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Abstract  
Gill diseases are a major and increasing challenge with respect to fish health and welfare during 

the marine stage in Atlantic salmon farming. The causative agents for gill diseases are complex, 

and several pathogens are often present at the same time. Amoebic gill disease (AGD), caused 

by Paramoeba perurans, is strongly associated with gill diseases. To control and prevent 

development of the disease and mortality, freshwater treatment has shown to be the most 

effective method. Treatments and handling of the fish causes stressful situations affecting the 

fish negatively. How these stressful situations within the production affects the gills health and 

the associated microbiota is less known.  

 

The main amin of this study was to map how stress in relation to commercial production 

(freshwater treatment) affects the gill health of Atlantic salmon. The gills were studied, and 

pathogens (prevalence and density) were mapped before and after treatment in addition to fish 

that died during treatment. Histopathological changes compatible with AGD lesions were 

observed, but there were no significant changes between the groups. The prevalence and density 

of some pathogens were significantly reduced after treatment, including P. perurans, 

Ichthyobodo spp, Cand. S. salmonis and Cand. P. salmonis. Other pathogens, including PRV1, 

P. theridion, SGPV, PMCV and Cand. B. cysticola, increased or had no change of prevalence 

and density in the gill tissue. The mortality prior to and during the treatment were high, but 

significantly reduced for the treated group. These results suggests that gill health prior to 

treatment, and presence of viruses will affect the outcome of the treatment and the mortality 

rate.  

 

A complementary challenge experiment was conducted to test the possible effect of microbiota 

on the virulence of clonal cultures of Paramoeba perurans during an experimental challenge. 

Characterization of microbiota present in the culture media of P. perurans showed a large 

variation of bacteria species, dominated by Vibrio splendidus variants. Although P. perurans 

cultured in pure culture of V. splendidus grew as well as the amoeba in the original culture 

media, the clones where not able to establish infection on the gills. The results indicates that 

the clone’s loss of ability to induce AGD in salmon could be related to the change in microbiota 

in the amoebas culture media or microbiota present on the salmon gill during infection with 

amoeba.  
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1 Introduction 

1.1 Norwegian aquaculture 

Since the start of aquaculture in Norway in the 1970s, the growth of the industry has expanded 

rapidly. According to Norwegian Directorate of Fisheries (2020), 1.36 million tons of Atlantic 

Salmon (Salmo salar) and 83 500 tons farmed trout (Rainbow trout and trout) were produced 

in Norway in 2019 with a value around 68.0 and 3.5 billion kroner, respectively. This is an 

increase of 6.4 % tons Atlantic salmon and 22.2 % tons farmed trout compared to 2018. Today, 

this makes Norway one of the leading countries when it comes to producing salmonids like 

Atlantic salmon and Rainbow trout. Therefore, the aquaculture industry is particularly 

important for Norway. The rapid growth of the industry causes challenges regarding welfare 

and fish health, and increased infection pressure. These challenges can inflict large financial 

losses in the industry due to expensive treatments, reduced growth and quality, poor fish health 

and welfare, and mortality. Infection with salmon louse (Lepeophtheirus salmonis, Krøyer, 

1837), the viral diseases cardiomyopathy syndrome (CMS, Piscine myocarditis virus), pancreas 

disease (PD, Salmonid alphavirus), heart and skeletal muscle inflammation (HSMI, Piscine 

orthoreovirus), ulcerative bacterial diseases caused by Moritella viscosa, Tenacibaculum spp., 

or Pasteurella sp., and gill disease (multifactorial/complex) was some of the top ten challenges 

during the marine stage in 2020 in Norway (Sommerset, Bang Jensen, Bornø, Haukaas, & Brun, 

2021). In order to expand the industry and production in Norway, these challenges must be 

solved. 

 

1.2 Gill diseases  
Gill diseases (GD) are a major and increasing challenge with respect to fish health and welfare 

in Atlantic salmon farming causing significant losses during production (Nylund et al., 2011; 

Bloecher et al., 2018; Downes et al., 2018; Herrero, Thompson, Ashby, Rodger, & Dagleish, 

2018). The etiology for GD is often multifactorial and complex, and it is difficult to identify a 

primary pathogen causing the disease (Nylund et al., 2011; Bloecher et al., 2018; Downes et 

al., 2018; Herrero et al., 2018). Due to the gills position and physical structure, the constant and 

intimate contact with surrounding environment, they are particularly susceptible to infection 

and physical damage (Bloecher et al., 2018; Herrero et al., 2018). Fish gills have several 

essential physiological and critical functions including respiration, osmoregulation, pH 

regulation and ammonia secretion (Steinum et al., 2010; English et al., 2019). Fish with 
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compromised function of gills may display signs of poor respiratory function, loss of appetite, 

poor food conversion and welfare, and increased mortality rates (Herrero et al., 2018). GD is 

not a notifiable disease, which makes it difficult to map the extent of the disease in the industry. 

According to Sommerset et al. (2021), multifactorial/complex gill disease is a severe problem 

in the industry during the marine phase. 

 

Several factors, such as environmental conditions (temperature, water quality, oxygen), 

handling procedures (transport, treatments, sorting), the general health of the fish and presence 

of pathogens, may play a key role in the inception of gill disease (Nylund et al., 2011; Herrero 

et al., 2018). Numerous agents, both infectious and non-infectious, have been associated with 

gill disease including viruses, parasites, bacteria, phyto- and zooplankton species and 

biofouling organisms at the cage nets (Nylund et al., 2011; Herrero et al., 2018). Establishing 

the cause of multipathogen and multifactorial gill disease is difficult. Today general terms for 

gill disease are used inconsistent, including epitheliocystis, proliferative gill inflammation 

(PGI), proliferative gill disease (PGD) and complex gill disease (CGD) (Herrero et al., 2018). 

Epitheliocystis is characterized by large cyst-like epidermal lesions with intracellular bacteria 

at the lamellae, and is primarily associated with Chlamydia-like organism, such as Candidatus 

Piscichlamydia salmonis, Candidatus Clavichlamydia salmonicola, Candidatus Syngnamydia 

salmonis, and the b-proteobacteria Candidatus Branchiomonas cysticola (Hoffman, Dunbar, 

Wolf, & Zwillenberg, 1969; Nylund, Kvenseth, & Isdal, 1998; Draghi et al., 2004; Karlsen et 

al., 2008; Steinum et al., 2010; Mitchell et al., 2013; Nylund et al., 2015). PGI is used as a term 

to describe outbreaks of gill disease in smolts along the southwest coast of Norway in the 

autumn, often associated with the microsporidian parasite Desmozoon lepeophtherii (syn. 

Paranucleospora theridion) (Hoffman et al., 1969; Nylund et al., 1998; Draghi et al., 2004; 

Karlsen et al., 2008; Steinum et al., 2010; Mitchell et al., 2013; Nylund et al., 2015). PGI is 

also characterized by a combination of histopathological changes like inflammation, necrosis, 

hyperplasia of epithelial cells and lamellar vascular changes (Kvellestad, Falk, Nygaard, Flesja, 

& Holm, 2005). Proliferative gill disease (PGD) is a non-specific term referring to proliferative 

changes of lamellar epithelial cells in the gills when it comes to histology (Nylund et al., 2008; 

Herrero et al., 2018). Herrero et al. (2018) and Boerlage et al. (2020) stated that PGD is mostly 

diagnosed on gross lesions in the field. The term “complex gill disease” (CGD) is associated 

with non-specific clinical gill diseases occurring in marine farmed Atlantic salmon from the 

end of summer to early winter (Herrero et al., 2018). CGD is referred to when multifactorial 

etiology and variable histopathology is observed (Herrero et al., 2018). In earlier published 
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articles, terms like PGI and PGD is encompassed by CGD (Herrero et al., 2018; Boerlage et 

al., 2020).  

 

In addition to the gill diseases above, other pathogens are associated with gill diseases in 

Norway, often identified at the same time. Salmon gill poxvirus (SGPV) is a virus often found 

in the gills when the fish show signs of gill disease (Herrero et al., 2018; Boerlage et al., 2020). 

Atlantic salmon paramyxovirus (ASPV) has been associated with gill disease and PGI but is 

now less consistently related with the disease (Munday, Foster, Roubal, & Lester, 1990; Nowak, 

2012). Parasites, such as Paramoeba perurans and Ichthyobodo spp. are associated with gill 

disease and believed to cause Amoebic gill disease (AGD) and Ichthyobodosis, respectively 

(Young, Crosbie, Adams, Nowak, & Morrison, 2007; Isaksen, Karlsbakk, Watanabe, & 

Nylund, 2011). Other bacteria associated with gill disease is Tenacibaculum maritimum, 

causing problems within farming in Canada, and has lately been detected in Norwegian farms 

(Frisch et al., 2018). 

 

1.3 Amoebic gill disease 

Since the first description of amoebic gill disease (AGD) in marine farmed Atlantic Salmon 

(Salmo salar L.) and Rainbow trout (Oncorhynchus mykiss) in the mid 1980s, the disease has 

developed to be one of the most serious challenge of salmonid farming in Australia (Tasmania) 

(Kube, Taylor, & Elliott, 2012; Nowak, 2012; Nowak, Valdenegro-Vega, Crosbie, & Bridle, 

2014; Hvas, Karlsbakk, Mæhle, Wright, & Oppedal, 2017). AGD is a disease that have been 

reported worldwide in farmed Atlantic Salmon and Rainbow trout, and is causing significance 

concern in Northern Europe (Wiik-Nielsen et al., 2016). Today, the disease is a serious problem 

which causing economic losses as a result of reduced growth, mortality, and treatment expenses, 

but also reduced quality of the carcasses and feed conversion (Munday et al., 1990).  

 

AGD is a disease affecting the gills and compromises its crucial physiological functionality. 

Gill changes as a result of the colonization of the amoeba, including severe mucosal epithelial 

hyperplasia, hypertrophy, interlamellar vesicle formation, lamellar fusion and necroses (Kube 

et al., 2012; Nowak, 2012; Nowak et al., 2014; Hvas et al., 2017). The colonization on the gill 

surfaces is visible to the naked eye as multifocal white mucoid patches (Munday et al., 1990). 

The patches are a good indicator for controlling the disease development and to preliminary 

diagnosis of the infection (Bridle, Crosbie, Cadoret, & Nowak, 2010; Kube et al., 2012; Rodger, 
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2014; Bridle, Davenport, Crosbie, Polinski, & Nowak, 2015; Oldham, Rodger, & Nowak, 

2016). Clinical signs of AGD are anorexia, lethargy, more rapid ventilation rate and loss of 

appetite (Young et al., 2007; Young, Dyková, Snekvik, Nowak, & Morrison, 2008; Mitchell & 

Rodger, 2011; Oldham et al., 2016; Hvas et al., 2017; Kim et al., 2017). If the disease is 

untreated, increased susceptibility to other diseases and associated mortality during treatments 

and handling will eventually occur (Kent, Sawyer, & Hedrick, 1988; Munday, Zilberg, & 

Findlay, 2001; Dyková et al., 2005). As stated by Nowak et al. (2014), when mucus containing 

P. perurans is sloughed into the water column, the amoeba can be transmitted horizontally and 

colonize on nearby fish gills.  

 

1.3.1 Paramoeba perurans 

Paramoeba perurans (syn. Neoparamoeba perurans) is a marine, free-living, amphizoic, 

facultative and opportunistic ectoparasite shown to be the causative and etiological agent of 

AGD (Young et al., 2007; Karlsbakk et al., 2013; Rodger, 2014). The amoeba is classified and 

taxonomic located within the Genus Paramoeba, Family Paramoebidae, Order Dactylopodida, 

Subclass Flabellinia, Class Discosea and Phylum Amobeozoa (Kudryavtsev, Pawlowski, & 

Hausmann, 2011; Smirnov, Chao, Nassonova, & Cavalier-Smith, 2011). In literature, 

Neoparamoeba perurans is often used synonymous with P. perurans. According to 

Kudryavtsev et al. (2011); Feehan, Johnson-MacKinnon, Scheibling, Lauzon-Guay, and 

Simpson (2013), it is likely impossible to divide Paramoeba and Neoparamoeba into two 

monophyletic genera due to no well-defined distinction within morphology and genetics 

between then genera.  

 

The free-living and round amoeba often measures 20-30 µm in diameter, while the adherent 

form of the amoeba has been measured to 41-56 µm (Young et al., 2007; Karlsbakk et al., 2013; 

Rodger, 2014). The amoeba lacks clear structure on the cell surface, such as hexagonal 

glycostyles or surface scale, but the plasma membrane is well defined (Young et al., 2007; 

Oldham et al., 2016; Wiik-Nielsen et al., 2016). The amoeba-cell contains two types of 

cytoplasm; transparent ectoplasm which can form extended pseudopods from the cell (Page, 

1987) and granulated endoplasm which includes organelles, nutrition vacuoles and cell nucleus 

(3.3 – 6.0 µm) (Young et al., 2007; Wiik-Nielsen et al., 2016). The morphology of P. perurans 

may vary between round cells and polymorphic cells with clear pseudopods (Wiik-Nielsen et 

al., 2016). Additionally, the amoeba has one or more intracellular perinuclear bodies 
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(parasomes) close to the nucleus (Young et al., 2014). The parasomes are eukaryotic 

endosymbionts closely related to parasitic flagellates (Ichthyobodo), known as Perkinsiella 

amoebae-like organisms (PLOs) (Page, 1987; Dyková, Fiala, Lom, & Lukeš, 2003; Young et 

al., 2007; Young et al., 2014; Wiik-Nielsen et al., 2016). The function of the parasome is 

unknown, however it is believed that the symbiosis is obligate and mutualistic (Dyková et al., 

2003; Young et al., 2014). Young et al. (2014) suggest that the parasome is of importance for 

inflicting disease. In a study performed by Nylund et al. (2018b), the intracellular bacteria Ca. 

Syngnamydia salmonis (Chlamydiales, Simkaniaceae) was found in clones of P. perurans, 

indicating the bacterium could multiply in the amoeba.  

 

The complete and natural lifecycle of P. perurans is still unknown (Oldham et al., 2016). The 

amoebae are not able to form double-walled true cysts, but they can form rounded cyst-like 

cells called pseudocysts (Wiik-Nielsen et al., 2016). Pseudocysts are believed used for 

protection in situation with limited area for adhesion or available nutrition during osmotic stress 

(Dyková, Figueras, & Peric, 2000; Wiik-Nielsen et al., 2016; Lima, Taylor, & Cook, 2017).  

 

Different amoeba species have been associated with and suggested as etiological agents of AGD 

in the past, such as Paramoeba pemaquidensis and Paramoeba branchiphila which have been 

isolated form fish with AGD (Kent et al., 1988; Munday et al., 2001; Dyková et al., 2005). In 

2006, salmon at a production site in Sogn and Fjordane suffered high mortalities associated 

with gill disease and a new species of Paramoeba was detected (Young et al., 2008; Feehan et 

al., 2013; Oldham et al., 2016). A description of this new Paramoeba, P. perurans, was given 

by (Kudryavtsev et al., 2011; Smirnov et al., 2011) based on detection of the same amoeba in 

Tasmanian salmon farming. Young et al. (2008) found that P. perurans was the only amoeba 

that was detected within gill lesions from four different species of fish in five different 

countries. A challenge conducted in 2010 by Crosbie, Bridle, Cadoret, and Nowak (2012) 

resulted in successfully infection of naive Atlantic salmon with cultured P. perurans, and 

fulfilled Koch’s postulate. 

 

Several factors can affect the virulence of the amoeba. One factor suggested to be of 

significance with respect to virulence is the composition of the microbiota (Benedicenti, 

Secombes, & Collins, 2019b). It is believed that extracellular products (ECP) produced by the 

amoeba also affects the virulence and is important for inducing AGD (Bridle et al., 2015). 

According to a study conducted by Kindt (2017), the virulence of the amoeba increases when 



 6 

the temperature increases from 12 to 16 °C. Additionally, passages of the clones held in cultures 

over a long period of time have shown to reduce the virulence of the clones (Jellett & 

Scheibling, 1988; Visvesvara, Moura, & Schuster, 2007; Veríssimo, Maschio, Correa, 

Brandelli, & Rott, 2013; Bridle et al., 2015) 

 

1.3.2 Pathology  

The pathology of AGD is primarily limited to the gills, where clinical signs can be observed as 

loss of appetite, altered swimming behavior, lethargy, extruded operculum and increased 

respiratory rate due to respiratory distress (Kent et al., 1988; Munday et al., 1990; Steinum et 

al., 2008; Boerlage et al., 2020). The amoeba can adhere to healthy epithelium in the gills, and 

further proliferate and colonize at the site (Zilberg & Munday, 2000; Adams & Nowak, 2004a). 

AGD is characterized clinically by local changes on the gill surfaces as white, mucoid patches 

(hyperplastic epithelial lesions) (Munday et al., 1990). This is a result of the host response to 

an infection by P. perurans due to irritation and increased excretion of mucus (Munday et al., 

1990; Clark & Nowak, 1999; Adams & Nowak, 2001; Marcos-López & Rodger, 2020). These 

patches are used as a tool to assess the development and severity of the disease in Atlantic 

salmon indicating the level of damage on the gills (Taylor, Muller, Cook, Kube, & Elliott, 

2009b). This method is also known as scoring of the gills.  

 

Histopathological studies describe changes in the gill tissue, where AGD is associated with 

hyperplasia of the epithelial cells, fusion and vacuolization of the secondar lamellae, and 

formation of interlamellar vesicles or lacunae (cavitation), hyperplasia of mucus cells and some 

infiltration of inflammation cells (Kent et al., 1988; Munday et al., 1990; Adams & Nowak, 

2001, 2003; Adams & Nowak, 2004a; Steinum et al., 2008; Mitchell & Rodger, 2011; Crosbie 

et al., 2012). The amoeba can be observed in the interlamellar lacunae, or near the epithelial 

cells in the affected areas (Adams & Nowak, 2001; Leef, Harris, & Powell, 2005; Steinum et 

al., 2008; Bustos et al., 2011; Mitchell & Rodger, 2011). Studies have shown that the 

pseudopodia of P. perurans may penetrate the lamellar epithelium, a mechanism to improve 

the attachment to the hosts tissue or increase the conditions for the amoeba in contact with the 

host (Lovy et al., 2007; Wiik-Nielsen et al., 2016). Reduction of chloride cells or chloride cells 

sloughed off gill tissue can be observed in affected area with lesions (Adams & Nowak, 2003). 

Multifocal necrosis in the liver have been registered in severe cases of infection (Rodger, 2014). 
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Pathology associated with AGD will reduce the functional surface of the gills, which will make 

it hard for the fish to perform respiration and osmoregulation, followed by respiratory acidosis 

(Powell, Fisk, & Nowak, 2000; Fisk, Powell, & Nowak, 2002). A study by Powell et al. (2000) 

indicated that the mortality is not caused by the respiratory failure as Atlantic salmon with AGD 

in hypoxic environment can compensate the reduced gill surface with other physiological 

mechanism such as increasing the gill perfusion or redistribution of the blood flow within the 

gills. Study of the cardiovascular system have shown an association between AGD and vascular 

hypertension as well as morphological changes and reduced cardiac output (Powell, Nowak, & 

Adams, 2002; Leef, Harris, Hill, & Powell, 2005). Therefore, it is believed that cardiovascular 

stress and vasoconstriction due to increased vascular resistance and chronic hypertension is of 

importance for mortality associated with AGD (Leef, Hill, Harris, & Powell, 2007; Powell, 

Reynolds, & Kristensen, 2015). These circulatory disturbances can correlate to the pathology 

observed in the liver, especially in the late stages of the infection (Wiik, 2020). It is also 

believed that mortality associated with AGD occurs when the fish is treated or when exposed 

to handling and stress (Powell et al., 2015). 

 

Although it is known that the fish have an immune evasion strategy when infected by P. 

perurans, there is a lack of knowledge for all the immune responses (Benedicenti, Collins, 

Wang, McCarthy, & Secombes, 2015). It is shown that P. perurans elicits classical 

inflammatory responses in the gills, and expression of cellular markers, such as antigen 

presenting cells (B- and T-cells), increases in the early stages of infection (Pennacchi, Leef, 

Crosbie, Nowak, & Bridle, 2014). Elevated proinflammatory cytokines in the later stages of 

infection is observed (Bridle, Morrison, Cupit Cunningham, & Nowak, 2006; Morrison, Young, 

& Nowak, 2012). Additionally in the late stages of infection, Benedicenti et al. (2015) suggest 

an immune evasion strategy similar to an infection of helminthic parasites to suppress cell-

mediated killing mechanisms.  

 

1.3.3 Risk factors 

P. perurans has no host specificity and can infect several species all over the world, therefore 

it is difficult to find clear trends that trigger outbreak of AGD globally (Young et al., 2007; 

Mitchell & Rodger, 2011; Oldham et al., 2016; Hvas et al., 2017). Studies have shown that high 

temperature (>12 °C) and salinity are two important environmental factors affecting the 

outbreak of disease in Atlantic salmon (Clark & Nowak, 1999; Douglas-Helders, Saksida, 

Raverty, & Nowak, 2001). Outbreaks in Tasmania have been associated with high temperatures 
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between 15-20 °C during the summer and autumn (Munday et al., 1990). According to  Oldham 

et al. (2016), many AGD-cases have indicated that there is an correlation between periods of 

elevated temperature and establishment of AGD in new areas. This correlates to the first case 

of AGD in Norway in 2006, where the sea temperature was registered 3.5 °C higher than normal 

(Steinum et al., 2008). At higher sea temperature, Atlantic salmon is more susceptible to 

pathogens and diseases due to different physiological challenges that follows the critical 

temperature limit rather than that the virulence of the amoeba has changed (Clark & Nowak, 

1999; Oldham et al., 2016). There are indications that the amoeba has adapted to colder 

temperature. Although most outbreaks are registered at >12 °C, outbreaks of the disease have 

been registered at temperatures near 6-7 °C (Clark & Nowak, 1999; Douglas-Helders et al., 

2001; Steinum et al., 2008; Rodger, 2014; Mo, Hytterød, Olsen, & Hansen, 2015).  

 

Salinity is considered the most important environmental factor associated with outbreaks of 

AGD, where salinity >25 ‰ is associated with risk of outbreaks and salinity >32 ‰ has a 

greater risk of inducing outbreaks of AGD (Clark & Nowak, 1999; Douglas-Helders et al., 

2001; Munday et al., 2001; Steinum et al., 2008). P. perurans has a low tolerance for freshwater 

(Oldham et al., 2016). Bridle et al. (2015) assessed the ability of the amoeba to attach in cell 

culture of CHSE-214 cells in terms of salinity, where a significant higher number of amoebae 

were attached in 30 ‰ compared to 20 ‰. The optimal temperature and salinity for growth of 

P. perurans under experimental conditions is at 15 °C and 35 ‰, and the thresholds for growth 

is within the temperature- and salinity ranges of 4-8 °C and 20-25 ‰ (Collins, Hall, Fordyce, 

& White, 2019).  

 

It is believed that other factors, such as size, density and immune status of the fish, genetics, 

treatments conducted, presence of pathogens on the gills and water quality, may be of 

importance for the development of disease (Clark & Nowak, 1999; Adams & Nowak, 2001; 

Munday et al., 2001; Bermingham & Mulcahy, 2004; Douglas-Helders, Weir, O'Brien, Carson, 

& Nowak, 2004; Bermingham & Mulcahy, 2007; Rodger, 2007; Taylor, Wynne, Kube, & 

Elliott, 2007; Crosbie, Bridle, Leef, & Nowak, 2010; Kube et al., 2012). Challenge experiments 

with P. perurans conducted at UoB and ILAB indicated that there is variation between 

populations of salmon, as well as within the different populations (Kindt, 2017). Douglas-

Helders, Nowak, Zilberg, and Carson (2000), have shown that Paramoeba spp. can survive on 

the gills of dead salmon for >30 hours, as well as proliferate and infect naive fish, therefore 

dead salmon needs to be removed due to risk of spreading the amoeba in the cages (Oldham et 
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al., 2016). The severity of the disease will be affected by the dosage of amoeba, where increased 

concentration of Paramoeba sp. is correlated with increased number of lesions on the gills 

(Zilberg & Munday, 2000). Although the effect on the disease is not fully understood, it is 

believed that the fish have different susceptibility for the amoeba due to different genetical 

resistance mechanisms (Taylor, Kube, Muller, & Elliott, 2009a; Kube et al., 2012).  

 

1.3.4 Diagnostics and detection 

The gill scoring system developed by Taylor et al. (2009b) is a system used to estimate the 

severity of AGD in the gills of Atlantic salmon, and to indicate clinical diagnosis by studying 

the lesions (patches) on the gills. The system uses a scale from 0 to 5, where 0 equals to no sign 

of infection and 5 is extensive lesions. Studies have shown that the method is not directly 

transferable to other marine species, including ballan wrasse and lumpfish (Dahle, 2015; 

Haugland, Olsen, Rønneseth, & Andersen, 2017; Dahle et al., 2020a).  

 

Lesions and white patches on the gills are the hosts response to pathogen on the gills, and may 

be caused by other pathogens, as well as P. perurans (Adams, Ellard, & Nowak, 2004; Nylund 

et al., 2011; Quaglio et al., 2016). Therefor the scoring system cannot be used alone to confirm 

AGD on the fish as the only diagnostic method. The method most used for identifying the 

presence of the amoeba is by real-time RT-PCR of gill tissue with specific assay for P. perurans 

(Fringuelli, Gordon, Rodger, Welsh, & Graham, 2012; Downes et al., 2015; Nylund et al., 

2018b). Histological examination of the gills can confirm the presence of amoeba-like 

organisms associated with hyperplastic lamellar fusion and formation of interlamellar vesicles 

or lacunae, as well as hyperplasia of mucus cells (Adams & Nowak, 2001; Munday et al., 2001; 

Adams et al., 2004; Fringuelli et al., 2012; Rodger, 2014). Other methods used to identify the 

presence of amoeba is by wet preparation from the affected gills, studied in microscope. 

 

1.4 Host range, Transmission and Reservoirs 

It seems that the host range of P. perurans is not specific (Oldham et al., 2016; Hvas et al., 

2017), and the amoeba infects farmed Atlantic salmon (Salmo salar), Rainbow trout 

(Oncorhyncus mykiss), Coho salmon (Oncorhynchus kisutch), turbot (Scophthalmus maximus), 

ayu (Plecoglossus altivelis), ballan wrasse (Labrus bergylta), lumpfish (Cyclopterus lumpus), 

and black seabream (Acanthopagrus schlegelii) (Munday et al., 1990; Steinum et al., 2008; 

Young et al., 2008; Karlsbakk et al., 2013; Nowak & Archibald, 2018; Steigen et al., 2018). 
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Due to low host specificity and globally widespread presence of the amoeba, it is suggested that 

the amoeba is opportunistic (Young et al., 2008; Oldham et al., 2016). Although many hosts 

are susceptible for the amoeba, it does not necessarily result in AGD as some species may be 

more resistant to infection of P. perurans, which is observed within ballan wrasse (Karlsbakk 

et al., 2013). 

 

Although the mechanisms for transmission of the amoeba between different localities are 

unclear (Nowak, Bryan, & Jones, 2010), horizontal transmission is identified in challenge 

experiments by direct exposure of amoebae on naïve fish or the usage of cohabitants (Crosbie 

et al., 2012; Dahle, 2015; Haugland et al., 2017). Bridle et al. (2015) found that the salmon 

could act as a reservoir for the amoeba and possible transfer infection with currents to other 

localities. 

 

The presence of Paramoeba spp. have been identified in marine and estuarine sediments, on 

the nets in cages, and in some marine organisms such as crabs and sea urchins (Tan, Nowak, & 

Hodson, 2002; Crosbie, Nowak, & Carson, 2003; Dyková et al., 2005; Dyková et al., 2007; 

Nowak & Archibald, 2018). Even though naked amoebae (Lobosa) are present in the marine 

environment from open ocean to estuary along the coasts, the natural reservoir of P. perurans 

is still unknown (Page, 1987; Rogerson & Laybourn-Parry, 1992; Oldham et al., 2016). 

Previous studies have shown that amoeba originated from the gills of ballan wrasse can infect 

salmon (Dahle et al., 2020a). Karlsbakk et al. (2013); Haugland et al. (2017); Dahle et al. 

(2020a) found cleaner fish without patches to be carriers of the amoeba, which can act as 

potential reservoir in cages together with Atlantic salmon (Oldham et al., 2016; Steigen et al., 

2018). In addition, P. perurans have been identified from the surfaces of salmon lice 

(Lepeophtheirus salmonis), however it is unclear whether this is a significance as reservoir or 

important for transmission (Nowak et al., 2010).  

 

1.5 Treatments 

If elevated gill scores compatible with AGD are identified on a locality, it is important to treat 

the fish in early stages of the disease to control it and avoid high mortality, as well as achieve 

the best possible effect. AGD may reduce welfare of the fish and cause mortality if left untreated 

(Nowak et al., 2014), and studies by Rodger (2014) have shown the more severe the outbreak, 

the more difficult it will be to achieve an effective treatment. The most common methods used 
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for treating AGD is by freshwater- or hydrogen peroxide bath. Freshwater bathing has shown 

to be most efficient and been used as a treatment against AGD since the disease was first 

described in Tasmania in mid-1980s (Powell et al., 2015; Oldham et al., 2016). The treatment 

is performed by transferring the fish into a well boat with freshwater (salinity <3 ‰), 

alternatively in net pens with a closed tarpaulin, for a duration of 2-3 hours (Parsons, Nowak, 

Fisk, & Powell, 2001; Rodger, 2007; Adams, Crosbie, & Nowak, 2012; Rodger, 2014; Powell 

et al., 2015). Handling and crowding of fish during the treatment can be stressful for the fish, 

where respiratory distress, hypoxia and mortality may follow (Parsons et al., 2001; Powell, 

Parsons, & Nowak, 2001). Freshwater bathing is used both therapeutic and prophylactic 

(Rodger, 2014; Powell et al., 2015). The need of nearby freshwater sources and logistics 

associated with transport of the water can be demanding in terms of costs and quality of 

treatment (Munday et al., 2001; Kube et al., 2012; Rodger, 2014; Powell et al., 2015). Although 

the treatment shows significant effect on the gill lesions, it is normal to perform several 

treatments during the production cycle due to possible reinfections (Clark & Nowak, 1999; 

Clark, Powell, & Nowak, 2003; Adams & Nowak, 2004b). The possibility of a shorter treatment 

duration of Atlantic salmon sublethal for P. perurans as an alternative to lethal treatments were 

assessed by Wright et al. (2018). The results suggested that targeting detachment of amoeba 

rather than death of amoeba can be used as a method to control AGD. Freshwater bathing cannot 

be used on the marine cleaner fish present in the cages, therefore, to maintain good welfare in 

the cages, brackish water needs to be used to remove the amoeba. Dahle et al. (2020a) found 

treatment with brackish water (15 ‰) over several days to be effective.  

 

Hydrogen peroxide (H2O2) have been used as an alternative to treat AGD affected fish, and 

studies have proven effect against the amoeba (Hytterød et al., 2017a). In addition, hydrogen 

peroxide is used against salmon lice (Bruno & Raynard, 1994; Grave, Horsberg, Lunestad, & 

Litleskare, 2004). Adams et al. (2012) indicated in a study that hydrogen peroxide baths are 

equally efficacious as freshwater on mild cases of AGD, and that H2O2 will not leave any 

residue due to breaking down into oxygen and water. The treatment is performed in the same 

way as freshwater treatments, by well boats or closed tarpaulin. Due to smaller therapeutic 

window for hydrogen peroxide treatments, treatments performed at temperature >12 ⁰C may 

lead to bleeding in the gills and elevated mortality rate (Hytterød et al., 2017a). Treatments 

performed at lower temperature in early stages of AGD can be effective in removing the amoeba 

(Hytterød et al., 2017a). However, studies have shown that both freshwater and hydrogen 

peroxide bathing will not remove the amoeba completely in severe cases of AGD, and the 
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disease may progress after treatment (Parsons et al., 2001; Hytterød et al., 2017a; Martinsen, 

Thorisdottir, & Lillehammer, 2018). 

 

1.6 Microbiota 

Although there is paucity of knowledge, it is believed there is a connection of microbiota on 

the gills and the severity of AGD. The relationship between Paramoeba and bacteria is not fully 

understood, but it is suggested that the relation is more complex than the bacteria only being a  

source of nutrition (Nowak & Archibald, 2018). P. perurans is often associated with 

coinfections with pathogenic bacteria or microbial dysbiosis on the gills (Egan & Gardiner, 

2016; Nowak & Archibald, 2018). Merrifield and Rodiles (2015) demonstrated that the gills of 

both freshwater and marine fish hold a wide range of bacteria genera. Microbiota have been 

suggested to affect the growth and virulence of different clones and cultures of P. perurans due 

to large variations of bacteria species and significant differences in the composition (Collins et 

al., 2017; Benedicenti et al., 2019b). Other factors affecting the microbiota on the gills can be 

stress factors, including water quality, temperature changes, crowding of fish, nutritional 

deficiencies, parasite infections or primary viral infections (Cahill, 1990). In addition, there is 

evidence supporting that season variation (Al-Harbi & Uddin, 2007) and poor water quality 

(Masouleh, Sharifpour, & Arani, 2006) affects the gill microbiota.  

 

The relation of how microbiota on the gills affects fish health, infections of P. perurans and 

treatments is still not fully understood. It is possible that treatments could cause quick changes 

in the aquatic environment which can affect the microbiota present on the gills. During 

challenge experiment, the surrounding environment is controlled, hence the fish can allocate all 

energy needed to re-establish the gill microbiota. Pathogen present on the gills in commercial 

production will challenge the fish health and potential reduce the gill health. Microbial 

dysbiosis on the gills caused by treatments can possibly make the fish more susceptible for 

infection, and in worst cases lead to mortality. 

 

1.7 Aim for study 
The main aim of the study was to map the effect of freshwater treatment, against AGD, on the 

gill health of Atlantic salmon. The gill health and presence of pathogens (prevalence and 

density) were mapped before and after treatment. In addition, the prevalence and density of 
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pathogens on the gills of salmon dying during treatment were compared to the same parameters 

before and after treatment.  

Hypothesis H0: Freshwater treatment will not have a negative effect on the gill health.  

 

The secondary aim of this study was to test the possible effect microbiota may have on the 

virulence of clonal cultures of Paramoeba perurans during experimental challenge.  

Hypothesis H0: The microbiota will not influence the virulence of P. perurans.  
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2 Materials and Methods 
The material from this project is divided in two parts. Some of the material is part of an FHF-

project (Norwegian Seafood Research Fund); “Effects of treatment against salmon lice, amoeba 

gill disease (AGD) and cleaning of nets on gill health for farmed salmon”. The aim for the 

project is to study how stress during production, such as mechanical treatment against salmon 

lice, freshwater treatment against AGD and cleaning of nets, affects the gill health. In this 

master thesis the effect of freshwater treatment against AGD (Paramoeba perurans) in normal 

production of farmed salmon was studied. The other part of the material included in this study 

is from a challenge experiment aimed to map the importance of different microbiota, in cultures 

of P. perurans, on the development of AGD in Atlantic salmon (Salmo salar).  

 

The material was analyzed at the Fish Disease Research Group (FDRG) laboratories, University 

of Bergen (UoB). Additional material collected during the field work were sent to other research 

groups (Pharmaq Analytiq and University of Sterling (UoS)) participating in the FHF-project. 

Results from their work are no presented in this master thesis.  

 

2.1 Challenge: Study of the possible importance of bacteria, in culture media for 

clones of P. perurans, on the development of AGD.  
The challenge was conducted at ILAB, The High Technology Centre in Bergen, from the 15th 

of October to the 17th of November 2020. The fish used in this challenge was Atlantic salmon 

(Salmo salar, L.) from Stofnfiskur Iceland. They were kept in the tanks (8 tanks containing 140 

liter full sea water) for one week before challenge. At the start of the experiment, the average 

weight of the fish was 87 grams. 303 fish was used in the challenge.  

 

Throughout the challenge, the water temperature was set to 16 °C and the light regime 12 hours 

light: 12 hours dark. The water flow in the tanks were set to 400 L/hours, and the oxygen 

saturation was set to >82 % during the challenge. Temperature and salinity in the tanks were 

controlled daily, as well as the behavior of the fish. To ensure good environmental conditions 

in the tanks, excessive feed and moribund fish were removed daily.  

 

This challenge was approved by The Norwegian Food Safety Authority (application 24564). 
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2.1.1 Isolates (P. perurans) and bacteria (Vibrio splendidus) 

The ST19/15Pp isolate of P. perurans was obtained in October 2015 from farmed Atlantic 

salmon at Hitra, Sør-Trøndelag (Kindt, 2017). During a challenge experiment in 2015 the 

isolate inflicted a moderate degree of pathology on the salmon (Røed, 2016). The clone is 

characterized as an amoeba of relative normal size where pseudocysts are rapidly formed in the 

floating stage and it is growing well in cultivation (Kindt, 2017). The H20/16Pp isolate of P. 

perurans was isolated in March 2016 from farmed Atlantic salmon in Hordaland (Kindt, 2017). 

The clone grows well in cultivation, and consist of many small cells, both adherent and floating 

stages (Kindt, 2017).  

 

In this challenge, two clones of P. perurans was used, one high-virulent (H20/16Pp) and one 

low-virulent (ST19/15Pp) (Kindt, 2017). The two clones of P. perurans have been maintained 

in the original microbiota media since isolation and the challenge experiments performed during 

2016. During the period from autumn 2016 until the start of this challenge experiment in 

October 2020 the clones had been through 96 (H20/16Pp) and 103 (ST19/15Pp) passages. A 

month before the start of the challenge both clones were divided in two, one line were kept in 

the original microbiota media while the other line were transferred to a medium containing a 

pure culture of Vibrio splendidus. The four clonal cultures went through six passages in the 

month before the challenge the 15th and 16th of October 2020. The culture media consisted of; 

malt-yeast-broth (MYB; 0.01 % malt extract, 0.01 % yeast extract, 34 PSU saltwater) and 

bacteria (the original microbiota or a pure culture of V. splendidus) incubated at a temperature 

of 16 ºC.  

 

2.1.2 Challenge of salmon with clonal cultures of P. perurans 

After one week in the tanks, the fish was challenged with P. perurans (table 2.1). The supply 

of water was stopped and the level of the water in the tanks was reduced to 100 L during the 

infection. The dose was set to be 1000 amoeba/L for each tank (a total of 100 000 amoeba/tank). 

CASY Model TT Cell counter (Innovatis, Roche Diagnostics) was used to calculate the correct 

amount of living amoeba and to prepare the inoculum (Haugland et al., 2017). Before 

transferring the amoeba to the tanks, all the surfaces in the bottle were scraped with cell scraper 

so all of the amoebae could be transferred. The contents of the bottles were then directly 

distributed in the tanks and rinsed with the water from the tanks one time. The behavior of the 

fish was observed during the infection. The exposure tanks were oxygenated during the 

challenge. After one hour the water supply was turned on.  
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Table 2.1 Overview of each challenge group in each tank.  

Tank  Date of challenge Challenge material  
Tank 1 16.10.2020 Clone H20/16Pp grown in pure culture of V. splendidus.  

Tank 2 15.10.2020 Clone H20/16Pp grown in normal media (obtained from gills of farmed 
salmon during first isolation of P. perurans in 2016).  

Tank 3 16.10.2020 Clone ST19/15Pp grown in pure culture of V. splendidus. 

Tank 4 15.10.2020 Clone ST19/15Pp grown in normal media (obtained from the gills of 
farmed salmon during first isolation of P. perurans in 2015).   

Tank 5 16.10.2020 Cloned culture of V. splendidus (the same isolate used for culturing the 
clonal cultures of P. perurans).  

Tank 6 15.10.2020 Normal media containing microbiota obtained from the gills of farmed 
salmon during first isolation of H20/16Pp in 2016.  

Tank 7 15.10.2020 Normal media containing microbiota obtained from the gills of farmed 
salmon during first isolation of ST19/15Pp in 2015.  

Tank 8 16.10.2020 Control; exposed to bacteria- and amoeba-free malt Yeast media.  

 

2.2 Freshwater treatment against AGD 

A 10-hour freshwater treatment of Atlantic salmon (Salmo salar) suffering from AGD, 

associated with P. perurans, was carried out at a locality in Rogaland County in September 

2020. The name and the location of the farm (LB) is anonymized (figure 2.1).  

 
          Figure 2.1 Map with approximate location of locality LB. Map obtained from Kommunekart.com. 
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Locality LB consists of four sea cages, but only two of the cages contained Atlantic salmon 

when the treatment took place. The fish had been transferred to sea at the end of October 2019. 

At the day of sampling, the number of fish at the locality was 290 000 – one cage with 143 224 

fish, and the other with 146 776 fish. Prior to this AGD-treatment, there had been three 

delousing treatments; one with SkaMik (August 2020) and two with Thermolicer (July and June 

2020). The fish at the locality was diagnosed with amoebic gill disease (AGD).  

 

Only one of the sea cages received freshwater treatment and the other was left untreated. The 

mortality prior to the treatment was 100-300 fish each day for the last fourteen days. During 

treatment, the mortality in the treated cage was 1500 fish. A month after treatment, the mortality 

of the treated cage was 10-60 fish each day (25.09-04.10) and 150-200 fish each day (25.09-

01.10) for the untreated cage.  

 

The treatment was performed using a well boat Ronja Polaris. Average weight of the fish at the 

day of treatment was 2448 grams. Sea temperature at the day was 14.9 °C.  

 

2.3 Sampling form the challenge- and the field experiment 
During the challenge experiment a total of four samplings were carried out distributed over 

eight sampling-days. The fish from the challenge experiment was euthanized by percussive 

stunning.  

 

Two visits to the farm with AGD was done before and after treatment with freshwater: 1) before 

treatment (22.09.2020), and 2) after treatment (30.09.2020). During the first visit tissue samples 

(gills, kidney, and heart) were collected from 30 newly euthanized salmon collected from the 

cage that were to be treated with freshwater one hour later, while during the second visit similar 

samples were taken from both treated cage (N = 30) and from untreated cage (N = 30). Fish 

that died during the freshwater treatment (N = 28) were collected and stored at -25 °C for later 

sampling in the FDRG laboratories, UoB. The fish sampled at locality LB was euthanized by 

an overdose of anesthetic.  

 

2.3.1 Gill score 

When monitoring the development of gill lesions during the challenge and in the field, a scoring 

system that estimate the severity and extent of AGD were used (Taylor et al., 2009b). The 
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system uses a scale from 0 to 5, were 0 indicates no sign of infection and 5 indicates extensive 

lesions (table 2.2). At all samplings during the challenge, all the gill arches, including left and 

right, front and back, were studied thoroughly and scored individually according to table 2.2. 

At all samplings in field, all gill arches on left side were studied thoroughly and scored 

individually according to table 2.2. All equipment and glows were washed and changed 

between each tank and sampling.  

 
Table 2.2 Gross gill score system used to assess the severity of AGD (Taylor et al., 2009b).  

Infection level Gill score Gross description 
Clear 0 No sign of infection and healthy light color 
Very light 1 1 white spot, light scarring and undefined necrotic streaking  
Light 2 2-3 spots/small mucus patch 
Moderate 3 Established thickened mucus patch or spot groupings up to 

20% of gill area 
Advanced 4 Established lesions covering up to 50% of gill area 
Heavy  5 Extensive lesions covering most of the gill surface 

 

2.3.2 Challenge  

Sampling during the challenge was conducted at the FDRG laboratories, UoB. The number of 

fish taken at each sampling date is given in table 2.3. Weight (g) and length (cm) of the fish, 

external lesions or ulcers and gill score (table 2.2) was registered during each sampling. If any 

external lesions or ulcers were observed, samples were taken. Gill tissue the size of a “match-

head” was taken from the apical part of the second gill arch on the left side for real time RT-

PCR analysis. The rest of the second gill arch was taken as backup. The samples for analysis 

were transferred to 2.0 mL Safe-Lock Tubes (Eppendorf) and backups was transferred to 2.0 

mL Nunc-tubes (Thermo Scientific) and stored on dry ice before transfer to -50 °C.  
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Table 2.3 Sampling dates during challenge period. Number of days post infection in parenthesis, N = number of 

fish sampled. 

 1st sampling 2nd sampling 3rd sampling 4th sampling 
Tank 1 04.11.20 (19 dpi) 

N = 5 
10.11.20 (25 dpi) 
N = 2 

12.11.20 (27 dpi) 
N = 10  

17.11.20 (32 dpi) 
N = 22 

Tank 2 03.11.20 (19 dpi) 
N = 5 

09.11.20 (25 dpi) 
N = 2 

11.11.20 (27 dpi) 
N = 10 

16.11.20 (32 dpi) 
N = 19 

Tank 3 04.11.20 (19 dpi) 
N = 5 

10.11.20 (25 dpi) 
N = 2 

12.11.20 (27 dpi) 
N = 10 

17.11.20 (32 dpi) 
N = 20 

Tank 4 03.11.20 (19 dpi) 
N = 5 

09.11.20 (25 dpi) 
N = 2 

11.11.20 (27 dpi) 
N = 10 

16.11.20 (32 dpi) 
N = 20 

Tank 5 04.11.20 (19 dpi) 
N = 5 

10.11.20 (25 dpi) 
N = 2 

12.11.20 (27 dpi) 
N = 10 

17.11.20 (32 dpi) 
N = 22 

Tank 6 03.11.20 (19 dpi) 
N = 5 

09.11.20 (25 dpi) 
N = 2 

11.11.20 (27 dpi) 
N = 10 

16.11.20 (32 dpi) 
N = 21 

Tank 7 03.11.20 (19 dpi) 
N = 5 

09.11.20 (25 dpi) 
N = 2 

11.11.20 (27 dpi) 
N = 10 

16.11.20 (32 dpi) 
N = 22 

Tank 8 04.11.20 (19 dpi) 
N = 5 

10.11.20 (25 dpi) 
N = 2 

12.11.20 (27 dpi) 
N = 10 

17.11.20 (32 dpi) 
N = 21 

 

2.3.3 Field 

Sampling during the freshwater treatment was taken at site in the following groups: before 

treatment and after treatment (treated and untreated groups). The fish that died during treatment 

were collected and frozen (-25 °C) by those working at the site. 30 fish was sampled from each 

group, except for the fish that died during treatment (N = 28), in total 118 salmon.  

 

When sampling, weight (g) and length (cm) of the fish, lice, any external lesions or ulcers and 

gill score (table 2.2) was registered for all groups except the ones that died during treatment. 

The second gill arch at the left side was transferred and fixed in neutral buffered 10% formalin 

(Sigma-Aldrich) for histology, and the third gill arch was sampled for immunology and sent to 

University of Sterling. Samples of gill- and kidney tissue were taken for RNA extraction and 

real-time RT-PCR by taking a sample size of a “match-head” respectively from the apical part 

of the second gill arch on the right side and the head kidney. The samples were transferred into 

2.0 mL Safe-Lock Tubes (Eppendorf) on dry ice during the sampling and stored at -25 °C for 

further analysis at UoB. The rest of the second gill arch, in addition to samples of heart and 

kidney, was transferred to 2.0 mL Nunc-tubes (Thermo Scientific) as backups and stored at -50 

°C at FDRG laboratories, UoB.  
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Table 2.3 Dates for sampling in connection with AGD treatment at site LB. Number of days post treatment (dpt) 

in parenthesis, N = number of fish sampled.  

Before treatment Dead during treatment After treatment (treated) After treatment (untreated) 
22.09.20 
N = 30 

22.09.20 
N = 28 

30.09.20 (8 dpt) 
N = 30 

30.09.20 (8 dpt) 
N = 30 

 

2.4 Histology 

Gills samples taken for histology were sent to Pharmaq Analytiq (Bergen) for preparation of 

the sections. The tissues were embedded in paraffin and by standard procedures prepared for 

microscopy (histological analysis) (Gamble & Bancroft, 2008). The gills were cut in the sagittal 

plane with a thickness of 2 µm and placed on poly-L-lysine coated slides (SuperfrostPlus, 

Thermo Scientific, Germany). The slides were stained with hematoxylin and eosine (HE) 

(Dahle et al., 2020b).  

 

The histological sections were studied to identify possible changes of cell- and tissue structures, 

and also to identify possible pathogens on the gills. All samples before and after the freshwater 

treatment was studied, and the histological sections were scored based on a simplified system 

of identifying changes in gills for this FHF-project (Kvåle, 2020). Five primary lamellae were 

scored at each section, and the scoring system addressed eleven normally occurring 

pathological changes in the gill tissue with a score range = 0-3 (figure 2.2). The different scores 

were given based on the percentage affected tissue that was studied. Score 0 indicates no 

changes in the tissue, score 1 is given with less than 10 % of changes (mild changes), score 2 

indicates between 10-50 % changes (moderate changes), and score 3 is given if more than 50 

% of the tissue is affected (extensive changes). As for hyperplasia of mucus cell, the score is 

given based on the average amount of mucus cells on each secondary lamella: 3 or less mucus 

cell indicates score 1, 5-8 mucus cells indicate score 2, and more than 8 mucus cells indicates 

score 3. The score for thickened distal filament is given based on the percentage affected 

primary lamellae, where score 1 indicates less than 10 % is affected, score 2 indicates 10-50 % 

is affected, and score 3 indicates that more than 50 % is affected.  

 

The scoring of gills was done using Leica DM500 light microscope and ZeissÒ Axio Scope.A1 

with Axiocam 105 color-camera. The images were processed in ZEN lite 2012 v.1.1.2.0.  
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2.5 Real time RT PCR analysis 

2.5.1 RNA extraction  

The RNA extractions were carried out as described by Gunnarsson et al. (2017a) with some 

modifications. TRIzol Reagent (Sigma) was used in most cases, but a few extractions were 

carried out using QIAzolÒ Lysis Reagent (Qiagen).  

 

First, 1000 µL TRIzol or QIAzol was added to tubes (Eppendorf Safe Lock 2,0 mL) containing 

tissue samples before it was homogenized in TissueLyser II (Qiagen) for 3 minutes with 30 

oscillation per second. The samples were incubated in room temperature for five minutes and 

spun down before adding 200 µL chloroform (Sigma-Aldrich) and then the tubes were 

vigorously shaken for 15-20 seconds. Further, the samples were incubated in room temperature 

for five more minutes, and then centrifuged (Thermo ScientificTM Heraeus FrescoTM 21) for 15 

Figure 2.2 Eleven normal 
occurring pathological 
changes in the gill tissue 
illustrated histological. 
Arrow indicates changes. 
Scale is given in each figure. 
1: Mucus cell hyperplasia.    
2: Clubbing. 3: Lifting. 4: 
Epithelial cell hypertrophy. 
5: Epithelial cell hyperplasia. 
6: Thickening of distal 
primary lamellae. 7: Fresh 
aneurism. 8: Bleeding 
aneurism. 9: Old aneurism. 
10: Inflammation. 11. 
Necrosis.  

9 10 

11 
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minutes at 12 000 x g and 4 °C. The samples separated into tree different phases: aqueous phase 

at the top, interphase and organic phase at the bottom. 450-500 µL of the aqueous phase, which 

contains the RNA, is pipetted over to Axygen Microtubes 1.5 mL tubes containing 500 µL 

isopropanol (Antibac) and mixed carefully. The tubes were then incubated for 10 minutes 

before centrifugation for 15 minutes at 12 000 x g and 4 °C to precipitate RNA-pellets from the 

solution. To increase the quality of the RNA extraction, the pellet was washed twice with 

ethanol (VWR). The supernatant was removed from the tube, 1.0 mL 75 % ethanol was added, 

and the pellet was washed on all sides by vortex for a few seconds before centrifugated for 5 

minutes at 12 000 x g at 4 °C. Ethanol was removed, and the washing was repeated with 100 % 

ethanol. The pellet was then air dried for 10 minutes before dissolved in 100-150 µL RNase-

free water (Sigma-Aldrich) pre-heated to 70 °C. While extracting RNA, one negative control 

(RK) followed the same steps as described, but without tissue in the tube. One RNA extraction 

control was added for each 10 tissues sample to control possible contaminations. The samples 

were then stored at -25 °C until further analysis.  

 

As a part of controlling the quality and RNA-concentration (ng/µL) of the samples, the 

absorbance of a random selection of samples was measured in a spectrophotometer 

(NanoDropTM 1000, Thermo Scientific).  

 

2.5.2 Real-Time RT-PCR 

Real-Time RT-PCR is an efficient method for detection of RNA from specific microparasites. 

The extracted RNA from the samples were analyzed by using AgPath-IDTM One-Step RT-PCR 

Kit (ThermoFisher Scientific) and Applied BiosystemsÒ QuantStudioTM Real-Time PCR 

System (ThermoFisher Scientific). By combining mastermix of specific primers and probes, as 

well as the template in a reaction plate with 96 wells (Applied BiosystemsÒ MicroAmpÒ 

Optical 96-Well Reaction Plate), the Real-Time RT-PCR will give an amplification curve that 

indicates how much of the template is present in the sample. First, 10.5 µL of the mastermix 

was added to the wells. The mastermix consist of 2X RT-PCR Buffer (Applied BiosystemsÒ), 

F-primer, R-primer, probe (TaqMan), 25X RT-PCR Enzyme mix (Ambion) and RNase-free 

water (Sigma-Aldrich) (table 2.4). Further, 2.0 µL of the template is added to the wells. In 

addition to the templates, one negative control (RK) and one non-template control (NTC) was 

analyzed for each assay.  
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Table 2.4 The components of the mastermix with associated volume (µL) for the assays. The volume corresponds 

to one analyze. The final concentration for primer and probe is given in parenthesis.  

Component General Pperu POX MCP 
2X RT-PCR Buffer 6.25 6.25 6.25 
F Primer 1.00 (800 nM) 1.0 (800 nM) 0.5 (800 nM) 
R Primer 1.00 (800 nM) 1.0 (800 nM) 0.5 (800 nM) 
Probe 0.22 (175 nM) 0.28 (175 nM) 0.28 (175 nM) 
25X RT-PCR Enzyme 
mix 

0.25 0.25 0.25 

Water (RNase free) 1.78 1.72 2.72 
RNA Template 2 2 2 
Total volume 12.5 12.5 12.5 

 

The first step in the reactions is revers transcription at 45 °C for 10 minutes. Then the 

temperature rises to 95 °C for 10 minutes where deactivation of reverse transcription and 

activation of polymerase takes place. The last step, amplification of target template, runs for 45 

cycles at 95 °C (DNA dissociation) for 15 seconds and 60 °C (annealing and elongation) for 45 

seconds. The amplifications curves are given in the program QuantStudio DesignTM & Analysis 

Software v1.5.1. The threshold line for all analysis was manually set to 0.1. 

 

Gill- and kidney samples collected from the field experiment were tested against different 

assays (table 2.5) to detect which pathogens were present. The assay for elongation factor 

(EL1A, table 2.5) in salmon was used as a reference gene (Olsvik, Lie, Jordal, Nilsen, & 

Hordvik, 2005). All gill samples from the challenge experiment were tested using the assays 

EF1A, Pperu, Perk and SCh.  
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Table 2.5 Primers and probes for assays used in Real-time RT-PCR analysis. Efficacy is given in the references.  

Assay Primer Sequence Reference 
Salmonid alphavirus  
(nsP1) 

Probe 
Forward 
Revers 

CTG GCC ACC ACT TCG A 
CCG GCC CTG AAC CAG TT 
GTA GCC AAG TGG GAG AAA GCT 

Hodneland and 
Endresen (2006) 

Infectious salmon anemia virus 
(Segment 7) 

Probe 
Forward 
Revers 

CAC ATG ACC CCT CGT C 
TGG GAT CAT GTG TTT CCT GCT A 
GAA AAT CCA TGT TCT CAG ATG CAA 

Plarre, Devold, Snow, 
and Nylund (2005) 

Piscine orthoreovirus 1 
(PRV1-M2) 

Probe 
Forward 
Revers 

CTG GCT CAA CTC TC 
CAA TCG CAA GGT CTG ATG CA 
GGG TTC TGT GCT GGA GAT GAG 

Nylund et al. (2018a) 

Piscine orthoreovirus 3 
(PRV3-S1) 

Probe 
Forward 
Revers 

CGA AGY ATA ATG AAG A 
GCG ACG CCT TAG AGA CAA CA 
CRA GAT CAC CAG TGG TCT TT 

A. Nylund, pers. com. 

Piscine myocarditis virus 
(PMCV) 

Probe 
Forward 
Revers 

TGG TGG AGC GTT CAA 
AGG GAA CAG GAG GAA GCA GAA 
CGT AAT CCG ACA TCA TTT TGT GA 

Nylund et al. (2018a) 

Salmon gill poxvirus 
(POX MCP) 

Probe 
Forward 
Revers 

TTA TAC ACC ATC ACA TTT GTG 
CAG AGG TTT TTC ATA CGC CAG AA 
GAG GTC ACG GTG ATG ACA GAA C 

Nylund, Røed, 
Blindheim, Trösse, and 
Andersen (2021) 

Infectious pancreatic necrosis virus 
(IPNV) 

Probe 
Forward 
Revers 

TCT TGG CCC CGT TCA TT 
ACC CCA GGG TCT CCA GTC 
GGA TGG GAG GTC GAT CTC GTA 

Watanabe et al. (2006) 

Paranucleospora theridion 
(Nuc) 

Probe 
Forward 
Revers 

TTG GCG AAG AAT GAA A 
CGG ACA GGG AGC ATG GTA TAG 
GGT CCA GGT TGG GTC TTG AG 

Nylund, Nylund, 
Watanabe, Arnesen, 
and Karlsbakk (2010) 

Paramoeba perurans 
(Pperu) 

Probe 
Forward 
Revers 

CTG GTT CTT TCG RGA GC 
GAT AAC CGT GGT AAA TCT AGA GCT AAT A 
TGG CAT TGG CTT TTG AAT CT 

Nylund et al. (2018b) 

Ichthyobodo spp.  
(Costia) 

Probe 
Forward 
Revers 

TCC ACG ACT GCA AAC GAT GAC G 
ACG AAC TTA TGC GAA GGC A 
TGA GTA TTC ACT YCC GAT CCA T 

Isaksen, Karlsbakk, 
Repstad, and Nylund 
(2012) 

X cell parasite 
(PER) 

Probe 
Forward 
Revers 

AGC GTT GAG CGG AT 
CCC TGC TAA ATA GTA TGC GGT ATA CA 
ACC TTC AAA ATA AGA ACA ATC AGC AA 

A. Nylund, pers. com.  

Tetracapsuloides bryosalmonae 
(PKX) 

Probe 
Forward 
Revers 

TGT TGT TAG GAT ATT TTC C 
CAA GAT CGC GCC CTA TCA AT 
CGT CAC CCG TTA CAA CCT TGT 

A. Nylund, pers. com.  

Parvicapsula pseudobranchicola 
(Parvi) 

Probe 
Forward 
Revers 

CCG TAT TGC TGT CTT TGA 
TCG TAG TCG GAT GAC AAG AAC GT 
AAA CAC CCC GCA CTG CAT 

Nylund et al. (2011) 

Perkinsela-like symbiont sp.  
(Perk) 

Probe 
Forward 
Revers 

CGA AAG CTG AGG CTG T 
GGC ACT GCT CCC CTT CAA C 
CGA ACG TAC TTC CCC ATG A 

Røed (2016) 

Candidatus Branchiomonas cysticola 
(Epit) 

Probe 
Forward 
Revers 

ACT TAG CGA AAG TTA AGC 
GAG TAA TAC ATC GGA ACG TGT CTA GTG 
CTT TCC TCT CCC AAG CTT ATG C 

Nylund et al. (2018a) 

Candidatus Syngnamydia salmonis 
(SCh) 

Probe 
Forward 
Revers 

TCC TTC GGG ACC TTA C 
GGG TAG CCC GAT ATC TTC AAA GT 
CCC ATG AGC CGC TCT CTC T 

Nylund et al. (2015) 

Tenacibaculum spp. Probe TTT CAA TAC ATA CAC CTC AGC Småge et al. (2017) 
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(TB-tuf) Forward 
Revers 

AGT GTG ACG TCC ACC TT 
CTG TAA GCC AGG TTC TGT 

Candidatus Piscichlamydia salmonis 
(PCh) 

Probe 
Forward 
Revers 

CAA AAC TGC TAG ACT AGA GT 
TCA CCC CCA GGC TGC TT 
GAA TTC CAT TTC CCC CTC TTG 

Nylund et al. (2008) 

Tenacibaculum maritimum 
(Tmar) 

Probe 
Forward 
Revers 

TCA TTC AGA CCA GGA GT 
AGA GCA ATT TAC TTC AAC TC 
GTA GCA ATT AAG TCT AAT TTA CC 

Frisch et al. (2018) 

Atlantic salmon elongation factor 
(EF1A) 

Probe 
Forward 
Revers 

ATC GGT GGT ATT GGA AC 
CCC CTC CAG GAC GTT TAC AAA 
CAC ACG GCC CAC AGG TAC A 

Olsvik et al. (2005) 

 

2.5.3 Efficacy test of real-time RT-PCR assay 

All of the assays have been optimized and efficacy tested in advance (table 2.5). This test is 

done by analyzing a 1:10 dilution series (100-108) with a template of known concentration in 

triplicate. The Ct-values at each triplicate is then plotted in a standard curve to calculate the 

slope and the regression number (R2) for the assay. Further, the efficacy value (E) is calculated 

by using the formula (1):  

 

(1)  𝐸 = 10("#)/&'()* (Pfaffl, 2004) 

 

2.6 Density 

Density indicates the severity of infection by a particular pathogen in each fish. In this study, 

density is used to illustrate the amount of specific RNA from one particular pathogen in the 

sample (volume) that is analyzed. The density is visualized by normalized expression (NE) and 

as reversed Ct-values.  

 

2.6.2 Normalization of expression values 

The analysis results from real-time RT-PCR were normalized against the reference gene EL1A. 

This is to correct any differences there might be in the amount of tissue at sampling. The 

normalized expression values (NE) were calculated by using the formula (2): 

 

(2)  𝑁𝐸+,''	.,&&/* =	
(0!"#)$%	!"#"!'()"	*"("

(0%'!*"%)$%	%'!*"(	*"("
  (Simon, 2003) 

 

Further, the normalized expression values were transformed into NE-fold, and to better 

illustrate the amount of pathogen at each sampling, the data was Log2 transformed (Andersen, 
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Hodneland, & Nylund, 2010). This was done by dividing the NE-values on the lowest NE-

value, as the formula (3): 

 

(3)  𝑁𝐸1('2 =	
30

30+,(
    

 

2.6.3 Reversed Ct-values 

Reversed Ct-values is a better way to visualize the Ct-values from the analysis. In this method 

high density is visualized by high values (low Ct-values), and low values (high Ct-values) 

indicate low density. Reversed Ct-values are calculated by using the formula (4): 

 

(4) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 40 − 𝐶𝑡	𝑣𝑎𝑙𝑢𝑒 

 

2.7 Prevalence 

Prevalence is the amount of a population, given in precent, that is infected by a particular 

pathogen. It will indicate the occurrence of the microparasite in the studied population. When 

analyzing 30 fish in a studied population, the prevalence distinguished will be 10 % of the 

population with 95 % confidence interval.  The prevalence is calculated by the formula (5): 

 

(5) 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 = 	3/45*6	(1	)(&,.,7*	&84)'*&
9(.8'	:/45*6	(1	&84)'*&

	𝑥	100 

 

2.8 Diversity index  

Diversity index is used as a method to describe how many different microparasites is present in 

one individually fish and in one population. The index is expressed with values from 1-10. Each 

sampling was analyzed for different number of assays, and therefore the number of pathogens 

analyzed for will vary within the groups. The diversity index is calculated by the formula (6): 

 

(6) 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦	𝑖𝑛𝑑𝑒 = 	 3/45*6	(1	)8.;(<*:	)6*&*:.
3/45*6	(1	)8.;(<*:	8:8'=>*2	1(6

	𝑥	10 

 

2.9 Statistics 

When studying the changes in density of the pathogens in the different groups, NE-fold values 

from positive individuals were used to perform statistical analysis. The nonparametric Kruskal-

Wallis test were used as the statistical test in this study since the NE-fold values are not normally 
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disturbed, followed by Dunn’s multiple comparisons test to compare the mean rank of each 

group with the mean rank of every other group.  

 

The confidence level for the p-value which indicates significant result in the different statistical 

analysis were set to P < 0.05. The p-values are given in the results as * = P ≤ 0.05, ** = P ≤ 

0.01, *** = P ≤ 0.001, and **** = P ≤ 0.0001. The adjusted P-values are given in the appendix. 

To perform all the statistical analysis and to create the graphs and figures the program GraphPad 

Prism 9 for macOS, version 9.1.0 was used. 
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3 Results 
 

3.1 Challenge 

3.1.1 Abiotic factors 

All the environmental factors were held relatively constant throughout the challenge. The water 

temperature was set to 16 °C (figure 3.1) and the salinity was set to 34 ‰ (figure 3.2) after an 

acclimatization period of three days. The fish were held at a 12:12 light regime and the water 

flow at 400 liters/hour, which was regulated if needed (by the staff at ILAB) throughout the 

challenge based on increased biomass in the tanks.  
 

 
Figure 3.1 Temperature registered daily by the staff at ILAB during the period of challenge (29.09.2020-
17.11.2020).  
 

 
Figure 3.2 Salinity registered daily by the staff at ILAB during the period of challenge (29.09.2020-17.11.2020). 
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3.1.2 Biotic factors 

There was no registration of fish dying during the challenge. The average weight and length 

increased slightly during the challenge (table 3.1, figure 3.3).  

 

At the 1st sampling (17 dpi) few external changes were observed. There was some fish with 

scale loss (in the anterior part of the fish), one fish with ulcers at the belly, and one fish with 

some blood on the snout/mouth area. There was no observation of external changes at the 2nd 

sampling (25 dpi). At the third sampling (27 dpi) there was observation of some ulcers at the 

belly and the snout/mouth area. There were more external changes at the fourth sampling (32 

dpi). In tank 1, there was six fish with ulcers of different size at the belly, four fish with ulcers 

on the mouth, one fish had deformity of the operculum, and one fish with an infection on the 

lower jaw. In tank 2 there was two fish with ulcers on the snout/mouth area, and one fish with 

four ulcers at the belly. In tank 3 there was five fish with ulcers of different size at the belly, 

one fish had bleeding in the eye area, and one fish had eye cataract on the left eye. In tank 4, 

there was seven fish with different ulcers of different sizes. In tank 5 there was five fish with 

ulcers of different size on the belly and three fish had eye cataract (one at the left eye, and two 

at the right eye). In tank 7 there was one fish with ulcers at the belly. In tank 8 there was six 

fish with ulcers of different size on the belly and one fish had ulcers at the snout/mouth area.  

 
Table 3.1 Average weight and length for each tank at all four sampling (19, 25, 27 and 32 dpi). N = 5 fish at 1st 
sampling, N = 2 fish at 2nd sampling, N = 10 fish at 3rd sampling, N = 22 fish from tank 1, 5 and 7, N = 21 fish 
from tank 6 and 8, N = 20 fish from tank 3 and 4, N = 19 fish from tank 2 at 4th sampling.  
 1st sampling (19 dpi) 2nd sampling (25 dpi) 3rd sampling (27 dpi) 4th sampling (32 dpi) 

Weight Length Weight Length Weight Length Weight Length 

Tank 1 133,8 21,6 111,2 20,5 131,0 22,2 148,2 23,0 

Tank 2 152,0 22,9 124,9 21,7 164,4 23,6 163,8 23,6 

Tank 3 121,9 21,6 155,5 23,0 146,8 23,1 157,4 23,4 

Tank 4 126,8 21,7 173,2 25,8 128,3 22,1 151,1 23,1 

Tank 5 152,3 23,3 168,9 24,4 161,8 23,9 163,3 23,8 

Tank 6 162,1 23,0 149,8 22,8 147,9 22,8 167,4 23,5 

Tank 7 117,1 21,3 157,7 23,9 149,0 22,6 170,7 24,0 

Tank 8 143,8 22,6 171,0 24,1 163,8 23,7 165,2 23,6 
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Figure 3.3 Average weight for each tank at all four sampling (19, 25, 27 and 32 dpi). N = 5 fish at 19 dpi, N = 2 
fish at 25 dpi, N = 10 fish at 27 dpi, N = 22 fish from tank 1, 5 and 7, N = 21 fish from tank 6 and 8, N = 20 fish 
from tank 3 and 4, N = 19 fish from tank 2 at 32 dpi.  
 

3.1.3 Gill score 

Lesions at the gills were observed as white patches on the gill surface. There were no severe 

gill lesions during the samplings (figure 3.4). At 19 dpi the lowest mean gill score was 0.0 (tank 

5 and 8) and the highest mean gill score was 0.2 (tank 4). Six days later at 25 dpi, the lowest 

mean gill score was 0.0 (tank 5 and 8), and the highest mean gill score was 0.1 (tank 4). At 27 

dpi the lowest mean gill score was 0.0 (tank 5 and 8), and the highest mean gill score was 0.1 

(tank 1). The sampling at 32 dpi, the lowest mean gill score was 0.1 (tank 1), and the highest 

mean gill score was 0.2 (tank 4).  
 

 
Figure 3.4 Average gill score for each tank during the challenge at 19, 25, 27, 32 dpi. N = 5 fish at 19 dpi, N = 2 
fish at 25 dpi, N = 10 fish at 27 dpi, N = 22 fish from tank 1, 5 and 7, N = 21 fish from tank 6 and 8, N = 20 fish 
from tank 3 and 4, N = 19 fish from tank 2 at 32 dpi. 
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The number of gill surfaces scored from each fish at all samplings were 16. At 27 dpi the total 

number of gill surfaces was 272 (N = 17) for each tank. The highest number of gill surfaces 

with registered gill score is 20 (tank 4), and the lowest number of gill surfaces with registered 

gill score is 0 (tank 7 and 8) (figure 3.5). Gill score higher than score 1 was registered only in 

tank 6 (NM-H20) and tank 4 (ST19/15Pp) (only score 2).  

 

 
Figure 3.5 Number of gill surfaces with registered gill score for each of the groups at 27 dpi. N = 17 for each 
group (272 gill surfaces). H20/16Pp = Tank 2 (Clone H20/16Pp grown in normal media), V.spl.H20 = Tank 1 
(Clone H20/16Pp grown in pure culture of V. splendidus), NM-H20 = Tank 6 (Normal media containing 
microbiota obtained from the gills of farmed salmon during first isolation H20/16Pp in 2016), ST19/15Pp = Tank 
4 (Clone ST19/15Pp grown in normal media), V.spl. ST19 = Tank 3 (Clone ST19/15Pp grown in pure culture of 
V. splendidus), NM-ST19 = Tank 7 (Normal media containing microbiota obtained from the gills of farmed salmon 
during first isolation ST19/15Pp in 2015), V.spl. = Tank 5 (Cloned culture of V. splendidus), MYA = Tank 8 
(Control; exposed to bacteria- and amoeba-free Malt Yeats media). 
 

At 32 dpi the total number of scored gill surfaces varied for each tank. N = 22 fish (352 gill 

surfaces) from tank 1, 5 and 7, N = 21 fish (336 gill surfaces) from tank 6 and 8, N = 20 fish 

(320 gill surfaces) from tank 3 and 4, N = 19 fish (380 gill surfaces) from tank 2. The highest 

number of gill surfaces with registered gill score was 42 (tank 4), and the lowest number of gill 

surfaces with registered gill score was 15 (tank 1) (figure 3.6). Illustrated in figure 3.6, gill score 

higher than score 1 was registered in all tanks (only score 2).  
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Figure 3.6 Number of gill surfaces with registered gill score for each of the groups at 32 dpi. N = 22 fish (352 gill 
surfaces) from tank 1, 5 and 7, N = 21 fish (336 gill surfaces) from tank 6 and 8, N = 20 fish (320 gill surfaces) 
from tank 3 and 4, N = 19 fish (380 gill surfaces) from tank 2. H20/16Pp = Tank 2 (Clone H20/16Pp grown in 
normal media), V.spl.H20 = Tank 1 (Clone H20/16Pp grown in pure culture of V. splendidus), NM-H20 = Tank 6 
(Normal media containing microbiota obtained from the gills of farmed salmon during first isolation H20/16Pp in 
2016), ST19/15Pp = Tank 4 (Clone ST19/15Pp grown in normal media), V.spl. ST19 = Tank 3 (Clone ST19/15Pp 
grown in pure culture of V. splendidus), NM-ST19 = Tank 7 (Normal media containing microbiota obtained from 
the gills of farmed salmon during first isolation ST19/15Pp in 2015), V.spl. = Tank 5 (Cloned culture of V. 
splendidus), MYA = Tank 8 (Control; exposed to bacteria- and amoeba-free Malt Yeats media). 

 

3.1.4 Real time RT-PCR 

During the challenge experiment, 303 samples of gill tissue was analyzed for P. perurans, 

Perkinsela-like symbiont and Candidatus Syngnamydia salmonis. Most of the samples 

analyzed for P. perurans was negative (table 3.2). At 19 dpi the prevalence of P. perurans was 

100 % in tank 4 (Clone ST19/15Pp grown in normal media), 66.7 % in tank 6 (Normal media 

from H20/16Pp), 20 % in tank 1 and 0 % (tank 2, 3 5, 7 and 8). At 25 dpi the prevalence of P. 

perurans was 50% in tank 4 and 0 % in tank 1, 2, 3, 5, 6, 7 and 8. The prevalence of P. perurans 

at 27 dpi was 70 % in tank 4 and 0 % in tank 1, 2, 3, 5, 6, 7, and 8. At 32 dpi the prevalence of 

P. perurans was 0 % for all of the tanks. The rest of the Ct- values and prevalence for the assays 

analyzed for is given in the appendix.  
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Table 3.2 Average and range of Ct-values and prevalence in percent of P. perurans (Pperu assay) at each sampling 
(19, 25, 27 and 32 dpi). At 19 dpi N = 10 individuals per tank, 25 dpi N = 2 individuals per tank, 27 dpi N = 10 
individuals per tank and at 32 dpi N = N = 22 fish from tank 1, 5 and 7, N = 21 fish from tank 6 and 8, N = 20 fish 
from tank 3 and 4, N = 19 fish from tank 2 

 19 dpi 25 dpi 27 dpi 32 dpi 
Ct-values Prevalence Ct-values Prevalence Ct-values Prevalence Ct-values Prevalence 

Average Range % Average Range % Average Range % Average Range % 
V.spl.H20 35.9 35.9 – 

35.9 
10 Neg Neg 0 Neg Neg 0 Neg Neg 0 

H20/16Pp Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg neg 0 
V.spl. 
ST19 

Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg Neg 0 

ST19/15Pp 27.7 19.5 – 
37.7. 

100  30.4 30.4 – 
30.4 

50 31.5 28.4 – 
34.6  

70 Neg Neg 0 

V.spl. Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg Neg 0 
NM-H20 34.9 33.6 – 

36.2 
40 Neg Neg 0 Neg Neg 0 Neg Neg 0 

NM-ST19 Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg Neg 0 
MYA Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg Neg 0 

 

 

3.2 Freshwater treatment against AGD 

At the first sampling date, the average weight and length of the fish (Salmo salar) was 2448 ± 

492 grams and 60 ± 3 cm respectively. There were four mobile lice present at four fish at the 

sampling prior to the treatment. Eight of the fish had pale gills (figure 3.7 D), two fish had 

cataract (figure 3.7 A), one fish had eye bleeding (figure 3.7 B), and one fish had ulcer at the 

left side (figure 3.7 C). The rest of the fish sampled before treatment had little visible pathology. 

After the freshwater treatment and sampling of the treated group, the average weight and length 

of the treated fish was 2621 ± 677 grams and 59 ± 4 cm respectively. Most of the pathology 

observed within the treated group was eye bleeding. Eye bleeding was observed in eight fish, 

three fish had pale gills, one fish had cataract, one fish had erosion of the second gill arch and 

one fish was missing the dorsal fin. The average weight and length of the untreated fish was 

2684 ± 641 grams and 60 ± 4 cm respectively. The pathology for the untreated group was mostly 

cataract and eye bleeding, where six fish had cataract and seven had eye bleeding. Three fish 

had pale gills.  
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Figure 3.7 Pathology observed at sampling before the freshwater treatment at locality LB. A: cataract, B: eye 
bleeding, C: ulcer close to the pelvic fin, D: pale gills. 
 

The average sea temperature during the ten weeks prior to treatment was 15.9 °C, and the 

average number of mobile lice per fish was 1.8. The temperature was 14.9 °C at the day of 

treatment, and the number of mobile lice per fish was 0.07 (figure 3.8). During the sampling 

post treatment, there was no presence of mobile lice.  

 

 
Figure 3.8 Temperature (purple) and number of mobile lice (blue) from week 1 in 2020 until week 41 when all 
the fish at locality LB were sent to slaughter and processing. The first sampling and treatment were performed 
during week 39 (arrow), and the sampling post treatment were performed in week 40. Data obtained from 
barentswatch.no. 

A B 

C D 
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Prior to the treatment, the mortality each day for the last fourteen days was 100-300 fish. 1500 

fish died during the treatment, which accounts for 1.05 % of the biomass in the treated cage. As 

for the fish that died during treatment, no significant gross pathology was observed. The 

mortality rate for the treated cage was reduced after the treatment to 10-60 fish each day until 

week 41. For the untreated cage the mortality rate was approximately 150-200 fish each day 

during the same period of time.  

 

3.2.1 Gill score 

During the sampling, scoring of gills was conducted. Lesions on the gills was observed as white 

patches with varying severity. Example of lesions/patches on the gills is illustrated in figure 

3.9. Some of the individuals had more severe lesions on the gills, and others had no or little 

lesions on the gills. Within the sampling group “before treatment”, “treated” and “untreated”, 

there is small changes of the gill score (figure 3.10).  

 

 
Figure 3.9 Infected gills with clear lesions/patches. The circles indicate area with lesions/patches at the gills. A: 
gills form fish sampled before treatment. B: gills form fish sampled after treatment form the treated group.  
 

The four gill arches at the left side were scored according to table 2.2, front and back of each 

gill arch. This gives 8 gill surfaces per fish. Gill lesions was observed within all three groups 

when sampling. The average gill score before treatment, for treated group and untreated group 

was 1.1 ± 0.8, 1.0 ± 0.9 and 1.0 ± 0.7 respectively (figure 3.10). The gill arch with the highest 

average gill score before treatment was the front side of the third gill arch, this was also the 

case for the treated group. As for the untreated group, the gill arch with the highest average gill 

score was the front side of the second gill arch.  

 

A B 
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Figure 3.10 Average gill score of each side of the gill arches with standard deviation for each sampling. N = 30 
fish for each group which implies 30 gill surfaces for each column. Lf = left side of the fish, front side of the gill 
arch, lb = left side of the fish, back side of the gill arch, number = number of gill arch (1-4). 
 

The highest average gill score for one individual fish prior to the freshwater treatment was 2.9, 

for the treated group the highest average score was 3.6, and for the untreated group the highest 

average score was 2.3 (figure 3.10). The average gill scores within the different groups are 

slightly lower for the treated group than before treatment, with values 1.01 and 1.08 

respectively, which is presented in figure 3.11. Also, the average gill scores for the untreated 

group are slightly lower than before treatment and treated group.  
 

 
Figure 3.11 Average gill score within each group. Each point represents one individual fish. The thicker line in 
the middle for each group indicates the average of the gill score, and the thinner and smaller line across indicates 
the standard deviation. 
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The maximum number of free, or non-affected, gill surfaces for each individual is 8, as only 

the left side of the gills were scored. The amount of free gill surfaces is slightly higher for the 

treated group than before treatment (figure 3.12). Before treatment, only three individuals had 

8 free gill surfaces compared to five individuals within the treated group. The untreated group 

had only two individuals with 8 free gill surfaces. The number of fish with no free gill surfaces 

before treatment was nine individuals compared to seven individuals for both treated and 

untreated group. Also, the treated group had more individuals with 4 or more free gill surfaces 

compared to the group scored before treatment and the untreated group.  

 

 
Figure 3.12 Number of free gill surfaces for each sampling. Each point represents one individual fish. The thicker 
line in the middle for each group indicates the average amount of free gill surfaces, and the thinner and smaller 
line across indicates the standard deviation.  
 

3.2.2 Real time RT-PCR and mapping of microparasites  

Of all the 118 samples from the gills that was analyzed, there was no prevalence of Salmonid 

alphavirus (SAV), Infectious salmon anemia virus (ISAV) and Infectious pancreatic necrosis 

virus (IPNV) (figure 3.13). There is a low prevalence of Parvicapsula pseudobranchicola 

(Parvi), Tenacibaculum spp. (TB-tuf) and Candidatus Piscichlamydia salmonis (Ca. P. s.), and 

the Ct-values are relatively high (appendix). The prevalence of Piscine orthoreovirus 1 (PRV1), 

Piscine myocarditis virus (PMCV), Salmon gill poxvirus (SGPV), Paranucleospora theridion 

(Nuc) and Candidatus Branchiomonas cysticola (Ca. B. c.) are 100 % within all the sampling 

groups. For some of the pathogens, the prevalence was reduced for the treated group and/or the 

group that died during treatment, such as Paramoeba perurans (Pperu), Ichthyobodo spp. 

(Costia) and Candidatus Syngnamydia salmonis (Ca. S. s.), as illustrated in figure 3.13.  
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Table 3.3 Prevalence in percent of the different pathogens at the gills that were analyzed for within the four groups. 
SAV = Salmonid alphavirus, ISAV = Infectious salmon anemia virus, PRV1 = Piscine orthoreovirus 1, PMCV = 
Piscine myocarditis virus, SGPV = Salmon gill poxvirus, IPNV = Infectious pancreatic necrosis virus, Nuc = 
Paranucleospora theridion, Pperu = Paramoeba perurans, Costia = Ichthyobodo spp., Parvi = Parvicapsula 
pseudobranchicola, Ca. B. c. = Candidatus Branchiomonas cysticola, Ca. S. s. = Candidatus Syngnamydia 
salmonis, TB-tuf = Tenacibaculum spp., Ca. P. s. = Candidatus Piscichlamydia salmonis. 
 Before treatment During treatment Treated Untreated 

Number of 
positive 

individuals 

Prevalence 
(%) 

Number of 
positive 

individuals 

Prevalence 
(%) 

Number of 
positive 

individuals 

Prevalence 
(%) 

Number of 
positive 

individuals 

Prevalence 
(%) 

SAV 0 of 30 0.0 0 of 28 0.0 0 of 30 0.0 0 of 3 0.0 
ISAV 0 of 30 0.0 0 of 28 0.0 0 of 30 0.0 0 of 30 0.0 
PRV1 30 of 30 100.0 28 of 28 100.0 30 of 30 100.0 30 of 30 100.0 
PMCV 30 of 30 100.0 28 of 28 100.0 30 of 30 100.0 30 of 30 100.0 
SGPV 30 of 30 100.0 28 of 28 100.0 28 of 30 93.3 30 of 30 100.0 
IPNV 0 of 30 0.0 0 of 28 0.0 0 of 30 0.0 0 of 30 0.0 
Nuc 30 of 30 100.0 28 of 28 100.0 30 of 30 100.0 30 of 30 100.0 
Pperu 30 of 30 100.0 21 of 28 75.0 10 of 30 33.3 30 of 30 100.0 
Costia 29 of 30 96.7 17 of 28 60.7 6 of 30 20.0 30 of 30 100.0 
Parvi 0 of 30 0.0 5 of 28 17.9 2 of 30 6.7 2 of 30 6.7 
Ca. B. c. 30 of 30 100.0 28 of 28 100.0 30 of 30 100.0 30 of 30 100.0 
Ca. S. s. 30 of 30 100.0 27 of 28 96.4 11 of 30 36.6 30 of 30 100.0 
TB-tuf 4 of 30 13.3 7 of 28 25.0 6 of 30 20.0 14 of 30 46.7 
Ca. P. s. 3 of 30 10.0 1 of 28 3.6 2 of 30 6.7 3 of 30 10.0 

 

 
Figure 3.13 Prevalence of pathogens at the gills that changed during the sampling. Pperu: 30 of 30 positive 
individuals before treatment, 21 of 28 positive individuals died during treatment, 10 of 30 positive individuals 
treated, 30 of 30 positive individuals untreated. Costia: 29 of 30 positive individuals before treatment, 17 of 28 
positive individuals died during treatment, 6 of 30 positive individuals treated, 30 of 30 positive individuals 
untreated. Parvi: 0 of 30 positive individuals before treatment, 5 of 28 positive individuals died during treatment, 
2 of 30 positive individuals treated, 2 of 30 positive individuals untreated. Ca. S. s.: 30 of 30 positive individuals 
before treatment, 27 of 28 positive individuals died during treatment, 11 of 30 positive individuals treated, 29 of 
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30 positive individuals untreated. TB-tuf: 4 of 30 positive individuals before treatment, 7 of 28 positive individuals 
died during treatment, 6 of 30 positive individuals treated, 14 of 30 positive individuals untreated. Ca. P. s.: 3 of 
30 positive individuals before treatment, 1 of 28 positive individuals died during treatment, 2 of 30 positive 
individuals treated, 3 of 30 positive individuals untreated. Pperu = Paramoeba perurans, Costia = Ichthyobodo 
spp., Parvi = Parvicapsula pseudobranchicola, Ca. S. s. = Candidatus Syngnamydia salmonis, TB-tuf = 
Tenacibaculum spp., Ca. P. s. = Candidatus Piscichlamydia salmonis.  
 

The prevalence of P. perurans at the gills prior to the treatment was 100 %, which were reduced 

to 33.3 % for the treated group. For the group that died during treatment the prevalence was 

75.0 %, and for the untreated group it was 100 %. The density of P. perurans for the analyzed 

gill tissue was significant higher before treatment and for the untreated group compared to the 

treated group and the group that died during treatment (P ≤ 0.0001) (figure 3.14). There was no 

significant difference for “before treatment” vs. “untreated” (P > 0.9999) and “dead during 

treatment” vs. “treated” (P > 0.9999).  

 

 
Figure 3.14 Density of P. perurans at the gills for all of the groups. Each point represent one individual fish. The 

data is presented as reversed Ct-values (40 – Ct-value) and Log NE-fold. The black line within each group 

represent the average Ct- value. N = 30 positive individuals before treatment. N = 21 postitive individuals died 

during treatement. N = 8 positive individuals treated. N = 30 positive individuals untreated.  **** P ≤ 0.0001.  

 

The prevalence of Ichthyobodo spp. was also reduced from 100% before treatment to 20.0 % 

for the treated group, but for the untreated group there was no reduction as the prevalence was 

100 %. The prevalence for the group that died during treatment was 60.7 %. Density of 

Ichthyobodo spp. for the analyzed gill tissue was significant higher before treatment compared 

to the group that died during treatment (P = 0.0023) and for the untreated group compared to 

the group the died during treatment (P = 0.0013) (figure 3.15). There was no significant 

difference for “before treatment” vs. “treated” (P = 0.0763), “before treatment” vs. “untreated” 
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(P > 0.9999), “dead during treatment” vs. “treated” (P > 0.9999), and “treated” vs. “untreated” 

(P = 0.0579).   

 

  
Figure 3.15 Density of Ichthyobodo spp. at the gills for all of the groups. Each point represent one individual fish. 

The data is presented as reversed Ct-values (40 – Ct-value) and Log NE-fold. The black line within each group 

represent the average Ct- value. N = 29 positive individuals before treatment. N = 17 postitive individuals died 

during treatement. N = 5 positive individuals treated. N = 30 positive individuals untreated. ** P ≤ 0.01. 

 

For Candidatus Syngnamydia salmonis, the prevalence before treatment was 100 % compared 

to 36.6 % after treatment. The prevalence for the untreated group was 100 %, while it was 96.4 

% for the group that died during treatment. The density of Candidatus Syngnamydia salmonis 

for the analyzed gill tissue was significant higher before treatment compared to the group that 

died during treatment (P ≤ 0.0001), before treatment compared to the treated group (P ≤ 0.0001), 

for the untreated group compared to the group that died during treatment (P ≤ 0.0001), and for 

the untreated group compared to the treated group (P ≤ 0.0001) (figure 3.16). There was no 

significant difference for “before treatment” vs. “untreated” (P > 0.9999), “dead during 

treatment” vs. “treated” (P > 0.9999).  
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Figure 3.16 Density of Candidatus Syngnamydia salmonis at the gills for all of the groups. Each point represent 

one individual fish. The data is presented as reversed Ct-values (40 – Ct-value) and Log NE-fold. The black line 

within each group represent the average Ct- value. N = 30 positive individuals before treatment. N = 27 postitive 

individuals died during treatement. N = 10 positive individuals treated. N = 29 positive individuals untreated. **** 

P ≤ 0.0001.  

 

The prevalence of Candidatus Branchiomonas cysticola in the analyzed gill tissue was 100 % 

within all groups. The density in the gills was significant higher for the group that died during 

treatment compared to before treatment (P = 0.0047), the treated group (P = 0.0003) and the 

untreated group (P < 0.0001) (figure 3.17). There were no significant differences between the 

rest of the groups.  

 

 
Figure 3.17 Density of Candidatus Branchiomonas cysticola at the gills for all of the groups. Each point represent 

one individual fish. The data is presented as reversed Ct-values (40 – Ct-value) and Log NE-fold. The black line 

within each group represent the average Ct- value. N = 30 postitive individuals for every group (except “dead 

during treatment” N = 28). ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001.  
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The prevalence of piscine myocarditis virus at the gills was 100 % for all the groups. The 

density of the virus in the gills was significant higher for the group that died during treatment 

compared to the group sampled before treatment (P = 0.0001) and for the untreated group 

compared to the group that died during treatment (P = 0.0025) (figure 3.18). There were no 

significant differences between “before treatment” vs. “treated” (P = 0.3284), “before 

treatment” vs. “untreated” (P > 0.9999), “dead during treatment” vs. “treated” (P = 0.1042) and 

for the “treated” vs. “untreated” (P > 0.9999). In the kidney the prevalence was 100 % for all 

groups (except before treatment, 93.3 %). The density of the virus in the kidney was significant 

higher for the group that died during treatment compared to the group sampled before treatment 

(P = 0.0001), For the group that died during treatment compared to the untreated group (P < 

0.0001) and for the treated group compared to the untreated group (P = 0.0074) (figure 3.19). 

There were no significant differences between “before treatment” vs. “treated” (P = 0.3619), 

“before treatment” vs. “untreated” (P > 0.9999) and for “dead during treatment” vs. “treated” 

(P = 0.0927). 

 

  
Figure 3.18 Density of Piscine myocarditis virus at the gills for all of the groups. Each point represent one 

individual fish. The data is presented as reversed Ct-values (40 – Ct-value) and Log NE-fold. The black line within 

each group represent the average Ct- value. N = 30 positive individuals for every group (except “dead during 

treatment” N = 28). ** P ≤ 0.01 and *** P ≤ 0.001. 
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Figure 3.19 Density of Piscine myocarditis virus in the kidney for all of the groups. Each point represent one 

individual fish. The data is presented as reversed Ct-values (40 – Ct-value) and Log NE-fold. The black line within 

each group represent the average Ct- value.  N = 28 positive individuals before treatment. N = 28 postitive 

individuals died during treatement. N = 30 positive individuals treated. N = 30 positive individuals untreated. ** 

P ≤ 0.01 and *** P ≤ 0.001. 

 

The prevalence of salmon gill poxvirus at the gills was 100 % within all the groups (except for 

the treated group; 93.3 %) (figure 3.20). There were no significant differences in density 

between the sampling groups (p-values are given in the appendix). The prevalence of the 

pathogens Piscine orthoreovirus 1 (PRV1) and Paranucleospora theridion (Nuc) at the gills 

was 100 % for all of the groups. The density of Piscine orthoreovirus 1 is significant higher for 

the group that died during treatment compared to the treated group (P = 0.0011) and the 

untreated group (P = 0.0078) (figure 3.21). The density for P. theridion is significant higher for 

the group that died during treatment compared to before treatment (P < 0.0001) and for the 

group that died during treatment compared to the treated group (P < 0.0001) and the untreated 

group (P < 0.0001) (figure 3.22).   
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Figure 3.20 Density of Salmon gill poxvirus at the gills for all of the groups. Each point represent one individual 

fish. The data is presented as reversed Ct-values (40 – Ct-value) and Log NE-fold. The black line within each 

group represent the average Ct- value. N = 30 positive individuals before treatment. N = 28 postitive individuals 

died during treatement. N = 28 positive individuals treated. N = 30 positive individuals untreated. 

 

 
Figure 3.21 Density of Paranucleospora theridion at the gills for all of the groups. Each point represent one 

individual fish. The data is presented as reversed Ct-values (40 – Ct-value) and Log NE-fold. The black line within 

each group represent the average Ct- value. N = 30 postitive individuals for every group (except “dead during 

treatment” N = 28). **** P ≤ 0.0001.  
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Figure 3.22 Density of Piscine orthoreovirus 1 at the gills for all of the groups. Each point represent one individual 

fish. The data is presented as reversed Ct-values (40 – Ct-value) and Log NE-fold. The black line within each 

group represent the average Ct- value. N = 30 positive individuals for every group (except “dead during treatment” 

N = 28). ** P ≤ 0.01. 
 

The prevalence of the pathogens Piscine orthoreovirus 1 (PRV1), Piscine myocarditis virus 

(PMCV) and Paranucleospora theridion (Nuc) in the analyzed kidney tissue within all of the 

four groups was close to 100 %. In addition, there were a low prevalence of the pathogens 

Infectious pancreatic necrosis virus (IPNV) and Tetracapsuloides bryosalmonae (PKX), with 

high Ct-values (appendix).  

 

The diversity index for the gills sampled prior to treatment, the group the died during treatment, 

the treated group and the untreated group was 5.9, 5.9, 6.4 and 6.4 respectively. The diversity 

index for the kidney sampled prior to the treatment, the group the died during treatment, the 

treated group and the untreated group was 3.8, 3.8, 5,7, and 4.3 respectively.  

 

The P-values for the remaining analyzed samples is given in the appendix.  

 

3.2.3 Histology 

The mean histological gill score for the different groups varied within some of the parameters 

for pathological changes, and for the other parameters the score was relatively similar. The 

pathological changes with highest score and biggest difference in score within the groups were 

parameter 1 (mucus cell hyperplasia), 5 (epithelial cell hyperplasia), 6 (thickening of distal 

primary lamellae) and 10 (inflammation) (figure 3.23). Most of the score given was 0, 1 and 2, 

but there were some pathological changes scored 3.  
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Figure 3.23 Mean histological gill score of the eleven pathological changes included in this study for before 

treatment, treated group and untreated group at locality LB. 1: Mucus cell hyperplasia. 2: Clubbing. 3: Lifting. 4: 

Epithelial cell hypertrophy. 5: Epithelial cell hyperplasia. 6: Thickening of distal primary lamellae. 7: Fresh 

aneurism. 8: Bleeding aneurism. 9: Old aneurism. 10: Inflammation. 11. Necrosis.  

 

Most of the gills were clearly affected, with pathological changes compatible with AGD lesions 

which include segmental hyperplasia of the epithelial cells and caverns in addition to 

hypertrophy of the epithelial cells and inflammation (figure 3.24). Some of the gills were little 

affected, with few pathological changes (figure 3.25). Most of the lamellae were affected with 

hyperplasia of mucus cells, and early stages of lifting were observed (figure 3.26). In some of 

the histological sections, amoeba was observed, both free beside the gills or in caverns (figure 

3.27 and 3.28). In addition, some of the sections had different types of aneurism, both fresh, 

bleeding and old aneurisms (figure 3.29). There was also observed different types of 

pathological changes compatible with epitheliocystis (figure 3.30).  
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Figure 3.24 Histological section of fish nr. 105 (untreated fish) with pathological changes compatible with AGD 
lesions; segmental hyperplasia of the epithelial cells and caverns, hypertrophy of epithelial cells and inflammation. 
Scale: rod = 20 µm.  
 

 

Figure 3.25 Histological section of fish nr. 65 (treated fish) with little pathological changes. Scale: rod = 200 µm. 
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Figure 3.26 Histological section of fish nr. 102 (untreated fish) with pathological changes such as hyperplasia of 
mucus cells (black arrow) and early stages of lifting (green arrow). Scale: rod = 20 µm. 
 

 
Figure 3.27 Histological section of fish nr. 65 (treated fish) with few pathological changes. Amoeba-like cell 
observed free beside the gills (black arrow). Scale: rod = 10 µm. 
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Figure 3.28 Histological section of fish nr. 20 (before treatment) with pathological changes compatible with AGD 
lesions; segmental hyperplasia of the epithelial cells and caverns, hypertrophy of epithelial cells and inflammation. 
Amoeba-like cells observed in the caverns (black circles). Scale: rod = 20 µm. 
 

 
Figure 3.29 Histological section of fish nr. 103 (untreated fish) with clear pathological changes, such as fresh 
(black arrow) and old aneurisms (green arrow), in addition to thickening of distal primary lamellae. Scale: rod = 
100 µm. 
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Figure 3.30 Histological section of fish nr. 102 (untreated fish) with hypertrophy of epithelial cells (black arrow) 
and epitheliocystis (red circle). Scale: rod = 20 µm. 
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4 Discussion 
The present work represents the first study of the effect of freshwater treatment against AGD 

on the gill health of Atlantic salmon. Treatment and handling cause stressful situations which 

is a potential liability for the fish. More knowledge of how these stressful situations within the 

production affects the gill health of salmon and the associated microbiota is needed. Mapping 

the gill health and presence of pathogens before treatment revealed a considerable high load of 

diverse pathogens in the gills. The load of these pathogens changed after the treatment, and 

therefore provided valuable information of relevance for how stress (freshwater treatment) 

within production affects the gill health of the fish.  

 

This thesis also represents a study of the possible effect microbiota may have on the virulence 

of clonal cultures of P. perurans. Currently, there are no published challenge experiments 

studying P. perurans and its associated microbiota. The relationship between microbiota and 

the phenotypic characteristics of Paramoeba is complex and not fully understood. Nonetheless 

there is a perception that the combination of P. perurans and specific bacteria is important for 

developing pathology associated with AGD. Nowak and Archibald (2018) have previously 

indicated that the bacteria are more than just a source of nutrition for the amoeba. Increased 

knowledge of how the microbiota affects P. perurans, and how infections of the amoeba are 

associated with microbial coinfections and dysbiosis on the gills is necessary. This challenge 

experiment indicated that the microbiota on the gills is an important factor for development of 

AGD. Therefore, new strategies for combating the disease can be used, and the welfare in fish 

farming improved.  

 

Previous challenge experiments with P. perurans have been conducted by administrating 

primary isolates of the amoeba cultivated in a polyaxenic culture containing a diverse 

microbiota. More recent challenge studies have in contrary been performed using clones of P. 

perurans, still cultured within a media containing a high diversity of different bacteria (Bridle 

et al., 2015; Dahle, 2015; Røed, 2016; Wiik-Nielsen et al., 2016; Collins et al., 2017; Kindt, 

2017; Benedicenti, Pottinger, Collins, & Secombes, 2019a; Dahle et al., 2020a). Administrating 

clones of a certain strain of P. perurans provides the advantage of describing the pathological 

changes associated with a specific clone. According to Benedicenti et al. (2019b), microbiota 

is suggested to constitute a factor that affects the growth and virulence of P. perurans as the 

composition of microbiota in the cultured clones are significant different. Still, there is a lack 
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of knowledge of the microbiota and how it possible affects the virulence of the amoeba and 

severity of AGD.  

 

4.1 The importance of bacteria in the culture media of P. perurans clones for the 

development of AGD 
Characterization of microbiota present in the culture media of P. perurans clones has revealed 

significant differences with regards to bacterial composition. Vibrio splendidus variants 

dominated bacteria isolations in the culture media of the high-virulent clone H20/16Pp and the 

low-virulent clone ST19/15Pp. P. perurans cultured in a pure culture of V. splendidus proved 

as sufficient growth as when grown in media containing microbiota from gills of salmon 

suffering from AGD. By transferring P. perurans clones to pure bacteria culture before 

infecting the salmon in the challenge, individual comparison of the virulence of the clones 

H20/16Pp and ST19/15Pp could be tested.  

 

According to Zilberg, Gross, and Munday (2001); Morrison, Crosbie, and Nowak (2004); 

Collins et al. (2017) the correlation between challenge dose and the ability to develop gill 

lesions (AGD) is positive, where higher challenge doses provide higher gill score and more 

severe gill lesions. This implies the importance of adequate amount of amoeba in each tank. 

Thus, based on previous challenge experiments (Røed, 2016; Dahle et al., 2020a), the challenge 

dose was set to 1000 amoeba/L.  

 

Low numbers of lesions on the gills when scoring was observed, both during sampling at 27 

dpi and 32 dpi. However, the tank with the highest mean gill score and highest number of gill 

surfaces with registered gill score was sampled from tank 4 infected with clone ST19/15Pp 

grown in normal media. Based on the results from a challenge conducted in 2016, the low 

number of observed lesions on the gills was not expected for the two clones used in the current 

study. Previous, the same high- and low-virulent clones have revealed significant differences 

in gill score and density in the gill tissue (Kindt, 2017). There were no significant differences 

in gill score at 27 dpi of fish challenged with the high-virulent clone cultured in normal media 

(H20/16Pp), in pure culture of V. splendidus (V.spl.H20) and normal media containing 

microbiota from the gills of farmed salmon during the first isolation of H20/16Pp. The fish 

challenged with the low-virulent clone cultured on normal media (ST19/15Pp) showed clear 

difference in the gill score compared to fish challenged with the clone cultured on pure culture 
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of V. splendidus (V.spl.ST19). The lack lesions on the gills appear to be somewhat related to 

the virulence of the clones. However, even if the virulence of the different clones are stable at 

genomic levels, the virulence might not be stable at the gene expression level (Collins et al., 

2017). 

 

Røed (2016) and Dahle et al. (2020a) have carried out challenge experiments illustrating clear 

differences in the virulence for the different clones of P. perurans. Evidence indicates that the 

water temperature contributes to increased virulence of the clonal isolates of P. perurans, as 

well as increased ability for transmission, when the temperature rises from 12 to 16 °C (Kindt, 

2017). The temperature used in this challenge experiment was 16 °C, which should be an 

optimal temperature for the virulence test. The elevated water temperature can constitute 

increased risk of severe clinical signs of AGD (Munday et al., 2001), and increase the ability 

of adhesion of the amoeba at the gills in vitro (Benedicenti, Secombes, McCarthy, & Collins, 

2016). Therefore, it is believed the temperature is not associated with the low gill scores 

observed in this study.  

 

When the clones are passaged in vitro, loss of virulence in different pathogens is common, 

including the amoeba (Jellett & Scheibling, 1988; Ram, Khurana, Singh, & Khurana, 1992; 

Song, Santi, Evensen, & Vakharia, 2005; Veríssimo et al., 2013; Songe, Thoen, Evensen, & 

Skaar, 2014). Likewise, the possibility for the isolates in this study to lose their virulence during 

clonal culture and passages may be present. Crosbie et al. (2012) believed they were the first to 

successfully culture the amoeba with continued virulence after 125 days and fulfilled Koch’s 

postulate, and Bridle et al. (2015) proposed that the same isolate lost virulence after 3 years in 

clonal culture. The isolates used in this challenge experiment have been in clonal culture since 

2015 (low-virulent clone) and 2016 (high-virulent clone), and the number of passages they have 

been through was 96 (H20/16Pp) and 103 (ST19/15Pp). As the inoculums contained high 

numbers of live amoebae there are no indications that the number of passages in vitro have 

resulted in a reduced viability of the amoebae. This corresponds to the fact that amoeba 

cultivated on continuous culture for more than 2.5 years that have remained their virulence 

(Kindt, 2017) 

 

Even though the gills contained few lesions, the clones used in the challenge were still able to 

attach to the gills due to positive real time RT-PCR results. When the challenge was terminated, 

all salmon tested negative for the amoeba. Previous challenges using the same clones have 
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resulted in extreme density of the amoeba on the gill tissues and reduced mobility of the fish 

(Kindt, 2017). At 27 dpi, the real time RT-PCR results showed that all tanks, except tank 4, 

were negative for P. perurans. 13 of 17 individuals in tank 4 tested positive for P. perurans 

(Ct-value range: 18.4-31.9, average = 22.42). These results indicate that even though tanks 1-4 

were challenged with 1000 amoeba/L, the high-virulent clone was unable to maintain infection 

on the gills. Between the challenge experiment conducted in December 2016 until October 

2020, the H20/16Pp clone might have lost the ability to establish infections and inflict damage 

on the gills. The ST19/15Pp clone was able to infect the gills with the clone cultured in normal 

media, but for the clone cultured in pure culture of V. splendidus this ability was lost. Assuming 

the clones have not mutated to avirulent clones during culturing, the explanation for loss of 

virulence must be connected to the culture conditions and possible change in the microbiota in 

the culture media. This hypothesis is supported by the difference between the ST19/15Pp clone 

grown in the original media and grown in media containing V. splendidus only, seen in the 

present study. 

 

4.2 Freshwater treatment against AGD 

The locality was diagnosed with amoebic gill disease prior to treatment, and the real time RT-

PCR results indicated high diversity of pathogens on the gills. Theses pathogens seemed to be 

of importance for the gill health. Although there was slightly increased mortality during the 

treatment, the mortality for the treated cage dropped after treatment. The identification of 

numerous pathogens on the gills corresponds with possible reduced immune response of the 

host as a result of recently performed treatments (Powell et al., 2001; Rodger, 2014; Powell et 

al., 2015; Oldham et al., 2016; Hytterød et al., 2017b). Due to already elevated mortality prior 

to the treatment, the mortality associated with the freshwater treatment was most likely a result 

of reduced gill health rather than the treatment itself.  

 

This field experiment has shown that freshwater bathing is successful in reducing the number 

of amoebae on the gills of Atlantic salmon. The prevalence of P. perurans was reduced from 

100 % prior to treatment to 33.3 % 8 days after treatment. MNE-values, showed that the density 

on the gills, have been significantly reduced for the treated group and the group that died during 

treatment. This observation is consistent with previous studies Wiik, Andersen, Uglenes, and 

Egidius (1989); Fast, Hosoya, Johnson, and Afonso (2008). The remaining amoeba after 

treatment is probably a result of occupation of the lacunae structure formed in the gills and 
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could represent a risk for reinfection if they survive Sveen, Øverland, Karlsbakk, and Nylund 

(2012); Herrero et al. (2018). Another possible explanation for the amoeba still being present 

in the gills could be horizontal transmission from the untreated cage. The mechanism of 

transmission is not fully understood and should be further investigated.  

 

Previous studies have shown a correlation between pathology on the gills (measured by gill 

scoring and histopathology) and increased amount of P. perurans on the gill tissue and the 

surroundings (Kent et al., 1988; Adams & Nowak, 2001). The salmon in all groups had severe 

gill pathology, before treatment, treated and untreated (figure 3.11 and figure 3.23). The 

freshwater bathing showed no distinct differences in the gill score and histopathological score 

between the groups. Although freshwater treatment against P. perurans have shown a reducing 

effect on the gill score (Morrison et al., 2004; Dahle, 2015; Røed, 2016; Collins et al., 2017; 

Haugland et al., 2017), some gill arches in the present study still had a score of 2-3 after 

treatment. Wiik (2020) observed in a challenge experiment that it generally takes longer for the 

reduction of patches to be visible macroscopic. These findings are consistent with the high gill 

score registered after treatment in the current study.  

 

4.2.1 Prevalence and density of microparasites  

PCR screening prior to treatment is useful to detect early infections, and to assess efficacy of 

treatment (Marcos-López & Rodger, 2020). The salmon tested positive for more than 10 

pathogens, some of them associated with gill disease (GD), when analyzing the gill tissue. The 

load of some pathogens was reduced after the freshwater treatment, including P. perurans, 

Ichthyobodo spp, Cand. S. salmonis and Cand. P. salmonis. Other pathogens had relatively 

similar density, or elevated density within the groups, including PRV1, P. theridion, SPGV, 

PMCV and Cand. B. cysticola.  

 

Both density and prevalence of P. perurans were significantly reduced for the treated group, as 

expected due to previous studies (Parsons et al., 2001; Powell et al., 2015; Marcos-López & 

Rodger, 2020). The freshwater will inflict osmotic shock on the amoebae and reduce the mucus 

viscosity on the gills (Clark et al., 2003; Adams & Nowak, 2004b; Roberts & Powell, 2008). 

Hence, the amoeba can more easily be removed from the gills during freshwater bathing and 

result in an effective treatment.  
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The prevalence of Ichthyobodo spp. was also significantly reduced within the treated group and 

the group that died during treatment (figure 3.15). The real time RT-PCR assay “Costia” can 

detect both Ichthyobodo necator and Ichthyobodo salmonis. While I. necator are only present 

in freshwater, I. salmonis can be present in both seawater and freshwater (Isaksen et al., 2011; 

Isaksen et al., 2012). Hence it is though that I. salmonis is the pathogen present on the gills. It 

may seem like Ichthyobodo salmonis needs more time to readjust during a freshwater treatment. 

It is suggested that Ichthyobodo spp. disappears from dead hosts and will die after 30-60 

minutes while free-swimming (Isaksen, 2013). Also, the parasite is believed to survive on dead 

hosts for >30 hours or in sediments for several days (Isaksen, 2013). The result in this thesis 

indicates that the parasite most likely left the host that died during treatment. Studies of gill 

diseases have considered infections with Ichthyobodo spp. as secondary infection in relation to 

gill diseases (Draghi et al., 2004; Young et al., 2007; Nylund et al., 2010; Steinum et al., 2010; 

Isaksen et al., 2011; Nylund et al., 2011; Mitchell et al., 2013; Nylund et al., 2015; Blandford, 

Taylor-Brown, Schlacher, Nowak, & Polkinghorne, 2018). Hence, there is no clear indications 

that infections with Ichthyobodo spp. alone makes the fish less robust for treatment and 

facilitate mortality.  

 

The prevalence of Cand. S. salmonis was significantly reduced after treatment. The bacteria 

have been isolated from fish with P. perurans and shown to be able to grow inside this amoeba. 

Therefore Cand. S. salmonis is believed to be an endosymbiont or a parasite of P. perurans 

(Nylund et al., 2018a). Due to the associations between Cand. S. salmonis and P. perurans, the 

reduction of density of the bacteria was expected as the density of the amoeba was reduced. 

Cand. S. salmonis was also observed in salmon where the amoeba was absent, and vice versa. 

This is supported by findings of the bacteria not being an obligate symbiont for the amoeba 

(Nylund et al., 2018b).  

 

The pathogen PMCV was identified with 100 % prevalence in all groups, both in the gill- and 

kidney tissue. PMCV is the causative agent for cardiomyopathy syndrome (CMS) (Haugland 

et al., 2011; Garseth, Fritsvold, Svendsen, Bang Jensen, & Mikalsen, 2018). The virus causes 

inflammation in the atrium, spongious ventricle, compact ventricle and bulbus arteriosus of the 

heart, which could lead to heart rupture during stress (Nylund et al., 2011; Gunnarsson et al., 

2017b). It is believed this may have happened in this study, due to significant higher density 

and low average Ct-values of PMCV in the group that died during treatment. Both kidney- and 

gill tissue had low Ct-values, which correlates to previous studies showing that increased viral 



 58 

load over time may cause systemic infection (Kvellestad et al., 2005; Rodger, Murphy, 

Mitchell, & Henry, 2011; Mitchell et al., 2013). Hence, it is thought that PMCV is of 

importance for the salmon health in relation to the observed mortality during treatment.  

 

No distinct differences in density were registered for SPGV. The prevalence of SGPV was 

almost 100 % for all groups, and the highest density in gill tissue was registered for the group 

that died during treatment. This result is not relatable to a study indicating the level of virus is 

reduced in the tissue sampled from dead hosts (Gjessing et al., 2015). Gjessing, Thoen, Tengs, 

Skotheim, and Dale (2017) suggest the possibility for SGPV as a primary pathogen in gill 

disease exacerbating secondary pathogens and the consequences of those. Thus, SGPV is of 

importance for the results in this study, and the possibility for the virus to facilitate mortality 

during treatment needs to be taken into consideration. SGPV is strongly associated with gill 

diseases, and studies have shown that the virus combined with AGD could lead to high mortality 

(Gjessing et al., 2015; Thoen et al., 2020). This corresponds to the thought that the virus 

disturbs the epithelial barriers on the gills, possibly compromising the innate immunity towards 

other agents (Gjessing et al., 2017). Thus, it is believed that SGPV may have a role in the 

observed mortality at the study site. 

 

The prevalence of Cand. B. cysticola was 100 % in the gills of all groups, with the lowest Ct-

values within the group that died during treatment. Tolås (2012) have confirmed the presence 

of Cand. B. cysticola in kidney tissues, indicating that Cand. B. cysticola may occur systemic. 

In this study, the density of Cand. B. cysticola was higher in the gill tissue than in the kidney 

tissue, confirming the gills as the primary target organs. Presence of Cand. B. cysticola in 

kidneys could be a result of leakage from the gill tissues into the blood stream. Several studies 

indicate that Cand. B. cysticola is a primary pathogen for epitheliocystis (Ferguson, Poppe, & 

Speare, 1990; Garseth et al., 2018; Frisk et al., 2020), and associated with histological changes 

causing respiratory problem (Haugland et al., 2011; Timmerhaus et al., 2011). Epitheliocystis 

was observed at high levels in the histopathological sections, therefore it is believed that Cand. 

B. cysticola could have contributed to reduced gill health and mortality during the freshwater 

treatment.  

 

All the fish in this study tested positive for PRV1 shown to cause the viral disease heart- and 

skeletal muscle inflammation (HSMI) in Atlantic salmon. Handling of the fish during 

treatments can influence the outcome for the disease (Gjessing et al., 2015; Thoen et al., 2020). 
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PRV1 was present in both gill- and kidney tissue, and the density of PRV1 was higher in the 

kidney. This corresponds to the fact that the virus infects erythrocytes which could circulate 

from kidney to gills Gjessing et al. (2015). Significant higher density of PRV1 for the group 

that died during treatment reveals that the virus may play for the gill health during treatments. 

Although the accumulated mortality due to HSMI usually ranges from 0-20 % (Wessel et al., 

2017; Dhamotharan et al., 2020), the virus’s effect on the heart may weaken the fish prior to 

treatment. Therefore, PRV1 as a factor affecting the health of salmon negatively needs to be 

considered in relation to the mortality during treatment.  

 

The prevalence of P. theridion was 100 % in all groups, in both gill- and kidney tissue. 

According to previous findings by Nylund et al. (2010), the microsporidium has relative similar 

density in organs that are positive. This is compatible with the density of P. theridion in this 

study, as the density was relatively similar in the gills and kidney. How this microsporidium 

affects the gills alone is not well understood, but it is associated with other histopathological 

changes in the gills, such as hyperplasia, hypertropia and inflammation (Toenshoff et al., 2012; 

Mitchell et al., 2013). These changes were observed in the histopathological sections studied, 

indicating that the parasites involvement in the gill pathology.  

 

4.2.2 Histopathology and gill score in relation to density 

The histopathology study showed clear pathology on the gills, believed to be associated with 

the high load of pathogens present. Even though there was a slight reduction of the gill score 

after treatment among some of the parameters (figure 3.23), there was no significant 

histopathological changes between the observed groups. 

 

The histological sections showed pathological changes compatible with AGD and the real time 

RT-PCR identified significant amounts of P. perurans, but few amoebae were observed in the 

sections. Most of the amoeba observed in the sections were mostly found within the lacunae 

formed by AGD lesions, indicating that this formation can in fact protect the amoeba from the 

treatment. It is possible that the processing for histology may have washed away the amoeba 

(Nylund, pers. com.). The pathogen that could be observed in the sections were epitheliocystis, 

and a few amoebae.  

 

There was a higher level of old aneurisms present in the gills compared to fresh aneurism and 

bleeding aneurism. This indicates that damages in the gill tissue were present prior to the 
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treatment, which is expected as the fish were diagnosed with gill disease. The level of fresh and 

old aneurism was somehow higher for the treated fish than for the untreated fish, both prior and 

post treatment. It is not known whether this is a result of the treatment or a random result 

(sampling error).  
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5 Conclusion  
The challenge experiment showed that although the high- and low virulent clones of P. 

perurans grew well in pure culture of V. splendidus and in the media containing microbiota 

from gills of salmon suffering for AGD, the clones where not able to establish a lasting infection 

on the gills. The high virulent clone (H20/16Pp) have most likely lost the ability to infect salmon 

and inflict damages on the gills. The low-virulent clone (ST19/15Pp) grown in original media 

was still able to establish infection on the gills, but the clone grown in pure V. splendidus could 

not infect salmon and inflict damages on the gills. After this challenge, it is believed that the 

clone’s loss of ability to induce AGD in salmon is related to the change in microbiota in the 

culture.  

 

The field experiment showed no significant histopathological changes between the groups. 

Hence, this indicates that the freshwater treatment had little effect on the histopathological 

changes. The load of some pathogens was reduced after the freshwater treatment, including P. 

perurans, Ichthyobodo spp, Candidatus Syngnamydia salmonis and Candidatus 

Piscichlamydia salmonis. Other pathogens had relative similar density in all groups, including 

Piscine orthoreovirus 1, Paranucleospora theridion and Salmon gill poxvirus, and some 

pathogens (Piscine myocarditis virus and Candidatus Branchiomonas cisticola) had a higher 

density, especially in the fish that died during treatment. There is little knowledge on how the 

different pathogens affects the outcome of treatments alone. All the identified pathogens 

together will most likely reduce the gill health of the fish and affect the outcome of a treatment. 

It is believed that the sum of these pathogens, especially the viruses, and the status of gill health 

prior to the treatment is related to the mortality during treatment rather than the treatment itself. 

Due to the fact that there was no increased mortality after the freshwater treatment, the method 

did not have any negative effect on the gill health.  

 

5.1 Future perspective  

During the challenge experiment, the high-virulent and low-virulent clone cultured in pure 

culture of V. splendidus did not inflict infection and damage on the gills. Due to a large variation 

of bacteria species and significant differences in the composition of the cultures, further studies 

on how other bacteria species present in the culture may affect the virulence of the P. perurans 

clones needs to be investigated. If the microbiota on the gills is of importance for developing 
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AGD, this could lead to new strategies in controlling and prevention of the disease, and thus 

improve the welfare in commercial production of Atlantic salmon.  

 

The field study indicated that the sum of pathogens on the gills prior to treatment is related to 

the mortality. Further studies should consider how different pathogens on the gills alone in 

relation to P. perurans will affect the gill health and outcome of treatment. In this study, the 

fish sampled in the field were tracked for 8 days post treatment. Therefore, the change in 

pathology on the gills and gill score after two weeks post treatment should be further assessed.  
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7 Appendix  
 
Table 7.1 Mean ct-values and prevalence for the different assay analyzed for in the samples from field. G = gill. 

K = kidney.  
Assay Before treatment Dead during treatment Treated Untreated 

Ct-value % CT-value % Ct-value % Ct-value % 
 Average Range Prevalence Average Range Prevalence Average Range Prevalence Average Range Prevalence 
EF1A (G) 14.9 14.0 – 

16.1 
 

-  13.3 10.5 – 
15.2 

-  15.4 13.9 – 
16.5 

 14.6 13.2 – 
15.9 

- 

EF1A (K) 14.8 13.7 – 
16.8 

- 16.4 14.1 – 
18.8 

- 14.7 13.0- 
16.1 

 14.2 12.4 – 
15.8 

- 

Salmonid alphavirus (G) Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg Neg 0 

Salmonid alphavirus (K) Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg Neg 0 

Infectious salmon 

anemia virus (G) 

Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg Neg 0 

Infectious salmon 

anemia virus (K) 

Neg Neg 0 Neg Neg 0 Neg Neg 0 36.0 36.0  

Piscine orthoreovirus 1 

(G) 

26.0 22.0 – 
31.4 

100.0 26.1 22.2 – 
30.0 

100.0 25.7 22.5 – 
30.9 

100.0 25.3 22.1 – 
30.0 

100.0 

Piscine orthoreovirus 1 

(K) 

25.2 21.3 – 
30.5 

100.0 24.5 20.6 – 
32.6 

100.0 23.5 18.4 – 
30.3 

100.0 25.3 21.9 – 
30.3 

100.0 

Piscine orthoreovirus 3 

(G) 

Neg Neg 0 - - - - - - - - - 

Piscine orthoreovirus 3 

(K) 

Neg Neg 0 - - - - - - - - - 

Piscine myocarditis virus 

(G) 

28.6 20.8 – 
36.9  

100.0 22.0 17.1 – 
33.2 

100.0 26.5 19.6 – 
34.1 

100.0 26.9 21.4 – 
31.7 

100.0 

Piscine myocarditis virus 

(K) 

25.5 19.9 – 
37.2 

93.3 22.3 18.3 – 
33.6 

100.0 22.7 16.2 – 
31.3 

100.0 25.6 20.5 – 
30.6 

100.0 

Salmon gill poxvirus (G) 27.1 19.3 – 
36.2 

100.0 23.8 18.5 – 
33.5  

100.0 25.6 18.2 – 
33.7 

93.3 26.4 18.9 – 
34.4 

100.0 

Infectious pancreatic 

necrosis virus (G) 

Neg Neg 0 34.6 34.6 0 Neg Neg 0 Neg Neg 0 

Infectious pancreatic 

necrosis virus (K) 

36.6 34.7 – 
37.8 

10.0 35.5 25.3 – 
35.7 

16.7 35.8 35.7 – 
36.0 

10.0 Neg Neg 0 

Paranucleospora 

theridion (G) 

19.5 11.9 – 
23.4 

100.0 13.5 10.0 – 
17.5  

100.0 21.3 15.1-
29.0 

100.0 21.1 12.2 – 
27.0 

100.0 

Paranucleospora 

theridion (K) 

20.1 12.8 – 
28.3 

100.0 17.1 14.8 – 
22.8 

100.0 21.5 16.9 – 
25.5 

100.0 19.9 11.5 – 
26.1 

100.0 

Paramoeba perurans 

(G) 

16.8 12.7 – 
21.1 

100.0 29.2 22.8 – 
32.2 

75.0 30.6 23.9 – 
33.7 

33.3 17.1 11.3 – 
22.7 

100.0 

Ichthyobodo spp. (G) 24.1 19.4 – 
28.6 

96.7 26.3 20.2 – 
31.0 

60.7 28.7 24.8 – 
30.7 

20.0 23.6 16.9 – 
32.2 

100.0 

Perkinsea parasite (G) Neg Neg 0 -  - - - - - - - - 

Perkinsea parasite (K) Neg Neg 0 - - - - - - - - - 

Tetracapsuloides 

bryosalmonae (G) 

Neg Neg 0 - - - - - - - - - 

Tetracapsuloides 

bryosalmonae (K) 

36.1 36.1 3.3  Neg Neg 0 34.0 28.7 – 
38.5 

20.0 35.7 34.6 – 
36.8 

6.7 

Parvicapsula 

pseudobranchicola (G) 

Neg Neg 0 31.5 29.1 – 
33.3 

17.9 33.2 32.5 – 
33.9 

6.7 32.5 31.0 – 
34.0 

6.7 
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Parvicapsula 

pseudobranchicola (K) 

Neg Neg 0 - - - - - - - - - 

Candidatus 

Branchiomonas cysticola 

(G) 

15.3 7.3 – 
23.5  

100.0 9.8 5.9 – 
19.6 

100.0 16.6 10.7 – 
25.9 

100.0 17.5 8.2 – 
22.8 

100.0 

Candidatus 

Branchiomonas cysticola 

(K) 

26.0 17.2 – 
34.7 

100.0 - - - - - - - - - 

Candidatus 

Syngnamydia salmonis 

(G) 

23.1 18.9 – 
27.1 

100.0 30.3 24.4 – 
36.6 

96.4 35.6 30.5 – 
39.7 

36.6 23.5 16.9 – 
28.5 

100.0 

Candidatus 

Syngnamydia salmonis 

(K) 

30.8 23.8 – 
35.2 

83.8 - - - - - - - - - 

Tenacibaculum spp. (G) 29.2 26.9 – 
31.5 

13.3 31.0 25.0 – 
34.5 

25.0 32.5 30.1 – 
36.6 

20.0 34.6 27.3 – 
37.6 

46.7 

Candidatus 

Piscichlamydia salmonis 

(G) 

29.1 26.0 – 
34.5 

10.0 31.7 31.7 – 
31.7 

3.6 32.9 31.5 – 
34.3 

6.7 33.9 32.3 – 
34.9 

10.0 

Tenacibaculum 

maritimum (K) 

Neg Neg 0 Neg Neg 0 - - - - - - 

 

 
Table 7.3 Mean ct-values and prevalence for the assay Pperu analyzed for in the tissue samples from the challenge 

experiment.  

 19 dpi 25 dpi 27 dpi 32 dpi 
Ct-values Prevalence Ct-values Prevalence Ct-values Prevalence Ct-values Prevalence 

Average Range % Average Range % Average Range % Average Range % 
Tank 1 35.9 35.9 – 

35.9 
10 Neg Neg 0 Neg Neg 0 Neg Neg 0 

Tank 2 Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg neg 0 
Tank 3 Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg Neg 0 
Tank 4 27.7 19.5 – 

37.7. 
100  30.4 30.4 – 

30.4 
50 31.5 28.4 – 

34.6  
70 Neg Neg 0 

Tank 5 Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg Neg 0 
Tank 6 34.9 33.6 – 

36.2 
40 Neg Neg 0 Neg Neg 0 Neg Neg 0 

Tank 7 Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg Neg 0 
Tank 8 Neg Neg 0 Neg Neg 0 Neg Neg 0 Neg Neg 0 
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Table 7.4 Mean ct-values and prevalence for the assay Perk analyzed for in the tissue samples from the challenge 

experiment.  

 19 dpi 25 dpi 27 dpi 32 dpi 
Ct-values Prevalence Ct-values Prevalence Ct-values Prevalence Ct-values Prevalence 

Average Range % Average Range % Average Range % Average Range % 
Tank 1 38.6 38.6 – 

38.6 
20 37.8 37.8 – 

37.8 
50 37..6 35.0 – 

38.7 
40 - - - 

Tank 2 37.1 36.0 – 
38.1 

40  37.3 37.3 – 
37.3 

50 37.4 37.2 – 
27.5 

20 - - - 

Tank 3 38.8 38.6 – 
39.0 

40 33.7 33.7 – 
33.7 

50 38.4 38.4 – 
38.4 

10 - - - 

Tank 4 29.7 26.0 – 
33.5 

40 37.2 37.2 – 
37.2 

50 36.3 36.0 – 
37.2 

40 - - - 

Tank 5 Neg Neg 0 Neg Neg 0 38.8 38.8 – 
38.8 

10 - - - 

Tank 6 37.8 37.0 – 
38.6 

40 37.6 37.3 – 
38.0 

100 36.9 36.6 – 
37.3 

30 - - - 

Tank 7 37.4 36.8 – 
38.0 

40 37.4 37.4 – 
37.4 

50 37.0 37.0 – 
37.0 

10 - - - 

Tank 8 37.3 37.2 – 
37.3 

40 Neg Neg 0 Neg Neg 0 - - - 

 

 

 
Table 7.5 Mean ct-values and prevalence for the assay Sch analyzed for in the tissue samples from the challenge 

experiment.  

 19 dpi 25 dpi 27 dpi 32 dpi 
Ct-values Prevalence Ct-values Prevalence Ct-values Prevalence Ct-values Prevalence 

Average Range % Average Range % Average Range % Average Range % 
Tank 1 Neg Neg 0 35.1 33.8 – 

36.5 
100 36..9 36.9 – 

36.9 
10 34.5 32.8 – 

36.1 
9.1 

Tank 2 36.9 36.7 – 
37.1 

40 Neg Neg 0 36.5 36.5 – 
36.5 

10 35.1 33.2 – 
36.1 

15.8 

Tank 3 Neg Neg 0 Neg Neg 0 Neg Neg 0 34.6 33.0 – 
36.1 

10 

Tank 4 32.3 25.8 – 
36.8 

60 Ne Neg 0 Neg Neg 0 33.7 31.1 – 
36.3 

10 

Tank 5 Neg Neg 0 Neg Neg 0 35.5 34.0 – 
37.6 

30 35.8 35.8 – 
35.8 

4.5 

Tank 6 33.2 32.5 – 
33.7 

80 36.6 36.6 – 
36.6 

50 37..3 37.3 – 
37.3 

10 33.6 31.1 – 
36.9 

19 

Tank 7 37.1 36.9 – 
37.4 

40 28.8 28.8 – 
28.8 

50 35.3 35.3 – 
35.3 

10 Neg Neg 0 

Tank 8 Neg Neg 0 Neg Neg 0 Neg Neg 0 34.0 30.9 – 
36.8 

14.3 
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Table 7.2 P-values for the positive assays from the field after the nonparametric Kruskal-Wallis test.  

Pathogen Before 
treatment 
vs. dead 
during 
treatment 

Before 
treatment 
vs. treated 

Before 
treatment 
vs. 
untreated 

Dead during 
treatment 
vs. treated 

Dead during 
treatment 
vs. 
untreated 

Treated vs. 
untreated 

P. perurans <0.0001 <0.0001 >0.9999 >0.9999 <0.0001 <0.0001 
Ichthyobodo spp. 0.0023 0.0763 >0.9999 >0.9999 0.0013 0.0579 
Candidatus 
Syngnamydia 
salmonis 

<0.0001 <0.0001 >0.9999 >0.9999 <0.0001 <0.0001 

Candidatus 
Branchiomonas 
cysticola 

0.0047 >0.9999 0.2296 0.0003 <0.0001 0.9756 

Piscine 
myocarditis virus 
(gill) 

0.0001 0.3284 >0.9999 0.1042 0.0025 >0.9999 

Piscine 
myocarditis virus 
(kidney) 

0.0001 0.3619 >0.9999 0.0927 <0.0001 0.0074 

Salmon gill 
poxvirus 

0.3527 0.2926 >0.9999 >0.9999 0.8537 0.7295 

Paranucleospora 
theridion 

<0.0001 >0.9999 0.4953 <0.0001 <0.0001 >0.9999 

Piscine 
orthoreovirus 1 

0.0568 >0.9999 >0.9999 0.0011 0.0078 >0.9999 

 


