. 2.4. The simulation model used in

this section is shown in fig. 3.1. The system specification for this simulation is found in table

3.1, with bridge 1 being the primary and bridge 2 being the secondary.



22 CHAPTER 3. METHOD

Super-
capacitor

DC-bus

Bridge	2Bridge	1

InductorgD
S

S1

+

C2

S14 S23

S14S23

S58

S58

S67

S67

v
+-

v
+-

gD
S

S3

gD
S

S2

gD
S

S4

gD
S

S5

gD
S

S7

gD
S

S6

gD
S

S8

v_ac1 v_ac2

i+ -

i_ac2
i+ -

i_ac1+

C1
1 2

+ +

+

L

			
	

+

R

1
Positive1

2
Positive2

3
Negative1

4
Negative2

Figure 3.1: Dual active bridge model in Matlab®/Simulink®

3.1.1 Operation Principles

Operation principles in this section are directly linked to the theory described in section 2.6.

The MOSFET gates are operated with two signals for each full-bridge. This is displayed in

appendix C.1.2. The small dead-time needed for ZVS is ensured by operating the gate signals

with a 49% duty-cycle, instead of 50% (theory in section 2.6.1). The STOP signal is also dis-

played, which is operated by four switches and sets the gate signals to zero when initiated.

This is to simulate an emergency stop. Appropriate blocks are selected from the Simscape

library (section 2.9.1).

Table 3.1: System specifications for dual active bridge model

Name Value

Primary Voltage Vp Max/Min 180/90 V

Secondary Voltage Vs 340 V

Nominal Power Pnom 1000 W

Primary Current Ip Max/Min 11.4/5.7 A

Secondary current Is 3 A

Frequency fs 250 kHz

Phase-shift ϕ
[−π

2 , π2
]

Turn Ratio n 9:17
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3.1.2 Operation Modes

The model is operated under two main modes: Stabilize and charge. Before the model can

be used, a pre-charge signal has to be activated. This will initiate a pre-charge sequence and

charge the DC-bus capacitor. After the DC-bus capacitor is charged, the converter can be

used and the desired mode is selected. Stabilize mode utilizes a voltage PI-regulator and

aims to keep the DC-bus at a constant voltage of 340 V. Charge mode is selected to charge

the SC by constant current. For simulation purposes, a voltage source is connected to the

DC-bus when this mode is active to simulate a stable DC-bus.

3.1.3 Control

Control of the phase-shift is achieved by two PI-regulators, displayed in appendix C.1.3. The

derivative part is not necessary to reach the desired result. The relevant theory regarding the

PI-regulator is found in section 2.5.1. Averaging blocks are selected to filter the input signal,

while switches are utilized to choose between the two operating modes. Both PI-regulators

are tuned with the Simulink Auto Tuner App. The auto tuner is a built-in tool that allows for

a good balance between robustness and performance by analyzing the plant model. Then,

by interacting with sliders, the controls response time and transient behavior can be chosen.

The gain values KP and K I of the respective controllers are shown in table 3.2.

Table 3.2: PI-regulator values for voltage and current control

Name KP K I

Voltage Control −0.0035 −2.4900

Current Control −0.01 −100

To choose the correct phase-shift signal to output, a Matlab® function is utilized to create a

pidSELECTOR (appendix C.1.3). It is a simple if-else code that outputs a two when charging

is selected, and otherwise a one. To correctly maneuver between the modes, a Stateflow-

diagram [62] is designed (appendix C.1.4). This means that the model can only be in one

state at a time, and certain conditions need to be met before entering or leaving a state.

Useful displays, a few parameter editor blocks and push-buttons are illustrated in

appendix C.1.5, followed by signals and scopes used during loggingappendix C.1.6. Simula-

tion scope is displayed in appendix C.1.7.
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3.1.4 Parameters

Appendix D shows the relevant parameters for the SC (appendix D.1.1), the MOSFET

(appendix D.1.2) and the transformer (appendix D.1.3). The SC block and selected parame-

ters match the SC cell used in the integrated SC design in section 3.3.

3.1.5 Switching Frequency

As this thesis aims to utilize the SC’s fast electric response, a high switching frequency is de-

sired. The focus is on fast response and quickly neutralize a voltage drop on the DC-bus. The

frequency of 250 kHz is chosen but might cause problems on the physical model from elec-

tromagnetic noise and switching losses (section 2.7). Other benefits with a high switching

frequency are that the physical size of the inductor and capacitor can be reduced.

3.1.6 Sampling Time

With a switching frequency of 250 kHz on the DAB, each period is equal to 4 µs. Events in the

simulation is decided to happen based on discrete-time. According to Nyquist-Shannon [63]

theorem, the sampling time of the simulation must be at least twice as fast as the frequency

of the system. Because the model’s phase-shift ratio is adjusted with small steps between

±Ts
4 = 1 µs, it is important that the sampling is many times faster than this value. Through

simulation, it is decided that the sampling rate has to be 0.01 µs, which gives the phase-shift

an accuracy of 100 steps in both positive and negative direction. This is a sampling frequency

of 100 MHz which will be discussed further in section 5.1.

3.1.7 Leakage Inductance

Total leakage inductance is directly linked to the amount of power transferred. It is decided

that the converter will be able to deliver 1 kW continuously while the SC is discharging all the

way to 90 V. This is considered in the following calculation. The required leakage inductance

is calculated from eq. (2.14) and is equal 28.9 µH. Hence, the converter will have a maximum

power of 2 kW when the SC is fully charged.

3.1.8 Sizing of Components

The total leakage inductance of the DAB comes from total inductance in transformer and

inductor (section 2.4.4). The transformer used is a linear transformer block, and its param-

eters are found in appendix D.1.3. For the inductor on the DABs output, its inductance has

to compensate for the missing leakage inductance from the transformer. This correct in-
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ductance is therefore acquired by subtracting the transformer inductance from the leakage

inductance. The inductor is calculated to be 19.5 µH. Capacitors are sized to limit the voltage

ripples within 5% of nominal values. It is sized to 500 µF on the SC side and 54.3 µF on the

DC-bus side.
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3.2 Supercapacitor Model Matlab®/Simulink®

A model of the simulated SC module is developed in Matlab®/ Simulink®utilizing the rele-

vant SC theory from section 2.1. The SC is simulated by the block from Simscape Electrical

(section 2.9.1). This simulation aims to build a better understanding of the balancing circuit

(section 2.1.6) and prepare for the physical SC development. It has a discrete sampling rate

of 0.01 s.

Matlab®/Simulink® diagrams relevant to this section is found in appendix C.2. A total of 12

SC blocks (appendix C.2.1) are selected to simulate each individual cell in the physical SC

module. Cell number one is displayed in fig. 3.2. Each of the 12 cells has the same parame-

ters as the physical SC cell (appendix D.2). Adjustments in capacitance is done to simulate

imperfect cells and for the sake of simulations, as shown in table 3.3. Maximum variations

in capacitance is listed to be +20% by Maxwell (appendix D.2), which is demonstrated with

cell 12.

+

_

m

C1

+

R1

i+ -
I_bal1

1
SC1+

2
SC1-_SC2+

C1

Figure 3.2: Cell one of 12 in the simulated supercapacitor model with balancing circuit

3.2.1 Measurement

Voltage measurements are included for each cell, as well as the whole pack (appendix C.2.2).

Current measurements are included for each balancing circuit and total charging current.



3.2. SUPERCAPACITOR MODEL MATLAB®/SIMULINK® 27

Table 3.3: Variation in capacitance for each supercapacitor cell

Cell Number Value

1 360 F

2 365 F

3 370 F

4 375 F

5 380 F

6 385 F

7 390 F

8 395 F

9 400 F

10 410 F

11 420 F

12 432 F

3.2.2 Supercapacitor Balancing

Balancing is simulated with a passive resistor of 360Ω in parallel to each cell (appendix C.2.1),

from the theory in section 2.1.6 with the passive method without a switch. The balancing re-

sistor is discussed further in section 3.3.2 and matches the physical implementation of the

circuit.

3.2.3 Pre-charge, Charge and Discharge Circuits

Circuits used in this section are shown in appendix C.2.3. Pre-charge limits the charging

current before the total voltage reaches Vtot × 0.9. The pre-charge resistor is set to 30Ω,

which gives a maximum charging current of 1 A for 30 V. This is a small charging current

but sufficient for simulation purposes. It is necessary to reduce in-rush current, in regards

to the SC’s small ESR (section 2.1.1). The charging is switched to the charge circuit when the

SC voltage reaches Vtot ×0.9, equal to 27 V. The voltage drop over the resistor is fairly small,

and the charging current is limited. Discharging of the SC is also realized by a 30Ω resistor

to make the charging and discharging results comparable.
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3.3 Physical Supercapacitor Module Implementation

An integrated SC system is designed based on the simulated SC from section 3.2. The PCB

development tool KiCAD (section 2.9.3) is utilized for the design. The goal is to construct a

SC module with integrated design of 30 V to be a building block in a bigger 180 V SC system.

It is essential that this is concluded before continuing the physical development of the IBDC.

When building a SC module, one important component is the actual SC cell. Companies like

Maxwell, SPSCAP, LICAP, EATON, and SECH manufacture single cells and complete mod-

ules of various sizes. The chosen approach is to order single cells and assemble them at

the bottom of a PCB. This way, the complete module design is described and included in

appendix F). The physical prototype is shown in fig. 3.3.

Figure 3.3: Physical Supercapacitor module

3.3.1 Supercapacitor cell

The sizing of the SC is done using the theory from section 2.1.2. The energy required by

the complete SC storage (180 V) is set to 1 kW for at least 60 s. It is also going to deliver

1 kW until 50% SOC. For the module, it is used a SC cell of 360 F, 2.7 V cylindrical SC from

Maxwell. With a maximum stored energy of 0.36 Wh, a module of 12 cells is sufficient to meet

the requirement. Since one module of 30 V is only 1/6 of the final SC system, the module

only requires 1/6 of the required energy. One 30 V module will have a theoretical maximum

energy of 3.75 Wh, which makes it able to supply 225 W for 60 s. The cell is displayed in

fig. 3.4 and its parameters are found in appendix D.2 together with its datasheet.
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Figure 3.4: Supercapacitor cell from Maxwell (appendix D.2)

3.3.2 Cell Balancing

The chosen method for cell balancing is passive and consists of two parts. The first is a

resistor placed in parallel to every SC cell. With only this type of balancing, the resistor must

be large enough to bypass ten times the maximum leakage current of the SC. For a 360 F

capacitor with a leakage current of 750 µA, the resistor is 360 Ω (360 Ω= 2.7 V/(10×750 µA)

for each cell.

The second part is a balancing Integrated Circuit (IC) which will bypass more current as the

voltage increases [64]. This component will bypass 3 mA at 2.2 V and 10 mA at 2.7 V. Op-

timally, the IC would bypass less current, but due to low stock of the component a replace-

ment had to be made. The IC contributes to a lower power loss overall. The passive resistor,

in combination with the IC, can therefore carry less of the balancing current. It is sufficient

that the resistor carry 3.375 mA at 2.7 V and is sized to 800 Ω for each SC cell instead of the

360Ω.
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3.3.3 PCB Layout and Design

The PCB consists of a four copper layer design. The whole schematic for the development is

shown in appendix F.1. In appendix F.2 the PCB layout is displayed without any of the copper

layers. This is to visualize the placement of each SMD. The top (appendix F.3) and bottom

(appendix F.6) copper layer are mainly used for copper tracks connecting the components.

The middle top (appendix F.4) and middle bottom (appendix F.3) layers are used for ground

and supply voltages. The SC cells are mounted on the bottom of the PCB and used as a base

for the whole module. Most of the SMDs are located on top of the PCB.

Figure 3.5: Supercapacitor balanc-
ing on the printed circuit board

A large part of the components used on the PCB are

in the SC balancing. Each circuit balances two cells,

hence, a total of six circuits are required (appendix F.1

p:2-7). One circuit is displayed in fig. 3.5.

Another large part of the components are used in the

modules Over-Voltage Protection (OVP) circuits. It is

based on a voltage detection IC which output a signal

when the voltage over each cell reaches 2.7 V. A dif-

ferential amplifier IC is utilized to measure the voltage

across each cell correctly. A total of 12 circuits are needed for the module (appendix F.1 p:11-

23). One circuit is shown in fig. 3.6.

Figure 3.6: Over-voltage protection circuit for the Supercapacitor on the printed circuit board
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This IC does not contain electrical isolation. Therefore, an isolation IC is needed before

the signals are gathered in a logic OR-gate with Schmitt trigger. The circuits is displayed

in fig. 3.7.

Figure 3.7: Isolation component for the over-voltage protection signals and OR-gate

The module’s main power is connected to two power MOSFETs to act as power switches:

One for pre-charge, one for charge, and a third to control the load connection. This is only

necessary for discharging results for testing, since charge and discharge will be on the same

connection when integrated with the DAB. The MOSFETs are displayed in fig. 3.8a. The

MOSFETs are controlled with gate-drivers connected to the MCU, displayed in fig. 3.8b.

(a) MOSFETs which control the charging, dis-
charging, and load of the supercapacitor

(b) MOSFET drivers which give correct output to
the gates

Figure 3.8: MOSFETs and MOSFET drivers on the printed circuit board
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Several voltage levels are created from an external 15 V supply. An isolation barrier ensures

electrical isolation for the supplies. Two supplies of 5 V and 3.3 V are created from the 15 V.

The 5 V is used to create an isolated supply of 6 V to supply the gate-drivers, which is then

bucked to a 5 V isolated supply. The un-isolated supplies are separated from the isolated

through the isolation barrier. The circuitry is displayed in fig. 3.9.

Figure 3.9: Voltage levels created
on the printed circuit board

Pictures of the design from Kicad’s 3D-view are found in appendix F.7. The top of the PCB

is on the left and the bottom on the right. The system specifications for the module are

displayed in table 3.4.

Table 3.4: Integrated supercapacitor module specifications

Type Value

Cells in series 12

Capacitance 30 F

Nominal Voltage 30 V

Maximum Current 20 A

Maximum Power 600 W

DC ESR 38.4 mΩ

Maximum Stored Energy 3.75 Wh

Usable Specific Power 3282.56 W/kg

Total SC Weight 0.8568 kg
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3.3.4 Construction

The SMD components are soldered to the PCB by utilizing a stencil. Solder paste is applied

on top of the stencil while it rests on top of the board. This allows correct placement of the

solder paste, and the components are placed in their marked positions. When all compo-

nents are properly placed, the board is heated in an industrial oven.

3.3.5 Equipment

During testing of the SC module, the equipment in table 3.5 are utilized. The equipment

are displayed in fig. 3.10. An oscilloscope from Keysight is used for current and voltage

sensing to achieve more detailed result plots than with the designed current and voltage

measurement. The current and voltage probe utilized with the oscilloscope are not included

in fig. 3.10. Both probes are calibrated pre-testing and have an accuracy of 3% and 2%,

respectively. A multimeter from Hioki is utilized to measure the cell voltage to ensure each

balancing circuit is working properly. The power supply from Elektro-Automatik is used for

the charging of the SC. The Mascot power supply ensures a stable 15 V for the entire PCB.

During discharging of the SC, the programmable DC-load from Elektro-Automatik is used.

The Delfino microcontroller is displayed in fig. 3.10.

Programmable DC-Load Power supply 15 V

Oscillo-
scope

Supercapacitor

Multi-
meter

Power
supply
30 V

Micro-
controller

Figure 3.10: Laboratory test equipment
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Table 3.5: Laboratory test equipment

Type Manufacturer Type

Programmable Load Elektro-Automatik 9500-08 T

Oscilloscope Keysight MSOX3014A

Diff. Probe Micsig DP10013

Current Probe Micsig CP2100A

Multimeter Hioki DT4282

Power Supply Elektro-Automatik EA-PS 2032-050

Power Supply Mascot 719

Supercapacitor Maxwell Technologies BCAP0360 P270 S18

Delfino Launchpad Texas Instrument TMS320F28379D

3.3.6 Current and Voltage Sensing

Current sensing on the PCB is realized with a hall-effect current sensor. This device utilize

the magnetic field created to detect either current or voltage in a circuit. The component

ensures safe sensing of large currents since the output is electrically isolated from the input.

A voltage operational amplifier is a device that amplifies a signal. It is designed to measures

the SC module voltage by utilizing its inverting and non-inverting inputs. This is realized

with a differential voltage op-amp which outputs the voltage differential of two input pins.

3.3.7 TMS320F28379D LaunchPad

This Delfino LaunchPad is used to handle digital and analog signals from the SC module.

There are four digital signals needed on the board: Three control signals for the power MOS-

FETs, and one for the OVP alarm signal. A Matlab®/Simulink® diagram is utilized to commu-

nicate with the MCU, displayed in appendix C.3. Analog signals are used to receive voltage

and current measurements. Details about the Launchpad is found in section 2.4.5.
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4 Results

This chapter presents the results from the simulated and physical models presented in this

thesis. It starts with the simulated DAB in section 4.1, followed by the simulated SC model

(section 4.2) and the integrated SC design (section 4.3). This is achieved by first presenting

the DAB’s functionality, integrated with the simulated SC, before going into the details re-

garding the physical SC prototype. The results are later discussed in the discussion chapter

and follow the findings chronologically.

4.1 DC-DC Converter Model in Matlab®/Simulink®

Simulations of the DAB IBDC is carried out in Matlab®/Simulink®. Methods used in this sec-

tion for development of the model is explained in section 3.1. Circuits related to the model

is found in appendix C.1.

Firstly, the charge characteristics for the SC block with 72 cells in series used together with

the DAB, is shown in fig. 4.1. This provides a good indication of the SC’s capacity. The

parameters for this block is shown in appendix D.

Secondly, during operation, the SC voltage will start to decrease from the loss of charge, re-

sulting in lower a power output. The phase-shift will increase as the voltage decrease to

maintain the same level of power transfer. This is illustrated in fig. 4.2. The curves are plot-

ted utilizing eq. (2.13). The phase-shift is given in radians, where ±π/2 rad indicates the

maximum power in positive or negative direction. Source code for fig. 4.2 is shown in E.2.1.
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4.1.1 Primary and Secondary AC Components

Simulations start by showing the primary and secondary AC components (voltage and cur-

rent) of the DAB. This is measured on the input and output of the transformer. The following

scenario utilize a fully charged SC bank delivering 1000 W to the load. The converter has

settled in steady-state and display two full periods (8 µs).
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Figure 4.3: Primary and secondary AC components (voltage and current). The plot in (a)
shows the primary and secondary voltages varying between ±180 V and ±340 V. The plot
in (b) shows the primary and secondary currents, varying between ±6.2 A and ±3 A. The
currents stretch a bit further on the negative than the positive

4.1.2 Supercapacitor SoC Scenarios with Stabilization Mode

The SC is able to supply the DC-bus while it contains between 100% to 50% SOC. Below

50% the primary AC current becomes too large and efficiency too low. The tests are divided

into four, where the SC is charged to the different voltage levels: 180 V, 150 V, 120 V, 90 V. All

scenarios start with the DC-bus supported by an external source. This source is disconnected

at time 2 ms, making the voltage drop. The current supplying the DC-bus is also included

in the plot. The source current drops to zero when the source is removed. The converter

responds by supplying the load, maintaining the DC-bus voltage. The efficiency (η) of the

converter is calculated by dividing the input power, Pi n , by the output power, Pout . Each

scenario is displayed by four smaller plots to display the results.
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Stabilization with 180V SC

The first stabilization scenario display the fully charged SC responding to the dropping DC-

bus at time 2 ms. At 7.8 ms, the voltage drop is neutralized and reach the stable voltage at

time 14 ms. The simulation results are shown in fig. 4.4.
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Figure 4.4: The first plot, (a), naturally displays the DC-bus voltage at 340 V and dropping to
about 305V before reaching 340 V again after 7.8 ms. A slight overshoot is shown and adjusted
after 14.0 ms. The primary/SC current and voltage is displayed in (b). As a response to the
DC-bus, the SC voltage drops and the current increases. The power calculated from (a) and
(b) is monitored, and the converter’s efficiency is calculated and displayed in (c). Efficiency
is not completely displayed before 4 ms. Lastly, the required phase-shift for this scenario is
displayed in (d)



4.1. DC-DC CONVERTER MODEL IN MATLAB®/SIMULINK® 39

Stabilization with 150V SC

In the second stabilization scenario, the SC is charged to 150 V, responding to the dropping

DC-bus at time 2 ms. At 8.3 ms the voltage drop is neutralized and reaches a stable voltage

at time 14.6 ms. The simulation results are shown in fig. 4.5.
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Figure 4.5: The first plot, (a), naturally displays the DC-bus voltage at 340 V and dropping to
just below 300 V before reaching 340 V again after 8.3 ms. A slight overshoot is shown and
adjusted after 14.6 ms. The primary/SC current and voltage is displayed in (b). As a response
to the DC-bus, the SC voltage drops and the current increases. The power calculated from
(a) and (b) is monitored, and the converter’s efficiency is calculated and displayed in (c).
Efficiency is not fully displayed before 4 ms. A negative current and power is displayed before
the trigger. Lastly, the required phase-shift for this scenario is given in (d)
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Stabilization with 120V SC

In the third stabilization scenario, the SC is charged to 120 V, responding to the dropping

DC-bus at time 2 ms. At 9.4 ms, the voltage drop is neutralized and reaches a stable voltage

at time 16.9 ms. The simulation results are shown in fig. 4.6.
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Figure 4.6: The first plot, (a), naturally displays the DC-bus voltage at 340 V and dropping
to about 288 V before reaching 340 V again after 9.4 ms. An overshoot of 8 V is shown and
adjusted after 16.9 ms. The primary/SC current and voltage is displayed in (b). As a response
to the DC-bus, the SC voltage drops and the current increases. The power calculated from
(a) and (b) is monitored, and the converter’s efficiency is calculated and displayed in (c).
Efficiency is not fully displayed before 4 ms. A negative current and power is displayed before
the trigger. Lastly, the required phase-shift for this scenario is given in (d)
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Stabilization with 90V SC

In the fourth stabilization scenario, the SC is charged to 90 V, responding to the dropping

DC-bus at time 2 ms. At 15.4 ms, the voltage drop is neutralized. The simulation time of

25 ms is not enough time for the converter to stabilize the voltage. The simulation results are

shown in fig. 4.6.
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Figure 4.7: The first plot, (a), naturally displays the DC-bus voltage at 340 V and dropping to
about 278 V before reaching 340 V again after 15.4 ms. An overshoot of 10 V is shown and
starts to decrease. The primary/SC current and voltage is displayed in (b). As a response
to the DC-bus, the SC voltage drops and the current increases. The power calculated from
(a) and (b) is monitored, and the converter’s efficiency is calculated and displayed in (c).
Efficiency is not displayed before 4 ms. A negative current and power is displayed before the
trigger. Lastly, the required phase-shift for this scenario is given in (d)
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4.1.3 Supercapacitor charging scenario

The SC’s charging mode is covered in this scenario. It aims to showcase the modes function-

ality during a charging scenario after a stabilization scenario. The SC is charged to 150 V,

which is a typical voltage when the SC can charge, when the command for charging is initi-

ated time 5 ms. At 8.3 ms, the voltage drop is neutralized and reaches a stable voltage at time

14.6 ms. The simulation results are found in fig. 4.5.
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Figure 4.8: The first plot, (a), naturally displays the DC-bus voltage at 340 V. At time 5 ms,
a small voltage drop is exerted as the charge is initiated. The secondary charging current is
about −3 A. The primary/SC current and voltage is displayed in (b). The power calculated
from (a) and (b) is monitored, and the converter’s efficiency is calculated and displayed in
(c). Efficiency is not fully displayed before 4 ms. Lastly, the required phase-shift for this
scenario is given in (d)
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4.2 Supercapacitor Model Matlab®/Simulink®

This model is developed using Matlab®/Simulink®. Methods used in this section to develop

and test the model are explained in section 3.2. The purpose of the following results is first to

understand the charging (section 4.2.1) and discharging (section 4.2.2) characteristics of the

SC module before developing the integrated SC design. Second, it is desirable to investigate

the importance of a balancing circuit during charging and discharging when multiple cells’

capacitance in series differs between the manufacturer’s minimum and maximum values. In

section 4.2.3, the simulated SC is connected to different loads to show its transient response.
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4.2.1 Charging from 0-30V

Charging the discharged SC through a pre-charge resistor of 30 Ω before switching to the

charging circuit at time 2156 s. All plots share the same time axis and are simulated over

3000 s. The charge current is chosen to start at 1 A.
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Figure 4.9: Charging the supercapacitor module from 0 to 30V. (a) and (b) show the mod-
ules voltage and charging current. The charging current is defined as positive and starts at
1 A. (c) shows the individual voltage of cell 1 − 12, which are all discharged at time zero.
When the pre-charge is disconnected at time 2156 s the respective cell voltages are between
2 V and 2.5 V. The charge circuit then ensures the balancing of the cells, causing them to
become more evenly charged. (d) displays the current through each respective balancing
circuit. With the designed balancing resistance of 360Ω, the balancing current starts at zero
and ends up at about 7 mA as the cell voltage increases. Every figure is simulated over 3000
seconds
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4.2.2 Discharging from 30-0V

Discharging the fully charged SC through a 30Ω resistor. All cells are completely discharged

after 2776 s, while the cell with the lowest capacitance (cell 1 in table 3.3) is already dis-

charged after 2056 s.
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Figure 4.10: Discharging the fully charged SC through a 30Ω resistor. (a) and (b) show the
modules decreasing voltage and discharge current. The discharging current is defined as
negative and starts at −1 A. (c) shows the individual voltage of cell 1 − 12, which are all
charged with 2.5 V. The cells discharge un-even and the first cell is completely discharged
after 2056 s and the last after 2776 s. (d) displays the current through each respective balanc-
ing circuit. With the designed balancing resistance of 360Ω the balancing current starts at
about 7 mA and decreases as the cell voltage decreases. Each plot is simulated over 3000 s
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4.2.3 Transient response to a load

The SC block utilized in this result is the same block used in the DAB simulations (sec-

tion 4.1). It is desirable to test the SC block’s transient response to a resistive load without the

IBDC. This result is later compared to the integrated SC design results in section 4.3.1. There

(sections 5.3.3 and 5.3.4), an analysis on how the DAB is affected by a physical SC module

is carried out. The following plot has a trigger at time zero. Both the voltage and current

transients are practically instant.
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Figure 4.11: Voltage and current of the SC responding to different loads. All plots have a
trigger at time 10µs. The first plot, (a), shows the fully charged SC’s response to a 2 A load.
The current and voltage transient response is instant. The transient voltage drop is about
77 mV when the load is connected. The second plot, (b), shows 4 A load. The transient
voltage drop is about 153 mV when the load is connected. The third plot, (c), shows 6 A
load. The transient voltage drop is about 230 mV when the load is connected. The last plot,
(d), shows 8 A load. The transient voltage drop is about 307 mV when the load is connected.
All four plots share the same legend displayed in (a)
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4.3 Physical Supercapacitor Module Implementation

Results regarding the integrated SC design are presented in this section. Methods used to

develop and test the module are explained in section 3.3. Testing of the module is carried out

with the programmable DC-load listed in table 3.5. Both the voltage and current transients

in fig. 4.12 have a trigger at time zero and show the current and voltage responses over a time

period of 28 µs. The rise time (TR ) for each respective plot is represented.

The rise times of the SC load currents are displayed in table 4.1. It is acquired when the

response rises between 10% to 90% of the steady-state value. It is noted that this is not the

time it takes the SC to rise from the load is initially connected. That would be from time

zero. The settling time (TS) is the time it takes the response to reach a value within 2% of

the steady-state value. The overshoot (OS) represents a maximum percentage the response

touches compared to the steady-state value.

Table 4.1: Plot info for the supercapacitor current’s transient response in fig. 4.12

Type 2 A 4 A 6 A 8 A

TR (µs) 10.086 8.2610 7.8208 7.6040

TS (µs) 52.172 14.547 33.007 24.746

OS (%) 4.0666 4.0535 1.3407 0.7588
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4.3.1 Transient response to a load

The result in fig. 4.12 display the physical SC’s transient response when connected to a pro-

grammable DC-load. The load is programmed to trigger a set of four load currents: 2 A, 4 A,

6 A, and 8 A. All plots are made comparable to the simulation results in fig. 4.11.
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Figure 4.12: Voltage and current of the SC responding to different loads. The first plot, (a),
shows the fully charged SC’s response to a 2 A load. The voltage drop is about 0.1 V, gradually
decreasing over 10µs as the current increases. The second plot, (b), shows 4 A load. The
voltage transient indicate a voltage-drop of about 0.2 V. The third plot, (c), shows 6 A load.
The voltage transient indicate a voltage-drop of about 0.3 V. The last plot, (d), shows 8 A
load, with a final voltage-drop of about 0.4 V. All four plots share the same legend displayed
in (a)
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5 Discussion

The chapter is divided into three main sections and follow the findings from chapter 4.

Firstly, results regarding the DAB simulation in section 4.1, is discussed. The purpose is to

analyze the working principle of the DAB and show its functionality when integrated with

the SC. The SC’s charging characteristic is also investigated further. Secondly, the simulated

SC results (section 4.2) is explained to achieve a deeper understanding of the module as a

whole. Lastly, a comparison of the integrated SC design (section 4.3) and the simulated SC

module (section 4.2) is carried out, and its different transient responses are analyzed.

5.1 DC-DC Converter Model in Matlab®/Simulink®

This section discuss the most important aspects of the results in section 4.1. The discrete

sampling time of this simulation is decided to be 0.01 µs. With a switching frequency of

250 kHz, only 100 MHz sampling is sufficient to achieve the correct efficiency of the con-

verter. This sampling rate may prove too high for a physical implementation and need to be

considered in future work.

5.1.1 Charging Characteristic of the Supercapacitor

The charging mode of the DAB has a current reference of 6.25 A. From the charging char-

acteristic (fig. 4.1) of the SC used with the DAB, the charging time can be calculated. The

charging times are also displayed in fig. 4.1. For the 6 A charging current the charging time is

approximately 137 second. This gives a voltage increase of 180V/137s = 1.3139 V/s. A good

estimate of the 6.25 A can be made by

V1

TC1 I1
= V2

TC2 I2
, (5.1)

where V1 = V2 = 180V, the charging time TC1 = 137s, I1 = 6 A and I2 = 6.25 A. By solving for

TC2 gives a charging time of 131.5 s with a constant current of 6.25 A. The actual charging

time will be slightly slower, since the voltage increase per second will be somewhat larger.
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5.1.2 Theoretical Power Transfer of the Dual Active Bridge

Figure 4.2 displays the output power as a function of phase-shift. The graph is plotted for

different levels of SC charge to display its effect on the power. The phase-shift extends from

±π, but the maximum power transfer is achieved at ±π
2 . The absolute maximum power is set

at 2 kW which is clearly displayed in fig. 4.2. At the lowest operation voltage of 90 V the power

transfer has a maximum of 1 kW. This is verified in the simulation done in section 4.1.2.

When the charging mode is initiated, the negative power spectrum is utilized. Moreover, the

positive is utilized when the stabilizing mode is initiated.

5.1.3 Primary and Secondary AC Components

This section discuss the plot in fig. 4.3. The difference in primary and secondary AC cur-

rent (i AC1 and i AC2 ) is defined by the turn-ratio of the high-frequency transformer. The AC

voltages v AC1 and v AC2 also differ in magnitude based on the transformers turn-ratio. The

secondary side is shifted with respect to the primary, making the power flow from bridge

one to bridge two. Each period can be divided into four stages: The primary voltage is low

and the secondary high. The primary is high, and the secondary low. The shorter scenar-

ios being when both voltages are high and both low. This decides if the inductor current is

increasing or decreasing during that stage. When the phase-shift increases, the ac-currents

have longer time to ”grow”, resulting in a larger current. This results in a larger power trans-

fer, as explained in section 2.6. When steady-state is reached and the phase-shift settles, it

will make small adjustments to keep the voltage as steady as possible. This results in the

ac-currents fluctuation in the positive and negative direction.

5.1.4 Super Capacitor SoC Scenarios with stabilization mode

The SC is going to supply the DC-bus from 100% to 50% SOC. Hence, the goal of the results

in section 4.1.2 is to visualize that this is achieved. Another topic to be discussed from the

results is how the response time of the DAB is affected by a decreasing SC voltage.

The simulation starts off with the DC-bus stable at 340 V. At 2 ms the supply breaker opens,

leaving the SC to supply the load. The recovery time for each scenario is different, because of

the required phase-shift for different voltages. It should be noted that the first two scenarios

(figs. 4.4 and 4.5) only shows a time period of 20 ms while the last two (figs. 4.6 and 4.7) shows

25 ms. This is explained by the high SOC SC reach steady state quicker than the low SOC SC.

Hence, a longer simulation time is required.

From the plots in figs. 4.4a, 4.5a, 4.6a and 4.7a the time-axis displays the different stabi-

lization times for each respective scenario. The fully charged SC is the fastest to bring the
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DC-bus voltage back to 340 V with the smallest overshoot. This shows that a fully charged SC

will in fact have a faster response, and gradually slow down for lower SOC, when integrated

with the DAB. This is as expected since a larger phase-shift is required. This difference in

phase-shift is displayed in fig. 4.4d-4.7d. The plots also show a larger overshoot to maintain

the low response time as the SOC decrease.

Output power (Pout ) in all scenarios (figs. 4.4c, 4.5c, 4.6c and 4.7c) immediately jumps to

1 kW when the circuit breaker opens since the simulation treats the DC-bus as the output.

This is because the DC-bus is already charged by the external source before time 2 ms and is

displayed through the input power (Pi n) which is zero/negative before this time. Calculated

efficiency for the different scenarios is also displayed in these plots. Before the breaker opens

at time 2 ms and until 4 ms, this value is misleading. The output power (Pout ) is also not

correct, since it is the external source sustaining the DC-bus and not the DAB. Hence, the

efficiency is displayed as outside of the plot before 4 ms.

In all scenarios, except with the fully charged SC (fig. 4.4), a reverse charging current of vary-

ing magnitude can be seen before the 2 ms mark in figs. 4.5c, 4.6c and 4.7c. This is because

of the low SC voltage and constant switching of the DAB. There is practically no phase shift

since the control is only designed to keep the DC-bus at 340 V. The voltage transfer ratio

(eq. (2.17)) is closer to 0.5, which makes the DAB move some power into the SC without a

negative phase-shift.

Lastly, the phase-shift plot (figs. 4.4d, 4.5d, 4.6d and 4.7d) is displayed for all scenarios. A

larger phase-shift is required to stabilize the DC-bus as the SC voltage decreases.

In the last scenario (fig. 4.7) the SC is charged to 90 V, which is set as the limit for the con-

verter to supply the DC-bus. During normal operation, the control system is designed to

stop the converter when the SC voltage reaches this voltage. Hence, the limit is disabled to

display the results when the converter is supplied with this voltage. It is clearly displayed in

fig. 4.7d that the converter is on the brink of collapsing. The maximum phase-shift of the

converter is the 1 µs/π2 mark, which is exceeded in this scenario.

5.1.5 Supercapacitor charging scenario

This section discuss the charging mode of the SC (section 4.1.3) and how the DAB is suited

for this task. The scenario has a trigger at 5 ms when the charging mode is selected. This

is clearly displayed in fig. 4.8d when the phase-shift decreases quickly to about 0.25 µs/25%

and delays bridge one with respect to bridge two by this amount. Compared with the sta-

bilization scenarios (section 5.1.4) this is quicker, since it is easier for the DAB to transfer

power in the direction of the lower voltage. This is explained by the voltage-transfer ratio in

eq. (2.17) which is 0.83 in this case. This is also visualized with the small charging current in
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fig. 4.8a and power in fig. 4.8c.

At the trigger point, the input power (Pi n) and output power (Pout ) have switched places

due to the opposite power direction. The input is the first to react in fig. 4.8c, causing a

slight drop in efficiency. This is quickly neutralized when the output catches up to the input.

The efficiency in this mode settles nicely around 97.7%. Before the trigger, when the phase-

shift is zero, the efficiency is stable at 95%. A more realistic transformer can be included to

improve the model. The transformer used is ideal, which gives high efficiency.

5.1.6 Response time

The time it takes from the DC-bus voltage decreases to the SC can bring it back to 340 V is

increasing as the SC voltage decreases. The DC-bus/secondary voltage from all stabiliza-

tion scenarios (figs. 4.4a, 4.5a, 4.6a and 4.7a) is plotted in fig. 5.1. This is to further display

the response of the DAB and showcase how the voltage curve is stretched as the SC voltage

decreases. The overshoot is also displayed more clearly.
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Figure 5.1: DC-bus voltages for all physical supercapacitor load scenarios

Figure 5.1 clearly displays the importance of keeping the SC charged and charge it when it is

not needed. The IBDC has the fastest stabilization time of 7.8 ms and the slowest of 15.4 ms.

A good tool like the stateflow chart in Matlab®/Simulink® is crucial to optimize the SC usage

together with the DAB, and charge it when it is not needed. This needs consideration when

developing the overall energy management system and can easily be implemented by a MCU

or Programmable Logic Controller (PLC) to initiate the different modes. In the developed

stateflow chart (appendix C.1.4), the stabilize mode can be triggered by a dropping DC-bus

voltage and charging mode after the DC-bus voltage has been stable for a certain amount of

time. The charging control can also be tuned for a slower response to increasing the charging

current slowly. This will not significantly load the DC-bus, preventing a large voltage drop

and triggering the stabilize mode again.
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The response time of the DAB discussed in this section only considers how it is affected by

changes in the SC voltage. Section 5.3 will take this a step further and look at the SC’s tran-

sient response without the DAB to clarify how it is affecting the response time of the DAB.
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5.2 Supercapacitor Model in Matlab®/Simulink®

This section discuss the results gathered from the SC simulation (section 4.2) in Matlab®/

Simulink®. Firstly, the charging results of the SC from section 4.2 are discussed with a focus

on the cell balancing and un-even charging. Secondly, the discharging of the SC is covered

briefly and discuss the un-even discharging of the different capacitance cells. The result from

section 4.2.3 is discussed in section 5.3 and directly compared to the integrated SC design

results.

5.2.1 Charging

The SC is charged by utilizing a pre-charge circuit consisting of a resistor of 30Ω and voltage

source of 30 V. This way, a high in-rush current is prevented and limited to 1 A. As the voltage

increases, the charging current drops off gradually because of the smaller voltage-drop over

the resistor. At 30V×0.9 the pre-charge switches off and connects the charging circuit. This

circuit only has a resistance of 0.4Ω and is estimated from the physical circuit. This value is

lower for the physical module because of the low ESR in each SC cell. The charging current

increases to about 7 A for a short duration when the pre-charge is disconnected until the SC

is fully charged. This completes the charging of the SC by pre-charge and charge circuit. The

whole charging scenario is complete after approximately 2200 s.

The SC cells differ in capacitance from 360 F to 432 F, which is a +20% increase in capaci-

tance. This is done to visualize the worst case in capacitance. This makes the cells charge

un-even and can be seen in fig 4.9c. Fig. 4.9d shows how the balancing current is higher for

the cell with the highest cell voltage. Cell with the smallest capacitance receives the highest

charge because it can contain less energy. Still, the voltage comes close to the rated voltage of

2.7 V, but not quite. This means the balancing is sufficient, and the charge mode is balancing

out the cells after the total voltage reaches 30 V. The cell voltage must not exceed the abso-

lute maximum cell voltage rating, as it will damage the SC. There is room for improvement

in the balancing circuit, since the voltage comes close to the absolute maximum rating.

5.2.2 Discharging

Similar to the charging scenario and fig. 4.10 it is clear that the cells also discharge un-even

when their capacitance is not equal. The SC is discharged through a load of 30Ω, same as

the pre-charge resistance. The difference in balancing current of each cell in fig. 4.10d is

only explainable from the difference in cell voltage. The cell with the lowest capacitance

will discharge first because it can hold the least energy. This is the same for charging, which

means the weakest cell is the one first to receive over-voltage in the case of over-charging.
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5.3 Supercapacitor Transient Response

In this section, the response of the simulated SC (section 4.2.3) is compared with the inte-

grated SC design’s transient voltage and current response (section 4.3.1).

5.3.1 Simulated Supercapacitor

The simulated SC in fig. 4.11 has an instantaneous transient response for all load scenarios.

The transient voltage drop is increasing with about 77 mV for each increase in load. The

instant response in voltage and current indicates that its rise time is practically zero for all

loads with no visual overshoot.

5.3.2 Physical Supercapacitor

The integrated SC design’s voltage transient from fig. 4.12 show a distinct behavior with an

overshoot. This characteristic becomes more visual as the load increase. The current in

fig. 4.12 is increasing over the plotted period from zero to the listed load. Curve data from

the plot is displayed in table 4.1 and suggests a slower rise time for smaller current. This is

because of the rise times definition described in section 4.3 and is the time when the curve

rises between 10% and 90%. It introduces some uncertainties since the low load will increase

faster than the large load compared to the trigger point at time zero. Therefore, the rise

time is somewhat misleading and is not a good representation of the overall response time.

However, the time it takes for the current to start rising will be shorter for the low load. The

programmable DC-load may explain the source of error. Moreover, the settling time is not a

very good indicator because of the minor voltage irregularities in the physical measurement.

The settling time is defined when the value reaches 2% of steady-state. For the 2 A load, this

is 1.98 A, and the irregularity in the measurement indicates a source of error. The same is

valid for the overshoot (OS). Moreover, the voltage drop is not significant and is only about

0.4 V for the most significant 8 A load.
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5.3.3 Comparison

For simplicity, the voltages from figs. 4.11 and 4.12 are plotted in fig. 5.2. This way, the differ-

ence between the two plots will be more clear. From the start, the two plots display a slight

voltage difference. The simulated SC in fig. 4.11 starts with a voltage of 30.1 V, while the

physical in fig. 4.12 is closer to 30.5 V.
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Figure 5.2: Voltage transient response of the physical and simulated supercapacitor

When comparing the two SCs, the transient response is completely different, with the largest

difference being the rise time. The rise time of the simulated SC is practically zero, while

for the real module, it is significantly larger. However, the size of the voltage drop is more

comparable. For the physical SC in fig. 5.2a the voltage drop is about 0.4 V and 0.3 V for the

simulated. This is a 25% difference that might prove to be significant for a larger load.

The same is done for the currents in figs. 4.11 and 4.12 to display the difference in transient

response in fig. 5.3. All currents in the simulated scenario rise from zero to the respective

current value instantly. The physical current starts to increase first for the low load current.

This is consistent through all loads. On the other hand, for the larger load, the current’s rise

time is shorter when it first has started to rise. This characteristic is not anticipated, and

the programmable DC-load may be the source of error. Moreover, it is safe to say that the

physical SC has a much slower transient response than the simulated.
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Figure 5.3: Current transient response of the physical and simulated supercapacitor

5.3.4 Considerations

Since the DAB (section 4.1) is simulated with the same SC block as in fig. 4.11, it is not af-

fected by the integrated SC design’s slow response, compared to the simulated. This needs

consideration when developing the physical DAB DC-DC converter. With a frequency of

250 kHz and a period of 4 µs the overall response of the DAB will be somewhat slower than

the simulated results. It is still hard to predict exactly how this difference in response time

will affect the converter. Implementing a more robust control method than a regular PI-

controller will also help the response of the converter. A good alternative here is the model

predictive control, which also predicts the future response. Also, introducing a more ad-

vanced switching strategy like double-phase-shift will increase the power transfer capability

and extend the soft switching range of the physical DAB. The difference between the physical

and simulated SC is also one major topic in the conference paper in appendix A.

Testing of the integrated SC design is limited to a load of 8 A because of the programmable

DC-load listed in table 3.5. It is desirable to test the module against a more significant load

with a larger current to investigate the larger voltage and current transient. This will also

help test the settling time of the current further and give a correct value. The programmable

DC-load also introduced some exciting sources of error in regards to the rise and settling

times. To test the SC against a different load is desirable to validate if the load causes the

characteristic or not.
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6 Conclusion

6.1 Conclusion

In this thesis, an IBDC is implemented with the renowned DAB topology and integrated

with a SC to strengthen the stability of DC-microgrids. The DC-DC converter is simulated

in Matlab®/ Simulink® with a high switching frequency to fully utilize the SC’s strengths.

A control system is integrated with SPS modulation and different control modes to direct

the SC’s power flow. As a stepping stone towards a physical IBDC development, the crucial

energy storage is investigated further. A SC model with integrated cell balancing is first sim-

ulated, followed by a integrated SC system prototype. A comparison of the simulated SC and

the physical SC design is carried out and presented.

Simulation results indicate that the combination of the DAB and a SC is promising to quickly

stabilize a DC-bus. The SC’s SOC will greatly affect the response time of the IBDC and is con-

sidered when developing the control system. As expected, the SC results show large varia-

tions between the simulated SC model and the physical integrated SC design. The simulated

SC results show an instant transient response compared to the physical SC’s more realistic

response. However, the SC should be able to handle a DAB with fast switching frequency, but

an overall slower response time from the IBDC is expected with a physical design.

6.2 Future work

The following prioritization of events are considered for achieving a physical IBDC develop-

ment in the future.

• test the SC prototype with a different DC-load and compare the transient responses for

larger loads with the original results.

• improvements to the SC module’s integrated design and assemble multiple modules

in series for higher voltage level.

• implement a more robust control method, such as model-predictive control, and more
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advanced switching strategy, such as dual-phase-shift. Investigate the possibility of a

lower sampling rate with a different control strategy.

• develop the physical DAB model prototype and execute tests with the already tested

SC design and DC-bus.
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Abstract—A comparison of different transient responses by a
supercapacitor and battery reacting to a load is presented in
this paper. The main focus is improving energy storage systems
designed to support a DC-microgrid. This is done by introducing
the two storage devices to act as stabilization elements. Through
simulations in Matlab®/Simulink®and physical models, a compar-
ison is achieved. Transient characteristics from the simulations
tend to give a faster response than the physical. Verification on
the error between ideal and physical are analyzed based on the
results.

Index Terms—Renewables, DC-bus, DC-microgrid, energy
storage, battery, supercapacitor, isolated bidirectional DC/DC
converter(IBDC),

I. INTRODUCTION

This paper presents a comparison between the transient
response of a battery and a supercapacitor connected to various
loads. Energy storage and renewable energy production [1]
connected with a DC-microgrid prove necessary for many
applications [2]–[4], due to the unpredictability of renewables,
as they often are dependent on irregular energy sources. In
addition, the transient response in a DC system is more critical
than in a comparable AC system.

The growing trend with wind- [5], [6] and solar-energy [7] is
increasing the demand for energy storage with a low response
time [8]. Combining energy storages with varying response
times may respond faster to DC-microgrid energy demand.
Storage devices as supercapacitors are assumed to react more
rapidly to change in demand than devices like batteries.
Thereby, combining the supercapacitor and the battery in a
system, a faster response time can be achieved when required.

The use of batteries and supercapacitors in combination has
been studied and researched; a paper on energy management
of fuel cell, battery, and supercapacitor is described in [9],
where the systems response time measurements are included.
Similarly, [10] presents batteries and supercapacitors for use in
electric/hybrid vehicles. Each storage device can deliver power
to the DC-bus in a typical energy storage system through
an isolated bidirectional DC/DC converter. A potential model
configuration is shown in Fig. 1 which exhibits a simplified
configuration. With a slightly faster storage device, the overall
response time of the storage system can be significantly
decreased.

DC

DC

+-

Battery/
Supercapacitor

Isolated
Bidirectional
Converter

DC-bus

Figure 1: Model configuration for energy system

One of the principal differences between a battery and
supercapacitor is power density versus energy density [11]–
[13]. While a supercapacitor can release large amounts of
energy in a short period, a battery can store significantly
greater amounts of energy [14]. Therefore the supercapacitor
possesses high power density while a battery has a high energy
density compared to each other. Combining and compromising
the sources provides a high-performance system with fast
transient response.

The battery stores energy as an electrochemical reaction
as opposed to the supercapacitor, which utilizes static charge
[15], [16]. This difference in energy storage is the primary
cause of the unique response times. This paper will showcase
the difference in energy ability and response of the two sources
while responding to a programmable load.

The paper is organized as follows: Section II presents the
model description and laboratory test setup and the design of
the batter and supercapacitor system. Section III presents the
test cases with results. Section IV presents the conclusions.

II. MODEL DESCRIPTION

When comparing the transient response of the storage
devices, they must have a common factor. In this paper, a
requirement of a nominal voltage of close to 30 V is applied.
However, the battery and supercapacitor capacity will vary, as
this was not feasible to match.

Each supercapacitor cell has a maximum voltage of 2.7 V,
thereby 12 single cells must be connected in series to reach a
maximum voltage of 32.4 V and a nominal voltage of 30 V.
The supercapacitor parameters are displayed in table I [18],
while the maximum stored energy and usable specific power
is calculated in (1) and (2), respectively. Compared to the
supercapacitor, the battery has a higher cell voltage of 4.2 V,
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Table I: Supercapacitor Module Specifications

Type Value

Cells in Series 12

Capacitance 30 F

Nominal Voltage 30 V

Maximum Current 20 A

Maximum Power 600 W

DC ESR 38.4 mΩ

Maximum Stored Energy 3.75 W h

Usable Specific Power 3282.56 W/kg

Total SC Weight 0.8568 kg

with a nominal voltage of 3.7 V; therefore, only eight cells
connected in series are required. The battery parameters are
collected from the datasheet [19] and presented in table II.

The supercapacitor and battery parameters showcase the
difference between the storage devices. The maximum stored
energy is significantly higher in the battery, while the usable
specific power in the supercapacitor considerably exceeds the
battery; this corresponds with the assumptions made in the
introduction.

As the voltage requirement is set to 30 V, the supercapacitor
is designed with 12 cells in series. These cells are soldered di-
rectly to a PCB, with built-in balancing and measurement [20].
The passive balancing system is designed with a constantly
discharging current. As a cell charges to a higher voltage level
than the rest, the discharging current increases, causing the
pack to balance. Included in the PCB design is both current
and voltage measurement over the supercapacitor bank.

The supercapacitor is charged up to the required 30 V
with an EA-PS 2032-050 30V laboratory power supply. A
passive cell balancing circuit is designed, to prevent un-even
cell charging. This system balances the cells so that the cells
with higher voltage discharge faster than the other. The PCB
requires a 15 V DC supply to power the circuitry. For this
supply, the mascot 719 DC power supply is utilized.

The battery is design as two 4S2P packs connected in
series, equaling an 8S2P pack. The eight cells in series
produce a nominal voltage of 29.6 V, while the parallel cells
increase the capacity from 2.6 Ah to 5.2 Ah. Contrary to the
supercapacitor, each cell pair of the battery pack is connected
to a sensor PCB connected to a central controller PCB. These
cards are based on an open-source project designed by Stuart
Pittaway [20]. The sensor cards interact through standard
UART serial communication with a single control card. The
external sensor cards have implemented passive balancing.
Instead of constantly discharging the cells, they are only
discharged when the voltage level is too high. This action is
achieved by redirecting the current through a MOSFET when
required.

Emax =
0.5 · C · VR

2

3600
(1)

Pusable =
0.12 · VR

2

ESRDC ·Weight
(2)

Table II: Li-ion Battery Specifications

Type Value

Cells in Series 8

Cells in Parallel 2

Nominal Voltage 29.6 V

Maximum Current 10.4 A

Maximum Power 305.76 W

DC ESR 38.4 mΩ

Maximum Stored Energy 159.92 W h

Usable Specific Power 409.36 W/kg

Total Battery Weight 0.752 kg

The measured cell voltage is presented to the controller
PCB and can be displayed on a local network. This system
requires a 5 V DC supply via a USB charger to power the wifi
controller. However, the balancing circuit will work without
this supply. Due to the unique charging characteristic of the
lithium-ion battery, a constant-current constant-voltage charger
is obliged to charge the battery. For this purpose, a SkyRc
E680 smart charger is applied to charge the voltage to 30 V.

Equipment used during testing is found in table III. The
setup displayed in Fig. 2 consists of a programmable load, the
sources, and an oscilloscope. The load is an EL 9500-08 T
electronic DC load. With a maximum input voltage of 500 V
and a maximum input current of 8 A, it is thereby not limited
by the battery or supercapacitor at 30 V. The load features
a touchscreen and simple control settings, allowing for fast
and easy tests and use. The current mode is set to rectangular
function for the tests, which produces a square wave signal
for the input current.

Programmable Load Power supply 15 V

Oscillo-
scope

Supercapacitor

Multi-
meters

Power
supply
30 V

MCUBMS controller

BMS
sensors

Battery

Bat.
charger

Figure 2: Laboratory test equipment

Table III: Laboratory test equipment

Type Manufacturer Type
Programmable Load Elektro-Automatik 9500-08 T
Oscilloscope Keysight MSOX3014A
Diff. Probe Micsig DP10013
Current Probe Micsig CP2100A
Power Supply Elektro-Automatik EA-PS 2032-050
Power Supply Mascot 719
Battery Charger SkyRc E680
Supercapacitor Maxwell Technologies BCAP0360 P270 S18
Battery Samsung 18650

The controller can adjust the amplitude to reach the required

XI



current level and change the upper and lower pulse width. For
the test performed, both pulse width is 1 ms, and the current
amplitude increases to 2 A, 4 A, 6 A, and 8 A between each
test. The frequency of the pulse will therefore be 500 Hz, with
a duty cycle of 50%. This square wave signal is measured
with a CP2100A current probe connected to an MSOX3014A
oscilloscope from Keysight. For the voltage measurement, a
DP10013 differential probe is utilized. These probes have an
accuracy of 3% and 2%, respectively.

III. RESULTS

The current and voltage response by the supercapacitor from
the laboratory tests are plotted in Fig. 3. From Fig. 3a, the
current rises steadily from zero to each load current reference
of 2 A, 4 A, 6 A, and 8 A. The plot characteristic from
the currents are displayed in table IV, and are obtained from
Matlab®by utilizing the ”stepinfo” command. The rise time
is the period between 10% and 90% of the steady-state value
and shows the rate of current increase.
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Figure 3: Supercapacitor current and voltage during load
scenarios from physical model

However, it is essential to note the complete response from
time zero when the load is initially connected. The settling
time is the period between the initial step response and a value
within 2% of the steady-state value. The overshoot represent
the maximum percentage the response touches compared to
the steady-state value. The response of the supercapacitor
voltage presented in Fig. 3b shows the decreasing voltage
in response to the current increase. The voltage-drop has a
magnitude of 0.06 V, 0.16 V, 0.2 V, 0.26 V in response
to the load currents. The results from the battery test are
plotted in Fig. 4. The currents are stepped up from zero to
2 A, 4 A, 6 A, and 8 A, similar to the supercapacitor test.
The current transient response is shown in Fig. 4a, while the
voltage transient is shown in Fig. 4b. The plot characteristics
for the current response is listed in table. V. The voltage-
drop is 0.5 V, 1 V, 1.5 V, and 1.93 V, respectively to the
load currents. A comparison between the physical setup and
the modeled simulation in Matlab®/Simulink® is made. The
simulated battery and supercapacitor models utilized are part
of the Simscape electrical library.
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Figure 4: Battery current and voltage during load scenarios
from physical model
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Table IV: Plotinfo for supercapacitor current Fig. 3a

Type 2 A 4 A 6 A 8 A

RiseTime (µs) 10.086 8.2610 7.8208 7.6040

SettlingTime (µs) 52.172 14.547 33.007 24.746

Overshoot (%) 4.0666 4.0535 1.3407 0.7588

Table V: Plotinfo for battery current Fig. 4a

Type 2 A 4 A 6 A 8 A

RiseTime (µs) 11.313 9.5400 8.8175 8.4550

SettlingTime (µs) 21.345 17.980 17.820 24.640

Overshoot (%) 4.0330 4.0164 3.3649 1.7572

The simulated test models are designed to replicate the
physical laboratory tests. The current and voltage responses
from the simulated supercapacitor model are shown in Fig.
5a, and from the physical battery model are visualized in Fig.
6a. The supercapacitor and battery simulations in Figs. 5 and 6
show an almost instant current response. The voltage response
shows an instant voltage-drop for the supercapacitor
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Figure 5: Supercapacitor current and voltage during load
scenarios from simulation model

in Fig. 5b and decreases with 0.08 V, 0.16 V, 0.23 V and
0.31 V, respective to the load currents. The battery voltages
indicate a steady decreasing curve when the current increases,
visualized in Fig. 5b. The battery voltages decrease with
0.13 V, 0.26 V, 0.39 V and 0.53 V respective to the increasing
load currents. The load step is initiated at time zero for every
test and simulation.

IV. DISCUSSION

The physical supercapacitor and battery currents are fairly
similar at first glance, displayed in Fig. 3a and 4a. The battery
currents start to rise slightly before the supercapacitor currents
with an inconsiderably less steep curve. This results in a faster
rise time for the supercapacitor, visualized in table IV and V.
The supercapacitor 8 A load current show a sag after reaching
the reference value at 20 µs. This dip is neutralized shortly
outside the included time plot and indicates increasing times
for larger load. The same behavior is visualized for the battery
current with a slower response. This results in a small over-
shoot and a smaller sag. The characteristic of both the current
and voltage response displays an anomaly for the 2 A.
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Figure 6: Battery current and voltage during load scenarios
from simulation model
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As the load connects, the current rises almost immediately
from the initial pulse at time zero. This characteristic visu-
alizes a delayed response for larger currents. This delay is
explained by the load not responding fast enough. Contrary
to the currents, the difference in voltage response of the bat-
tery and the supercapacitor is more visually noticeable when
comparing Fig. 3b and 4b. The large difference in voltage-
drop explains this visual difference. For the 8 A load, the
supercapacitor stabilize at 300 mV lower and the battery closer
to 1.8 V. This is a significant contrast and originates from
the large power density difference. It will also depend on the
strength of the storage device. Moreover, the supercapacitor
is built with physically larger cells, and another improvement
to this experiment is to make the battery pack larger, with
more cells in parallel, thereby increasing the capacity. This
improvement will make the battery pack more robust and able
to withstand the load better. Both display the same transient
voltage-drop curve with an under-shoot and stabilize when the
current reaches the reference value. The shape of the curve
seemingly originates from the programmable DC-load.

Both physical storage devices are compared with simulated
results of matching parameters. The supercapacitor displays
the largest difference with the simulated supercapacitor’s in-
stant transient response during the same time window. This
will have a significant impact when taking a simulation into a
physical design. The voltage-drop is surprisingly similar with
300 mV. The simulated battery, however, indicates a less ideal
transient voltage response. Compared to the physical battery,
the voltage transients show no under-shoot and a significantly
smaller voltage-drop of 520 mV for the 8 A load. This
indicates a limitation of the simulated battery because of the
large contrast compared to the physical.

V. CONCLUSION

This paper compares the transient responses of both physical
and simulated supercapacitor and battery storage devices. The
contrasts are displayed through physical tests with a pro-
grammable DC-load, and simulations in Matlab®/Simulink®.

The results indicate a slightly faster electric response for the
physical supercapacitor compared to the battery. The physical
battery shows a significant voltage-drop compared to the
supercapacitor, originating from the supercapacitor’s bigger
power density. A significant difference in voltage transient
is visualized between both physical storage devices and their
respective simulations. The simulated storage devices show a
more consistent voltage-drop curve for all loads. Considera-
tions need to be made when taking simulations into physical
prototypes designed for DC-microgrids.
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Abstract—A comparison of the different transient responses of
a supercapacitor and a battery supporting a DC-bus is presented
in this paper. The main focus is to improve energy storage systems
designed to support DC-bus in a microgrid. This is done by
introducing a battery or a supercapacitor to act as a stabilization
element. The two elements will be compared through simulations
in Matlab/Simulink and physical components. Transient charac-
teristics from the simulations tends to give a faster response then
the physical components. A verification on the error between
ideal and physical are analysed based on both simulations and
measurements. The results will be presented in the full text paper.

Index Terms—Renewables, DC-bus, DC-microgrid, energy
storage, battery, supercapacitor, isolated bidirectional DC/DC
converter(IBDC),

I. RELEVANT CONFERENCE SCOPE

This paper fits well into the conference scopes of SEST2021
and the authors agree that the scope prioritization for this paper
is:

1) Energy Storage Systems and Technologies
2) Microgrids, Virtual Power Plants, and Aggregators
3) Renewable Energy and Distributed Generation

II. INTRODUCTION

This paper presents a comparison between battery and
supercapacitor transient response when supporting a DC-bus.
Energy storage together with renewable energy [1] production
and DC-microgrid is proving to be a necessity for many
applications [2]. A growing trend with wind [3] and solar
[4] is increasing the demand for energy storage with a low
response time [5] [6]. By combining different storage devices
the system will be able to respond faster to the DC-microgrids
demand. The faster storage can initially react before the main
storage responds. A paper on energy management of fuel-
cell, battery and supercapacitor is described in [7], where
measurements of the systems response time is included. Both
of the energy storage devices will deliver power to the DC-
bus through a isolated bidirectional DC/DC converter(IBDC).
The model configuration is shown in Fig. 1 and shows how
the two sources are connected. The main difference between
a battery and a supercapacitor is power density versus energy
density [8]. While a supercapacitor can release large amounts
of energy in a short period of time, a battery can store
larger amounts of energy [8]. This is why a supercapacitor

DC

DC

+-

Battery/
Supercapacitor

Isolated
Bidirectional
Converter

DC-bus

Figure 1: Model configuration for energy system

has high power density while a battery has high energy
density compared to each other. This paper will showcase the
difference in energy ability of the two sources through the
response of a dropping DC-bus by supporting the transient
period [8] [9].

III. RESULTS

Simulation results for both the supercapacitor and the bat-
tery can be seen in Fig. 2. Both the voltage and current
response is shown. The voltage level on the DC-bus is set
to 400V and the current load is 1.2 kW. The voltage drops
as a load increase is forced on the DC-bus. When it reaches
roughly 360V the energy system responds. The load current
decreases as the external energy storage takes time to respond.
Simulink simulation shows a small difference in the transient
response from a battery compared to supercapacitor. A voltage
overshoot can also be seen from the battery simulation. As
these are ideal components, a slightly different behavior from
physical components is expected. These will be analysed and
simulated in full paper. From the simulation it is expected that
the supercapacitor will have a faster response than the battery
with physical components [7]. A method based on the cost
benefit for optimal sizing is presented in [10]. The size of a
storage device is dependent on the required power and amount
of time the DC-bus has to be supported [10].

IV. CONCLUSION

With the responses from the Matlab/Simulink simulations,
the supercapacitor and battery shows signs of a different
transient response then the physical measurements. The error
between the physical and simulated model is shown through
this paper. More results from simulations and physical model
will be included in full paper.
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Figure 2: Transient response of battery and supercapacitor
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C.1. DUAL ACTIVE BRIDGE MODEL WITH SUPERCAPACITOR AND DC-BUS XIX

C.1.1 Setup with Supercapacitor, DAB and DC-bus
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C.1.2 MOSFET Gate Signals
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C.1.3 PI-Regulators for Phase-Shift
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C.1.4 Stateflow Diagram to Control the Simulation
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C.1.5 Displays and Control
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C.1.7 Scope Used During Simulation
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C.2 Supercapacitor Model with Passive Cell Balancing
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C.2.1 SC Cells Arrangement in Series, with Balancing, Current and Volt-

age Measurement
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C.2.2 Scopes for Voltage (Total and Cells) and Current (Input, Output and

Cells)
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C.2.3 Control of Discharge, Pre-charge and Charge for the Supercapaci-

tor
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C.3 Physical Supercapacitor Module GPIO Control for

the TMS320F28379D LaunchPad



XXX

D Parameters

D.1 Dual Active Bridge

D.1.1 Supercapacitor Block Parameters

Supercapacitor Block

Name Value

Rated Capacitance 5 F

ESR DC 230.3 mΩ

Rated Voltage 180 V

Series Capacitors 72

Parallel Capacitors 1

Operation Temperature 25 °C

Simscape Library Path: Simscape / Electrical / Specialized Power Systems / Electric Drives
/ Extra Sources



D.1. DUAL ACTIVE BRIDGE XXXI

D.1.2 MOSFET Block Parameters [65]

MOSFET Block

Name Value

FET resistance Ron 0.027Ω

Internal diode inductance Lon 0 H

Internal diode resistance Rd 0.005Ω

Internal diode forward voltage Vf 2 V

Snubber resistance Rs 10 kΩ

Snubber capacitance Cs inf F

Simscape Library Path: Simscape / Electrical / Specialized Power Systems / Fundamental
Blocks / Power Electronics

D.1.3 Linear Transformer Block Parameters

Linear Transformer Block

Name Value

Nominal Power Pn 2000 W

Frequency fn 250 kHz

Winding 1 Voltage V1 180 V

Winding 1 Resistance R1 0.0324Ω

Winding 1 Inductance L1 0.825 µH

Winding 2 Voltage V2 340 V

Winding 2 Resistance R2 0.1156Ω

Winding 2 Inductance L2 2.9438 µH

Magnetization Resistance Rm 8100Ω

Magnetization Inductance Lm 0.0051565 H

Turn Ratio 9:17

Simscape Library Path: Simscape / Electrical / Specialized Power Systems / Fundamental
Blocks / Elements
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D.2 Supercapacitor

Maxwell Supercapacitor cell [31]

Ref: BCAP0360P270S18

Name Value

Rated Capacitance 360 F

Capacitance Tolerance Min/Max 0 / 20%

ESR DC Average/Max 2.9/3.2 mΩ

Rated Voltage 2.7 V

Maximum Leakage Current 0.75 mA

Maximum Stored Energy 0.36 Wh

Usable Specific Power 3.8 kW/kg



XXXIII

E Matlab® Source Code

E.1 Dual Active Bridge

E.1.1 Initializing Code for Variables Related to the Simulation

1 %Standard***************

2 Vref = 340;

3 Iref = -6.25;

4 f = 250000;

5 P = 1/f;

6 D = 50;

7 Vsc=180;

8 Power=2000;

9 Sample=1e-8;

10

11 cycledelay = 2;

12 Ts = cycledelay/f;

13 K = 0.03;

14 R_load=115.8;

15 L=19.5e-6;

16

17 % MOSFET parameters**************

18 ron_mosfet_pri = 0.03;

19 ron_mosfet_sec = 0.03;

20 ron_body_diode_pri = 0.005;

21 ron_body_diode_sec = 0.005;

22 vf_body_diode_pri = 4.5;

23 vf_body_diode_sec = 4.5;

24 }
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E.2 Supercapacitor

E.2.1 Code for the Power/Phase-shift Graph

1 clc

2 clear

3

4 %This code plots the voltage/power graph

5 syms L P n V1 V2 F PHI;

6

7 n = 340/180;

8 V1 = 180;

9 V2 = 340;

10

11 F = 250000;

12 L =28.9e-6;

13

14 PHI = linspace(-pi, pi, 110);

15

16 figure

17 hold on

18

19 V1 = 180 ;

20 P = (n/pi*V1*V2*PHI.*(pi-abs(PHI)))/(2*pi*F*L);

21 plot(PHI,P)

22

23 V1 = V1 -30 ;

24 P = (n/pi*V1*V2*PHI.*(pi-abs(PHI)))/(2*pi*F*L);

25 plot(PHI,P)

26

27 V1 = V1 -30 ;

28 P = (n/pi*V1*V2*PHI.*(pi-abs(PHI)))/(2*pi*F*L);

29 plot(PHI,P)

30

31 V1 = V1 -30 ;

32 P = (n/pi*V1*V2*PHI.*(pi-abs(PHI)))/(2*pi*F*L);

33 plot(PHI,P)

34

35 xlabel('Phase Shift')

36 ylabel('Power')

37 title('Phase shift')

38 legend('V1=180','V1=150','V1=120','V1=90', 'Location', 'best')



XXXV

F Integrated Supercapacitor System De-

sign

F.1 Supercapacitor Circuit Diagram
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F.2 Component Layout

;



LXIV APPENDIX F. INTEGRATED SUPERCAPACITOR SYSTEM DESIGN

F.3 Top Copper Layer



F.4. TOP MIDDLE COPPER LAYER LXV

F.4 Top Middle Copper Layer



LXVI APPENDIX F. INTEGRATED SUPERCAPACITOR SYSTEM DESIGN

F.5 Bottom Middle Copper Layer



F.6. BOTTOM COPPER LAYER LXVII

F.6 Bottom Copper Layer



LXVIII APPENDIX F. INTEGRATED SUPERCAPACITOR SYSTEM DESIGN

F.7 3D Diagram



LXIX

G Supercapacitor Module Component List

(Mouser)



SUPERCAP MODULE PROJECT
Mouser No Mfr. No Manufacturer
621-DFLZ6V2-7 DFLZ6V2-7 Diodes Incorporated
710-760390015 760390015 Wurth Elektronik
71-RCS120651R0FKEA RCS120651R0FKEA Vishay
660-RN73H2TD1001B10 RN73H2BTTD1001B10 KOA Speer
667-ERA-8AEB5233V ERA-8AEB5233V Panasonic
660-RN73R2BTD1003B25 RN73R2BTTD1003B25 KOA Speer
660-RN73H2BTD1002B10 RN73H2BTTD1002B10 KOA Speer
660-RN732BTTD4000B25 RN732BTTD4000B25 KOA Speer
660-RN732BTTD5972B50 RN732BTTD5972B50 KOA Speer
284-AP75025RF AP750 25R F Ohmite
603-RT1206BRD0712RL RT1206BRD0712RL Yageo
71-CRCW12063R16FKEA CRCW12063R16FKEA Vishay
726-BSZ024N04LS6ATMA BSZ024N04LS6ATMA1 Infineon
595-SN6501DBVR SN6501DBVR Texas Instruments
604-APTD3216LSYCK APTD3216LSYCK Kingbright
710-691322310006 691322310006 Wurth Elektronik
651-1717017 1717017 Phoenix Contact
538-15-47-7512 15-47-7512 Molex

595-UCC21220AD UCC21220AD Texas Instruments

595-SN74HCS4075QDRQ1 SN74HCS4075QDRQ1 Texas Instruments
595-OPA197IDR OPA197IDR Texas Instruments
998-MIC5225-3.3YM5TR MIC5225-3.3YM5-TR Microchip
511-LD2985BM50 LD2985BM50R STMicroelectronics

595-ISO7760FQDBQQ1 ISO7760FQDBQQ1 Texas Instruments
755-BD4827G-TR BD4827G-TR ROHM Semiconductor
595-AMC1100DUBR AMC1100DUBR Texas Instruments
585-ALD910017SALI ALD910017SALI Advanced Linear Devices
810-MMZ1608B102CTA00 MMZ1608B102CTA00 TDK
78-RS07D-HM3-08 RS07D-HM3-08 Vishay
771-PMEG2005EJ115 PMEG2005EJ,115 Nexperia
771-PESD15VL2BT-T/R PESD15VL2BT,215 Nexperia
512-FSV10100V FSV10100V ON Semiconductor
723-BCAP0360P270S18 BCAP0360 P270 S18 Maxwell Technologies
80-C1206C226K8R7210 C1206C226K8RAC7210 KEMET
80-C1206C106J3RAUTO C1206C106J3RACAUTO KEMET
80-C1206C225J4RECLR C1206C225J4REC7210 KEMET
80-C1206C105J3R C1206C105J3RACTU KEMET

LXX APPENDIX G. SUPERCAPACITOR MODULE COMPONENT LIST (MOUSER)



80-C1206C104F5JACTU C1206C104F5JAC7800 KEMET

80-C1206C103F3GECAUT C1206C103F3GECAUTO KEMET
80-C1206C471F5G C1206C471F5GACTU KEMET
77-VJ12A100V431J VJ1206A431JXBAT Vishay
80-C1206C331F3HACTU C1206C331F3HACTU KEMET
581-12063A101FAT2A 12063A101FAT2A AVX
651-1716922 1716922 Phoenix Contact
910-TS391AX250 TS391AX250 Chip Quik
517-3365/08100 3365/08100 3M
517-3365/12 3365/12-100 3M
517-3365/16-100 3365/16-100 3M
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Description 
Zener Diodes 1.0W 6.2V
Power Transformers MID-SN6501 TI Driver Toroid .475mH 3.3VDC
Thick Film Resistors - SMD 0.5watt 51ohms 1% 100ppm
Thin Film Resistors - SMD 1K    OHM  .1%  10PPM
Thin Film Resistors - SMD 1206 523Kohm 25ppm 0.1% AEC-Q200
Thin Film Resistors - SMD 100K ohm 0.1% 25 ppm
Thin Film Resistors - SMD 10K   OHM  .1%  10PPM   1/4W
Thin Film Resistors - SMD 400Ohm,1206,0.1%,25p pm,125mW,150V
Thin Film Resistors - SMD 1206 59K7 Ohms 0.1% 50PPM
Thick Film Resistors - SMD 25 ohm 1% 50W Power Resistor
Thin Film Resistors - SMD 1/4W 12 ohm .1% 25ppm
Thick Film Resistors - SMD 1/4watt 3.16ohms 1%
MOSFET TRENCH <= 40V
Power Management Specialised - PMIC Transformer Driver for Iso Power Supply
Standard LEDs - SMD 1206 Dome Lens LED Yellow- 590nm
Pluggable Terminal Blocks WR-TBL Terminal block - PCB Header - THT
Pluggable Terminal Blocks PC 6/ 3-G1-7,62 BK
Headers & Wire Housings CGrid VT Shrd Hdr w/Pg TIN 12Ckt
Gate Drivers 4-A/6-A, 3.0-kVRMS dual-channel isolated gate driver with 5-V UVLO 16-
SOIC -40 to 125
Logic Gates Automotive 3-ch, 3-input, 2-V to 6-V low power OR gates with Schmitt-
Trigger inputs 14-SOIC -40 to 125
Precision Amplifiers 36-V, Precision Rail-to-Rail
LDO Voltage Regulators High Vin, Low Iq Regulator
LDO Voltage Regulators 5.0V 150mA Positive
Digital Isolators Automotive, robust EMC, six-channel, 6/0, reinforced digital isolator 
16-SSOP -40 to 125
Supervisory Circuits CMOS DETEC VOLT 2.7V
Isolation Amplifiers 4.25kV PEAK Iso Amp
MOSFET Dual SAB MOSFET ARRAY VT=1.70V
Ferrite Beads 1000 OHM 25%
Rectifiers 1.4A 200V
Schottky Diodes & Rectifiers SCHOTTKY 20V 0.5AF
ESD Suppressors / TVS Diodes 15V BIDIRECTION ESD DUAL
Schottky Diodes & Rectifiers 10 Amp 100V Schottky Rectifier
Supercapacitors / Ultracapacitors 2.7V, 360F, snap-in
Multilayer Ceramic Capacitors MLCC - SMD/SMT 10V 22uF X7R 1206 10%
Multilayer Ceramic Capacitors MLCC - SMD/SMT 25V 10uF X7R 1206 5% AEC-Q200
Multilayer Ceramic Capacitors MLCC - SMD/SMT 16V 2.2uF X7R 1206 5%
Multilayer Ceramic Capacitors MLCC - SMD/SMT 25V 1uF X7R 1206 5%
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Multilayer Ceramic Capacitors MLCC - SMD/SMT 50V 0.1uF U2J 1206 1%

Multilayer Ceramic Capacitors MLCC - SMD/SMT 25V 0.01uF C0G 1206 1% AEC-Q200
Multilayer Ceramic Capacitors MLCC - SMD/SMT 50V 470pF C0G 1206 1%
Multilayer Ceramic Capacitors MLCC - SMD/SMT 1206 430pF 100volts C0G 5%
Multilayer Ceramic Capacitors MLCC - SMD/SMT 25V 330pF X8R 1206 1%
Multilayer Ceramic Capacitors MLCC - SMD/SMT 25V 100pF C0G 1206 1%
Pluggable Terminal Blocks LPC 6/ 3-ST-7,62
Solder Paste No-Clean 250g Sn63/Pb37 T4
Flat Cables .050 8C RND 28AWG 100 FT
Flat Cables 12/CAB/RC/TYP1/ 28AWG/STR/.050"/100'
Flat Cables .050" 16C ROUND 28AWG STD GRAY
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RoHS Lifecycle Order Qty. Price (NOK) Ext.: (NOK)
RoHS Compliant 1 kr 4,27 kr 4,27
RoHS Compliant 1 kr 17,20 kr 17,20
RoHS Compliant By Exemption 3 kr 2,88 kr 8,64
RoHS Compliant New Product 21 kr 10,20 kr 214,20
RoHS Compliant By Exemption 1 kr 5,76 kr 5,76
RoHS Compliant 2 kr 6,74 kr 13,48
RoHS Compliant New Product 60 kr 8,83 kr 529,80
RoHS Compliant 36 kr 5,88 kr 211,68
RoHS Compliant 4 kr 6,12 kr 24,48
RoHS Compliant By Exemption 1 kr 38,52 kr 38,52
RoHS Compliant By Exemption 2 kr 4,97 kr 9,94
RoHS Compliant By Exemption 1 kr 0,876 kr 0,88
RoHS Compliant 3 kr 14,52 kr 43,56
RoHS Compliant 1 kr 17,92 kr 17,92
RoHS Compliant 13 kr 2,29 kr 29,77
RoHS Compliant 1 kr 14,11 kr 14,11
RoHS Compliant 2 kr 20,70 kr 41,40
RoHS Compliant 1 kr 29,66 kr 29,66

RoHS Compliant 2 kr 30,90 kr 61,80

RoHS Compliant New Product 2 kr 4,37 kr 8,74
RoHS Compliant 12 kr 12,98 kr 155,76
RoHS Compliant 1 kr 3,84 kr 3,84
RoHS Compliant 1 kr 5,76 kr 5,76

RoHS Compliant New Product 2 kr 45,32 kr 90,64
RoHS Compliant 12 kr 3,74 kr 44,88
RoHS Compliant 1 kr 40,89 kr 40,89
RoHS Compliant 6 kr 48,62 kr 291,72
RoHS Compliant 1 kr 0,876 kr 0,88
RoHS Compliant New Product 3 kr 3,49 kr 10,47
RoHS Compliant 1 kr 4,10 kr 4,10
RoHS Compliant 1 kr 3,92 kr 3,92
RoHS Compliant 12 kr 5,19 kr 62,28
RoHS Compliant 12 kr 101,35 kr 1 216,20
RoHS Compliant 1 kr 21,32 kr 21,32
RoHS Compliant 1 kr 7,59 kr 7,59
RoHS Compliant 1 kr 2,88 kr 2,88
RoHS Compliant 6 kr 11,12 kr 66,72
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RoHS Compliant 50 kr 16,07 kr 803,50

RoHS Compliant 5 kr 19,06 kr 95,30
RoHS Compliant 1 kr 16,38 kr 16,38
RoHS Compliant By Exemption 1 kr 2,88 kr 2,88
RoHS Compliant 1 kr 3,75 kr 3,75
RoHS Compliant 5 kr 5,84 kr 29,20
RoHS Compliant 2 kr 59,64 kr 119,28

1 kr 479,36 kr 479,36
RoHS Compliant 1 kr 273,57 kr 273,57
RoHS Compliant 1 kr 347,52 kr 347,52
RoHS Compliant 1 kr 396,55 kr 396,55
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