
APARCH Models Estimated by
Support Vector Regression

Applied to Financial Volatility Estimation

Arne Ladstein Waagbø

A thesis presented for the degree of
Master of Statistics

Financial Theory and Insurance Mathematics

Faculty of Mathematics and Natural Sciences
01.06.2021

Acknowledgements

I would very much like to thank my supervisor Yushi Li for her guidance and
help in the preparation of this thesis. I am gratefull for the engaging and
dedicated teaching and support staff I have met at UiB during my studies.
Finally, I am thankfull for my great friends and family for their continuos
support and inspiration.

Abstract

This thesis presents a comprehensive study of asymmetric power autoregressive
conditional heteroschedasticity (APARCH) models for modelling volatility in
financial return data. The goal is to estimate and forecast volatility in financial
data with excess kurtosis, volatility clustering and asymmetric distribution.
Models based on maximum likelihood estimation (MLE) will be compared
to the kernel based support vector regression (SVR). The popular Gaussian
kernel and a wavelet based kernel will be used for the SVR. The methods
will be tested on empirical data, including stock index prices, credit spreads
and electric power prices. The results indicate that asymmetric power models
are needed to capture the asseymtry in the data. Furthermore, SVR models
are able to improve estimation and forecasting accuracy, compared with the
APARCH models based on MLE.

Contents

List of Figures 3

List of Tables 3

1 Introduction 4

2 APARCH models 9
2.1 Time series models . 9
2.2 AR & MA models . 11
2.3 (G)ARCH model . 15

2.3.1 ARCH model . 15
2.3.2 GARCH model . 17

2.4 APARCH models . 21

3 Support Vector Regression 24
3.1 Maximal Margin Classifier . 24
3.2 Support Vector Classifier . 31
3.3 Support Vector Machines . 36
3.4 Support Vector Regression . 40

4 Applying SVR to APARCH 48
4.1 Motivation . 48
4.2 Specifying input and output . 49
4.3 Wavelet kernel . 50

5 Empirical Studies 55
5.1 Setup . 55
5.2 S&P 500 . 56
5.3 Credit Spreads . 64
5.4 Nordic Electricity Prices . 71

3

6 Summary 79

References 81

Appendix 87
S&P 500 . 87
Credit Spreads . 90
EL Prices . 92

R-code 94

List of Figures
1 Simulated AR(1) model with φ = 0.9 (top) and φ = −0.9

(bottom) . 13
2 Simulated GARCH(3,1) model 20
3 Maximal margin classifier with two classes. From James et al.

(2013) . 27
4 Support Vector classifier with different values of the hyperpa-

rameter C. From James et al. (2013) 33
5 Support vector machines map the training data into a higher-

dimensional feature space. From Schölkopf and Smola (2002) . 37
6 Support vector machines, with a polynomial kernel to the left

and a radial kernel to the right. From James et al. (2013). . . 38
7 Example of support vector regression with linear loss function.

From Schölkopf and Smola (2002) 42
8 Example of support vector regression with transformation to a

higher dimension. From Sayad (n.d.) 46
9 S&P 500 price level from January 3. 2006 - December 30. 2020 58
10 S&P 500 daily return from January 3. 2005 - December 30. 2020 58
11 S&P 500 daily prices and returns for the three subperiods . . . 59

4

12 S&P 500 daily conditional standard deviation in percent, ap-
proximation

√
h∗t (dots) and GJR model estimate

√
h′t (training

data) . 61
13 S&P 500 daily conditional standard deviation in percent ap-

proximation and GJR model forecast (test data) 63
14 High Yield spreads from 2006 to 2020 66
15 High Yield change in spreads from 2006 to 2020 66
16 High Yield spreads and spread changes for the three subperiods 67
17 HY spread daily conditional standard deviation bps change,

approximation and GJR model estimate (training data) 69
18 HY spread daily conditional standard deviation bps change,

approximation and GJR model forecast (test data) 71
19 Oslo daily elspot prices from 2015 to 2020 74
20 Oslo daily elspot percentage price change from 2015 to 2020 . 74
21 Elspot daily prices and returns for the two subperiods 75
22 EL-price daily conditional standard deviation percentage

change, approximation and GJR model forecast (training data) 77
23 EL-price daily conditional standard deviation percentage

change, approximation and GJR model forecast (test data) . . 78
24 S&P 500 daily conditional standard deviation change in percent,

approximation and GJR model estimate/forecast, period 2 . . 89
25 HY spred daily conditional standard deviation bps change,

approximation and GJR model estimate/forecast, period 2 . . 92

List of Tables
1 Preliminaries . 60
2 Estimate of γ . 60
3 Number of support vectors . 61
4 S&P 500 Training Error (MSE & MAE) 61

5

6

5 S&P 500 Test Error (MSE & MAE) 62
6 Preliminaries . 68
7 Estimate of γ . 68
8 Number of support vectors . 68
9 HY Training Error (MSE & MSE) 69
10 HY Test Error (MSE & MAE) 70
11 Preliminaries . 75
12 Estimate of γ . 76
13 Number of support vectors . 76
14 Training Error (MSE & MAE) 76
15 Test Error (MSE & MAE) . 78
16 S&P 500 period 1 training error 87
17 S&P 500 period 1 test Error 87
18 S&P 500 period 2 training error 88
19 S&P 500 period 2 test error 88
20 S&P 500 period 3 training error 88
21 S&P 500 period 3 test error 89
22 Credit spreads period 1 training error 90
23 Credit spreads preiod 1 test error 90
24 Credit spreads period 2 training error 90
25 Credit spreads period 2 test error 91
26 Credit spreads period 3 training rror 91
27 Credit spreads period 3 test error 91
28 EL-Price period 1 training error 92
29 EL-Price period 1 test error 93
30 EL-Price period 2 training error 93
31 EL-Price period 2 test error 93

1 INTRODUCTION 7

1 Introduction

Traditional economic models such as capital asset pricing model (CAPM)
(Treynor 1961,1962; Sharpe 1964; Lintner 1965; Mossin 1966), based upon the
modern portfolio theory of Markowitz (1952), are based upon the variance and
correlations of financial assets. The expected return of an asset is dependent
on its correlation to the market return, and its volatility compared to the
market volatility. The problem is that both the volatility of markets and of
individual securities varies over time, and so does the correlation between
them. Volatility is also instrumental to the pricing of financial options
contracts, and it is in fact the only unobservable parameter in the famous
Black-Scholes option pricing formula (Black, Scholes 1973). With known
market prices of options, the problem can be inverted to calculate implied
volatility. Knowledge about the volatility of asset prices is crucial for financial
risk management, and without it there would be no risk. Thus, models
that can reliably estimate and forecast volatility is of great importance to
speculators, investors, industrial purchasers and hedgers and other market
participants.

Financial time series often possesses characteristics such as heavy tails,
volatility clusters, asymmetric leverage effects and dependence without corre-
lation, the so-called stylized features of financial time series. Models based on
the ARCH framework of Engle (1982) and the GARCH framework of Boller-
slev (1986) are popular for their ability to capture volatility clusters often
observed in financial data. These models are often fitted with assumption
of gaussian error terms, but other distributions are also supported to accom-
modate fat tails. Asymmetric leverage effects describe the markets tendency
to experience increased volatility with bad news, and lowered volatility with
good news (Black 1976). To support asymmetry, Ding et al. (1993), intro-
duced the APARCH models. The APARCH model has two extra parameters
compared to the GARCH model, which allows for greater flexibility. With

1 INTRODUCTION 8

this model, conditional volatility will increase as financial asset prices falls
and decrease with rising prices (for most assets, the opposite is also possible).
An explanation for the leverage effect is that as equity prices declines, so
does the equity to debt ratio. This increases the risk of the debt, and so it
increases the volatility of the equity. This also works in reverse as increased
volatility also increases the required expected return of the asset, and thus a
lower price is required. Nelson (1991), Glosten, Jaganathan and Runkle (1989)
and Engle and Ng (1992) showed the importance of including asymmetry in
financial time series models. There is usually little correlation in the daily
returns of financial assets, otherwise there would be inconsistencies with the
efficient market hypothesis. There is evidence of a slight negative correlation
in the second lag, meaning that there is a mean reversion effect (Ding et al.
1993). This mean reversion effect is strongest after extreme moves in either
direction and suggests that the return series is not independent and identically
distributed (iid). Furthermore, the absolute return or squared return often
contains substantial autocorrelation even for long lags (Taylor 1986). This is
clear evidence that return series are not iid, and that GARCH type models
are necessary. Ding et al. showed that the power transformation of the return
series for the S&P 500 index, |rt|d, had significant autocorrelations for all lags
up to 100, for all d ∈ (0.25, 3). The strongest autocorrelations were found
for values of d close to one. Ding et al. further showed that the significant
positive autocorrelation lasted for more than 2500 trading days, more than 10
years, for the S&P 500. This is called the long memory property of financial
returns.

These models are usually estimated by maximum likelihood estimation
(MLE), but newer research has been done with estimation based on support
vector regression (SVR). As the MLE need Gaussian distributed residuals to
be efficient, non-parametric models like the SVR can be helpful in dealing
with financial data. Support vector regression is an extension to the support
vector machines that were introduced by Vladimir Vapnik and colleagues

1 INTRODUCTION 9

at AT&T Bell Laboratories (now Nokia Bell Labs) in the 1990s, (Boser
et al. 1992; Cortez and Vapnik 1995). The SVM is a generalization of
the Generalized Portrait algorithm (Vapnik and Lerner 1963; Vapnik and
Chervonenkis 1964). The support vector machine is a powerful method for
binary classification and can efficiently perform a non-linear classification
using the so-called kernel trick. The kernel trick involves implicitly mapping
inputs into high-dimensional feature spaces, where the mapping can be
achieved by utilization of kernel functions. SVMs have strong rooting in
optimization theory, also called Vapnik-Chervonenkis (VC) theory, developed
by Vapnik (Vapnik and Chervonenkis 1974; Vapnik 1982; Vapnik 1995). VC
theory characterizes properties of learning machines which enable them to
generalize well to unseen data, their rate of convergence and conditions for
consistency. SVM was initially applied to optical character recognition and
has since found many more applications. They have many desirable features,
including strong theoretical mathematical support, flexibility with robustness
to overfitting, unique solutions and good empirical performance. Support
vector regression is entirely data driven and needs no assumption about the
underlying distribution of the dataset. The choice of kernel in the non-linear
mapping is very important. This thesis will compare the performance of
support vector regression with the popular Gaussian kernel and the more
recent wavelet kernel proposed by Zhang et al (2004) to models estimated by
MLE. The wavelet kernel showed improved forecasting performance applied
to simulation data in Li (2014) and applied to oil price volatility in Li and
Karlsson (2020).

Other previous studies of volatility estimation using SVM are summarized
in the following paragraph. Chen et al (2010) found that SVM-GARCH,
with a Gaussian kernel, performed better than SMV-GARCH with linear and
polynomial kernel, as well as MLE GARCH, EGARCH (Nelson 1991) and
ANN-GARCH in Monte Carlo simulation as well as real data (GBP/USD
exchange rate and NYSE composite index). They noted that in the presence

1 INTRODUCTION 10

of strong asymmetry the EGARCH performed well. Pérez-Cruz et al (2003)
compared the performance of GARCH(1,1) models estimated by maximum
likelihood and SVR (unspecified kernel) applied to forecasting stock market
(S&P100, FTSE100, IBEX35 and NIKKEI) indices and single stock (GM and
HP) return volatility. They compared the r2 in- and out of sample. The out
of sample results were better performance of the SVR-GARCH in all but one
instance. They attribute the improved performance of the SVR-GARCH to not
trying to fit Gaussian distributed residuals. Ou and Wang (2010) compared
semi-parametric method, LSSVM (Least square support vector machine) by
Suykens et al. (1999), with the classical GARCH(1,1), EGARCH(1,1) and
GJR(1,1) models to forecast financial volatilities of three major ASEAN
stock markets. Their experimental results suggest that using hybrid models,
GARCH-LSSVM, EGARCH-LSSVM and GJR-LSSVM provides improved
performances in forecasting the leverage effect volatilities. Bildirici & Ersin
(2009) fitted neural networks based on nine different models of GARCH family,
to forecast Istanbul stock volatility and most of the hybrid models improved
forecasting performance. Neural network models have a major drawback
compared to SVM models as they are prone to get stuck at local optimums.
Bezerra et al (2017) used a linear combination of one, two, three and four
Gaussian kernels in the SVR based on GARCH(1,1) to take into account the
existence of market regimes. Nikkei 225 and Ibovespa daily returns were used
as the dataset. The empirical results indicate that the mixture of Gaussian
kernels can improve the SVR–GARCH one-period-ahead volatility forecasts.
The best performance was the SVR–GARCH with a mixture of three Gaussian
kernels. The SVR–GARCH with a mixture of four Gaussian kernels and the
SVR-GARCH with a wavelet kernel also performed well. All SVR–GARCH
models significantly outperformed every MLE-GARCH model, including
GJR and EGARCH. Peng et al (2018) evaluated SVR-GARCH’s predictive
performance of daily and hourly volatility of three cryptocurrencies (Bitcoin,
Etherum and Dash) and three exchange rate pairs (JPY, GBP and Euro), all

1 INTRODUCTION 11

in relation to USD. The results showed that SVR-GARCH models managed
to outperform all nine GARCH benchmarks – GARCHs, EGARCHs and
GJR-GARCHs with Normal, Student’s t and Skewed Student’s t distributions.
Sun and Yu (2020) propose a two-stage forecasting volatility method by
combining the SVR and GARCH models, where they first find a volatility
estimate by MLE GARCH which is then used as input to a SVR. They used
the S&P 500 index and the GBP/USD exchange rate in empirical analysis
and found that their hybrid model improved the volatility forecasting ability
compared to both MLE-GARCH and traditional SVR-GARCH.

This thesis is organized as follows. Chapter 2 will give a brief overview
of time series models that are commonly used for financial data. We then
introduce the APARCH model, which have some great features for financial
volatility estimation. Chapter 3 gives the theoretical background of the
Support Vector Machines used for classification. We present the kernel
trick, which makes the SVMs able to efficiently solve non-linear classification
problems. We then make the necessary extensions so that we can use the
method of support vectors for regression problems. Section 4 shows how we
can use Support Vector regression to estimate APARCH models. We also
present a wavelet based kernel that we will use and compare to the Gaussian
kernel in Section 5. Finally, section 5 applies APARCH models estimated by
MLE and by SVR to financial volatility estimation and forecasting in three
different datasets. Chapter 6 gives a summary of the thesis and the empirical
results from chapter 5.

2 APARCH MODELS 12

2 APARCH models

Financial data is often recorded and presented in the form of time series.
Financial return series are an example of this. One obvious property of
financial return series is that volatility is not independent of time. To
better capture time varying volatility Robert Engle (1982) introduced the
autoregressive conditional heteroscedasticity (ARCH) model. Since then,
extensions to the ARCH model has been made to incorporate other typical
features of financial return series such as heavy tails, asymmetry and long
memory. The asymmetric power ARCH model introduced by Ding, Granger
and Engle (1993) is a poplar such extension. This chapter will give a short
introduction to time series and time series models, leading up to the APARCH
model.

2.1 Time series models

A time series is a set of data points ordered by the time of their observa-
tion. The times of the observations are not necessarily equidistant, but are
commonly sampled as daily, monthly, yearly etc. statistics. Time series have
applications in a number of fields and are very important in finance. Exam-
ples includes daily prices of financial assets, quarterly earnings numbers for
public corporations and annual GDP data. The objectives of analyzing time
series is to draw some inferences about the data. We might observe trends,
seasonality and variability or other statistics of the data. Filtering of the data
can separate noise from signal. We can observe how a time series relates to
another, for example how corporate earnings relate to GDP numbers. Time
series can be used for prediction, as we can observe how data points relate to
previous data and then project from the most recent data. If we specify a
model for a time series we can simulate it using statistical software.

We let xt denote an observation of some data point at time t, and let xt be
a set of such observations. The observation xt is supposed to be a realization

2 APARCH MODELS 13

of the random variable Xt.

We can now make some definitions. The definition of a time series model
is a specification of the joint distribution of random variables Xt indexed by
time order. xt is a realization of the random variable sequence Xt.

Let Xt be a time series with finite first- and second-order moments, ie.
E[x2

t] <∞. Then the mean function of xt is defined as

µX(t) = E[Xt]

The covariance function of xt is defined as

γX(s, t) = Cov(Xs, Xt) = E[(Xs − E[Xs])(Xt − E[Xt])], ∀ integers s, t

xt is a weakly stationary time series if for all t

µX(t) is independent of t

and for all h
γX(t, t+ h) is independent of t

If additionally

(X1, ..., Xn) d= (X1+h, ..., Xn+h), ∀ integers h and n ≥ 1

then Xt is a strictly stationary time series. If Xt is strictly stationary,
then it is also weakly stationary.

For a stationary time series we notice that the covariance function is
independent of t, thus we can define the autocovariance function:

2 APARCH MODELS 14

γX(h) := γ(0, h) = γ(t, t+ h)

and the autocorrelation function

ρX(h) := γX(h)
γX(0)

Other properties of the covariance function:

γ(0) ≥ 0

γ(0) ≥ |γ(h)| for all h

γ(h) = γ(−h) for all h

We can typically decompose a time series process Xt into

Xt = mt + st + Yt

where mt is the long term trend component, st is the seasonal component
and Yt is a stationary random noise term. Given a realization xt and estimates
m̂t and ŝt we can find the estimated noise sequence by

Ŷt = xt − m̂t − ŝt

2.2 AR & MA models

A first order autoregressive model (AR(1) model) {Xt} is defined as

Xt = φXt−1 + Zt, t = 0,±1,±2, ...

where Zt ∼ WN(0, σ2), |φ| < 1 and Zt is uncorrelated with Xs for all

2 APARCH MODELS 15

s < t. The AR(1) model can also be expressed as

Xt = φXt−1 + Zt

= φ2Xt−2 + φZt−1 + Zt

= φ3Xt−3 + φ2Zt−2 + φZt−1 + Zt

= ...

=
∞∑
j=1

φjZt−j

which has the form of a MA(∞) model. An AR(p) model is of the form

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt =
p∑
j=1

φjXt−j + Zt

The autocorrelation function of an AR(1) function is

ρ(h) = φh, h ≥ 0

A stationary solution of the AR(p) model exist if and only if

φ(z) = 1− φ1z − ...− φpzp 6= 0 ∀ |z| = 1

Furthermore, the process is causal if

φ(z) = 1− φ1z − ...− φpzp 6= 0 ∀ |z| ≤ 1

Causality implies that the process {Xt} is independent of future values of
Zs, where s > t. {Xt} is weakly stationary if µX(t) is independent of t and if
the covariace function γX(t+ h, t) is independent of t for all h.

2 APARCH MODELS 16

Figure 1: Simulated AR(1) model with φ = 0.9 (top) and φ = −0.9 (bottom)

A first order moving average (MA) model Xt is given by

Xt = θZt−1 + Zt

The MA(1) model can also be expressed as

Xt = θZt−1 + Zt

= −θXt−1 + θ2Zt−2 + Zt

= −θXt−1 − θ2Xt−2 + θ3Zt−3 + Zt

= ...

= −
∞∑
j=1

θjXt−j + Zt

which is the form of an AR(∞) model. The MA(q) model Xt is given by

2 APARCH MODELS 17

Xt =
q∑
j=1

θjZt−j + Zt

The MA(q) model is said to be q-correlated, which means γ(h) = 0 for
|h| > q. In fact every q-correlated process is a MA(q) process. The MA(1)
model is said to be invertible if |θ| < 1. The MA(q) model is invertible if

θ(z) = 1 + θ1z + ...+ θqz
q 6= 0 for all |z| ≤ 1

Invertibility allows us to express Zt in terms of only current and previous
values of Xs, s ≤ t.

A first order autoregressive moving average (ARMA) model Xt is a com-
bination of a an AR(1) and a MA(1) process, defined by

Xt = φXt−1 + θZt−1 + Zt

The ARMA(p,q) model is similarly

Xt =
p∑
j=1

φjXt−j +
q∑
j=1

θjZt−j + Zt

again Zt ∼ WN(0, σ2), φp 6= 0, θq 6= 0 and the process {Xt} needs to be
stationary. A unique and stationary solution {Xt} exists if and only if

φ(z) = 1− φ1z − ...− φpzp 6= 0 ∀ |z| = 1

The causality and invertibility conditions are also similar to the AR(p) and
MA(q) models. A useful property of ARMA models is that for any positive
integer k there exists an ARMA(p,q) process {Xt} such that γX(h) = γ(h)
for h = 0, 1, ..., k.

2 APARCH MODELS 18

The basic ARMA models are unfortunately not great for financial time
series modelling as the conditional variance would be independent of time.
Therefore, they can’t capture volatility clustering. We now begin to introduce
models that can.

2.3 (G)ARCH model

Financial time series are often represented as prices Pt of a stock, index,
currency, commodity or interest rate. Sometimes we are most interested in
the percentage return, given by the log return Zt = log Pt

Pt−1
= log(1 + r) = R,

where r is the continuous rate of return and R is the continuously compounded
total return from t− 1 to t. We introduce the conditional variance term ht of
Zt, that will vary with time and allow us to better capture volatility clusters.

2.3.1 ARCH model

We now introduce the ARCH (Auto-regressive conditional heteroscedasticity)
model (Engle 1982). The model is appropriate if the conditional error variance
follows an AR model. ARCH models and its many variations have found a
vast number of applications in financial time series modelling. The ARCH(p)
process {Zt} is given by

Zt = et
√
ht, et ∼ N(0, 1)

where ht is a positive function defined by

ht = w +
p∑
j=1

αjZ
2
t−j

w > 0, αj ≥ 0, j = 1, ..., p. If α = 0 we simply get Gaussian white noise.
Here {Zt} is a zero mean process, as is typical in financial return series. We can
include a mean for Zt by xtξ, where xt is a vector of exogenous variables and ξ

2 APARCH MODELS 19

is a vector of regression parameters. We can the let Ψt = {zt, xt, zt−1, xt−1, ...}
denote the information available at time t. We can then state the model more
formally by

Zt|Ψt−1 ∼ N(xtξ, ht)

ht = w +
p∑
j=1

αjZ
2
t−j

et = zt − xtξ

From here on we will only consider the zero mean model. In this model a
large value of zt of either sign will increase ht+1 so that large values of zt+1 of
either sign tend to follow. Similarly small values of zt+1 tend to follow small
values of zt of either sign. The order of the lag p determines the amount
of time volatility shocks persist in the conditional variance. A larger value
of p will tend to increase the duration of volatility clusters. This model
can be estimated by Maximum likelihood or ordinary least squares. The
log-likelihood function is given by

l(θ) = 1
2n

n∑
t=1
−log(ht)−

e2
t

ht

We then maximize the log-likelihood function with respect to the model
parameters θ = (w, α1, ..., αp). The Lagrange Multiplier test can be used to
test for significance. The null-hypothesis is that all αi = 0. Even though the
conditional error is normal, the unconditional error is not and has thicker
tails. For the ARCH(1) model we can easily calculate

E(Z2
t |Zt−1) = (w + αZ2

t−1)E(e2
t |Zt−1) = w + αZ2

t−1

2 APARCH MODELS 20

We see that the process {Zt} is not IID, and thus it is not normally
distributed.

2.3.2 GARCH model

The generalized ARCH model (Bollerslev 1986) is appropriate when the error
variance follows an ARMA model. The GARCH(p,q) model is then

Zt = et
√
ht, et ∼ IID(0, 1)

where ht is a positive function defined by

ht = w +
p∑
j=1

αjZ
2
t−j +

q∑
j=1

βjht−j

w > 0, αj, βj ≥ 0, j = 1, 2, ...

We can use et ∼ N(0, 1), or we can use other IID(0, 1) distributions such
as the standardized t-distribution√

ν

ν − 2et ∼ tν , ν > 2

Typically we only consider the GARCH(1,1) model where the conditional
variance is

ht = w + αZ2
t−1 + βht−1

where w + α + β = 1 to ensure that the long run unconditional variance
is equal to 1. This model incorporates previous values of the conditional
variance in the form of a moving average. Similar to how a MA process can
be viewed as an infinite order AR process, the GARCH process is an infinite
order ARCH process. Thus, the GARCH process can sparsely represent a

2 APARCH MODELS 21

high order ARCH process.

Bollerslev (1986) proved that the unconditional variance of the
GARCH(p,q) is given by

V ar(Zt) = E(Z2
t) = w

1−∑p
j=1 αj +∑q

j=1 βj

where ∑p
j=1 αj +∑q

j=1 βj < 1 is a necessary and sufficient condition for the
the existence of the variance. Since Zt is conditionally normal, E(Zm

t) = 0
for all odd integers m. It follows that the skewness is zero, and that the
unconditional distribution is symmetric. The kurtosis for a GARCH(p,q) is
not easily available, but Engle (1982) and Bollerslev (1986) stated it for the
ARCH(1) and GARCH(1,1) respectively. If 3α2 + 2αβ + β2 < 1 we have for
the GARCH(1,1)

E(Z4
t) = 3w2(1 + α + β)

(1− α− β)(1− 3α2 − 2αβ − β2)
and

E(Z4
t)

E(Z2
t)2 = 3w2(1 + α + β)(1− α− β)2

w2(1− α− β)(1− 3α2 − 2αβ − β2)

= 3 (1− α2 − αβ − β2)
(1− 3α2 − 2αβ − β2)

which is clearly greater than 3, since α, β ≥ 0. Hence the GARCH process
is leptokurtic. If β = 0 in the above equation we get the kurtosis for the
ARCH(1), which is also clearly leptokurtic, as long as α > 0. For k ≥ 1 the
autocovariance of a GARCH process is given by

2 APARCH MODELS 22

Cov(Zt, Zt−k) = E[E(ZtZt−k|Ψt−1)]

= E[Zt−kE(Zt|Ψt−1)] = 0

so the GARCH process is serially uncorrelated. The process is therefore
also weakly stationary if the variance exists. Since the serial correlation is
zero past returns can’t improve prediction of future returns, so there is no
violation to the efficient markets hypothesis.

When we introduced the GARCH we did not require the conditional error
to be normal. In practice the kurtosis of the conditional error often exceeds
three, so that an assumption of normal errors is not appropriate. Bollerslev
(1987) used a GARCH(1,1) with t-distributed conditional errors applied to
U.S. dollar versus British pounds and Deutschemark and to the S&P 500.
The sample kurtosis of the residuals was around 4 for most of the datasets,
far in excess of the normal kurtosis of three, but very close to the implied
kurtosis from the fitted t-distribution. Although the t-distribution might
fix overall conditional kurtosis it still assumes constant conditional kurtosis,
which is not necessarily the case in practice. It also assumes no skewness of
the conditional errors, but a skewed t-distribution can be used if there is a
problem with skewed residuals. When the conditional error is non-normal we
can still use the same log-likelihood function as in the ARCH model estimation
to get estimates of the model parameters. These estimates are called the
quasi maximum likelihood estimates (QMLE). The asymptotic distribution
of the QML estimate θ̂ is then, under certain regularity conditions, given by
(Bollerslev and Wooldridge 1992)

√
n(θ̂ − θ0) ∼ N(0, A−1BA−1)

where θ0 is the true parameter values. Consisten estimators of A and B are

2 APARCH MODELS 23

given by

Â = − ∂
2l(θ̂)

∂θ ∂θ′
and B̂ = ∂l(θ̂)

∂θ

∂l(θ̂)′
∂θ

The matrix Â−1B̂Â−1 is a consistent estimate of the asymptotic variance
matrix of

√
n(θ̂− θ0). If the residual distribution is normal, then A = B, and

the covariance matrtix estimator can be found using either Â−1 or B̂−1.

Figure 2: Simulated GARCH(3,1) model

We have seen that the GARCH model has a zero mean, zero autocorrela-
tion, heavy tails and can capture volatility clustering and persistence. It is
therefore a very useful model for financial return series modelling. We see that
plot of the simulated return series looks a lot like the observed return series
in Section 5. Large fluctuations in prices tends be followed by more volatility.
Volatility can also stay suppressed for long times before “exploding”. The
GARCH model assumes linear relationship between return and volatility. As
discussed earlier negative news generally impacts volatility of financial assets

2 APARCH MODELS 24

more than positive news. The (G)ARCH model does however give equal
weight to positive and negative price fluctuations and is unable to capture the
leverage effect. We will make another extension to capture this asymmetry.
We will also see that introducing a power transformation of the absolute
return lets us better capture the long-term memory of stock returns.

2.4 APARCH models

The APARCH(1,1) model (asymmetric power ARCH), Ding et al (1993), is

Zt = et
√
ht, et ∼ IID(0, 1)

h
δ/2
t = w + α(|Zt−1| − γZt−1)δ + βh

δ/2
t−1

where w, α, β > 0, δ ≥ 0, −1 < γ < 1. The APARCH(p,q) model is
similarly

h
δ/2
t = w +

p∑
i=1

αi(|Zt−1| − γiZt−1)δ +
q∑
j=1

βjh
δ/2
t−1

where w > 0, δ ≥ 0, αi ≥ 0 and −1 < γi < 1, for i = 1, ..., p and
βj ≥ 0 for j = 1, ..., q. The asymmetry coefficient γ controls the different
response in volatility depending on positive and negative returns. This effect
is well documented is finance, and is called the leverage effect. We see that
when γ > 0, which it will be for most financial return series, a negative
value of Zt−1 will give a larger value of ht than a positive value of Zt−1 of
the same magnitude. δ is the power coefficient, allowing different powers of
transformation. The stationary condition for the APAPRCH(1,1) model is
α(1 + γ2) + β < 1. Using (quasi) Maximum Likelihood we can estimate the
parameter vector θ̂ = (α̂, β̂, δ̂, γ̂, ŵ). Then for current values of Zt−1 and ĥt−1

we can make a forecast of ĥt by

2 APARCH MODELS 25

ĥ
δ/2
t = ŵ + α̂(|Zt−1| − γ̂Zt−1)δ̂ + β̂ĥ

δ̂/2
t−1

We notice that δ = 2, γ = 0 gives the GARCH model. Other popular
models includes the TS-GARCH, Taylor (1986), Schwert (1989), with δ =
1, γ = 0,

h
1/2
t = w + α|Zt−1|+ βh

1/2
t−1

The T-GARCH, Zakoian(1994), with δ = 1

h
1/2
t = w + α(|Zt−1| − γZt−1) + βh

1/2
t−1

And the GJR-GARCH, Glosten, Jagannathan and Runkle (1993), with
δ = 2

ht = w + α(|Zt−1| − γZt−1)2 + βht−1

We observe that the GARCH and TS-GARCH models does not incorporate
the asymmetry effect, while the T-GARCH and GJR-GARCH models do. A
nice property of these models is that many of them are nested, and can thus
be compared by a likelihood ratio test. Ding et al rejected both the GARCH
and the TS-GARCH models in favor of the APARCH model when applied
to the S&P 500. The estimated value of δ and γ in their experiment was
1.43 and 0.373 respectively, both very significantly. The estimation of the
models are based on Maximum Likelihood when the conditional errors follow
the normal distribution and Quasi-Maximum Likelihood (QML) for other
distributions. A skewed Student’s t-distribution is proposed by Fernández
and Steel (1998) to accommodate asymmetry and kurtosis in the error term
of regression problems. When the underlying distribution exhibit increasing

2 APARCH MODELS 26

skewness the QML will be increasingly ineffective (Engle and González-Rivera,
1991). To potentially improve model fitting in instances of skewed underlying
distributions we introduce Support Vector Machine based regression.

3 SUPPORT VECTOR REGRESSION 27

3 Support Vector Regression

Support vector machine’s (SVM) are supervised learning models used mostly
for classification purposes. Support vector machines were introduced by
Vapnik et al (1992). They are based on earlier work Vapnik, cited in the
introduction. SVMs are one of the most powerful supervised learning classifiers.
A large range of applications make use of SVMs. Support vectors can also
be used for unsupervised clustering, see Support vector clustering, Vapnik et
al (2001). The support vector algorithms are entirely data driven, and need
no assumptions of the properties of the underlying distribution. The SVM
can be computationally sparse and achieve good accuracy even with limited
sample sizes. This is a result of the SVM’s kernel based methodology, which
allows for non-linear relationships. The ε-insensitive loss function, introduced
by Vapnik (1995) allowed for extension of the SVM framework to regression
problems. The support vector machines are non-parametric and are not useful
for statistical inference. Their purpose is generally forecasting, and empirical
performance indicate strong performance. This chapter presents the linear
maximal margin classifier, extensions to non-linear classifiers, ie. SVMs, and
finally Support vector regression.

3.1 Maximal Margin Classifier

The maximal margin classifier was introduced by Vapnik and Lerner (1963)
as a way to classify data as one of two separable classes. We need the data to
be linearly separable to be able to use the maximal margin classifier. Suppose
we have a n× p data matrix X with n observations of p variables. We want
to separate each observation into one of two classes. To do this we create a
p− 1 dimensional hyperplane so that each observation is classified according
to which side of the hyperplane it resides. Given two classes for classification,
we represent them as yi ∈ {−1, 1} for i = 1, ..., n. Then given the coefficient
vector β = (β0, β1, ..., βp) a separating hyperplane have the properties

3 SUPPORT VECTOR REGRESSION 28

β0 + βᵀxi > 0 if yi = 1

and
β0 + βᵀxi < 0 if yi = −1

or, equivalently
yi(β0 + βᵀxi) > 0

Then the formula for the seperating hyperplane will be

f(x) = β0 + βᵀx = 0

The hyperplane in a 2-dimensional space will be a line and and in a
3-dimensional space be a plane. If the data can be completely separated,
there will exist infinitely many separating hyperplanes. To select the best
hyperplane we impose the constraint that the hyperplane needs to be at a
maximal distance from the classes. This leads us to the maximal margin
hyperplane, the hyperplane with the largest minimum distance to all/both
classes of observations. We measure the perpendicular distance between
observation i and the hyperplane by

mi = |f(xi)
||β||

|

We then want to find the the observations closest to the separating
hyperplane

M = min
i=1,...,n

mi

The points closest the hyperplane on each side of the hyperplane are the
support vectors. The hyperplane is supported by these observations, and

3 SUPPORT VECTOR REGRESSION 29

in fact, the hyperplane only depends on the support vectors. If one of the
support vectors change, so will the hyperplane. Since predictions only depend
on the support vectors for classification, this is computationally easy. A
parallel line to the separating hyperplane runs through the support vectors on
each side. These lines are called the margin lines. Changes in the observations
outside of the margin lines does not change the separating hyperplane, as
long as they do not cross the margin lines. If a point is moved inside the
margin lines, that point will becom a support vector and the hyperplane will
change accordingly.

The maximum margin hyperplane is the solution to the following opti-
mization problem

maximize
β0,β

M

subject to

∑p
j=1 β

2
j = 1

yi(β0 + βᵀxi) ≥M i = 1, ..., n

3 SUPPORT VECTOR REGRESSION 30

Figure 3: Maximal margin classifier with two classes. From James et al. (2013)

The second constraint makes sure that every observation is in the correct
side of the hyperplane. With the first constraint we get that the perpendicular
distance from the ith observation to the hyperplane is given by yi(β0 +βᵀxi).
Combined these constraints makes sure that every observation is on the
correct side of the hyperplane and at least a distance M from the hyperplane,
as desired. Dividing both the constraint and M by ||β|| we get rid of the
first constraint. We then rescale the parameters β0,β such that M = 1. The
optimization problem can then be restated as

3 SUPPORT VECTOR REGRESSION 31

minimize
β0,β

1
2 ||β||

2

subject to yi(β0 + βᵀxi)− 1 ≥ 0 i = 1, ..., n

This is a convex quadratic minimization problem with inequality con-
straints. The optimization problem has the form

minimize
x

f(x)

subject to g(x) > 0

This problem can be solved by Lagrange multipliers. The method of
Lagrange multipliers, of the 18th century mathematician Joseph-Louis La-
grange, states that in order to find the maximum or minimum of a function
f(x) subjected to the equality constraint g(x) = 0, form the Lagrange func-
tion L(α, x) = f(x)− αg(x) and solve ∇L(α, x) = 0. The Lagrangian dual
problem is

maximize
α

minimize
β0,β

L(α, β0,β) = f(x)−
n∑
i=1

αig(x)

subject to αi ≥ 0 ∀i = 1, ..., n

where the Lagrange function of our optimization problem is

L(α, β0,β) = 1
2 ||β||

2 −
n∑
i=1

αi[yi(β0 + βᵀxi)− 1]

and the parameters to be determined, β0,β, are called the primal variables,
while the αi, i = 1, ..., n, are the Lagrange multipliers. The Lagrange

3 SUPPORT VECTOR REGRESSION 32

multipliers restrict the space of values feasible for a solution, given the
constraints. Since we have an inequality constraint, the Karush-Kuhn-Tucker
(1939, 1951) (KKT) conditions must be satisfied to generalize the Lagrange
multipliers. The conditions are

Primal constraint

yi(β0 + βᵀxi)− 1 ≥ 0 ∀i = 1, ..., n

Dual constraint
αi ≥ 0 ∀i = 1, ..., n

Complementary slackness

αi[yi(β0 + βᵀxi)− 1] = 0 ∀i = 1, ..., n

Gradient of Lagrangian

∂L(α, β′,β)
∂β0

=
n∑
i=1

αiyi = 0

∂L(α, β′,β)
∂β

= β −
n∑
i=1

αiyixi = 0

The complementary slackness is the relationship between the primal and
the dual constrains, so that we get equalities. We see that the Lagrange
multiplier αi = 0 for all yi(β0 +βᵀxi)− 1 > 0. This means only points on the
margin influence the optimization. To solve the inner minimization problem
of the dual problem we use the gradient of the Lagrangian. Substituting the
gradient of the Lagrangian into the Lagrange function we get the Wolfe dual
problem

3 SUPPORT VECTOR REGRESSION 33

maximize
α

L(α) =
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjx
ᵀ
ixj

subject to

∑n
i=1 αiyi = 0

αi ≥ 0 i = 1, ..., n

The second constraint removes β0 from the optimization problem. Thus,
the Wolfe dual problem only depends on the Lagrange multipliers α. Also the
training data is only used to compute the inner products between observations,
which will come in handy later on with SVMs. Solving the Wolfe dual problem
we get the solution for the Lagrange multipliers α. We can compute β from
the gradient of the Lagrangian

β =
n∑
i=1

αiyixi

Then β0 can be calculated as the average difference between observations
and function values for the set of support vectors S

β0 = 1
S

∑
k∈S

(yk − βᵀxk)

= 1
S

∑
k∈S

(yk −
n∑
j=1

αjyj〈xj,xk〉)

The classification of new data will then be the sign of the function

f(x) = β0 +
∑
k∈S

αkyk〈xk,x〉

3 SUPPORT VECTOR REGRESSION 34

3.2 Support Vector Classifier

If the classes are not perfectly separable, the maximal margin optimization has
no solution. We solve this problem by a soft margin classifier. The soft margin
hyperplane classifier was developed by Vapnik and Cortes in 1993 (Cortes
and Vapnik, 1995). This classifier allows some of the observations to be on
the wrong side of the margin, and even in the wrong side of the separating
hyperplane. This will reduce sensitivity to outliers and make the sacrifice of
misclassifying some observations in return for better classification of most of
the observations. This method is called the support vector classifier, or soft
margin classifier. We introduce the slack variables ξi = ξ1, ..., ξn, ξi ≥ 0, ∀ i.
An ξi = 0 indicates an observation on the correct side of the margin lines,
while ξi > 0 indicates an observation on the wrong side of the margin. ξi = 1
an observation on the hyperplane, and ξi > 1 indicates that observation i

is on the wrong side of the hyperplane. The classification hyperplane is the
solution to the optimization problem

maximize
β0,β,ξ

M

subject to

∑p
j=1 β

2
j = 1

yi(β0 + βᵀxi) ≥M(1− ξi) i = 1, ..., n

ξi ≥ 0∑n
i=1 ξi ≤ C

C here is a non-negative tuning hyperparameter, and gives an upper bound
to the sum of the slack variables. A larger value of C allows for more and
larger violations of the margin, which widens the margin. This will increase
the bias of hyperplane, but reduce the variance of the solution. A small
value of C will increase the variance of the solution but it will be less biased.
Setting C = 0 results in the maximum margin hyperplane. The optimal

3 SUPPORT VECTOR REGRESSION 35

value of C can be chosen by cross-validation. As with the maximal margin
classifier, only a subset of the observations will affect the hyperplane. Those
observations are the ones on or on the wrong side of the margin, the support
vectors. Figure 4 shows the Support Vector classifier with different values of
the hyperparameter C. We can see that the two classes are not seperable,
and how some of the observations cross the margin lines and the hyperplane.
The top left panel shows the Support Vector classifier with a large value of
C. We see that the margins are wide, and we have many observations on
the inside of the margins. These observations are the support vectors. The
bottom right panel shows a small value of C, and we get tight margin lines
and fe support vector. We reformulate the optimization problem in a similar
fashion as in the last section, by rescaling the parameters, and obtain the
new optimization problem

3 SUPPORT VECTOR REGRESSION 36

Figure 4: Support Vector classifier with different values of the hyperparameter C. From
James et al. (2013)

minimize
β0,β,ξ

1
2 ||β||

2 + C
n∑
i=1

ξi

subject to

yi(β0 + βᵀxi) ≥ 1− ξi i = 1, ..., n

ξi ≥ 0 i = 1, ..., n

The Lagrange function for this problem is

3 SUPPORT VECTOR REGRESSION 37

L(α, η, β0,β, ξ) = 1
2 ||β||

2−
n∑
i=1

αi[yi(β0 +βᵀxi)− (1− ξi)] +C
n∑
i=1

ξi−
n∑
i=1

ηiξi

where α, η are the Lagrange multipliers. We obtain the Lagrange dual
problem

maximize
α,η

minimize
β0,β

L(α, η, β0,β, ξ)

subject to αi, ηi ≥ 0 ∀i = 1, ..., n

The corresponding KKT conditions are

αi, ηi, ξi ≥ 0 ∀ i = 1, ..., n

ηiξi = 0 ∀ i = 1, ..., n

yi(β0 + βᵀxi)− (1− ξ) ≥ 0 ∀ i = 1, ..., n

αi[yi(β0 + βᵀxi)− (1− ξ)] = 0 ∀ i = 1, ..., n

and the gradients of the Lagrangian are

∂

∂β0
L(α, η, β0,β, ξ) =

n∑
i=1

αiyi = 0

∂

∂β
L(α, η, β0,β, ξ) = β −

n∑
i=1

αiyixi = 0

∂

∂ξi
L(α, η, β0,β, ξ) = C − αi − ηi = 0

3 SUPPORT VECTOR REGRESSION 38

The inner minimization problem is agian solved by substituting in the
gradients of the Lagrangian with respect to the primal variables. And thus
the Wolfe dual problem is

maximize
α

L(α) =
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjx
ᵀ
ixj

subject to

∑n
i=1 αiyi = 0

0 ≤ αi ≤ C i = 1, ..., n

where the condition αi ≤ C is implied by the gradient of the Lagrangian
with respect to ξ, αi = C − ηi since ηi ≥ 0. This constraint is called a box
constraint. We notice that we are able to get rid of η in the optimization,
and the only additional task compared to the maximal margin classifier is to
determine the value of C. The points where αi = 0 have ηi = C so that ξi = 0.
Thus, these points are on the correct side of the margin and don’t influence
the model. If 0 < αi < C then 0 < ηi < C so that again ξi = 0, hence the
point lies on the margin. If αi = C then ξi > 0, meaning the observation is
on the wrong side of the margin and maybe even on the wrong side of the
of the hyperplane. The point will be on the correct side of the hyperplane
if 0 < ξi ≤ 1 and on the wrong side if ξi > 1. In sum the KKT conditions
assures that only support vectors affect the solution so that the solution is
sparse. Another great property is the ability to control the bias-variance
tradeoff through the hyperparameter C. For these reasons the support vector
classifier is a great method for linear classifications. Again, the prediction of
new data points will be the sign of

f(x) = β0 +
n∑
i=1

αiyi〈xi,x〉

3 SUPPORT VECTOR REGRESSION 39

3.3 Support Vector Machines

If the boundary between classes is non-linear the support vector classifier
will perform poorly. Using kernel functions we can enlarge the feature
space to enable non-linear boundaries. The method is known as support
vector machines. The idea is to apply the mapping function φ to the data,
(φ(x1), ..., φ(xn))), and then use the support vector classifier. We use φ map
the p-dimensional training data from the space X into a higher dimensional
feature space Y where we can divide the observations by a linear hyperplane,
and map back the non-linear classification boundary to the original space.
Instead of explicitly applying the transformations we use kernel functions to
return the inner product in the feature space. This procedure is called the
kernel trick (Schölkopf and Smola, 2002).

A kernel is a similarity function of data points. Kernel functions allows
operations in the implicit higher-dimensional feature space Y without explicit
computation of coordinates in that space. We only need to compute the inner
products of the data in the higher dimension. This follows from Mercer’s
theorem (Mercer, 1909). The kernel function is a positive definite and
symmetric function

K(x, y) = 〈φ(x), φ(y)〉

where φ : X → Y is a mapping function and Y is a inner product space.
In fact any function K that is positive definite and symmetric function is
kernel function, with symmetry and positive definite defined as

K(x, y) = K(y, x)∫ ∫
g(x)K(x, y)g(y)dxdy ≥ 0

3 SUPPORT VECTOR REGRESSION 40

respectively, for some function g ∈ L2. The objective function of the dual
problem will then be similar to the support vector classifier, only the inner
product needs to be substituted by the kernel function:

L(α) =
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj〈φ(xi), φ(xj)〉

=
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjK(xi,xj)

Figure 5: Support vector machines map the training data into a higher-dimensional feature
space. From Schölkopf and Smola (2002)

Some popular choices of kernels include:
Linear kernel

K(xi,x) = xᵀ
ix

Polynomial kernel
K(xi,x) = (1 + xᵀ

ix)d

3 SUPPORT VECTOR REGRESSION 41

Radial kernel
K(xi,x) = exp(−γ||xi − x||2)

Sigmoid kernel
K(xi,x) = tanh(ν + γxᵀ

ix)

Figure 6: Support vector machines, with a polynomial kernel to the left and a radial kernel
to the right. From James et al. (2013).

For the polynomial kernel, d is the degree of the polynomial. For the
radial kernel, setting γ = 1/2σ2 leads us to the (radial) Gaussian kernel. σ
will function as a scale parameter for the Gaussian kernel, and determines the
width of the kernel. For a test observation x the Gaussian kernel will give
large weight to training observation xi where the Euclidean distance ||xi−x||
is small. Training observations with larger Euclidean distance will get much
smaller weighting, and thus contribute much less to classification of the test
observation x. The feature space of the Gaussian kernel is infinite-dimensional,
so explicit calculations would be impossible. The Sigmoid kernel does not
actually satisfy Mercer’s condition but has nonetheless performed well in
practice. If we let S be the collection of the support vector observation’s

3 SUPPORT VECTOR REGRESSION 42

indices, then the function for the linear support vector classifier is

f(x) = β0 +
∑
i∈S

αiyi〈xi,x〉 = 0

where 〈·, ·〉 denotes the inner product, and the parameters αi 6= 0 ∀ i ∈ S.
In the general case with kernel K(xi,x) we have the classifier function

f(x) = β0 +
∑
i∈S

αiyiK(xi,x) = 0

and the predicted classification of data point x will be the sign of

f(x) = β0 +
∑
i∈S

αiyiK(xi,x)

The SVM is a great method for non-linear classification. It is entirely
data driven, it has a convex optimization giving a unique solution and is good
for predictions. There is, however, a number of potential issues that must
be resolved to use support vector machines. One must decide upon which
kernel to use, and it is difficult to know beforehand which is most appropriate.
Further the values of the hyperparameter C and ε has to be chosen. These
values are important to balance the bias-variance tradeoff. A complex model
will fit the training data well but will have large variance. It might be an
overfit that performs poorly on test data. On the other end of the spectrum
is very simple models. These have low variance but might be biased and fail
to capture the basic structure of the data. The hyperparameter values are
typically selected by cross-validation. The input data needs to be labeled to
train the model. This can be a laborious or practically impossible task in
reality. Support vector machines are entirely data driven, and thus does not
incorporate base rate probabilities for classification. It is not straight forward
to extend support vector machines to multiple classes, although extensions

3 SUPPORT VECTOR REGRESSION 43

exist. A major issue with support vector machines is the interpretability of
model parameters. As the data often is transformed into multidimensional
spaces to determine the relationships between input and output data, the
support vector machine is considered a black box method.

3.4 Support Vector Regression

The SVM can be generalized to be applicable in regression problems. Support
vector regression (SVR) was proposed by Vapnik et al. in 1995. As with
SVMs, SVR use kernels and depends only an a subset of the data as support
vectors. We now have input/output data set (x1, y1), ..., (xn, yn), where
x = x1, ...,xn ∈ Rp and y = y1, ..., yn ∈ R. We introduce the ε-insensitive
region around the regression function, called the ε-tube. Our goal is to
find the smoothest function that has at most ε deviation from the outputs
y. Similar to the soft-margin classifier we may allow some observations to
fall outside of the ε-tube. Predictions that are farther than ε from their
observed values will be penalized in the optimization. A larger value of ε
will make the the ε-tube wider and increase the tolerance for error. Fewer
observations will then reside outside the insensitive region. This gives lower
variance, but higher bias of the solution. Conversely, a smaller ε, ie. a tighter
ε-tube, will decrease the tolerance for errors, increase the number of support
vectors, increase the variance and decrease the bias of the solution. To allow
for some violations of the ε-tube we also have a tunable regularization cost
hyperparameter C. Drucker et al. (1996) argues that SVR has greatest use
when the dimensionality of the input space and the order of the approximation
creates a dimensionality of a feature space representation that is large. We
want to estimate a function of the form

f(x) = β0 + βᵀx

3 SUPPORT VECTOR REGRESSION 44

The smoothness of the function can be achieved by small regression
coefficients β. Thus we want to minimize ||β||2. At the same time we want
to penalize observations outside of the ε-tube. We do this by introducing the
loss function L(yi, f(xi)). The loss function should be convex to ensure an
efficient solution to the optimization problem. The loss functions presented
here are also symmetric, but they need not to be. For example, an asset
manager would be far more concerned about large losses than large gains in
their portfolio returns, and therefore penalize negative violations more than
positive violations of the ε-tube. Some loss functions are

Linear

L(yi, f(xi)) =

|yi − f(xi)| − ε if |yi − f(xi)| > ε

0 otherwise

Quadratic

L(yi, f(xi)) =

(|yi − f(xi)| − ε)2 if |yi − f(xi)| > ε

0 otherwise

Huber

L(yi, f(xi)) =

c|yi − f(xi)| − (c2/2) if |yi − f(xi)| > c

1
2 |yi − f(xi)|2 if |yi − f(xi)| ≤ c

3 SUPPORT VECTOR REGRESSION 45

Figure 7: Example of support vector regression with linear loss function. From Schölkopf
and Smola (2002)

Thus we want to minimize

1
2 ||β||

2 + C
n∑
i=1

L(yi,xi)

where the first term controls the smoothness of the function and the
second term is a penalization term. In the following we will use the linear loss
function. We introduce the slack variables ξi, ξ∗i to denote the linear errors
outside the ε-tube, to the downside and upside respectively. Then we state
the optimization problem as

minimize
β,ξ,ξ∗

1
2 ||β||

2 + C
n∑
i=1

(ξi + ξ∗i)

subject to

yi − β0 − βᵀxi ≤ ε+ ξi

β0 + βᵀxi − yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0 i = 1, ..., n

3 SUPPORT VECTOR REGRESSION 46

The hyperparameter C controls the tradeoff between the amount of em-
pirical error to be tolerated and the flatness of the tube. The value of C has
implications for the fit to training data, as well as to make reliable predictions.
A larger value of C will increase the emphasis given to minimizing violations
of the ε-tube, while a smaller value of C puts more emphasis on a flatter
function. The values of the hyperparameters C and ε are typically chosen
by cross-validation. As in the case of support vector machines, we can use
kernels to implicitly map a non-linear functions into a higher dimension where
a linear regression is applicable. The support vector regression only depends
on the inner products of the support vectors in the higher dimension space.
We construct a Lagrange function from the above objective function and
constraints by introducing dual variables. This function has a saddle point
with respect to the primal and dual variables at the solution. The resulting
Lagrange function from the primal objective function can be expressed as:

L(α, α∗, η, η∗; β0,β, ξ, ξ
∗) = 1

2 ||β||
2 + C

n∑
i=1

(ξi + ξ∗i)−
n∑
i=1

(ηiξi + η∗i ξ
∗
i)

−
n∑
i=1

αi(ε+ ξi − yi + β0 + βᵀxi)−
n∑
i=1

α∗i (ε+ ξ∗i + yi − β0 − βᵀxi)

where the Lagrange multipliers α, α∗, η, η∗ ≥ 0. By the saddle point con-
ditions the partial derivatives with respect to the primal variables β0,β, ξi, ξ

∗
i

must be zero

3 SUPPORT VECTOR REGRESSION 47

∂L
∂β0

=
n∑
i=1

(α∗i − αi) = 0

∂L
∂β

= β −
n∑
i=1

(α∗i − αi)xi = 0

∂L
∂ξi

= C − ηi − αi = 0

∂L
∂ξ∗i

= C − η∗i − α∗i = 0

and the partial derivatives with respect to the Lagrange multipliers
α, α∗, η, η∗ gives the constraints

∂L
∂ηi

=
n∑
i=1

ξi ≥ 0

∂L
∂η∗i

=
n∑
i=1

ξ∗i ≥ 0

∂L
∂αi

= ε+ ξi − yi + β0 + βᵀxi ≥ 0

∂L
∂α∗i

= ε+ ξ∗i + yi − β0 − βᵀxi ≥ 0

Substituting the partial derivatives with respect to the primal variables
back into the Lagrange function the Wolfe dual optimization problem is given
by

minimize
α,α∗

1
2

n∑
i,j=1

(αi − α∗i)(αj − α∗j)〈xi, xj〉 −
n∑
i=1

yi(αi − α∗i) + ε
n∑
i=1

(αi − α∗i)

subject to
n∑
i=1

(αi − α∗i) = 0 and αi, α∗i ∈ [0, C], i = 1, ..., n

3 SUPPORT VECTOR REGRESSION 48

Agian we are able to get rid of the η, η∗ Lagrange multipliers and are left
with α, α∗. The KKT conditions must be satisfied since the optimization is
under inequality constraints. The conditions require that the product between
dual variables and constraints disappear at the point of the solution. Thus
we have

αi(ε+ ξi − yi + β0 + βᵀxi) = 0

α∗i (ε+ ξ∗i + yi − β0 − βᵀxi) = 0

(C − αi)ξi = 0

(C − α∗i)ξ∗i = 0

For points where |β0 +βᵀxi− yi| < ε we need αi = α∗i = 0, so we get that
only support vectors influence the function. Secondly only points outside
the ε tube will have a positive slack variable ξ or ξ∗, so then α or α∗ will be
equal to C. We have β = ∑n

i=1(α∗i − αi)xi, so the regression function can be
written as

f(x) = β0 +
n∑
i=n

(α∗i − αi)〈xi,x〉

which is the so-called Support Vector expansion of β. Thus we need not
to estimate the regression coefficients β, even when calculating f(x). The
expansion of β is sparse in terms of xi, as only a subset of xi are needed to
describe β. To calculate β0 we look at the KKT conditions. If we have an
αi ∈ (0, C), then ξi = 0 and

β0 = yi − βᵀxi − ε

The same can be done for an α∗i ∈ (0, C) yielding

3 SUPPORT VECTOR REGRESSION 49

β0 = yi − βᵀxi + ε

Another way of computing β0 is to use interior point optimization for the
dual problem. Then the optimization process will return the value of β0 as
a by-product. To extend this method to non-linear relationships between
input and output data we can substitute the inner product by a kernel
K(xi,x) = 〈φ(xi), φ(x)〉 satisfying Mercer’s Theorem. The optimization
problem is then to find the smoothest function in the enlarged feature space.
The resulting function in the non-linear case is similarly to the linear case
given by

f(x) = β0 +
n∑
i=n

(α∗i − αi)K(xi,x)

Figure 8: Example of support vector regression with transformation to a higher dimension.
From Sayad (n.d.)

An important aspect of SVM/SVR is the choice of kernel. For SVR the

3 SUPPORT VECTOR REGRESSION 50

linear kernel only allows linear relationships between input and output, while
other kernels can accommodate non-linear relationships. Chen et al. (2010)
found that none of the linear, polynomial or the Gaussian kernels performed
consistently better in volatility prediction. Tang et al. (2009) argue that
general kernels, such as the Gaussian kernel, are not capable of capturing
the volatility clusters accurately. They suggest that the wavelet kernel will
be a better choice of kernel, as it handles both local characteristics and
outliers well. Li (2014) was the first to apply the SVM to estimate APARCH
models. The results showed that the wavelet kernel consistently outperformed
the Gaussian kernel in the APARCH model. Monte Carlo simulations also
showed that SVM based methods outperform QML estimation in prediction
and estimation of volatility in APARCH models when the underlying data
distribution is skewed t-distributed.

4 APPLYING SVR TO APARCH 51

4 Applying SVR to APARCH

4.1 Motivation

There are a few studies that apply APARCH models in the analysis of
volatility in financial data, which generally are based on maximum likelihood
estimation (MLE). Olowe (2009) applied APARCH models to Naira/Dollar
exchange rate volatility. Stavroyiannis (2016) used an APARCH model with
the residuals following the standardized Pearson type IV distribution applied
to WTI oil prices, and found improved performance compared to other residual
distributions. Nugroho and Susanto compared the performance of APARCH
models using normal and Student-t error distribution on daily returns of five
foreign currency exchange rates to Indonesian rupiah. Many more studies
apply extensions of the GARCH model, such as the GJR-GARCH and TS-
GARCH models, that also fall under the APARCH model structure. The
efficiency of MLE depends on the distribution of data and innovations in the
dataset. MLE methods are optimal when the residual errors are normally
distributed. If the distribution of innovations is not consistent with the model
assumptions, the MLE can be inefficient (Engle and González-Rivera, 1991;
Bollerslev and Wooldridge, 1992). To mitigate this a non-parametric model
can be used. SVR is such a non-parametric method, that can be combined with
APARCH models to estimate and forecast volatility. Peréz-Cruz et al (2003)
found a better forecasting ability of the GARCH models estimated by using
SVR than those estimated by using MLE when predicting the conditional
volatility of stock market returns. The APARCH-SVR combination can
be viewed as a semi-parametric method, as it combines the nonparametric
data-driven SVR method with the parametric APARCH model structure.
Using SVR we can better approximate the non-linear characteristics of the
data, such as volatility clustering, excess kurtosis and leverage effects. The
calculation of the Lagrange multipliers needs no a priori assumptions of the
underlying data distribution. SVR is based on the structural risk minimization

4 APPLYING SVR TO APARCH 52

of Vapnik (1992) and is thus expected to have good forecasting abilities.

4.2 Specifying input and output

We have presented the APARCH models, where ht is the stochastic process
of the conditional variance of the return series Zt. The conditional variance
can be predicted as a function of the long run unconditional variance w, the
one lag squared residual Zt−1 and the one lag conditional variance ht−1

Zt = et
√
ht, et ∼ IID(0, 1)

h
δ/2
t = w + α(|Zt−1| − γZt−1)δ + βjh

δ/2
t−1

The APARCH model is typically estimated by Maximum Likelihood
when et are Gaussian distributed and Quasi Maximum Likelihood when the
distribution is non-normal. Bollerslev and Wooldridge (1992) showed that
the normal QML estimate is consistent and asymptotically normal under
fairly weak regularity conditions, but the QML estimate is not asymptotically
efficient under non-normality and cannot provide the best estimates for smaller
sample sizes.

To use SVR to estimate APARCH models, we don not need to estimate the
coefficents of the APARCH model. We must specify the input and output to
the function f(xt). The output will be the conditional variance estiamte of h

δ
2
t .

The input will be xt = [(|Zt−1|−γZt−1)δ, hδ/2
t−1] if γ is given. If γ is not specified,

then the input will depend on the model selected. The power term (|Zt−1| −
γZt−1)δ is expanded. Then for the GARCH(δ = 2, γ = 0), TS-GARCH(δ =
1, γ = 0), T-GARCH(δ = 1) and GJR-GARCH(δ = 2) we have the input
vectors xt = [Z2

t−1, ht−1], xt = [|Zt−1|, h1/2
t−1],xt = [|Zt−1|, Zt−1, h

1/2
t−1], and

xt = [Z2
t−1, |Zt−1|Zt−1, ht−1] respectively. ht−1, which is the volatility at the

previous time step is not observable. Instead we need to use an approximation.
Peréz-Cruz et al suggested the approximation h∗t = 1

5
∑4
k=0 Z

2
t−k. Li (2014)

4 APPLYING SVR TO APARCH 53

showed that this approximation results in an over-smoothing of the realized
volatility, and suggested instead to use h∗t = 1

3
∑3
k=0 Z

2
t−k as input variable.

4.3 Wavelet kernel

The wavelet transform methods were developed in the 1980’s by the likes of
Grossman and Morlet (1984), Daubechies (1988) and Mallat(1989), although
the first wavelet was proposed by Haar in 1909. Common applications of
wavelet transforms are data compression, such as image processing (for exam-
ple the JPEG 2000 compression standard), and signal processing. Wavelet
transforms are similar to Fourier transforms. Fourier transform can be viewed
as a special case of continuous wavelet transform. The most important dif-
ference of wavelet transforms is that they are localized both in time and
frequency, whereas Fourier transforms are localized in frequency only. Thus,
wavelet transforms can be applied to signals that change over time. The
orthonormal wavelet bases ψa,c : a, c ∈ R are generated by translations and
dilations of a single function called the mother wavelet ψ(t) ∈ L2(R) defined
by

ψa,c(x) = 1√
a
ψ(x− c

a
)

Here a is a scale parameter, and c a location parameter. Smaller values of
a will compress the wavelet in the time dimension and increase the frequency,
while larger values will result in lower frequency and wider time width. In
wavelet analysis a is called the dilation factor, and c is called the translation
factor. The mother wavelet is a zero-mean and normalized function, meaning

∫ ∞
−∞

ψ(t)dt = 0

||ψ(t)||2 = 1

4 APPLYING SVR TO APARCH 54

also the mother wavelet has to satisfy the admissibility condition

Wψ =
∫ ∞

0

|Ψ(ω)|2
|ω|

dω <∞

where Ψ(ω) is the Fourier transform of ψ(x). For a signal f(x), the wavelet
transform is

Wa,c(f) = 〈f(x), ψa,c(x)〉 =
∫ ∞
−∞

f(x)ψ∗a,c(x)dx

Given the admissibility condition, the function f can be reconstructed by
the inverse wavelet transform

f(x) = 1
Wψ

∫ ∞
−∞

∫ ∞
0

Wa,c(f)ψa,c
dadc

a2

or using finite terms, by the approximation

f̂(x) =
n∑
i=1

Wiψai,ci(x)

To apply the wavelet transform to SVM we use a multi-dimensional wavelet
function defined by

ψd(x) =
d∏
j=1

ψ(x)

Zhang et al. (2004) proposed two admissible, symmetric and positive
definite, kernel functions based on wavelets to SVM that satisfy Mercer’s
condition. The wavelet kernels are multidimensional wavelet functions that
can approximate arbitrary nonlinear functions. Zhang et al. combined the
wavelet theory and support vector machines and showed that the wavelet

4 APPLYING SVR TO APARCH 55

kernel can achieve more accurate approximation for nonlinear functions than
other kernels. The dot product kernel is defined by

K(x,y) =
d∏
i=1

ψ(xi − ci
a

)ψ(yi − ci
a

)

and the translation invariant wavelet kernel, that satisfy the translation
invariant kernel theorem, is

K(x,y) =
d∏
i=1

ψ(xi − yi
a

)

where x,y ∈ Rd, a and c denotes the dilation and translation and ψ(x)
is a mother wavelet. The translation invariant kernel theorem states that a
translation invariant kernel, K(x,y) = K(x− y), is an admissible support
vector kernel if and only if the Fourier transform

F [K](ω) = (2π)−d/2
∫
Rd
exp(−j(ω · x))K(x)dx

is non-negative. Proof of the theorem can be found in Schölkopf and
Smola (2004), and proof that the translation invariant wavelet kernel does
indeed satisfy the condition of the theorem can be found in the appendix of
Zhang et al (2004). We can also easily show that the dot-product kernel is
admissible. For some function f(x) ∈ L2

4 APPLYING SVR TO APARCH 56

∫ ∫
f(x)K(x, y)f(y)dxdy

=
∫ ∫

f(x)
d∏
i=1

ψ(xi − ci
a

)ψ(yi − ci
a

)f(y)dxdy

=
∫
f(x)

d∏
i=1

ψ(xi − ci
a

)dx
∫
f(y)

d∏
i=1

ψ(yi − ci
a

)dy

=
(∫

f(x)
d∏
i=1

ψ(xi − ci
a

)dx
)2

≥ 0

A choice of mother wavlet proposed by Zhang was the Morlet wavelet

ψ(x) = cos(1.75x)exp(−x
2

2)

Combining the Morlet mother wavelet with the translation invariant
wavelet kernel we obtain the following kernel

K(x,y) =
d∏
i=1

ψ(xi − yi
a

) =
d∏
i=1

cos(1.75xi − yi
a

)exp(−||xi − yi||
2

2a2)

This is an admissible support vector kernel, proved by Zhang et al. The
estimate function for wavelet SVM is the approximation

f(x) = β0 +
l∑

i=1
(αi − α∗i)

d∏
j=1

ψ(x
j − xji
a

)

where the xji denotes the jth component of the ith training data-point. Zhang
et al applied the wavelet kernel to three experiments, and found improved
performance when compared to the Gaussian kernel. Their paper concluded
by noting that the wavelet kernel has better approximation than the Gaussian

4 APPLYING SVR TO APARCH 57

kernel and faster training speed. They attribute this to the fact that the
wavelet kernel is orthonormal (or orthonormal approximately), whereas the
Gaussian kernel is not and thus the Gaussian kernel is correlative.

5 EMPIRICAL STUDIES 58

5 Empirical Studies

5.1 Setup

We will use maximum likelihood and SVR in APARCH models to esti-
mate and forecast conditional variance for a dataset of financial returns
(t1, x1), ..., (tn, xn), where xi is the return at time point ti. The performance
will be measured by mean squared error (MSE) 1

n

∑n
i=1(h′t − h∗t)2 and mean

absolute error (MAE) 1
n

∑n
i=1 |h′t − h∗t |, where h′t is the conditional volatility

from our models and h∗t = ∑3
k=0 Z

2
t−k is an approximation of ht using the

return series Zt. The true value of ht is of course not observable, we can only
observe realized volatility. The MSE and MAE will be calculated for both
training and test data. The training data are used to estimate the Lagrange
multipliers of the SVR and the parameter vector θ = (α, β, δ, γ, w) from the
QML in the APARCH model. The conditional variance h′t from training data
is the estimated volatility, while for test data it is the forecasted volatility.
The test data is not used to fit the model and the model can be used in
real time to forecast volatility. Test data performance is the most important
measure, as it tells whether the model is useful out of sample or just a good fit
in sample. Each of the datasets are split up into two or three periods. Each
period is then divided into a training dataset and a test dataset, where 3/4 of
the period is used as training data and 1/4 as test data. The values of ε and
C in the SVR models are chosen by grid search. Grid search is a brute-force
method for hyperparameter selection. A subset of values is manually chosen
for each hyperparameter, creating a grid of possible combinations. Then every
combination of hyperparameter values is tested using cross validation to find
the best one. Performance is measured by mean squared error. Since we only
have two hyperparameters to tune this is a viable method for hyperparameter
selection. To make sure the grid is reasonable, different grids have been tested
so that the values of C and ε are somewhere in the middle of the grid. The
exact value of C and ε may vary even with constant grid, depending on how

5 EMPIRICAL STUDIES 59

the cross validation divides the data. The value of a in the Wavelet kernel is
chosen to be 2 so that

K(x,y) =
n∏
i=1

cos(1.75xi − yi2)exp(−||xi − yi||
2

8)

We compare the performance of the QML method with SVR. Two different
kernels are used, the Gaussian and the wavelet. Four different APARCH
models are used, the GARCH, GJR, TARCH and TSGARCH. The datasets
used are the S&P 500 stock index, high yield corporate credit spreads and
Nordic el-spot prices. Two additional kernels, the linear and the polynomial,
are also used with performance listed in the appendix.

5.2 S&P 500

The S&P 500 is a stock market index that measures the stock returns of 500
of the largest publicly listed companies in the United States. The index is one
of the most followed equity indices in the world, and a common benchmark
for stock returns in general. Mutual funds and other money managers often
quote their results in relation to the performance of the S&P 500. The index
also serves as a basis for investable products, such as exchange traded funds
(ETFs), including three of the four largest ETFs in the world measured by
assets under management, mutual funds, and futures, options and other
derivative contracts. The total market capitalization, the number of shares
outstanding multiplied by market price per share for each index constituent,
of the index is USD 28.5 trillion, and there is over USD 11.2 trillion indexed
or benchmarked to the index (As of October 30. 2020 spdji.com). The index
is maintained by S&P Dow Jones Indices, a joint venture between S&P Global
Inc. and CME Group Inc. The components of the index are determined by a
committee. The criteria for inclusion includes a market capitalization greater
than USD 8.2 billion, with a public float greater than USD 4.1 billion. The

5 EMPIRICAL STUDIES 60

company must be profitable in the most recent quarter, and in total over the
previous four quarters. The trading volume of the stock must be minimum
250,000 shares in each of the last six months. The stock must be common
equity of a U.S. company or Real Estate Investment Trust (REIT) listed on
either the New York Stock Exchange or Nasdaq.

The data in this section is the daily closing price of the S&P 500, from
January 3. 2006 to December 30. 2020. The data source is Yahoo! Finance,
gathered by using the R-package QuantMod. The centered daily return is
ut = rt − µrt , where rt = 100 ∗ (exp(log(Yt − Yt−1))− 1) and Yt is the closing
price at time t. The figures below feature the price series and return series
for the S&P 500. We see that equity prices have been generally increasing
in the last 15 years, with two major drawdowns, during the financial crisis
of 2008-2009 and the Covid-19 outbreak in early 2020. There are also a few
smaller drawdowns, most notably during the European debt crisis in 2011,
the slowdown in China and other emerging markets and plummeting oil prices
in 2015-2016 and in 2018 following the Federal Reserve tightening monetary
policy. The skewness of the return series is measured at -0.2690744, indicating
that negative returns tend to be larger than positive returns. The excess
kurtosis is measured at 13.25763, meaning we have heavy tails.

5 EMPIRICAL STUDIES 61

Figure 9: S&P 500 price level from January 3. 2006 - December 30. 2020

Figure 10: S&P 500 daily return from January 3. 2005 - December 30. 2020

The dataset is divided into three time periods; 2006-2010, 2011-2015

5 EMPIRICAL STUDIES 62

and 2016-2020. The plot below shows the S&P 500 price level and realized
volatility for the three periods, with training data on the left side of the
vertical line and test data on the right. The first period contains the financial
crisis, with very high volatility, as training data. The test period volatility is
lower. The third period is the opposite with mostly very low volatility in the
training data while the test data contains the Covid-19 crash. The second
period has much more balanced volatility in the training and test data.

(a) S&P 500 price level (b) S&P 500 returns

Figure 11: S&P 500 daily prices and returns for the three subperiods

As preliminaries, we check characteristics related to the centered return
series ut. The number of observations is denoted by N. The Shapiro-Wilk
test (Shapiro and Wilk, 1965) is used to test for normality of the centered
returns ut, with the null hypothesis that the dataset is normally distributed.
The Box-Ljung test (Ljung and Box, 1978) is used to test for correlations
of u2 with lag one and five, corresponding to one day and one trading week.
The Lagrange Multiplier test (Engle, 1982) is used to test for ARCH-effects,
with the null hypothesis of no ARCH effect. The test should also have power
against GARCH effects (Bollerslev, 1986). Here the test is performed at lag

5 EMPIRICAL STUDIES 63

10 for the LM test. The p-value of the test results are shown in the table
below.

Period 1 Period 2 Period 3
N 1305 1305 1305
Shapiro-Wilk test < 2.2e-16 < 2.2e-16 < 2.2e-16
Box-Ljung test lag 1 1.314e-10 < 2.2e-16 < 2.2e-16
Box-Ljung test lag 5 < 2.2e-16 < 2.2e-16 < 2.2e-16
LM test lag 10 < 2.2e-16 < 2.2e-16 < 2.2e-16

Table 1: Preliminaries

All the test results are extremly significant. There is highly significant
non-normality as a result of the heavy tails and conditional heteroscedasticity.
There is also significant evidence of correlations in u2 for both lag one and lag
five. Since the LM test is also highly significant, we conclude that GARCH-
type models are applicable. For the GJR and TARCH models we need to
estimate the value of γ in the QML estimated models. For all time periods
there is highly significant positive value of γ, for both the GJR and TARCH
models. This means that volatility increases more with large negative returns
than positive returns, and that leverage effects should be included in the
model. For the support vector regression models we are interested in the
number of support vectors as a measure of computational efficiency. The
wavelet kernel generally uses fewer support vectors than the Gaussian kernel.
Fewer support vectors can also help to reduce errors in the test dataset as
the variance of the model decrease.

Model Estimate Std. Error t-value p-value
Period 1 GJR 1.000000 0.331784 3.014 0.00258

TARCH 1.000000 0.016259 61.504 < 2e-16
Period 2 GJR 1.000000 0.272198 3.674 0.000239

TARCH 1.000000 0.010515 95.099 < 2e-16
Period 3 GJR 0.458995 0.131427 3.492 0.000479

TARCH 1.00000 0.016985 58.875 < 2e-16

Table 2: Estimate of γ

5 EMPIRICAL STUDIES 64

Kernel GARCH GJR TARCH TSGARCH
Period 1 Gaussian 652 663 828 609

Wavelet 576 574 800 578
Period 2 Gaussian 734 755 683 701

Wavelet 721 714 680 676
Period 3 Gaussian 924 921 923 844

Wavelet 931 910 922 845

Table 3: Number of support vectors

Period 1 Period 2 Period 3
MSE QML Gaussian Wavelet QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 16.81715 1.32472 8.71106 1.64263 0.80463 1.01889 0.53044 0.08023 0.31761
GJR 15.69177 1.22932 8.14722 1.25389 0.30887 0.85007 0.49812 0.06708 0.24358
TARCH 15.40920 4.32664 10.55776 1.64690 0.74614 0.97648 0.55091 0.17364 0.34106
TSGARCH 18.87404 3.12808 9.79917 2.08243 0.68665 0.99345 0.65626 0.16714 0.38384
MAE QML Gaussian Wavelet QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 1.66402 0.37845 0.99268 0.51935 0.26937 0.37978 0.36890 0.09394 0.23745
GJR 1.59100 0.35872 0.91649 0.49654 0.21399 0.34225 0.37197 0.07673 0.21045
TARCH 1.63374 0.63234 1.00173 0.52440 0.30809 0.35291 0.39436 0.15159 0.23384
TSGARCH 1.73324 0.67384 1.08036 0.55076 0.31391 0.37471 0.40641 0.16174 0.25334

Table 4: S&P 500 Training Error (MSE & MAE)

(a) Period 1 (b) Period 3

Figure 12: S&P 500 daily conditional standard deviation in percent, approximation
√
h∗t

(dots) and GJR model estimate
√
h′t (training data)

5 EMPIRICAL STUDIES 65

The training set MSE and MAE for the different models applied to the S&P
500 dataset is provided above. The general tendency is for the QML models
to perform clearly worst, and for the gaussian kernel to slightly outperform
the wavelet kernel. It is difficult determine which APARCH model works
best, although the TSGARCH performs worst in every period for QML based
models. The plots above shows square root of h∗t as dots and the square
root of h′t in the GJR models as lines. From the plots we observe that the
SVR models are much more flexible than the QML models. The SVR models
are therefore able to capture a majority of the volatility spikes, as well as to
quicker adjust to lower volatility.

Period 1 Period 2 Period 3
MSE QML Gaussian Wavelet QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 1.51006 3.77668 1.07864 1.09265 0.87601 0.55606 51.70217 124.5159 113.6029
GJR 1.39698 4.20442 1.14557 0.79828 0.94426 0.42858 48.51570 125.3363 111.9718
TARCH 1.48663 1.65659 1.19918 0.92261 0.56889 0.49906 50.11123 124.4605 118.5207
TSGARCH 1.52570 1.45023 1.10210 1.25320 0.75262 0.58780 57.14117 122.1579 108.0572
MAE QML Gaussian Wavelet QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 0.88765 0.98843 0.58218 0.57520 0.44372 0.38258 2.25864 3.39925 2.89213
GJR 0.85132 1.05469 0.59407 0.49856 0.47754 0.36921 2.11129 3.35681 2.93830
TARCH 0.86606 0.66888 0.58669 0.52932 0.40217 0.38072 2.15640 3.26802 3.02260
TSGARCH 0.89269 0.64599 0.57954 0.61574 0.42473 0.38952 2.34104 3.16420 2.71566

Table 5: S&P 500 Test Error (MSE & MAE)

The above tables show the test set MSE and MAE for the S&P 500 dataset.
The first two periods are clearly best estimated by the wavelet kernel. The
final period contains the relatively stable period between 2016 and 2019 as
training data, including 2017 which was one of the lowest realized volatility
years ever. The test data however contains the extreme volatility of the
financial markets during the Covid-19 outbreak in 2020. There is a major
structure break that is not captured by neither the Gaussian nor the Wavelet
kernel models. The result is terrible performance measured by MSE and
MAE. The result for the QML model is also bad, but it captures at least
some of the extreme volatility. We can therefore infer that it is important to

5 EMPIRICAL STUDIES 66

train models on data that contains most of the possible range of volatility.
This is a common problem in finance, where models are trained on data
that are not representable of what can happen, only what has happened in
some limited period of time. Alas, the true fat-tailedness of stock returns is
not present in training data, which can lead to “blow-ups” if a far-left tail
event breaches risk measures (such as Value at Risk). From the plots we can
see that the Wavelet kernel model performs very well in period one, while
the Gaussian kernel model seems overreactive. The first period has extreme
volatility in the training data, during the Great Financial Crisis, while the
test data has relatively low volatility (below 3% daily volatility). In period
three the volatility reaches 10% daily change and both SVR models fail, while
the QML model performs reasonably well. The plot for period two can be
found in the appendix.

(a) Period 1 (b) Period 3

Figure 13: S&P 500 daily conditional standard deviation in percent approximation and
GJR model forecast (test data)

5 EMPIRICAL STUDIES 67

5.3 Credit Spreads

Sale of corporate bonds are one of the main venues for corporations to raise
debt capital. Investors purchasing the bonds in return typically receives
annual, semi-annual or quarterly interest payments. At the maturity of
the bond, the corporation pays the debtholders the principal of the bond.
Corporate bonds are partitioned by corporate credit rating and time to
maturity. S&P Global Ratings (S&P), a division of S&P Global Inc., is a
financial services company that, among other services, assigns credit ratings
to various debt securities. Credit ratings rate the debtor’s ability to pay back
interest and principal, as well as the likelihood of default. S&P’s ratings
range from AAA as the safest to D for a company that has already failed
to pay its financial obligations at due date. Ratings from AAA to BBB- are
considered Investment grade. Bonds rated BB+ and lower are considered
non-investment grade and are often referred to as high-yield or junk bonds.
These bonds will carry substantial risks.

Credit spreads are defined as the difference between the interest yield of a
uncertain (corporate) bond, and debt issued by the United States Treasury
with comparable maturity. Credit spreads of bonds in aggregate are influenced
or correlated by a number of factors. Factors of significance includes interest
rates, interest rate volatility, yield curve slope, bond liquidity, exchange
rates, stock market returns and stock market volatility (Clark et al 2018).
Bonds with lower ratings will have larger interest payments, thus larger credit
spreads, to compensate for the increased risk of default. Yields and credit
spreads tends to increase for longer times to maturity. Higher rated and longer
dated bonds also tend to exhibit larger credit spread volatility. The credit
spread is an important measure of the availability of funding for corporations.
Tight spreads indicate that investor appetite for bonds is high, and funding
is readily available at good terms for corporations. Spreads are usually high
in economic downturns, as investors demand more yield to compensate for

5 EMPIRICAL STUDIES 68

perceived increased risk. Thus, funding will be less available, and at a higher
cost, for corporations, which might add more pressure on the economy.

In this section we examine the ICE BofA US High Yield Index Option-
Adjusted Spread. The data is gathered from the website of the United States
Federal Reserve Bank of St. Louis’ Federal Reserve Economic Data (FRED)
https://fred.stlouisfed.org/categories/32348. The frequency is daily, and the
measure is the percentage point spread above the yield on US treasuries for
US corporate high yield bonds. Each security must have greater than 1 year
of remaining maturity, a fixed coupon schedule, and a minimum amount
outstanding of $100 million. The time period examined is 2006-2020, and the
dataset is divided into the same three five-year periods as S&P 500 dataset.
We can clearly see the financial crisis, where high yield credit spreads rose to
over 20%. We also got a large spike in the credit spreads following the Covid-
19 virus outbreak in 2020. Credit spreads were also fairly high in the period
2014-2016, as many energy companies struggled with falling oil prices. The
return series is denominated by the basis points (Bps, 100Bps=1%) change in
credit spreads. There are clearly volatility clusters at the periods of elevated
spreads. This includes in particular the great financial crisis of 2008-2009,
where high yield bonds were trading at prices yielding more than 20% more
than Treasury bonds. Bonds were never as depressed in the Covid-19 crash,
but the volatility almost as high as change in yield happened very fast (in
both directions).

https://fred.stlouisfed.org/categories/32348

5 EMPIRICAL STUDIES 69

Figure 14: High Yield spreads from 2006 to 2020

Figure 15: High Yield change in spreads from 2006 to 2020

The dataset is again divided into three time periods; 2006-2010, 2011-2015

5 EMPIRICAL STUDIES 70

and 2016-2020. The plot below shows the High Yield credit spreads level
and the change daily change in credit spreads for the three periods. The
vertical line divides the test and the training data. The first period contains
the financial crisis, with extremely high volatility, as training data. The test
data mostly has compressing spreads from the high levels of financial crisis
and lower volatility. The third period is the opposite. Credit spreads are
generally compressing and very low in the trainin data, with muted volatility.
The test data contains the Covid-19 crash, with extreme volatility. The credit
spreads and volatility rose sharply with the uncertainty around the Covid-19
outbreak, but quickly fell down again after the Federal Reserve announced
that it was buying large quantities of bonds and other credit securities. The
second period has a period of relatively high volatility during the European
debt in 2011 in the training data. In the test data the end of 2015 also
experienced some volatility as many oil fracking companies with large debt
loads struggled with falling oil prices. Overall, the volatility in the training
and test data is fairly even, with no extremes.

(a) HY spred level (b) HY spread change

Figure 16: High Yield spreads and spread changes for the three subperiods

5 EMPIRICAL STUDIES 71

Period 1 Period 2 Period 3
N 1234 1234 1234
Shapiro-Wilk test < 2.2e-16 < 2.2e-16 < 2.2e-16
Box-Ljung test lag 1 7.139e-14 < 2.2e-16 < 5.44e-15
Box-Ljung test lag 5 < 2.2e-16 < 2.2e-16 < 2.2e-16
LM test lag 10 < 2.2e-16 < 2.2e-16 < 2.2e-16

Table 6: Preliminaries

This data set also has significant test results for all periods, so GARCH
type models are applicable. There is clearly non-normality, correlation in
the second order and ARCH effects. The estimates of γ are also significant,
suggesting leverage effects. The sign of the γ coefficient is negative for this
data set. This means that credit spreads volatility increases when credit
spreads are increasing. This makes sense as credit spreads increase in times of
financial distress and liquidity constraints. The spread is negatively correlated
with the stock market returns studied in the previous section. The number of
support vectors is again generally lower for the wavelet based models.

Model Estimate Std. Error t-value p-value
Period 1 GJR -0.15118 0.04959 -3.048 0.0023

TARCH -0.23039 0.05751 -4.006 6.16e-05
Period 2 GJR -0.19577 0.06836 -2.864 0.00418

TARCH -0.30285 0.07916 -3.826 0.00013
Period 3 GJR -0.29987 0.07707 -3.891 9.98e-05

TARCH -0.59888 0.10851 -5.519 3.41e-08

Table 7: Estimate of γ

Kernel GARCH GJR TARCH TSGARCH
Period 1 Gaussian 437 550 715 717

Wavelet 365 467 682 679
Period 2 Gaussian 435 439 840 845

Wavelet 408 406 843 852
Period 3 Gaussian 900 900 946 944

Wavelet 895 880 953 951

Table 8: Number of support vectors

5 EMPIRICAL STUDIES 72

Period 1 Period 2 Period 3
MSE QML Gaussian Wavelet QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 218496.5 4360.792 101785.6 8101.01 810.05 3674.28 4769.59 1910.88 2825.17
GJR 239002.6 3730.750 100955.9 7748.41 2697.80 4269.16 5056.96 1303.05 2703.52
TARCH 255528.7 27578.188 106003.5 8402.40 1509.80 3930.25 5189.05 1876.40 2315.69
TSGARCH 243880.8 25766.276 112137.5 8972.59 1362.80 4007.75 4687.67 1913.56 2497.67
MAE QML Gaussian Wavelet QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 163.382 35.599 88.823 38.199 14.907 22.732 34.410 12.668 20.636
GJR 169.825 22.518 78.647 38.762 17.371 23.891 35.766 11.316 19.706
TARCH 174.299 44.602 77.134 38.880 16.798 21.621 35.238 15.170 18.891
TSGARCH 169.663 45.899 84.442 38.293 16.365 22.584 33.670 15.778 20.060

Table 9: HY Training Error (MSE & MSE)

(a) Period 1 (b) Period 3

Figure 17: HY spread daily conditional standard deviation bps change, approximation and
GJR model estimate (training data)

For the training data the MSE and MAE are highest for the QML method
and lowest for the Gaussian kernel method. From the plots we observe that
the kernel models capture almost every single volatility spike, while the QML
model generally underreacts to the spikes. The kernel models also quickly
come back down after a spike, while the QML model gradually moves lower.
There is a large difference in the magnitude of volatility for the two periods

5 EMPIRICAL STUDIES 73

shown in the plot. The first period has almost 100Bps daily change in spreads
during the financial crisis, while the third period barely reaches 30Bps daily
change.

Period 1 Period 2 Period 3
MSE QML Gaussian Wavelet QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 6887.1 18167.9 2886.9 11293.4 8083.5 6632.0 273732.0 777721.1 710181.6
GJR 7410.6 30890.7 3062.9 9879.7 8518.1 5004.1 267752.7 784100.4 716217.9
TARCH 8352.2 25266.9 3165.1 9948.2 6558.1 6148.3 325126.4 769984.0 760646.6
TSGARCH 7732.9 13743.4 3303.7 11504.0 7320.4 5338.1 372827.9 770903.7 727815.7
MAE QML Gaussian Wavelet QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 51.026 66.619 33.596 63.014 45.243 39.156 202.844 296.519 270.456
GJR 53.398 83.194 29.418 57.963 46.138 36.280 207.448 302.060 269.353
TARCH 56.863 44.926 28.967 58.177 40.543 38.104 227.272 285.680 281.355
TSGARCH 54.951 39.405 29.119 63.228 41.588 36.087 226.918 287.197 272.819

Table 10: HY Test Error (MSE & MAE)

For the test data we again observe that the wavelet kernel method produces
the lowest MSE and MAE values. The time periods studied in this dataset
are the same as those in the S&P 500 dataset. We therefore get the same
problem for the third period. The training data contains mostly compressed
spreads and low volatility, while the test data contains the extreme volatility
of February and March of 2020. For the first time period it is the opposite,
with extreme volatility in the training data and low volatility in the test data.
The SVR based methods are again unable to capture any of the extreme
volatility of March 2020, while the QML method captures some of it. It is not
possible to determine which APARCH model performs better on this dataset
for neither QML nor SVR. We can see that the Gaussian kernel model is way
too reactive in the first period, likely as a result of the extreme volatility in
the training data. The GJR model showed in the plot seems to be the worst
performing on the first time period for this kernel.

5 EMPIRICAL STUDIES 74

(a) Period 1 (b) Period 3

Figure 18: HY spread daily conditional standard deviation bps change, approximation and
GJR model forecast (test data)

5.4 Nordic Electricity Prices

Nord Pool runs the leading power market in Europe, offering both day-ahead
and intraday markets to its customers. The day-ahead market is the main
arena for trading power, and the intraday market supplements the day-
ahead market and helps secure balance between supply and demand. Market
participants express their bids and offers in terms of prices and quantities.
The electric power markets are known to be among the most volatile markets.
Power supply cannot easily be stored like other commodities can, and there
needs to be almost perfect balance between production and consumption at
all times. Power prices are determined by supply and demand. The supply
is often dependent on weather, especially for renewable energy sources such
as wind and solar. The demand is also affected by the weather, as very
low temperatures require more heating, and very warm weather require air
conditioning. Demand tends to be inelastic to price in the short term, so that
large price moves are necessary to incentivize demand to adjust to supply.

5 EMPIRICAL STUDIES 75

Integrating power markets across borders can help secure power supply and
stabilize prices as oversupply in one region can be offset by undersupply in
another. Integrated power markets also contribute to lower overall power
prices and optimal division of resources. The price of electric power is also
dependent on the price of other energy commodities like natural gas, heating
oil and coal.

Norwegian power prices are generally more stable than many other places.
This is a result of the ability regulate hydroelectric supply to match demand
on a continuous basis. Thermal power plants, which can have heat sources
such as nuclear, coal, gas, biofuels, solar, waste or biofuels, are more costly to
regulate. Large scale thermal plants are often synonymous with oligopolistic
supply side, which can further reduce flexibility of supply and increase price
volatility. The ability to import power in the winter when heating demand is
high and reservoir inflow is low, and to export in the summer when heating
demand is low and reservoir inflows are high further smooths prices.

The prices of electric power are of extreme importance for many compa-
nies in industries such as heavy engineering and commodity refinement, for
example aluminum extraction and smelting, where electricity is a large part
of the input cost. Risk management of energy commodities and electricity
is a major issue for these types of operations, as it can seriously affect its
competitiveness, viability and profitability. Energy market participants, like
the large producers, large energy consuming companies, electricity resellers
and traders, need volatility forecasts for effective investment, hedging risk
and arbitrage strategies. It has been observed that price forecasting errors
are still high from risk management perspective (Aggarwal et al 2009). The
history of electricity markets is relatively short and large differences in price
developments exist in different power markets. Aggarwal et al found no sys-
tematic evidence of out-performance of one model over the other models on a
consistent basis. Some research has been done applying GARCH type models

5 EMPIRICAL STUDIES 76

to electric power prices. Garcia et al (2005) used GARCH methodology to
forecast hourly prices in the deregulated electricity markets of Spain and
California. The GARCH model improved forecasting performance compared
to an ARIMA model and incorporating demand as an explainatory vari-
able further improved performance. Cifter (2013) used a Markov-switching
GARCH model to forecast volatility in Nordic power prices. MS-GARCH
models increased the predictive performance of volatility models at day-head
and longer time horizon forecasting compared to standard GARCH and GJR
models, indicating that the volatility is regime dependent. Liu et al (2013)
used ARMA-GARCH and ARMA-GARCH-M models to predict hourly elec-
tricity prices in New England. dos Santos Coelho et al (2011) used RBF
neural network methods with GARCH errors to forecast hour-ahead Spanish
electricity pool prices. Their method increased forecasting performance com-
pared to benchmark methods (AR, MA, ARMA, ARMA-GARCH). One, two
and three days ahead forecasts were also accurate.

The data in this part is gathered from Nord Pool at https://www.
nordpoolgroup.com/historical-market-data/. We study the Oslo daily elspot
prices from the start of 2015 to the end of 2020, with prices denoted in
NOK/MWh. Our goal is to measure the performance of the APARCH models
in day ahead volatility forecasting. The power price data is more “spiky”
in the short term than the previous datasets, and overall volatility is much
higher. Some of the increases are in excess of 100%, and some of the drops are
larger than 50%. Three of the drops of more than 50% are directly following a
100% or more spike in prices. There is again a clear visual support of volatility
clustering. Another interesting property of this data is the seasonality. Prices
are generally increasing during fall and early winter, and falling from spring
until early summertime. 2020 had especially low prices during the summer,
as a snowy winter and late spring filled hydropower reservoirs close to historic
maximum.

https://www.nordpoolgroup.com/historical-market-data/
https://www.nordpoolgroup.com/historical-market-data/

5 EMPIRICAL STUDIES 77

Figure 19: Oslo daily elspot prices from 2015 to 2020

Figure 20: Oslo daily elspot percentage price change from 2015 to 2020

The first period has a couple of periods with very high volatility in 2015

5 EMPIRICAL STUDIES 78

and 2016. The first comes from low summer prices, while the second in the
beginning of 2016 comes from winter price spikes. This also coincides with
the bottoming of oil prices after a large fall at the same time. For the second
period we see a few large volatility spikes in the training data. In the test
data prices are mostly very low, and volatility is much more persistent.

(a) EL price level (b) EL price returns

Figure 21: Elspot daily prices and returns for the two subperiods

Period 1 Period 2
N 1060 1060
Shapiro-Wilk test < 2.2e-16 < 2.2e-16
Box-Ljung test lag 1 0.005263 < 2.2e-16
Box-Ljung test lag 7 < 2.7e-06 < 2.2e-16
LM test lag 10 < 0.000112 < 4.466e-14

Table 11: Preliminaries

Again, all the tests have very significant p-values for both periods. The
coefficient of γ is significant and positive, suggesting volatility increase with
falling prices. Volatility is here measured by percentage change, so lower prices
also means that a smaller absolute change is necessary for a large percentage
change. The number of support vectors is again generally fewer for the wavelet
kernel method. There is a strong skewness in the return series, measured
at 2.79. The excess kurtosis is measured at a massive 21.17, indicating very

5 EMPIRICAL STUDIES 79

heavy tails. There are significant autocorrelations in the return series for
every seven days, for at least one month. A probable explanation is increased
demand, and thus higher prices, during weekdays, and lower demand and
prices during weekends.

Model Estimate Std. Error t-value p-value
Period 1 GJR 0.22981 0.04588 5.009 5.48e-07

TARCH 0.24641 0.05384 4.577 4.72e-06
Period 2 GJR 0.46340 0.06541 7.085 1.39e-12

TARCH 0.54786 0.07604 7.205 5.8e-13

Table 12: Estimate of γ

Kernel GARCH GJR TARCH TSGARCH
Period 1 Gaussian 358 472 761 606

Wavelet 299 437 775 609
Period 2 Gaussian 425 452 627 525

Wavelet 382 382 625 535

Table 13: Number of support vectors

Period 1 Period 2
MSE QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 334636.4 308156.2 284960.4 127120.36 27007.23 47353.86
GJR 196976.8 324026.3 259414.9 75178.14 30526.06 45428.81
TARCH 247816.9 338732.9 309233.7 119583.40 48051.89 45511.21
TSGARCH 225003.6 344115.4 320359.2 95928.81 46106.99 44651.23
MAE QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 187.9296 117.6003 134.9078 110.76429 22.64757 43.54872
GJR 154.7117 107.7508 125.8024 87.14748 22.36975 41.55503
TARCH 165.2228 120.2940 121.4180 93.99463 32.62379 39.83399
TSGARCH 157.0818 125.6311 127.3699 96.77380 34.15172 41.94148

Table 14: Training Error (MSE & MAE)

5 EMPIRICAL STUDIES 80

(a) Period 1 (b) Period 2

Figure 22: EL-price daily conditional standard deviation percentage change, approximation
and GJR model forecast (training data)

The results of the MSE and MAE are also consistent with the other
datasets. The Gaussian kernel method performs best on the training data,
while the Wavelet kernel method performs best on the test data. Both SVR
methods generally outperform the QML models, in both training and test
data. Among the APARCH models the GARCH model seems to perform
generally worst, but there is no model consistently outperforming for the
kernel methods. For the QML methods the asymmetric GJR and TARCH
models have the best test results. Looking at the plots y-axis, there is a large
difference in volatility in the two test periods. It seems like the QML models
are more reactive to spikes in this dataset compared to the previous two and
seems to overreact somewhat to high volatility. They also struggle to capture
low volatility period, especially in the second test period. For the second
period it looks like the Gaussian model is having similar issues as in the third
period of the previous datasets. Instead of a “floor” volatility with upwards
spikes there is a volatility “roof” with downwards spikes. The Wavelet kernel
looks to perform well on both test data sets.

5 EMPIRICAL STUDIES 81

Period 1 Period 2
MSE QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 20053.16 10885.670 7582.235 1408664 1293745 790801.4
GJR 16569.51 11371.564 8062.341 1064748 1329058 716285.7
TARCH 15447.13 7877.144 6837.183 1077270 1246207 846736.9
TSGARCH 16545.97 8687.834 6459.655 1254373 1200365 851782.5
MAE QML Gaussian Wavelet QML Gaussian Wavelet
GARCH 78.59977 61.34763 47.49996 589.5322 462.2583 375.0836
GJR 68.64692 59.37889 39.57070 532.4401 464.3968 345.9578
TARCH 70.37944 36.30303 34.41546 545.2083 425.6834 355.5089
TSGARCH 76.39041 38.42772 34.10755 564.7026 407.7899 376.2891

Table 15: Test Error (MSE & MAE)

(a) Period 1 (b) Period 2

Figure 23: EL-price daily conditional standard deviation percentage change, approximation
and GJR model forecast (test data)

6 SUMMARY 82

6 Summary

This thesis has presented the APARCH framework and methods for estimating
the models, namely QML and SVR estimation. The models are applied to
estimation and forecasting of volatility in financial data to evaluate their
empirical performance. The three datasets are the S&P 500 index, High Yield
credit spreads and Nordic elspot prices, chosen for their somewhat distinct
behavior. For the SVR methods we use the common Gaussian kernel and the
wavelet kernel and show that the wavelet kernel can improve the efficiency
and forecasting accuracy of the SVR method compared to the Gaussian kernel.
Both kernels generally improve both estimation and forecasting performance
compared to the QML estimation, although the Gaussian kernel has a problem
of overfitting to the datasets studied here.

All periods of all datasets in this study contains asymmetry. The asymme-
try coefficient γ from the QML is significant for both the GJR and TARCH
models in all periods for all three datasets. For the QML method there is a
clear tendency for the GJR and TARCH models, which contain asymmetry
effects, to perform better on test data. The SVR method with gaussian
kernel is not consistently better than the QML method on test data. The
SVR method with wavelet kernel performs consistently better than the QML
method in test data for all of the APARCH models, except for the structure
breaks in the 2020 data. It is therefore important to include data with differ-
ent volatility magnitudes when training the model. For the SVR methods
there is no evidence of the GJR and TARCH models to perform better on
the test data than the symmetric TSGARCH nad GARCH models. The
SVR models are quicker to react to increased volatility, and also settles faster
after volatility resides. We conclude that the choice of kernel is important to
the performance of the SVR method. The wavelet kernel is more adaptable
to local clusters and require fewer support vectors is general. Performance
on training data is also an important measure. Since the Gaussian kernel

6 SUMMARY 83

performs best on the traing data, but not better on the test data we have
evidence of overfitting. We have a relatively large set of training data in the
datasets studied here. It is expected that the wavelet kernel performance
would be relatively better on fewer training datapoints, as it generally uses
fewer support vectors than the gaussian kernel and the QML models need
many observations to estimate the model parameters well.

As we compare the performance of the wavelet and Gaussian kernels to
the linear and polynomial kernels (see Appendix) it is clear that there is a
problem of overfitting. The wavelet and gaussian kernels have better training
errors, but consistently worse test errors. It is therefore evident that the
wavelet and Gaussian kernels are too flexible for the data examined here.
The linear and polynomial kernels are also capable of capturing the extreme
volatility of early 2020 with improved performance to the QML method. A
possible alternative is to apply a smoothness prior into the relavance vector
machine (Tipping 2001) (RVM), as done in Schmolck and Everson (2007) to
enforce sparsity.

REFERENCES 84

References

Aggarwal, S. K., Saini, L. M., & Kumar, A. (2009). Electricity price forecast-
ing in deregulated markets: A review and evaluation. International Journal
of Electrical Power & Energy Systems, 31(1), 13-22.

Bezerra, P. C. S., & Albuquerque, P. H. M. (2017). Volatility forecast-
ing via SVR–GARCH with mixture of Gaussian kernels. Computational
Management Science, 14(2), 179-196.

Black, F., & Scholes, M. (1973). The pricing of options and corporate
liabilities. Journal of political economy, 81(3), 637-654.

Bollerslev, T., (1986), Generalized autoregressive conditional heteroskedas-
ticity, Journal of Econometrics 31, 307-327.

Bollerslev, T. (1987). A conditionally heteroskedastic time series model for
speculative prices and rates of return. The review of economics and statistics,
542-547.

Bollerslev, T. and Wooldridge, J. M. (1992) Quasi-maximum likelihood
estimation and inference in dynamic models with time-varying covariances.
Econometric Reviews 11: 143–172.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training
algorithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory (pp. 144-152).

Chen, S., Härdle, W. K., & Jeong, K. (2010). Forecasting volatility with
support vector machine-based GARCH model. Journal of Forecasting, 29(4),
406-433.

Cifter, A. (2013). Forecasting electricity price volatility with the Markov-
switching GARCH model: Evidence from the Nordic electric power market.
Electric Power Systems Research, 102, 61-67.

REFERENCES 85

Clark, E., & Baccar, S. (2018). Modelling credit spreads with time
volatility, skewness, and kurtosis. Annals of Operations Research, 262(2),
431-461.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine
learning, 20(3), 273-297.

Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets.
Communications on pure and applied mathematics, 41(7), 909-996.

Ding, Z., Granger, C. W. J., and Engle, R. (1993) A long memory property
of stock market returns and a new model. Journal of Empirical Finance 1
83-106.

dos Santos Coelho, L., & Santos, A. A. (2011). A RBF neural network
model with GARCH errors: application to electricity price forecasting. Elec-
tric Power Systems Research, 81(1), 74-83.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A., & Vapnik, V. (1996).
Support vector regression machines. Advances in neural information process-
ing systems, 9, 155-161.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with
estimates of the variance of United Kingdom inflation. Econometrica: Journal
of the Econometric Society, 987-1007.

Engle, R. F. and González-Rivera, G. (1991) Semi parametric ARCH
models. Journal of Business and Economic Statistics 9: 345–359.

Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993) On the relation
between expected value and the volatility of the nominal excess return on
stocks Journal of Finance 48 No. 5: 1779–1801.

Grossmann, A., & Morlet, J. (1984). Decomposition of Hardy functions
into square integrable wavelets of constant shape. SIAM journal on mathe-
matical analysis, 15(4), 723-736.

REFERENCES 86

Haar, A. (1909). Zur theorie der orthogonalen funktionensysteme. Georg-
August-Universitat, Gottingen.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Intro-
duction to Statistical Learning. Springer.

Karush, W. (1939). Minima of functions of several variables with inequal-
ities as side constraints. M. Sc. Dissertation. Dept. of Mathematics, Univ.
of Chicago.

Kuhn, H. W., Tucker, A. W. (1951).Nonlinear Programming. Proceedings
of the Second Berkeley Symposium on Mathematical Statistics and Probability,
481-492,

Li, Y. S. (2014) Estimating APGARCH-Skew-t model by Wavelet Support
Vector Machines. Journal of Forecasting 33(4): 259–269.

Li, Y. S., Karlsson, H. K. (2020) Estimating volatility in oil price by
APARCH - SVR models. Working Paper

Lintner, J. (1965). Security prices, risk, and maximal gains from diversifi-
cation. The journal of finance, 20(4), 587-615.

Mallat, S. G. (1989). A theory for multiresolution signal decomposi-
tion: the wavelet representation. IEEE transactions on pattern analysis and
machine intelligence, 11(7), 674-693.

Markowitz, H. (1952). The utility of wealth. Journal of political Economy,
60(2), 151-158.

Mercer, J. (1909) Functions of positive and negative type and their con-
nection with the theory of integral equations. Philosophical Transactions of
the Royal Society, London, A 209: 415–446.

Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica:
Journal of the econometric society, 768-783.

REFERENCES 87

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A
new approach. Econometrica: Journal of the Econometric Society, 347-370.

Olowe, R. A. (2009). Modelling naira/dollar exchange rate volatility:
Application of GARCH and asymmetric models. International Review of
Business Research Papers, 5(3), 377-398.

Ou, P., & Wang, H. (2010). Financial volatility forecasting by least square
support vector machine based on GARCH, EGARCH and GJR models:
evidence from ASEAN stock markets. International Journal of Economics
and Finance, 2(1), 51-64.

Peng, Y., Albuquerque, P. H. M., de Sá, J. M. C., Padula, A. J. A., &
Montenegro, M. R. (2018). The best of two worlds: Forecasting high frequency
volatility for cryptocurrencies and traditional currencies with Support Vector
Regression. Expert Systems with Applications, 97, 177-192.

Pérez-Cruz, F., Afonso-Rodriguez, J. A., & Giner, J. (2003). Estimating
garch models using support vector machines*. Quantitative Finance, 3(3),
163-172.

Sayad, Dr. S. (n.d.). Support Vector Machine - Regression (SVR). Re-
trieved January 14, 2021, from https://www.saedsayad.com/support_vector_
machine_reg.htm

Schmolck, A., & Everson, R. (2007). Smooth relevance vector machine: a
smoothness prior extension of the RVM. Machine Learning, 68(2), 107-135.

Schwert, G. W. (1989). Why does stock market volatility change over
time?. The journal of finance, 44(5), 1115-1153.

Schölkopf, B., Smola, A. J., & Bach, F. (2002). Learning with kernels:
support vector machines, regularization, optimization, and beyond. MIT
press.

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector

https://www.saedsayad.com/support_vector_machine_reg.htm
https://www.saedsayad.com/support_vector_machine_reg.htm

REFERENCES 88

regression. Statistics and computing, 14(3), 199-222.

Shapiro, S. S. and Wilk, M. B. (1965). An Analysis of Variance Test for
Normality (Complete Samples). Biometrika 52: 591–611.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium
under conditions of risk. The journal of finance, 19(3), 425-442.

Stavroyiannis, S. (2016). Value-at-Risk and backtesting with the APARCH
model and the standardized Pearson type IV distribution. Available at SSRN
2734058.

Sun, H., & Yu, B. (2020). Forecasting Financial Returns Volatility: A
GARCH-SVR Model. Computational Economics, 55(2), 451-471.

Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector
machine classifiers. Neural processing letters, 9(3), 293-300.

Tang, L. B., Tang, L. X., & Sheng, H. Y. (2009). Forecasting volatility
based on wavelet support vector machine. Expert Systems with Applications,
36(2), 2901-2909.

Taylor, S. (2000). (1986), Modelling Financial Time Series.

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector
machine. Journal of machine learning research, 1(Jun), 211-244.

Treynor, J. L. (1961). Market value, time, and risk. Time, and Risk
(August 8, 1961).

Treynor, J.L. (1962) Toward a Theory of Market Value of Risk Assets
(Unpublished Manuscript, a Revised Version Was Published in Korajczyk,
Robert, A, Ed., 1999, Asset Pricing and Portfolio Performance: Models,
Strategy and Performance Metrics, Risk Books, London, 15-22).

Vapnik, V., Lerner, A. (1963). Pattern recognition using generalized
portrait method. Automation and remote control, 24, 774-780.

REFERENCES 89

Vapnik, V. and Chervonenkis A. (1964). A note on one class of perceptrons.
Automation and Remote Control, 25.

Vapnik, V. and Chervonenkis, A. (1974) Theory of Pattern Recognition
(in Russian). Nauka: Moscow

Vapnik, V. 1982. Estimation of Dependences Based on Empirical Data.
Springer: Berlin.

Vapnik, V. (1995) The Nature of Statistical Learning Theory. Springer:
New York.

Vapnik, V. (1992). Principles of risk minimization for learning theory. In
Advances in neural information processing systems (pp. 831-838).

Ben-Hur, A., Horn, D., Siegelmann, H. T., & Vapnik, V. (2001). Support
vector clustering. Journal of machine learning research, 2(Dec), 125-137.

Zhang, L., Zhou, W. D. and Jiao, L. C. (2004) Wavelet support vector
machine. IEEE Transactions on Systems, Man, and Cybernetics Part B 34(1):
34–39.

APPENDIX 90

Appendix

S&P 500

Period 1 MSE
QML Gaussian Wavelet Linear Polynomial

GARCH 16.81715 1.32472 8.71106 14.64294 14.64349
GJR 15.69177 1.22932 8.14722 14.61479 14.61386
TARCH 15.40920 4.32664 10.55776 14.74244 14.74241
TSGARCH 18.87404 3.12808 9.79917 15.11812 15.11907

MAE
QML Gaussian Wavelet Linear Polynomial

GARCH 1.66402 0.37845 0.99268 1.26842 1.26835
GJR 1.59100 0.35872 0.91649 1.26695 1.26695
TARCH 1.63374 0.63234 1.00173 1.26083 1.26083
TSGARCH 1.73324 0.67384 1.08036 1.28442 1.28438

Table 16: S&P 500 period 1 training error

Period 1
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 1.51006 3.77668 1.07864 1.04818 1.04831
GJR 1.39698 4.20442 1.14557 1.04588 1.04569
TARCH 1.48663 1.65659 1.19918 1.07499 1.07499
TSGARCH 1.52570 1.45023 1.10210 1.06198 1.06208
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 0.88765 0.98843 0.58218 0.58118 0.58113
GJR 0.85132 1.05469 0.59407 0.58227 0.58227
TARCH 0.86606 0.66888 0.58669 0.57474 0.57474
TSGARCH 0.89269 0.64599 0.57954 0.58472 0.58467

Table 17: S&P 500 period 1 test Error

APPENDIX 91

Period 2
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 1.64263 0.80463 1.01889 1.03453 1.03437
GJR 1.25389 0.30887 0.85007 1.04224 1.04215
TARCH 1.64690 0.74614 0.97648 1.04993 1.04971
TSGARCH 2.08243 0.68665 0.99345 1.04493 1.04495
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 0.51935 0.26937 0.37978 0.39143 0.39143
GJR 0.49654 0.21399 0.34225 0.38831 0.38830
TARCH 0.52440 0.30809 0.35291 0.38881 0.38881
TSGARCH 0.55076 0.31391 0.37471 0.39215 0.39214

Table 18: S&P 500 period 2 training error

Period 2
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 1.09265 0.87601 0.55606 0.44731 0.44728
GJR 0.79828 0.94426 0.42858 0.43414 0.43416
TARCH 0.92261 0.56889 0.49906 0.42541 0.42552
TSGARCH 1.25320 0.75262 0.58780 0.44612 0.44614
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 0.57520 0.44372 0.38258 0.35709 0.35707
GJR 0.49856 0.47754 0.36921 0.35603 0.35601
TARCH 0.52932 0.40217 0.38072 0.34949 0.34950
TSGARCH 0.61574 0.42473 0.38952 0.35314 0.35314

Table 19: S&P 500 period 2 test error

Period 3
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 0.53044 0.08023 0.31761 0.43835 0.43822
GJR 0.49812 0.06708 0.24358 0.42360 0.42565
TARCH 0.55091 0.17364 0.34106 0.43237 0.43197
TSGARCH 0.65626 0.16714 0.38384 0.44315 0.44311
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 0.36890 0.09394 0.23745 0.28214 0.28213
GJR 0.37197 0.07673 0.21045 0.27922 0.28026
TARCH 0.39436 0.15159 0.23384 0.28143 0.28141
TSGARCH 0.40641 0.16174 0.25334 0.28381 0.28380

Table 20: S&P 500 period 3 training error

APPENDIX 92

Period 3
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 51.70217 124.5159 113.6029 23.31097 23.30867
GJR 48.51570 125.3363 111.9718 24.03008 23.92146
TARCH 50.11123 124.4605 118.5207 24.25303 24.24577
TSGARCH 57.14117 122.1579 108.0572 24.13403 24.11614
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 2.25864 3.39925 2.89213 1.49143 1.49159
GJR 2.11129 3.35681 2.93830 1.49905 1.50318
TARCH 2.15640 3.26802 3.02260 1.48911 1.48950
TSGARCH 2.34104 3.16420 2.71566 1.48932 1.48926

Table 21: S&P 500 period 3 test error

(a) Training data (b) Test data

Figure 24: S&P 500 daily conditional standard deviation change in percent, approximation
and GJR model estimate/forecast, period 2

APPENDIX 93

Credit Spreads

Period 1
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 218496.5 4360.792 101785.6 159846.5 159847.6
GJR 239002.6 3730.750 100955.9 158892.5 158953.7
TARCH 255528.7 27578.188 106003.5 168723.0 168743.9
TSGARCH 243880.8 25766.276 112137.5 168884.7 168917.6
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 163.3819 35.59899 88.82319 110.1894 110.2009
GJR 169.8250 22.51848 78.64740 106.0367 105.9592
TARCH 174.2990 44.60232 77.13425 106.7046 106.7047
TSGARCH 169.6626 45.89906 84.44192 106.7267 106.7280

Table 22: Credit spreads period 1 training error

Period 1
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 6887.091 18167.89 2886.892 2849.297 2849.957
GJR 7410.604 30890.71 3062.950 2754.615 2753.602
TARCH 8352.216 25266.90 3165.091 2859.813 2858.088
TSGARCH 7732.864 13743.41 3303.745 2867.481 2865.775
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 51.02618 66.61903 33.59555 33.91555 33.92864
GJR 53.39764 83.19432 29.41796 29.52870 29.44881
TARCH 56.86333 44.92550 28.96660 28.16569 28.15724
TSGARCH 54.95110 39.40501 29.11947 28.17686 28.17054

Table 23: Credit spreads preiod 1 test error

Period 2
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 8101.009 810.0459 3674.282 4603.731 4603.726
GJR 7748.410 2697.7992 4269.155 4588.186 4588.005
TARCH 8402.395 1509.7969 3930.245 4716.942 4717.074
TSGARCH 8972.592 1362.7958 4007.754 4759.633 4759.615
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 38.19850 14.90734 22.73174 25.17883 25.17861
GJR 38.76249 17.37126 23.89126 25.24115 25.24678
TARCH 38.87981 16.79760 21.62147 24.76067 24.75656
TSGARCH 38.29345 16.36505 22.58444 24.77432 24.77441

Table 24: Credit spreads period 2 training error

APPENDIX 94

Period 2
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 11293.390 8083.478 6631.966 4768.987 4768.995
GJR 9879.722 8518.108 5004.100 4727.968 4726.650
TARCH 9948.205 6558.134 6148.325 4810.760 4810.746
TSGARCH 11504.047 7320.353 5338.058 4887.137 4887.181
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 63.01395 45.24267 39.15554 34.73566 34.73564
GJR 57.96255 46.13750 36.28041 34.48453 34.47840
TARCH 58.17731 40.54319 38.10351 34.28531 34.28341
TSGARCH 63.22833 41.58775 36.08725 34.68558 34.68589

Table 25: Credit spreads period 2 test error

Period 3
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 4769.588 1910.875 2825.166 3643.113 3643.028
GJR 5056.957 1303.051 2703.521 3648.215 3648.073
TARCH 5189.049 1876.403 2315.692 2795.324 2795.217
TSGARCH 4687.670 1913.564 2497.677 2820.901 2820.624
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 34.41038 12.66757 20.63566 24.42307 24.42309
GJR 35.76593 11.31636 19.70586 24.41339 24.41350
TARCH 35.23777 15.17021 18.89051 21.91041 21.91017
TSGARCH 33.66951 15.77763 20.05955 21.89380 21.89378

Table 26: Credit spreads period 3 training rror

Period 3
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 273732.0 777721.1 710181.6 204142.3 204185.0
GJR 267752.7 784100.4 716217.9 202983.3 202983.5
TARCH 325126.4 769984.0 760646.6 224139.6 224237.3
TSGARCH 372827.9 770903.7 727815.7 217543.9 217537.0
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 202.8435 296.5185 270.4561 144.7150 144.7279
GJR 207.4479 302.0602 269.3533 144.2403 144.2370
TARCH 227.2722 285.6801 281.3547 150.4788 150.5170
TSGARCH 226.9181 287.1965 272.8187 146.9875 146.9880

Table 27: Credit spreads period 3 test error

APPENDIX 95

(a) Training data (b) Test data

Figure 25: HY spred daily conditional standard deviation bps change, approximation and
GJR model estimate/forecast, period 2

EL Prices

Period 1
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 334636.4 308156.2 284960.4 241816.9 241817.4
GJR 196976.8 324026.3 259414.9 237378.9 237355.9
TARCH 247816.9 338732.9 309233.7 250534.4 250568.8
TSGARCH 225003.6 344115.4 320359.2 252420.7 252425.7
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 187.9296 117.6003 134.9078 130.7509 130.7488
GJR 154.7117 107.7508 125.8024 122.6200 122.6339
TARCH 165.2228 120.2940 121.4180 123.7075 123.7055
TSGARCH 157.0818 125.6311 127.3699 125.5982 125.6016

Table 28: EL-Price period 1 training error

APPENDIX 96

Period 1
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 20053.16 10885.670 7582.235 6674.261 6674.169
GJR 16569.51 11371.564 8062.341 6661.196 6660.605
TARCH 15447.13 7877.144 6837.183 6680.229 6681.889
TSGARCH 16545.97 8687.834 6459.655 6487.855 6488.221
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 78.59977 61.34763 47.49996 45.60304 45.60020
GJR 68.64692 59.37889 39.57070 36.75635 36.77554
TARCH 70.37944 36.30303 34.41546 33.50307 33.50317
TSGARCH 76.39041 38.42772 34.10755 33.71357 33.71122

Table 29: EL-Price period 1 test error

Period 2
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 127120.36 27007.23 47353.86 75312.39 75312.18
GJR 75178.14 30526.06 45428.81 56969.84 56974.58
TARCH 119583.40 48051.89 45511.21 66600.54 66620.02
TSGARCH 95928.81 46106.99 44651.23 70846.30 70864.51
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 110.76429 22.64757 43.54872 57.13660 57.13749
GJR 87.14748 22.36975 41.55503 52.20520 52.21122
TARCH 93.99463 32.62379 39.83399 53.74743 53.76504
TSGARCH 96.77380 34.15172 41.94148 55.58962 55.58922

Table 30: EL-Price period 2 training error

Period 2
MSE QML Gaussian Wavelet Linear Polynomial
GARCH 1408664 1293745 790801.4 417442.5 417441.9
GJR 1064748 1329058 716285.7 304335.5 304346.8
TARCH 1077270 1246207 846736.9 373924.0 374127.4
TSGARCH 1254373 1200365 851782.5 405586.1 405594.2
MAE QML Gaussian Wavelet Linear Polynomial
GARCH 589.5322 462.2583 375.0836 258.7513 258.7511
GJR 532.4401 464.3968 345.9578 259.6291 259.6465
TARCH 545.2083 425.6834 355.5089 246.6530 246.7129
TSGARCH 564.7026 407.7899 376.2891 256.3015 256.2866

Table 31: EL-Price period 2 test error

R-CODE 97

R-code

##R-code for the S\&P 500 dataset. For the other datasets the code is the same,
#except for the data loading and preparation.
require(readxl)
require(moments)
require(ggplot2)
library(FinTS)
library(lmtest)
library(TTR)
require(e1071)
require(kernlab)
require("fGarch")
require(quantmod)

#load data
getSymbols(Symbols = "^GSPC", src = "yahoo", from = "2006-01-01", to = "2020-12-31", periodicity="daily")

#Candlestick chart of the S&P 500 index from 2005 to today in linear and log scale, and
#for the last year
barChart(GSPC)
png("/Users/Arne/Documents/STAT/STAT200/images/SP500.png", units = "cm", width = 16, height = 9, res = 300)
barChart(GSPC,log.scale = TRUE, TA = NULL, theme = "white")
dev.off()
n = length(GSPC)/6
barChart(GSPC[-(1:(n-250))])

#The daily return series in %
y=(exp(diff(log(GSPC$GSPC.Close)))-1)
y=y[-1,]*100
png("/Users/Arne/Documents/STAT/STAT200/images/SPchg.png", units = "cm", width = 16, height = 9, res = 300)
plot(y,xlab="Date",ylab="Returns",axes=FALSE, main = "S&P 500 daily % change", lwd = .8, log = F)
dev.off()

#The Wavelet kernel, Zhang et al. (2004)
k = function(x,y) {prod(cos(1.75*(x-y)/2)*exp(-(x-y)^2/8))}
class(k) = "kernel"

u = y
u = as.ts(u$GSPC.Close)
shapiro.test(u) #Normality test, rejected
ArchTest(u,lag=12) #LM test, rejected
skewness(u)

R-CODE 98

kurtosis(u)

Box.test(u, lag = 1, type = "Ljung") #Box Ljung test
Box.test(u^2, lag = 1, type = "Ljung")
Box.test(u^2, lag = 5, type = "Ljung")
acf(u)
acf(u^2)

acff = acf(abs(u), lag.max = 500) #autocorrelation function
acff = acf(u^2, lag.max = 500)

#Divide dataset into three separate periods.
u1=u[1:(length(u)/3)] #u: return series.
u2=u[(length(u)/3+1):(2*length(u)/3)]
u3=u[(2*length(u)/3+1):length(u)]
x1=index(GSPC[1:(length(u)/3)]) #x: date series.
x2=index(GSPC[(length(u)/3+1):(2*length(u)/3)])
x3=index(GSPC[(2*length(u)/3+1):length(u)])
p1=GSPC$GSPC.Close[1:(n/3)] #p: price series.
p2=GSPC$GSPC.Close[(n/3+1):(2*n/3)]
p3=GSPC$GSPC.Close[(2*n/3+1):n]

png("/Users/Arne/Documents/STAT/STAT200/images/SPprices.png", units = "cm", width = 16, height = 16, res = 300)
par(mfrow=c(3,1), mar=c(2,4,1,1))
plot(x1,p1, xlab="", ylab = "", main = "Period 1", type = "l")
abline(v=x1[length(x1)*3/4])

plot(x2,p2, xlab = "", ylab = " S&P 500 Price", main = "Period 2", type = "l")
abline(v=x2[length(x1)*3/4])

plot(x3,p3, xlab="", ylab = "", main = "Period 3", type = "l")
abline(v=x3[length(x1)*3/4])
dev.off()

png("/Users/Arne/Documents/STAT/STAT200/images/SPreturns.png", units = "cm", width = 16, height = 16, res = 300)
par(mfrow=c(3,1), mar=c(2,4,1,1))
plot(x1,u1, xlab="", ylab = "", main = "Period 1", type = "l")
abline(v=x1[length(x1)*3/4])

plot(x2,u2, xlab = "", ylab = "S&P 500 Returns (%)", main = "Period 2", type = "l")
abline(v=x2[length(x1)*3/4])

plot(x3,u3, xlab="", ylab = "", main = "Period 3", type = "l")
abline(v=x3[length(x1)*3/4])
dev.off()

R-CODE 99

#Repeat tests for all time periods
shapiro.test(u1)
shapiro.test(u2)
shapiro.test(u3)

Box.test(u, lag = 1000, type = "Ljung")
Box.test(u1^2, lag = 1, type = "Ljung")
Box.test(u2^2, lag = 1, type = "Ljung")
Box.test(u3^2, lag = 1, type = "Ljung")

Box.test(u1^2, lag = 5, type = "Ljung")
Box.test(u2^2, lag = 5, type = "Ljung")
Box.test(u3^2, lag = 5, type = "Ljung")

ArchTest(u1,lag=10)
ArchTest(u2,lag=10)
ArchTest(u3,lag=10)

#decide which timeperiod to investigate
u = u2
x = x2

plot(x = x, u, type = "h", main = "S&P 500 daily % change", ylab = "%", xlab = "Date")
(T=length(u))
hhat = SMA(u^2,n = 3) #estimate of "true" h
plot(x = x, u^2, type = "l", xlab = "")
lines(x = x, hhat, type = "l", col = 3)
plot(x = x, hhat-u^2, type = "l")

M = 1*T/4

#GARCH

#Divide training and test dataset
utrain=u[4:(T-M)]-mean(u[4:(T-M)])
utest=u[((T-M)+1):(T-1)]-mean(u[((T-M)+1):(T-1)])
xTr = x[4:(T-M)]
xTs = x[((T-M)+1):(T-1)]

xtrain=cbind(u[3:((T-M)-1)]^2,hhat[3:((T-M)-1)]) #input data for SVR, training data
hhattrain=hhat[4:(T-M)]

R-CODE 100

plot(xTr,utrain^2,type="l", col="red")
lines(xTr,hhattrain, type = "h")

xtest=cbind(u[((T-M)+1):(T-1)]^2,hhat[((T-M)+1):(T-1)]) #input data for SVR, test data
hhattest=hhat[((T-M)+2):(T)]

plot(xTs,utest^2,type="l", col="red")
lines(xTs,hhattest, type = "l")

#Find the best values of C and epsilon for the SVR, using the training data, by grid search.
tobj=tune.svm(x=xtrain,y=hhattrain,cost=c(2,5,25,50),epsilon=c(0.005,0.01,.025,.1,0.25))
tobj$best.parameters

Cvalue=tobj$best.parameters$cost
epsvalue=tobj$best.parameters$epsilon

#Fit GARCH-SVR with Gaussian, wavelet, linear and polynomial kernel respectively using 5-fold
#validation
regm <-ksvm(xtrain,hhattrain,epsilon=epsvalue,C=Cvalue,cross=5)
regmnew <-ksvm(xtrain,hhattrain,epsilon=epsvalue,kernel=k,C=Cvalue,cross=5)
regmlin = ksvm(xtrain,hhattrain,epsilon=epsvalue,C=Cvalue,kernel="vanilladot",cross=5)
regmpoly = ksvm(xtrain,hhattrain,epsilon=epsvalue,C=Cvalue,kernel="polydot",cross=5)

#MLE GARCH
fit2=garchFit(~ garch(1,1), data =utrain, delta=2, include.mean=FALSE, trace = FALSE)
fit2
volatility=slot(fit2, "h.t")

plot(xTr,hhattrain,type="p")
lines(xTr,volatility,col="blue")
plot(xTr,hhattrain,type="p")
lines(xTr,predict(regmnew,xtrain)[1:LTr],col="blue")
plot(xTr,hhattrain,type="p")
lines(xTr,predict(regm,xtrain)[1:LTr],col="blue")

LTr=length(hhattrain)
#MSE and MAE calculation
garchtrainmse=c(sum((volatility[1:LTr]-hhattrain[1:LTr])^2)/(LTr-(1-1)),

sum((predict(regm,xtrain)[1:LTr]-hhattrain[1:LTr])^2)/(LTr-(1-1)),
sum((predict(regmnew,xtrain)[1:LTr]-hhattrain[1:LTr])^2)/(LTr-(1-1)),
sum((predict(regmlin,xtrain)[1:LTr]-hhattrain[1:LTr])^2)/(LTr-(1-1)),
sum((predict(regmpoly,xtrain)[1:LTr]-hhattrain[1:LTr])^2)/(LTr-(1-1)))

R-CODE 101

garchtrainmse

garchtrainabs=c(sum(abs(volatility[1:LTr]-hhattrain[1:LTr]))/(LTr-(1-1)),
sum(abs(predict(regm,xtrain)[1:LTr]-hhattrain[1:LTr]))/(LTr-(1-1)),
sum(abs(predict(regmnew,xtrain)[1:LTr]-hhattrain[1:LTr]))/(LTr-(1-1)),
sum(abs(predict(regmlin,xtrain)[1:LTr]-hhattrain[1:LTr]))/(LTr-(1-1)),
sum(abs(predict(regmpoly,xtrain)[1:LTr]-hhattrain[1:LTr]))/(LTr-(1-1)))

garchtrainabs

#error plot
plot(abs(volatility[1:LTr]-hhattrain[1:LTr]))
plot(abs(predict(regm,xtrain)[1:LTr]-hhattrain[1:LTr]))
plot(abs(predict(regmnew,xtrain)[1:LTr]-hhattrain[1:LTr]))
summary(abs(predict(regm,xtrain)[1:LTr]-hhattrain[1:LTr]))
summary(abs(predict(regmnew,xtrain)[1:LTr]-hhattrain[1:LTr]))

plot(xTs,hhattest,type="p")
lines(xTs,predict(regm,xtest),col="red")

plot(xTs,hhattest,type="p")
lines(xTs,predict(regmnew,xtest),col="green")

#Calulate the volatility forecast using the MLE GARCH model parameters
B <- coef(fit2)
hgpre=numeric(length(hhattest))
hgpre[1]=hhattest[1]
for (i in 1:(length(hhattest)-1)){

hgpre[i+1]=B[1]+B[2]*(utest[i]^2)+B[3]*hgpre[i]
}

plot(xTs,hhattest,type="p")
lines(xTs,hgpre,col="blue")

#MSE and MAE calculation
garchtestmse=c(sum((hhattest-hgpre)^2)/length(hhattest),

sum((predict(regm,xtest)-hhattest)^2)/length(hhattest),
sum((predict(regmnew,xtest)-hhattest)^2)/length(hhattest),
sum((predict(regmlin,xtest)-hhattest)^2)/length(hhattest),
sum((predict(regmpoly,xtest)-hhattest)^2)/length(hhattest))

garchtestmse

garchtestabs=c(sum(abs(hhattest-hgpre))/length(hhattest),
sum(abs(predict(regm,xtest)-hhattest))/length(hhattest),
sum(abs(predict(regmnew,xtest)-hhattest))/length(hhattest),

R-CODE 102

sum(abs(predict(regmlin,xtest)-hhattest))/length(hhattest),
sum(abs(predict(regmpoly,xtest)-hhattest))/length(hhattest))

garchtestabs

plot(abs(predict(regm,xtest)-hhattest))
plot(abs(predict(regmnew,xtest)-hhattest))
plot(abs(hhattest-hgpre))

#GJR
xtrainGJR=cbind(u[3:((T-M)-1)]^2, u[3:((T-M)-1)]*abs(u[3:((T-M)-1)]),hhat[3:((T-M)-1)])
hhattrainGJR=hhat[4:(T-M)]
xtestGJR=cbind(u[((T-M)+1):(T-1)]^2,u[((T-M)+1):(T-1)]*abs(u[((T-M)+1):(T-1)]),hhat[((T-M)+1):(T-1)])
hhattestGJR=hhat[((T-M)+2):(T)]

tobjGJR=tune.svm(x=xtrainGJR,y=hhattrainGJR,cost=c(2,5,10,25),epsilon=c(.01,.025,0.05,.1))
tobjGJR$best.parameters

CvalueGJR=tobjGJR$best.parameters$cost
epsvalueGJR=tobjGJR$best.parameters$epsilon

regmGJR <-ksvm(xtrainGJR,hhattrainGJR,epsilon=epsvalueGJR,C=CvalueGJR,cross=5)
regmnewGJR <-ksvm(xtrainGJR,hhattrainGJR,epsilon=epsvalueGJR,kernel=k,C=CvalueGJR,cross=5)
regmlin = ksvm(xtrainGJR,hhattrainGJR,epsilon=epsvalueGJR,C=CvalueGJR,kernel="vanilladot",cross=5)
regmpoly = ksvm(xtrainGJR,hhattrainGJR,epsilon=epsvalueGJR,C=CvalueGJR,kernel="polydot",cross=5)
#k

fitGJR=garchFit(~ garch(1,1), data = utrain, delta=2, leverage=TRUE,include.mean=FALSE, trace = FALSE)
fitGJR
volatilityGJR = slot(fitGJR, "h.t")

#plots the estimated volatility against the approximation
png("/Users/Arne/Documents/STAT/STAT200/images/SP2Train.png", units = "cm", width = 16, height = 16, res = 300)
par(mfrow=c(3,1), mar=c(2,4,1,1))
plot(xTr,sqrt(hhattrainGJR), xlab="", ylab = "", main = "QML")
lines(xTr,sqrt(volatilityGJR), col = "blue")

plot(xTr,sqrt(hhattrainGJR), xlab = "", ylab = "Estimated Volatility", main = "Gaussian")
lines(xTr,sqrt(predict(regmGJR,xtrainGJR)),col="red")

plot(xTr,sqrt(hhattrainGJR), xlab="", ylab = "", main = "Wavelet")
lines(xTr,sqrt(predict(regmnewGJR,xtrainGJR)),col="green")
dev.off()
BI=1

R-CODE 103

#MSE and MAE calculation
GJRtrainmse=c(

sum((volatilityGJR[BI:LTr]-hhattrainGJR[BI:LTr])^2)/(LTr-(BI-1)),
sum((predict(regmGJR,xtrainGJR)[BI:LTr]-hhattrainGJR[BI:LTr])^2)/(LTr-(BI-1)),
sum((predict(regmnewGJR,xtrainGJR)[BI:LTr]-hhattrainGJR[BI:LTr])^2)/(LTr-(BI-1))
sum((predict(regmlin,xtrainGJR)[BI:LTr]-hhattrainGJR[BI:LTr])^2)/(LTr-(BI-1)),
sum((predict(regmpoly,xtrainGJR)[BI:LTr]-hhattrainGJR[BI:LTr])^2)/(LTr-(BI-1))
)

GJRtrainmse

GJRtrainabs=c(
sum(abs(volatilityGJR[BI:LTr]-hhattrainGJR[BI:LTr]))/(LTr-(BI-1)),
sum(abs(predict(regmGJR,xtrainGJR)[BI:LTr]-hhattrainGJR[BI:LTr]))/(LTr-(BI-1)),
sum(abs(predict(regmnewGJR,xtrainGJR)[BI:LTr]-hhattrainGJR[BI:LTr]))/(LTr-(BI-1)),
sum(abs(predict(regmlin,xtrainGJR)[BI:LTr]-hhattrainGJR[BI:LTr]))/(LTr-(BI-1)),
sum(abs(predict(regmpoly,xtrainGJR)[BI:LTr]-hhattrainGJR[BI:LTr]))/(LTr-(BI-1)))

GJRtrainabs

plot(hhattestGJR,type="p")
lines(predict(regmGJR,xtestGJR),col="red")

BGJR <- coef(fitGJR)
hgpreGJR=numeric(length(hhattestGJR))
hgpreGJR[1]=hhattestGJR[1]
for (i in 1:(length(hhattestGJR)-1)){

hgpreGJR[i+1]=BGJR[1]+BGJR[2]*(abs(utest[i])-BGJR[3]*utest[i])^2+BGJR[4]*hgpreGJR[i]
}

#plots the forecasted volatility against the approximation
png("/Users/Arne/Documents/STAT/STAT200/images/SP2Test.png", units = "cm", width = 16, height = 16, res = 300)
par(mfrow=c(3,1), mar=c(2,4,1,1))
plot(xTs,sqrt(hhattestGJR), xlab="", ylab = "", main = "QML")
lines(xTs,sqrt(hgpreGJR), col = "blue")

plot(xTs,sqrt(hhattestGJR), xlab = "", ylab = "Forecasted Volatility", main = "Gaussian")
lines(xTs,sqrt(predict(regmGJR,xtestGJR)),col="red")

plot(xTs,sqrt(hhattestGJR), xlab="", ylab = "", main = "Wavelet")
lines(xTs,sqrt(predict(regmnewGJR,xtestGJR)),col="green")
dev.off()

#MSE and MAE calculation
GJRtestmse=c(

R-CODE 104

sum((hhattestGJR-hgpreGJR)^2)/length(hhattestGJR),
sum((predict(regmGJR,xtestGJR)-hhattestGJR)^2)/length(hhattestGJR),
sum((predict(regmnewGJR,xtestGJR)-hhattestGJR)^2)/length(hhattestGJR),
sum((predict(regmlin,xtestGJR)-hhattestGJR)^2)/length(hhattestGJR),
sum((predict(regmpoly,xtestGJR)-hhattestGJR)^2)/length(hhattestGJR)
)

GJRtestmse

GJRtestabs=c(
sum(abs(hhattestGJR-hgpreGJR))/length(hhattestGJR),
sum(abs(predict(regmGJR,xtestGJR)-hhattestGJR))/length(hhattestGJR),
sum(abs(predict(regmnewGJR,xtestGJR)-hhattestGJR))/length(hhattestGJR),
sum(abs(predict(regmlin,xtestGJR)-hhattestGJR))/length(hhattestGJR),
sum(abs(predict(regmpoly,xtestGJR)-hhattestGJR))/length(hhattestGJR))

GJRtestabs

#TARCH
xtrainTARCH=cbind(u[3:((T-M)-1)], abs(u[3:((T-M)-1)]),hhat[3:((T-M)-1)]^0.5)
hhattrainTARCH=hhat[4:(T-M)]^0.5
xtestTARCH=cbind(u[((T-M)+1):(T-1)],abs(u[((T-M)+1):(T-1)]),hhat[((T-M)+1):(T-1)]^0.5)
hhattestTARCH=hhat[((T-M)+2):(T)]^0.5

tobjTARCH=tune.svm(x=xtrainTARCH,y=hhattrainTARCH,cost=c(2,5,10,25),epsilon=c(0.01,0.025,.05,.1))
tobjTARCH$best.parameters

CvalueTARCH=tobjTARCH$best.parameters$cost
epsvalueTARCH=tobjTARCH$best.parameters$epsilon

regmTARCH <-ksvm(xtrainTARCH,hhattrainTARCH,epsilon=epsvalueTARCH,C=CvalueTARCH,cross=5)
regmnewTARCH <-ksvm(xtrainTARCH,hhattrainTARCH,epsilon=epsvalueTARCH,kernel=k,C=CvalueTARCH,cross=5)
regmlin <-ksvm(xtrainTARCH,hhattrainTARCH,epsilon=epsvalueTARCH,kernel="vanilladot",C=CvalueTARCH,cross=5)
regmpoly <-ksvm(xtrainTARCH,hhattrainTARCH,epsilon=epsvalueTARCH,kernel="polydot",C=CvalueTARCH,cross=5)

fitTARCH=garchFit(~ garch(1,1), data = utrain, delta=1, leverage=TRUE,include.mean=FALSE, trace = FALSE)
fitTARCH
volatilityTARCH = slot(fitTARCH, "h.t")

#MSE and MAE calculation
TARCHtrainmse=c(

sum((volatilityTARCH[BI:LTr]^2-hhattrainTARCH[BI:LTr]^2)^2)/(LTr-(BI-1)),
sum((predict(regmTARCH,xtrainTARCH)[BI:LTr]^2-hhattrainTARCH[BI:LTr]^2)^2)/(LTr-(BI-1)),
sum((predict(regmnewTARCH,xtrainTARCH)[BI:LTr]^2-hhattrainTARCH[BI:LTr]^2)^2)/(LTr-(BI-1)),
sum((predict(regmlin,xtrainTARCH)[BI:LTr]^2-hhattrainTARCH[BI:LTr]^2)^2)/(LTr-(BI-1)),

R-CODE 105

sum((predict(regmpoly,xtrainTARCH)[BI:LTr]^2-hhattrainTARCH[BI:LTr]^2)^2)/(LTr-(BI-1)))
TARCHtrainmse

TARCHtrainabs=c(
sum(abs(volatilityTARCH[BI:LTr]^2-hhattrainTARCH[BI:LTr]^2))/(LTr-(BI-1)),
sum(abs(predict(regmTARCH,xtrainTARCH)[BI:LTr]^2-hhattrainTARCH[BI:LTr]^2))/(LTr-(BI-1)),
sum(abs(predict(regmnewTARCH,xtrainTARCH)[BI:LTr]^2-hhattrainTARCH[BI:LTr]^2))/(LTr-(BI-1)),
sum(abs(predict(regmlin,xtrainTARCH)[BI:LTr]^2-hhattrainTARCH[BI:LTr]^2))/(LTr-(BI-1)),
sum(abs(predict(regmpoly,xtrainTARCH)[BI:LTr]^2-hhattrainTARCH[BI:LTr]^2))/(LTr-(BI-1)))

TARCHtrainabs

#test data##
plot(xTs,hhattestTARCH^2,type="p")
lines(xTs,predict(regmTARCH,xtestTARCH)^2,col="red")

plot(xTs,hhattestTARCH^2,type="p")
lines(xTs,predict(regmnewTARCH,xtestTARCH)^2,col="green")

BTARCH <- coef(fitTARCH)
hgpreTARCH=numeric(length(hhattestTARCH))
hgpreTARCH[1]=hhattestTARCH[1]
for (i in 1:(length(hhattestTARCH)-1)){

hgpreTARCH[i+1]=BTARCH[1]+BTARCH[2]*(abs(utest[i])-BTARCH[3]*utest[i])+BTARCH[4]*hgpreTARCH[i]
}

plot(xTs,hhattestTARCH^2,type="p")
lines(xTs,hgpreTARCH^2,col="blue")

#MSE and MAE calculation
TARCHtestmse=c(

sum((hhattestTARCH^2-hgpreTARCH^2)^2)/length(hhattestTARCH),
sum((predict(regmTARCH,xtestTARCH)^2-hhattestTARCH^2)^2)/length(hhattestTARCH),
sum((predict(regmnewTARCH,xtestTARCH)^2-hhattestTARCH^2)^2)/length(hhattestTARCH),
sum((predict(regmlin,xtestTARCH)^2-hhattestTARCH^2)^2)/length(hhattestTARCH),
sum((predict(regmpoly,xtestTARCH)^2-hhattestTARCH^2)^2)/length(hhattestTARCH))

TARCHtestmse

TARCHtestabs=c(
sum(abs(hhattestTARCH^2-hgpreTARCH^2))/length(hhattestTARCH),
sum(abs(predict(regmTARCH,xtestTARCH)^2-hhattestTARCH^2))/length(hhattestTARCH),
sum(abs(predict(regmnewTARCH,xtestTARCH)^2-hhattestTARCH^2))/length(hhattestTARCH),
sum(abs(predict(regmlin,xtestTARCH)^2-hhattestTARCH^2))/length(hhattestTARCH),
sum(abs(predict(regmpoly,xtestTARCH)^2-hhattestTARCH^2))/length(hhattestTARCH))

TARCHtestabs

R-CODE 106

#TSGARCH
xtrainTSGARCH=cbind(abs(u[3:((T-M)-1)]),hhat[3:((T-M)-1)]^0.5)
hhattrainTSGARCH=hhat[4:(T-M)]^0.5
xtestTSGARCH=cbind(abs(u[((T-M)+1):(T-1)]),hhat[((T-M)+1):(T-1)]^0.5)
hhattestTSGARCH=hhat[((T-M)+2):(T)]^0.5

tobjTSGARCH=tune.svm(x=xtrainTSGARCH,y=hhattrainTSGARCH,cost=c(2,5,10,25),epsilon=c(0.01,0.025,0.05,0.1))
tobjTSGARCH$best.parameters

CvalueTSGARCH=tobjTSGARCH$best.parameters$cost
epsvalueTSGARCH=tobjTSGARCH$best.parameters$epsilon

regmTSGARCH <-ksvm(xtrainTSGARCH,hhattrainTSGARCH,epsilon=epsvalueTSGARCH,C=CvalueTSGARCH,cross=5)
regmnewTSGARCH <-ksvm(xtrainTSGARCH,hhattrainTSGARCH,epsilon=epsvalueTSGARCH,kernel=k,C=CvalueTSGARCH,cross=5)
regmlin <-ksvm(xtrainTSGARCH,hhattrainTSGARCH,epsilon=epsvalueTSGARCH,kernel="vanilladot",C=CvalueTSGARCH,cross=5)
regmpoly <-ksvm(xtrainTSGARCH,hhattrainTSGARCH,epsilon=epsvalueTSGARCH,kernel="polydot",C=CvalueTSGARCH,cross=5)

fitTSGARCH=garchFit(~ garch(1,1), data = utrain, delta=1, include.mean=FALSE, trace = FALSE)
fitTSGARCH
volatilityTSGARCH = slot(fitTSGARCH, "h.t")

par(mfrow=c(1,1))
plot(xTr,hhattrainTSGARCH^2,type="p")
lines(xTr,predict(regmTSGARCH,xtrainTSGARCH)^2,col="red")

plot(xTr,hhattrainTSGARCH^2,type="p")
lines(xTr,predict(regmnewTSGARCH,xtrainTSGARCH)^2,col="green")

plot(xTr,hhattrainTSGARCH^2,type="p")
lines(xTr,volatilityTSGARCH^2,col="blue")

BI=1

#MSE and MAE calculation
TSGARCHtrainmse=c(

sum((volatilityTSGARCH[BI:LTr]^2-hhattrainTSGARCH[BI:LTr]^2)^2)/(LTr-(BI-1)),
sum((predict(regmTSGARCH,xtrainTSGARCH)[BI:LTr]^2-hhattrainTSGARCH[BI:LTr]^2)^2)/(LTr-(BI-1)),
sum((predict(regmnewTSGARCH,xtrainTSGARCH)[BI:LTr]^2-hhattrainTSGARCH[BI:LTr]^2)^2)/(LTr-(BI-1)),
sum((predict(regmlin,xtrainTSGARCH)[BI:LTr]^2-hhattrainTSGARCH[BI:LTr]^2)^2)/(LTr-(BI-1)),
sum((predict(regmpoly,xtrainTSGARCH)[BI:LTr]^2-hhattrainTSGARCH[BI:LTr]^2)^2)/(LTr-(BI-1)))

TSGARCHtrainmse

R-CODE 107

TSGARCHtrainabs=c(
sum(abs(volatilityTSGARCH[BI:LTr]^2-hhattrainTSGARCH[BI:LTr]^2))/(LTr-(BI-1)),
sum(abs(predict(regmTSGARCH,xtrainTSGARCH)[BI:LTr]^2-hhattrainTSGARCH[BI:LTr]^2))/(LTr-(BI-1)),
sum(abs(predict(regmnewTSGARCH,xtrainTSGARCH)[BI:LTr]^2-hhattrainTSGARCH[BI:LTr]^2))/(LTr-(BI-1)),
sum(abs(predict(regmlin,xtrainTSGARCH)[BI:LTr]^2-hhattrainTSGARCH[BI:LTr]^2))/(LTr-(BI-1)),
sum(abs(predict(regmpoly,xtrainTSGARCH)[BI:LTr]^2-hhattrainTSGARCH[BI:LTr]^2))/(LTr-(BI-1)))

TSGARCHtrainabs

#test data##
plot(xTs,hhattestTSGARCH^2,type="p")
lines(xTs,predict(regmTSGARCH,xtestTSGARCH)^2,col="red")

plot(xTs,hhattestTSGARCH^2,type="p")
lines(xTs,predict(regmnewTSGARCH,xtestTSGARCH)^2,col="green")

BTSGARCH <- coef(fitTSGARCH)
hgpreTSGARCH=numeric(length(hhattestTSGARCH))
hgpreTSGARCH[1]=hhattestTSGARCH[1]
for (i in 1:(length(hhattestTSGARCH)-1)){

hgpreTSGARCH[i+1]=BTSGARCH[1]+BTSGARCH[2]*(abs(utest[i]))+BTSGARCH[3]*hgpreTSGARCH[i]
}

plot(xTs,hhattestTSGARCH^2,type="p")
lines(xTs,hgpreTSGARCH^2,col="blue")

#MSE and MAE calculation
TSGARCHtestmse=c(

sum((hhattestTSGARCH^2-hgpreTSGARCH^2)^2)/length(hhattestTSGARCH),
sum((predict(regmTSGARCH,xtestTSGARCH) ^2-hhattestTSGARCH^2)^2)/length(hhattestTSGARCH),
sum((predict(regmnewTSGARCH,xtestTSGARCH) ^2-hhattestTSGARCH^2)^2)/length(hhattestTSGARCH),
sum((predict(regmlin,xtestTSGARCH) ^2-hhattestTSGARCH^2)^2)/length(hhattestTSGARCH),
sum((predict(regmpoly,xtestTSGARCH) ^2-hhattestTSGARCH^2)^2)/length(hhattestTSGARCH))

TSGARCHtestmse

TSGARCHtestabs=c(
sum(abs(hhattestTSGARCH^2-hgpreTSGARCH^2))/length(hhattestTSGARCH),
sum(abs(predict(regmTSGARCH,xtestTSGARCH)^2-hhattestTSGARCH^2))/length(hhattestTSGARCH),
sum(abs(predict(regmnewTSGARCH,xtestTSGARCH)^2-hhattestTSGARCH^2))/length(hhattestTSGARCH),
sum(abs(predict(regmlin,xtestTSGARCH)^2-hhattestTSGARCH^2))/length(hhattestTSGARCH),
sum(abs(predict(regmpoly,xtestTSGARCH)^2-hhattestTSGARCH^2))/length(hhattestTSGARCH))

TSGARCHtestabs

R-CODE 108

trainmse <- round((rbind(garchtrainmse, GJRtrainmse, TARCHtrainmse,
TSGARCHtrainmse)),5)

colnames(trainmse)=c("Model","Gauss","Wavelet", "Lin", "Poly")
rownames(trainmse)=c("GARCH","GJR","TARCH","TSGARCH")

testmse <- round((rbind(garchtestmse,GJRtestmse,TARCHtestmse,
TSGARCHtestmse)),5)

colnames(testmse)=c("Model","Gauss","Wavelet","Lin", "Poly")
rownames(testmse)=c("GARCH","GJR","TARCH","TSGARCH")
trainmse #Table of training MSE
testmse #Table of test MSE

trainabs <- round((rbind(garchtrainabs, GJRtrainabs,TARCHtrainabs,
TSGARCHtrainabs)),5)

colnames(trainabs)=c("Model","Gauss","Wavelet","Lin", "Poly")
rownames(trainabs)=c("GARCH","GJR","TARCH","TSGARCH")

testabs <- round((rbind(garchtestabs,GJRtestabs,TARCHtestabs,
TSGARCHtestabs)),5)

colnames(testabs)=c("Model","GAUSS","Wavelet","Lin", "Poly")
rownames(testabs)=c("GARCH","GJR","TARCH","TSGARCH")
trainabs #Table of training MAE
testabs #Table of test MAE

GKSN=cbind(nSV(regm),nSV(regmGJR),nSV(regmTARCH),nSV(regmTSGARCH))
WKSN=cbind(nSV(regmnew),nSV(regmnewGJR),nSV(regmnewTARCH),nSV(regmnewTSGARCH))

NSV=rbind(GKSN,WKSN)

colnames(NSV)=c("GARCH","GJR","TARCH","TSGARCH")
rownames(NSV)=c("Gaussian", "Wavelet")
print(NSV) #Table of number of support vectors

	List of Figures
	List of Tables
	1 Introduction
	2 APARCH models
	2.1 Time series models
	2.2 AR & MA models
	2.3 (G)ARCH model
	2.3.1 ARCH model
	2.3.2 GARCH model

	2.4 APARCH models

	3 Support Vector Regression
	3.1 Maximal Margin Classifier
	3.2 Support Vector Classifier
	3.3 Support Vector Machines
	3.4 Support Vector Regression

	4 Applying SVR to APARCH
	4.1 Motivation
	4.2 Specifying input and output
	4.3 Wavelet kernel

	5 Empirical Studies
	5.1 Setup
	5.2 S&P 500
	5.3 Credit Spreads
	5.4 Nordic Electricity Prices

	6 Summary
	References
	Appendix
	S&P 500
	Credit Spreads
	EL Prices

	R-code

