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Rigorous molecular characterization of biological systems has uncovered a variety of

gene variations underlying normal and disease states and a remarkable complexity in

the forms of RNA transcripts that exist. A recent concept, competitive endogenous

RNA, suggests that some non-coding RNAs can bind to miRNAs to modulate their role

in gene expression. Here, we used several platforms, integrating mRNA, non-coding

RNAs and protein data to generate an RNA-protein network that may be dysregulated

in human glioblastoma multiforme (GBM). Publicly available microarray data for mRNA

and miRNA were used to identify differentially expressed miRNAs and mRNAs in

GBM relative to non-neoplastic tissue samples. Target miRNAs were further selected

based on their prognostic significance, and the intersection of their target gene set

with the differentially expressed gene set in Venn diagrams. Two miRNAs, miR-637

and miR-196a-5p, were associated with poor and better prognosis, respectively,

in GBM patients. Non-coding RNAs, ENSG00000203739/ENSG00000271646 and

TPTEP1, were predicted to be miRNA target genes for miR-637 and miR-196a-5p

and positively correlated with the selected mRNA, CYBRD1 and RUFY2. A

local protein interaction network was constructed using these two mRNAs.

Predictions based on the ENSG00000203739/ENSG00000271646-miR-637-CYBRD1

and TPTEP1-miR-196a-5p-RUFY2 regulation axes indicated that the two proteins may

act as an oncogene and tumor suppressor, respectively, in the development of GBM.

These results highlight competitive endogenous RNA networks as alternative molecular

therapeutic targets in the treatment of the disease.
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INTRODUCTION

Glioblastomamultiforme (GBM) is themost aggressive central nervous system tumor in adults, and
the prognosis is bleak. Conventional therapies, including surgery, radiotherapy, and chemotherapy
with temozolomide have not resulted in significant improvement in the survival outcomes of
patients with GBM. Median overall survival is 15–23 months, and 5-year survival is <6% (1).
Causes of poor prognosis include invasive tumor growth in an essential organ that cannot be
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thoroughly removed, the presence of the blood-brain barrier
(BBB), their intrinsic resistance to the induction of cell death,
tumor heterogeneity and a complex pathogenesis. The basis for
this behavior is the simultaneous corruption ofmany genes which
results in the lack of a single, targetable oncogenic pathway, and
thus, significant challenges in systemic therapy.

Answers for treatment are thought to be buried in the
molecular datasets accumulating since 2006 when The Cancer
Genome Atlas (TCGA) team, sponsored by the National Cancer
Institute (NCI), published DNA copy number, gene expression,
and DNA methylation analysis for 206 GBMs. Rigorous analysis
of these data has led to some critical insights in the development
of human gliomas. GBMs can now be classified as one of
four molecular subtypes based on transcriptome expression
data: classical, neural, mesenchymal, and proneural. Subsequent
analysis of the methylation status of DNA promoter regions in
272 GBMs revealed two major glioma-CpG island methylation
phenotypes (glioma-CpG island methylator phenotype, or G-
CIMP and non-G-CIMP types). Finally, a total 1,122 gliomas
samples were divided into IDH mutated and wild type tumors
based on analysis of the multi-dimensional histological data.

Non-coding RNAs have also become part of the story.
A collection of dysregulated lncRNAs, including hundreds of
candidate onco- and tumor-suppressor lncRNAs, have been
identified in the context of 14 different tumor types (2). Recurrent
hypomethylation of 1,006 lncRNA genes in cancer, including
EPIC1 (epigenetically-induced lncRNA1) has also been described
(3). EPIC1 promotes cell-cycle progression by interacting with
MYC, enhancing luminal B breast cancer cell growth in vitro and
in vivo.

The expanding landscape for RNA transcript types has
triggered additional theories about gene regulation. A recent
concept, competitive endogenous RNA (ceRNA), represents a
novel regulatory mechanism between non-coding and coding
RNAs. The theory suggests that lncRNAs, cirRNAs, and
pseudogenes can act as “molecular sponges” to compete
for miRNAs and effectively modulate their functions. The
competition for miRNAs is mediated by miRNA binding sites
or miRNA response elements (4). This creative hypothesis is
supported by an increasing number of experimental results.

With the development of high-throughput gene sequencing
and chip technology, analyzing molecular data has become
an extremely meaningful but challenging task. An increasing
number of R language packages and bioinformatics analysis
tools have become more user friendly for a broader range of
investigators. Here, we used some of these tools to analyze
miRNA and mRNA datasets to determine where they might
converge in the development of human GBM. Our results led us
to two miRNAs, miR-196a-5p and miR-637, their target mRNAs
encoding a putative oncogene and tumor suppressor, and non-
coding RNAs regulating the miRNA activity. We show how a
fundamental biological question, which genes and miRNAs are
differentially expressed in human GBM, can provide the basis
for the construction of a molecular network including RNAs and
proteins that might drive aspects of GBM development. Such
“excavation” of molecular datasets is the key for the advancement
of novel therapies in the treatment of the disease.

MATERIALS AND METHODS

Microarray Data
MicroRNA expression profiles in GSE25631 from the publicly
available NCBIGEOdatabase, which had been collected using the
Illumina GPL8179 platform (Human v2 microRNA Expression
Beadchip), were analyzed. The GSE25631 dataset includes
82 primary GBM surgical specimens and 5 non-neoplastic
brain tissue samples from areas surrounding arteriovenous
malformations as controls. mRNA expression profiles were
obtained from the GSE4290 dataset (5), which is based on
the Affymetrix GPL570 platform (HG U133 Plus 2.0 Array).
The GSE4290 dataset includes 79 GBM samples and 23 non-
neoplastic brain tissue samples from epilepsy patients as controls.
To validate our results, GSE90604 andGSE65626, twomicroRNA
expression datasets, were also analyzed.

Analysis to Identify Differentially Expressed
microRNAs and Differentially Expressed
Genes (DEGs)
Analysis using GEO2R, a webtool available from the NCBI,
was performed to detect differentially expressed microRNAs
and DEGs between GBM and non-neoplastic control samples.
Details of the R script of GEO2R are provided in the
Supplementary Material. Adjusted P-values were used to reduce
the false positive rate using the Benjamini and Hochberg false
discovery rate method by default (6, 7). P < 0.05 and |logFC|≥ 2
were set as the cutoff values.

Identification of Target Genes of Candidate
microRNAs
Cytoscape, open-source software for the integration of molecular
interaction network data, was used to visualize the relationship
between microRNAs and differentially expressed genes (DEGs).
CyTargetLinker (8), a plug-in for Cytoscape, was used to identify
microRNA-target genes (MTGs), based on experimentally
validated microRNA-target interaction (MTIs) files stored
in miRTarBase (9), a database containing miRNA-target
interactions. In general, the collected MTIs in miRTarBase have
been validated experimentally using luciferase assays, western
blots, microarrays and next-generation sequencing.

GO and KEGG Pathway Enrichment
Analysis for MTGs of Candidate
microRNAs and DEGs
Kyoto Encyclopedia of Genes and Genomes (10) (KEGG)
pathway analysis was performed to identify potential functions
of the MTGs of the candidate microRNAs and DEGs. Gene
ontology analysis (GO), a common useful method for annotating
genes and identifying characteristic biological attributes,
including biological processes, molecular functions, and cellular
components, for high-throughput genome or transcriptome data
(11), was performed on DEGs. Metascape (http://metascape.
org), a web-based online bioinformatics resource that aims to
provide tools for the functional interpretation of large lists of
genes or proteins (12), was also used to identify function of
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MTGs and to conduct GO and KEGG pathway enrichment
(13) on DEGs derived in our analysis. The enriched KEGG
pathways of MTGs were visualized using ClueGO+Cluepedia,
a plug-in that visualizes the non-redundant biological terms for
large clusters of genes in a functionally grouped network (14).
For DEGs, visualization of the biological processes, molecular
functions, cellular components and pathways was performed
using Excel and R ggplot2 packages.

Identification of Hub Genes Among DEGs
Protein names encoded by DEGs were imported into STRING
(https://string-db.org/) to obtain a protein-protein interaction
(PPI) network (15). CentiScaPe 2.2 was used to analyze nodes in
the network (16). Genes with the highest degrees of connectivity
were selected as hub genes. Analysis of the core genes can
represent whether the chip results are consistent with GBM.

Identification of Candidate Genes
Regulated by DEGs and MTGs
Venn diagrams (17) were used to identify the intersection
between miR-196a-5p target and GBM down-regulated genes, as
well as between miR-637 target and GBM up-regulated genes.
Gene Expression Profiling Interactive Analysis (GEPIA; http://
gepia.cancer-pku.cn/index.html), a newly developed interactive
web server, was used to analyze differences in expression between
tumor and normal samples using RNA sequencing data (18). A
boxplot was generated to visualize the relationship.

Identification of Target Non-coding RNAs
of Candidate microRNAs
Analysis using LncBase v.2 was performed to predict the target
non-coding RNAs of differentially expressedmicroRNAs in GBM
(19). To acquire high confidence target non-coding RNAs, the
threshold was set at > 0.9, and the tissue was confined to
brain. Target non-coding RNAs of candidate genes, including
lncRNAs, cirRNAs, and pseudogenes, were chosen based on a
positive relationship with candidate genes in the data collected
from TCGA GBMs on the Tanric website (20). The expression of
target non-coding RNAs and candidate genes was set to a positive
correlation above moderate levels (correlation coefficient > 0.4,
P-value < 0.01). The intersection between candidate genes and
predicted target non-coding RNAs was made.

PPI Network Extension and Establishment
of the Competitive Endogenous RNA
(ceRNA) Hypothesis
Protein names encoded by candidate genes were imported into
STRING, a database of known and predicted protein-protein
interactions (https://string-db.org/) (21). PPI networks were
extended until the proteins from our analysis connected with
each other. Candidate microRNA and non-coding RNAs were
then mapped to the network.

RESULTS

Identification of Differentially Regulated
Candidate miRNAs in GBM
Analysis of the GSE25631 dataset yielded a total of 67
differentially expressed miRNAs (P < 0.05 and |logFC| ≥ 2)
between GBM and non-neoplastic brain. Of these miRNAs, 27
were up-regulated and 40 were down-regulated in GBM relative
to control samples (Figure 1A). We examined the prognostic
value of 10 miRNAs with the most significant fold changes in
expression (Table 1), using OncoLnc, a tool for interactively
exploring survival correlations coupled to expression data for
mRNAs, miRNAs, or lncRNAs. Two of these miRNAs, miR-
196a-5p and miR-637, were associated with overall survival (OS;
Figures 1B,C). High expression ofmiR-196a-5p in GBMs (HR=

0.196, P = 0.000795) was associated with worse OS in patients
(Figure 1D), while high expression ofmiR-637 (HR=−0.634, P
= 0.045) was associated with better OS in patients (Figure 1E).
Because the statistical difference in OS using miR-637 was not
significant, we selected multiple cutoff values for verification. The
results are shown in Supplementary Figure 1. The expression of
miR-196-5p andmiR-637 was also verified in the TCGA database.
The expression of miR-196-5p was consistent with the results
obtained with the GSE25631 dataset. However, compared with
the control group,miR-637 was not significantly reduced in GBM
from the TCGA (Supplementary Figures 2A,B).

KEGG Enrichment Analysis Links
miR-196-5p and miR-637 to Pathways
Involved in Cancer
To understand the possible function of miR-196-5p and miR-
637 in the development of GBM, KEGG pathway enrichment
analysis of their target genes was performed. KEGG analysis
was performed on the miR-196-5p and miR-637 target genes
(n = 356) identified using Cytoscape (Figure 1F). The results
revealed these genes to be associated with several pathways
involved in disease development, including small cell lung cancer,
proteoglycans in cancer, Parkinson’s disease, viral carcinogenesis,
prostate cancer, chronic myeloid leukemia, the Hedgehog
signaling pathway, glioma, microRNAs in cancer, and the cell
cycle (Figure 1G). We further validated the results using the
open-source pathway database REACTOME (https://reactome.
org/) (Supplementary Figures 3A,B) (22).

Identification of Differentially Expressed
Genes (DEGs) and Enrichment Analysis
To identify differentially expressed genes in GBM relative to
non-neoplastic brain, we performed analysis on the GSE4290
dataset containing mRNA expression profiles (5). A total
of 1,170 differentially expressed genes were detected; 397
were up-regulated and 773 were down-regulated in GBM
samples relative to non-neoplastic brain tissue (Figure 2A).
To associate function with the DEGs, we performed GO
(Figure 2B) and KEGG pathway analysis (Figure 2C). DEGs
were found to be enriched in biological processes (BP, Figure 2B)
involving the regulation of neurogenesis, plasma membrane
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FIGURE 1 | Identification of candidate miRNAs and prediction of their target genes. (A) Volcano plot compiled using expression data obtained from the publicly

available dataset GSE25631. Red and blue dots represent up-regulated and down-regulated differentially expressed microRNAs, respectively (P < 0.05, |logFC| ≥ 2).

(B) The expression of miR-196a-5p and (C) miR-637 in GBM relative to non-neoplastic brain tissue samples. (D) Prognostic value of miR-196a-5p (E) and miR-637 in

GBM based on the TCGA database. (F) Predicted target genes of miR-196-5p and miR-637. (G) KEGG pathway enrichment analysis of target genes of miR-196-5p

and miR-637. Figures in (F,G) were designed using the open source software Cytoscape 3.6.1 and its plugin or app CyTargetLinker, ClueG+Cluepedia. Data are

shown as the mean ± standard deviation. *P < 0.05; **P < 0.01 vs. control samples.
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TABLE 1 | Top 10 differentially expressed miRNAs in GSE25631.

miRNA_ID P-value Log2FC

hsa-miR-196a-5p 4.38E-04 5.599188

hsa-miR-558 6.37E-03 5.553814

hsa-miR-144 1.19E-03 5.045044

hsa-miR-106a 9.89E-03 4.979875

hsa-miR-637 2.93E-02 −4.14014

hsa-miR-876-3p 9.70E-05 −3.97221

hsa-miR-1224-5p 5.50E-06 −3.78824

hsa-miR-518e 4.09E-02 3.611791

hsa-miR-138-2-3p 6.31E-06 −3.54098

hsa-miR-203 2.13E-03 −3.45736

bounded cell projection morphogenesis, cell morphogenesis
involved in neuron differentiation, neurotransmitter secretion,
and regulation of neurogenesis. They were also enriched in
molecular functions (MF, Figure 2B) involving ion channel
activity, protein kinase activity, and cell adhesion molecule
binding. Based on cellular components (CC, Figure 2B), DEGs
were found to be located in the synapse, the vesicle membrane,
the perinuclear region of the cytoplasm, and the extracellular
matrix. KEGG pathway enrichment analysis linked DEGs to
processes involving the synaptic vesicle cycle, pathways in cancer,
PI3K-Akt signaling, proteoglycans in cancer, and Ras signaling.
These results suggest that these DEGs may play a role in
promoting tumor progression through their function.

Analysis of DEGs Interaction Network and
Acquisition of Hub Genes
Using the STRING protein databases, we generated a PPI
network for the top 20 hub genes with the highest degrees of
connectivity (Figure 2D). The top 20 included genes known to
promote the development of human cancer. CDK1, CCNB2, and
CDC20 (23) are involved in the regulation of the cell cycle. EGFR
and VEGFA have been reported to promote GBM proliferation
and invasion. TOP2A, BUB1, NDC80, and TTK participate in
mitosis. BIRC5 is a member of the inhibitor of apoptosis (IAP)
gene family, which prevents apoptotic cell death. Finally,HMMR
encodes a protein involved in cell motility.

Identification of Candidate Genes
Regulated by miR-196-5p/miR-637
To identify DEGs that may be regulated by miR-196-5p/miR-
637, we generated a venn diagram illustrating the intersection
between the target genes of miR-196-5p/miR-637 and the DEGs
(Figure 3A). Among the genes appearing in the intersection of
the two datasets were CYBRD1 and RUFY2 (Table 2). Expression
levels were high and low for CYBRD1 and RUFY2, respectively,
in GBM, corresponding with activity as a putative oncogene or
tumor suppressor gene. The expression of these two genes was
also related to the OS of patients (Figures 3B,C). High expression
of CYBRD1 was related to poor survival whereas high expression
of RUFY2 was associated with better survival. The differential

mRNA expression of CYBRD1 and RUFY2 was consistent with
results obtained using the expression data from the TCGAGBMs
(Figures 3D,E). We also analyzed the relationship between the
expression of CYBRD1/RUFY2 and MGMT/IDH status within
TCGA GBM samples. Neither mRNA exhibited significant
differences between methylated/unmethylatedMGMT and wild-
type/mutant IDH in tumors (Supplementary Figure 4). Finally,
a heatmap based on mRNA expression data of intersection genes
from GSE4290 illustrates the differential expression of the two
genes between GBM and non-neoplastic samples (Figure 3F).

Identification of Non-coding RNAs
Involved in the Regulation of
miR-196-5p/miR-637 and CYBRD1/RUFY2
To determine whether any non-coding RNAs might be
involved in the regulation of CYBRD1 and RUFY2, we
generated a diagram to reveal the intersection between predicted
target ncRNAs of miR-196a-5p/miR-637 and non-coding RNAs
which are positively related to these two genes (Figure 3G).
Three ncRNAs, ENSG00000203739, ENSG00000271646, and
ENSG00000100181, emerged from the analysis, and high
expression of ENSG00000203739 and ENSG00000271646 was
associated with poor prognosis in GBM using Log-Rank
models (Figures 3H,I). The survival curve for the third ncRNA,
ENSG00000100181, was only statistically significant in the Cox
model for GBM and low grade glioma (Figures 3J,K).

The official symbol of ENSG00000100181 is TPTEP1, which is
also known as psiTPTE22. psiTPTE22-HERV has been reported
to be epigenetically silenced by DNA methylation in cancers
of the kidney, liver, lung, and stomach (24–26). We were
therefore interested in the possibility that TPTEP1 expression
might differ on the basis of GBM molecular subtype. Using
the TCGA database, we found expression of TPTEP1 to be
significantly higher in the G-CIMP subtype relative to the
other molecular subtypes. As patients with G-CIMP subtype
tumors in general have a better prognosis, low-expression of
TPTEP1 in non-G-CIMP subtypes may be consistent with a
role as a tumor suppressor gene (Figure 3L). Therefore, we
believe the role of TPTEP1 in the pathogenesis of GBM warrants
further investigation.

A Competitive Endogenous RNA (ceRNA)
Regulation Network Involving TPTEP1,
CYBRD1, and RUFY2 Built in GBM
Using the String database, we constructed a local protein network
between the proteins CYBRD1 and RUFY2 (Figure 4). We then
integrated the ncRNAs. In this network, high-expression
of ENSG00000203739/ENSG00000271646 was predicted to
promote GBM proliferation and invasion by suppressing
miR-637 which leads to increased expression of CYBRD1, a
putative oncogene. Loss of TPTEP1 however leads to increased
levels of miR-196a-5p/to adsorpt/bind to miR-196a-5p. When
overexpressed, miR-196a-5p impedes translation of RUFY2, a
putative tumor suppressor protein. Thus, dysregulation of these
ncRNAs can lead to progression of GBM through gain and loss
of the CYBRD1 and RUFY2, respectively.
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FIGURE 2 | GO function and KEGG pathway enrichment analysis of DEGs and hub genes in GSE4290. (A) Volcano plot derived using the data in GSE4290. Red and

blue dots represent up-regulated and down-regulated DEGs, respectively (P < 0.05 plus |logFC| ≥ 2). (B) Statistically enriched biological processes, molecular

functions, and cellular components identified using GO function analysis of the DEGs. (C) Top 30 enriched pathways identified using KEGG pathway analysis of DEGs

in GSE4290. (D) Top 20 hub genes predicted from the DEGs. These hub genes were representative genes involved in occurrence and progression of GBM. The figure

in (D) was designed using the open source software Cytoscape3.6.1 and its plugin or the app STRING.

The local PPI network also included the proteins EFNA5,
EFNB2, ACTR2, EPHA3. Many of these proteins are implicated
in GBM development. EFNA5, for example, is a member
of the ephrin gene family, which participates in late stage
nervous system development and differentiation. EFNB2 plays
an important role in physiological and pathological angiogenesis,

and its role in tumor vessel development has been extensively
studied. EFNB2 has been shown to mediate perivascular invasion
of glioblastoma stem-like cells (27). ACTR2 is known to be a
major constituent of the ARP2/3 complex, which is located at the
cell surface and is essential for cell shape and motility through
lamellipodial actin assembly and protrusion. Overexpression of
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FIGURE 3 | Identification of candidate genes and construction of a ceRNA network. (A) Venn diagrams showing the intersection between predicted target genes of

miR-196-5p/miR-637 and DEGs. Kaplan-Meier plots showing the prognostic value of (B) CYBRD1 and (C) RUFY2 in GBM based on the TCGA database. The

expression of (D) CYBRD1 and (E). RUFY2 in GBM relative to non-neoplastic brain tissue samples in the TCGA database. (F) Heatmap displaying differential

expression of intersecting genes between the GBM and control groups in GSE4290. (G) Target non-coding RNAs of miR-196-5p and miR-637. Kaplan-Meier plots

showing the prognostic value of (H) ENSG00000203739 and (I) ENSG00000271646 in GBM, and ENSG00000100181 (TPTEP1) in (J) GBM and (K) LGG based on

the TCGA database. (L) Expression of TPTEP1 in GBM molecular subtypes based on the TCGA database. The figure in (A) was designed using the open source

software Cytoscape3.6.1. Data are shown as the mean ± standard deviation. *P < 0.05; **P < 0.01; ***P < 0.001 vs. control samples.
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TABLE 2 | Intersection of non-coding RNAs involved in the regulation of miR-196-5p/miR-637 and CYBRD1/RUFY2.

MicroRNA Prediction

score

Non-coding RNA Gene Correlation coefficient P-value

hsa-miR-637 1 ENSG00000203739 CYBRD1 0.401 3.17E-07

hsa-miR-637 0.999 ENSG00000246263 CYBRD1 0.425 5.35E-08

hsa-miR-637 0.999 ENSG00000254154 CYBRD1 0.417 9.96E-08

hsa-miR-637 0.999 ENSG00000271646 CYBRD1 0.445 1.09E-08

hsa-miR-637 0.998 ENSG00000272908 CYBRD1 0.403 2.89E-07

has-196a-5p 0.904 ENSG00000100181 RUFY2 0.421 2.78E-05

FIGURE 4 | Construction of a ceRNA regulation network in GBM based on differentially expressed miRNAs and DEGs. CeRNA network where gray circles represent

predicted proteins. High-expression of ENSG00000203739/ENSG00000271646 promotes GBM proliferation and invasion by suppressing miR-637 and promoting

expression of the putative oncogene CYBRD1. Down-regulation of TPTEP1 fails to adsorb/bind to miR-196a-5p. The overexpression of miR-196a-5p impedes

translation of the putative tumor suppressor RUFY2. Dysregulation at both points in the network potentially contributes to progression of GBM. EFNA5, FNB2,

ACTR2, EPHA3 also act as putative oncogenes.

ARP2 has been shown to promote gastric cancer cell migration
and invasion. In contrast, ARP2 knockdown suppressed cell
motility (28). Finally, EPHA3 is frequently overexpressed in
GBM and in particular, in the mesenchymal molecular subtype,
which also shows a more aggressive phenotype in patients
(29). Importantly, EPHA3 is highly expressed on the tumor-
initiating cell population in glioma, which potentially maintains
tumor cells in a less differentiated state by modulating mitogen-
activated protein kinase signaling.

The results, therefore, could be consistent with a regulatory
network composed of ceRNA plus the interactive proteins
CYBRD1 and RUFY2 and involved in the proliferation and
invasion of GBM.

DISCUSSION

The challenge today is in analyzing burgeoning molecular
datasets in ways that will yield biologically and clinically
meaningful insights into the development and treatment of
human disease. In the current study, we explored the integration
of RNA and protein datasets to identify pathways regulating the
development of human GBM. We first analyzed standard array
data to identify differentially expressed microRNAs and mRNAs
in GBM relative to non-neoplastic brain tissue controls using
the data contained in the StarBase, LncBase, Tanric, and TCGA
databases. Based on the theory of ceRNA, we found potential
ncRNA regulatory pathways involving an oncogene and a tumor
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suppressor, ENSG00000203739/ENSG00000271646-miR-637-
CYBRD1 and TPTEP1-miR-196a-5p-RUFY2, and constructed a
local PPI network which might contribute to proliferation and
invasion of GBM.

Experimental results are consistent with some of our
predictions. First, Boult et al. have reported that CYBRD1
was overexpressed in the progression of Barrett’s metaplasia to
adenocarcinoma and this change are associated with increased
iron deposition (30). Brookes et al. also confirmed that the
increased expression in iron import proteins, including CYBRD1,
was associated with progression to colorectal cancer (31).
However, other studies showed that high CYBRD1 expression
has been associated with increased metastasis- and/or relapse-
free survival in breast cancer (32). In functional experiments,
CYBRD1 inhibited phosphorylation of FAK and the focal
adhesion pathway which is involved in migration and invasion.
The reasons for these discrepancies include differences in
pathogenesis and the shift between proliferation and migration
in tumors. Second, miR-196a has been reported to function as
a putative oncogene in many cancers. MiR-196a is significantly
upregulated in GBM, and high levels of miR-196a are positively
related to the malignant progression of gliomas (33). Third,
miR-196a-5p promotes proliferation and suppresses apoptosis
in GBM cells both in vitro and in vivo by targeting IkBa
(34). MiR-196a-5p also interacts directly with the 3’UTR of
ZMYND11 and promotes the growth of GBM cells (35). Finally,
miR-637 has been reported to be a tumor suppressor gene
in diverse human cancers, such as gastric (36), ovarian (37)
and colorectal cancers (38). Results in human glioma are
consistent with a function as a tumor suppressor; expression
levels of miR-637 were significantly reduced in clinical glioma
tissues compared with normal brain tissues (39). Moreover,
these studies revealed that miR-637 directly binds AKT1
and inhibits glioma cell growth, migration and invasion in
vitro and in vivo. These data support the feasibility of
our approach.

There are however deficiencies in our strategy. First, excluding
function as a “molecular sponge,” the mode of action of lncRNAs
can be roughly divided into the following categories: signal,
guide and scaffold. Second, due to the complexity of molecular
mechanisms regulating disease development and the limitations
of our analytical methods, many important molecules involved
in GBM remain unidentified. Third, we input more processed
TCGA data into our analysis, which may result in the loss
of a more comprehensive perspective. Finally, because many
algorithms are based on computer models, many prediction
results cannot be achieved in real-life experiments.

Significant effort to analyze and integrate such large amounts
of molecular data are taking place worldwide. Researchers funded
by the National Institutes of Health (NIH), for example, have
completed a comprehensive genomic analysis known as the

PanCancer Atlas. This project published a total of 27 top
bioinformatics papers. These articles are undoubtedly innovative
and encouraging. But such efforts are merely the beginning.
Here, we laid the groundwork for a new strategy to explore the
complicated molecular mechanisms underlying the development
of GBM or other diseases. The next important step is to verify
our approach using functional experiments to confirm our model
in Figure 4.
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