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Master Thesis in Applied and Computational Mathematics,
Department of Mathematics,

University of Bergen,
June 2021



1

Abstract

In this work, we explore the role of image-derived forces in an elastic image reg-
istration model, and investigate the possibility of accurately estimating displace-
ment fields. Further, we propose a novel, physically motivated, image registration
method where the resulting displacement is controlled by the boundary conditions.
This is in contrast to traditional methods, where the displacement is driven by an
unphysical image-derived body force. Several registration experiments are done,
both to highlight the role of image-derived forces, and to demonstrate the capabil-
ities of the novel method. Additionally, the method is used to explore the effects
of optimizing over tissue parameters.

Experiments show us that there is a poor agreement between similarity error and
displacement field error when performing traditional elastic registration. The novel
method produces satisfactory visual registration results, comparable to existing
methods. The method ensures that the resulting displacement field is physically
possible and obeys the governing equations, however, this is at the cost of a worse
performance in terms of minimization of the chosen distance measure.
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Introduction

Image registration is the process of aligning images taken from the same scene.
The images could differ as a result of them being taken at different times, from
different viewpoint, and/or from different sensors [1]. Alignment of the images
is necessary in order to extract spatially dependent information about the image
subject. Combining images taken form different sensors will give us a richer source
of information [2].

There are a large number of applications where registration is needed. Some
examples include biology, criminology, astronomy, art, medicine, and other areas
that invokes imaging techniques [3]. Although this thesis has a focus on medical
image registration, the ideas and methods presented can easily be transferred to
other areas.

Minimally invasive procedures are becoming increasingly important in modern
healthcare [4]. It opens up for the possibility of giving patients more precise
diagnoses and treatments at an earlier stage, while minimizing the need for surgical
procedures. Medical image registration can become an invaluable tool in this
context, by extending the concept of image registration to not only be a method
for image alignment, but also to become the task of estimating the deformation
that has occurred [5]. However, this is not a trivial task, and studies have found
that existing algorithms will align images with high precision, and at the same
time obtain a displacement field with a relative error of 40 % [5].

Human organs and tissue obey the laws of physics when they are deformed, and
it would be natural to model this deformation with image registration tools. Pop-
ular existing methods based on minimization of energy functionals, like elastic
registration [6], are physically motivated, and borrows ideas from continuum me-
chanics, but at the same time introduces unphysical image-derived forces to drive
the registration forward. In other words, existing registration methods mixes phys-
ical quantities with unphysical forces, and in thesis will explore how these forces
affects the registration results, and how to avoid them.

Starting from the fundamental concepts of elasticity and energy minimization,
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we derive the elastic registration method, and discuss the image-derived forces
that arise. Experiments are done with the elastic method to explore the role of
these forces, and test the capability of accurately estimating displacement fields.
Further, a novel registration method is presented and demonstrated. It is based
on actively using the boundary conditions and solving the governing equations to
drive the registration forward, as opposed to the unphysical body force used in
traditional methods.

Thesis outline

Chapter 1: contains the background theory and fundamental concepts used
throughout this thesis. Specifically, section 1.1 presents a mathematical frame-
work for image registration, section 1.2 introduces the basics of elasticity and
presents the governing equations. In section 1.3, a brief introduction to calculus of
variations and the concepts of energy minimization are given. Finally, section 1.4
covers the numerical methods used in this thesis.

Chapter 2: covers elastic image registration. Using the fundamentals from elas-
ticity and energy minimization, the traditional elastic image registration method
is derived, and the arising image-derived forces are discussed along with some dis-
advantages of the method. Our novel contribution is then presented, a boundary-
driven image registration (BDIR) method.

Chapter 3: contains several image registration experiments. In section 3.1, the
role of image-derived forces when performing elastic registration is explored by
investigating the agreement between image similarity and displacement field error.
In section 3.2, the BDIR method is demonstrated and compared to the traditional
method. This is done on both synthetic and real data. In section 3.3, BDIR is used
to explore the effects of optimizing over tissue parameters. Finally, the results are
discussed in section 3.4.

Chapter 4: summarizes the work done in this thesis, discusses some of its limi-
tations and we propose further ideas to be investigated.



Chapter 1

Background Theory

In this chapter, we present the background theory and fundamental concepts that
are needed to derive and solve the problems this thesis is concerned with. It is
divided as follows:

Section 1.1 provides a mathematical framework for image registration, where the
registration problem is formally stated. Different distance measures are discussed
along with the inherent ill-posedness of the problem. Regularization techniques
are presented, and finally a discussion around evaluation metrics is had.

In section 1.2, the theory of elasticity is presented. Starting form the concepts of
stress and traction, we introduce concepts such deformation, strain, and Hooke’s
law. Finally, the governing equations of linear elasticity are derived.

Section 1.3 gives a brief overview of calculus of variations and energy minimization
principles, which we use to derive the Navier-Lamé equations.

Finally, in section 1.4, the numerical methods used in this thesis are presented. It is
divided into two section, quasi-Newton methods for solving minimization problems,
and multi-point stress approximation for solving the elasticity equations.

10
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1.1 Mathematical framework for image registra-

tion

In this section, a general mathematical framework for image registration is pre-
sented. Starting with the definition of an image, the general registration problem
is formally stated. Different distance measures are covered, and the inherent ill-
posedness of the problem is discussed. The elastic regularizer is presented, along
with other regularization choices. Finally, some evaluation metrics are discussed.

Only the general idea of elastic registration is covered in this chapter, and in chap-
ter 2 we go into greater detail about elastic registration as we then are equipped
with the necessary concepts to derive the method.

1.1.1 Problem statement

Definition 1 (Image). An image is a continuous function I : Ω → R, where
Ω ⊂ Rd and d ∈ N.

The definition above can be extended to a time-dependent image as follows

Definition 2 (Time-dependent image). A time-dependent image is a continuous
function I : Ω× T → R, where Ω ⊂ Rd, T ∈ R≥0, and d ∈ N.

We denote Ω as the image domain and d the spacial dimensions of the image,
typically d = 2 or d = 3. For an image I, we have at each spacial position
x = (x1, x2, . . . , xd) ∈ Ω an associated intensity value I(x, t) for some time t. For
simplicity, the following derivations are presented with time-independent images.

The general problem in image registration can be formulated as follows: Given a
reference image R and moving image T , we search for a transformation ϕ, defined
as

ϕ : Ω→ Rd, ϕ(x) = x+ u(x), (1.1)

that depends on the unknown displacement field

u : Ω→ Rd, (1.2)

such that the transformed moving image

T ◦ ϕ(u(x)) = T (x+ u(x)) = Tu, (1.3)

becomes similar to R. Note that with this Eulerian framework, u is used to model
the transformation ϕ as it describes how a point in the transformed moving Tu is
moved away from its original position. Thus, finding the displacement field u and
the transformation ϕ is equivalent.
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1.1.2 Distance measures

All registration techniques requires a suitable distance measure D, sometimes
called similarity measure, which measures the similarity of Tu and R over the
image domain Ω. At its simplest form, the image registration problem can be
formulated as follows

min
u
D(Tu,R). (1.4)

How to measure the similarity of images is not a trivial task, and there is no unified
approach that will work for all types of images. In general we can differentiate
between two types of images. Monomodal images have similar intensities and
contrast, and is typically captured with the same device. Multimodal images on
the other hand does not have comparable intensities and contrast. This can be a
result of the images not being taken by the same device, or from a device with
different exposure settings. The distance measure must be chosen on a case by
case basis depending on the images to be registered.

Sum of Squared Distances

The sum of squared distances (SSD) compares intensity values of two images, and
is given by

DSSD(T ,R) =
1

2

∫
Ω

(T (x)−R(x))2 dx =
1

2

∥∥T (x)−R(x)
∥∥2

2
. (1.5)

For this distance measure to give a meaningful result, the intensity values of the
images has to be comparable. This is not always the case, especially when dealing
with multimodal images.

In this thesis we are exclusively dealing with monomodal images, and the SSD will
be distance measure used unless stated otherwise.

Mutual Information

The Mutual Information (MI) distance measure work by the comparing statistical
dependence of two images. It makes no assumptions about the imaging process,
making it a popular choice for multimodal images. See books by Modersitzki for
more details [3, 6].

Normalized Gradient Fields

The normalized gradient fields (NGF) distance measure, proposed by Haber and
Modersitzki [7], is based on the assumption that images of different modalities
still has intensity changes in corresponding positions, and the intensity changes
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are given by the image gradient ∇T . This makes the NGF measure especially
suitable for multimodal images. A normalization of the gradient is done as we are
only interested in the direction, not the strength, and is given by

∇̄T =
∇T (x)√∥∥T (x)

∥∥2
+ η2

, (1.6)

where η is an edge parameter controlling the influence of image gradients [8]. The
NGF distance measure is given by

DNGF (T ,R) =

∫
Ω

1−
(
∇̄T (x)T · ∇̄R(x)

)2

dx. (1.7)

1.1.3 Ill-posedness

When working on a mathematical problem it is desired, often necessary, that the
problem is well-posed. Following Hadamards definition, a problem is well posed if
it possesses all of the following properties [9]

1. a solution exists,

2. the solution is unique,

3. the solutions varies continuously with the initial data.

Problems that are not well posed are called ill-posed.

It is well known that the minimization problem in (1.4) is ill-posed in the sense
that direct minimization of D will not result in a unique solution for u. A simple
example illustrating this fact is shown in Figure 1.1. Here we see two square boxes
which we want to register. A simple translation to the left of the moving image
will result in a perfect registration. However, the same translation with an added
rotation of 180◦ will also result in a perfect registration, and hence the problem is
clearly ill-posed.

Another important point to make about the ill-posedness of image registration is
the fact that in areas of constant intensity, any displacement will not change the
result. Meaning that in the area where both R and T in Figure 1.1 is completely
black, the displacement field could be arbitrary, and it would not impact the
solution.

1.1.4 Regularization

To overcome the ill-posed nature of image registration, it is necessary to impose
regularization of u to penalize unwanted and irregular solutions. Regularization
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Figure 1.1: Two squares to be registered. Several displacement fields will result in
a perfect registration, and hence the problem is clearly ill-posed.

can be seen as adding information to the problem, or restricting the function space
we are searching over. In image registration, this is done by adding a regularization
functional S(u) to (1.4), giving us the minimization problem of the joint functional

min
u

{
J (u) = D(Tu,R) + αS(u)

}
, (1.8)

where α is a regularization parameter that balances similarity and regularity.

As an example, let us imagine that the white box in Figure 1.1 is physically
incapable of rotating. In this case we would want to use a regularizer that penalizes
all rotations. The solution to the problem will now, hopefully, be the one that only
translates the box. Other examples includes cases where we want the resulting
displacement field to be sufficiently smooth. It is clear that S needs to be chosen
based on a priori knowledge of the image subject.

Elastic regularizer

The elastic regularizer, which was first used in image registration by Broit [10],
measures the elastic potential energy introduced by deforming an elastic material,
and is given by

Selas(u) =

∫
Ω

µ

4

(
ui,j + uj,i

) (
ui,j + uj,i

)
+
λ

2
ui,iuk,k dx, (1.9)

where λ and µ are the first and second Lamé parameter respectively. Note that
Einstein notation is used here, where a repeated index implies summation. This
regularizer is a key part of this thesis, and a more detailed discussion will be had in
chapter 2, where the physical motivation behind it will be covered, and the elastic
registration method is derived.
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Fluid regularizer

The linear elastic regularizer does not allow for larger deformations which may
render it unusable in cases where the deformations are too large. To overcome this
fact, Christensen [11] proposed a regularizer using a viscous fluid model based on
a specific linearization of the Navier-Stokes equation [12]. The fluid regularizer is
obtained by taking the elastic potential of the velocity field v of the displacement
field u

Sfluid(u) = Selas(v), (1.10)

where the velocity is related to the now time dependent displacement filed through
the material derivative

Du(x, t)

Dt
=
∂u(x, t)

∂t
+∇u(x, t)v(x, t). (1.11)

Diffusion regularizer

In contrast to the elastic and fluid regularizers which is physically motivated, the
diffusion regularizer is motivated by the smoothness of the displacement field itself
[6]. Diffusion registration was first introduced by Fischer and Modersitzki [13] and
its regularizer is given by

Sdiff (u) =
1

2

∫
Ω

‖∇u‖2
2 dx. (1.12)

Curvature regularizer

Curvature registration, first introduced by Fisher and Modersitzki [14], produces
even smoother displacement fields than diffusion registration, and its regularizer
is given by

Scurv(u) =
1

2

∫
Ω

∥∥∇2u
∥∥2

2
dx, (1.13)

where ∇2 = ∇ · ∇ is the Laplace operator. The curvature regularizer has the
interesting property of not penalizing affine linear transformations, unlike the other
introduced regularizers [14]. This means that affine linear pre-registration is not
needed when using the curvature regularizer.

1.1.5 Evaluation metrics

Evaluation of image registration results is a challenging task due to the lack of
ground truth displacement fields. Only using the distance measure as an evaluation
tool will cause problems because of the ill-posed nature of image registration.
There exists several methods for measuring registration results, however, they have
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been shown to be unreliable. In experiments done by T. Rohlfing, it is shown that
a registration algorithm that purposely generates highly inaccurate displacement
fields, still performs well in terms of the existing measures [15]. The registration
algorithm was appropriately named CURT, or Completely Useless Registration
Tool. In this thesis, we only define an evaluation metric for displacement fields in
cases where the true displacement is known, i.e. in synthetic cases.

Let I∗ and u∗ denote a reference image and displacement field respectively. We
measure the relative displacement field error as

Edisp(u,u
∗) =

‖u− u∗‖2

‖u∗‖2

, (1.14)

where u is some displacement field to be compared against the reference. The
relative image intensity error is defined as

Eimg(I, I∗) =
‖I − I∗‖2

‖I∗‖2

, (1.15)

where I is some image to be compared against the reference.

1.2 Elasticity

A body is said to be perfectly elastic if it returns to its initial original shape after
the external sources of deformation disappears [16]. In this section we present
the fundamental concepts that describe such a body. We start by introducing
fundamental concepts such as stress, strain, deformation, and Hooke’s law, before
we present the governing equations for an isotropic linearly elastic body. The
theory from this section is mainly based on [17, 18].

1.2.1 Stress

A body subject to some force can be seen as transmitting these forces from one
point to another. Stress is intended to quantify the interaction between the points
that make up the body when it is subject to external loading [17].

We differentiate between two types of stress, normal and shear stress. To illustrate
the difference, let us consider a planar cross-section of area A and a small region
of area ∆A centered at point c somewhere on the cross-section. Further, let Fn be
the normal force acting on the cross-section. The normal stress σn at point c is
defined as

σn = lim
∆A→0

∆Fn
∆A

, (1.16)
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where ∆Fn is the total normal force acting on the smaller region. Shear stress σs
is defined in a similar manner, however let us now consider a shear force Fs acting
on the cross-section. The shear force at point c is defined as

σs = lim
∆A→0

∆Fs
∆A

, (1.17)

where ∆Fs is defined as the shear force acting on the smaller region.

Stress tensor

Consider a three-dimensional infinitesimal cubic volume element. Figure 1.2 shows
all stresses acting on the faces of the cube. Here we recognize both normal and
sheer stress. The first subscript indicates the direction of the stress and the second
subscript refers to the direction normal to the cross-section.

Note that the faces not shown in the figure also have corresponding stresses. If
the cube is stationary, and no internal forces are acting on it, the stresses on the

Figure 1.2: Components of the stress tensor acting on a three-dimensional volume
element. Adapted from Continuum Mechanics and thermodynamics [19].
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hidden faces are equal in magnitude but opposite in direction to the ones shown.
In matrix form, we can express all components of the stress with the stress tensor

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 , (1.18)

which is often called the Cauchy stress tensor.

1.2.2 Traction vector

To introduce the traction vector, sometimes called the stress vector, let us consider
a infinitesimal subbody in the shape of a right triangle, where the legs are parallel
to the x1 and x2-axis, see Figure 1.3. Assume the area of the inclined plane is
dA, with unit normal vector n. The resultant force acting on the plane is denoted
T dA, where T is called the traction vector.

If we assume the body is in force equilibrium, the forces must sum to zero

T1dA = σ11dA cos θ + σ12dA sin θ, (1.19)

T2dA = σ21dA cos θ + σ22dA sin θ. (1.20)

Dividing by dA and using the fact that n1 = cos θ and n2 = sin θ, we get

T1 = σ11n1 + σ12n2, (1.21)

T2 = σ21n1 + σ22n2, (1.22)

or in matrix form as [
T1

T2

]
=

[
σ11 σ12

σ21 σ22

][
n1

n2

]
. (1.23)

This can easily be extended to a three-dimensional case by using a tetrahedron
instead of a right triangle. In that case, the traction vector becomesT1

T2

T3

 =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


n1

n2

n3

 , (1.24)

or equivalently in vector notation

T = σ · n, (1.25)

which knows as the Cauchy stress formula [20].
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Figure 1.3: Traction vector acting on triangular segment. Adapted from Introduc-
tion to Solid Mechanics [17].

1.2.3 Deformation and Strain

Deformation can be defined as a change in the distances between material points
which lead to changes in shape and/or size of a body. All materials are deformed
to some extent when subjected to a force, and be introducing the concept of strain,
we can quantify the deformation of a solid relative to some reference frame. [17].

Let us consider an isotropic bar, meaning the material properties are independent
of direction [20], of length L with tensile forces acting on it at both ends, stretching
it by an amount ∆L as shown in Figure 1.4.

The relative stretch λ is defined as

λ =
L+ ∆L

L
= 1 +

∆L

L
, (1.26)

where elongation per unit length, εlong = ∆L
L

, is independent of the length of the
bar [17]. This quantity is known as longitudinal strain.

To consider more arbitrary deformations we look at the positions of some points in
a body before and after it has been deformed in some way. Let a point be denoted
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Figure 1.4: Stretching of a bar with an applied force at both ends. Adapted from
[17].

a in the undeformed body, which is moved to a new position a′ in the deformed
body. Let the displacement u of a point be given as

u(a) = a′ − a, (1.27)

which describes the motion of the point after the body changes its shape. As with
the stretched bar, we are interested in the relative displacement of the points,
which is captured by the strain [18]. To derive the expression, consider now two
points a and b, and the line element between them l = b−a. After the deformation
of the body, the points have moved relative to each other and we now have points
a′ and b′ separated by the line l′ = b′ − a′ as shown in Figure 1.5.

Figure 1.5: An elastic body undergoing some deformation. Left is before deforma-
tion and right is after. Adapted from Desiccation Cracks and Their Patterns [18].

The relative displacement, or change of the line element, is now given by

∆u(a, b) = u(b)− u(a) = l′ − l (1.28)

Further, looking at the length of l and l′

L =‖l‖ =
√
lili

L′ =
∥∥l′∥∥ =

√
l′il
′
i =

√
(l + ∆u)i(l + ∆u)i =

√
L2 + 2li∆ui + ∆ui∆ui
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Next we assume the deformations are infinitesimally small, meaning ‖∆u‖ � L,
which allows us to Taylor expand L′ around the equilibrium length L

L′ = L+
1

2L
(2li∆ui) +O(‖∆u‖2), (1.29)

and neglect higher order terms. A rearrangement gives us an expression for the
relative difference in lengths

L′ − L
L

=
1

L2
(li∆ui), (1.30)

and we can Taylor expand ∆ui

∆ui =
∂ui
∂xj

lj +O(‖∆u‖2). (1.31)

Equation (1.31) can be inserted in (1.30), and by the symmetry of (∂ui/∂xj)lilj =
(∂uj/∂xi)ljli, we have the explicit form of the linear strain tensor

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (1.32)

or in vector form

ε =
1

2

(
∇u+ (∇u)T

)
, (1.33)

which is valid for small deformations, i.e. |∇u| � 1. Rigid body translations
and rotations will not introduce any strains, which is to be expected as such
displacements does not change the distance between points in a body.

1.2.4 Hooke’s Law

Hooke’s law states that for relativity small deformations of an elastic body, the
strain is proportional to the stress applied to it [19]. An alternative formulation is
that the displacement is proportional to the deforming force. Hooke’s law is derived
by first considering the uniaxial and shear case, before deriving the generalized
Hooke’s law.

Uniaxial and shear Hooke’s law

Let us consider a rectangular linearly elastic bar. The left side of the bar is
clamped, while at the right side a constant force F is applied. This results in
the bar being stretched a distance ∆L, as illustrated in Figure 1.6. Hooke’s law
states that the longitudinal strain εlong = ∆L/L is proportional to the stress F/A
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applied to it. The constant of proportionality E is called Young’s modulus. This
gives us the uniaxial Hooke’s law

σii = Eεii (1.34)

There is also a shear version of Hooke’s law which reads

σij = 2Gεij, (1.35)

where G is the shear modulus, which is identical to the second Lamé parameter µ.

Figure 1.6: Loaded bar being stretched. Adapted from Introduction to solid me-
chanics [17].

Generalized Hooke’s law

In general, all the components of the strain tensor can be non-zero, and hence we
a relation for this case. To do so, we first need to introduce Poisson’s ratio.

When compressing an elastic body, it tends expand in the direction perpendicular
to the force applied, and vice versa. This is called the Poisson effect. Poisson’s
ratio describes the amount of transverse contraction/elongation when strained in
a given direction [17]. Mathematically it is given as

ν = −εtrans
εlong

, (1.36)

where εtrans transverse strain, and εlong is longitudinal strain.

Let us now consider the isotropic volume element in Figure 1.2. Taking the Poisson
effect into account, we see that by combing (1.34) and (1.36), the stress σ11 produce
the strains

ε11 =
σ11

E
ε22 = −ν σ11

E
ε33 = −ν σ11

E
. (1.37)

Equivalently, the stresses σ22 and σ33 will produce the strains

ε11 = −ν σ22

E
ε22 =

σ22

E
ε33 = −ν σ22

E
(1.38)



1.2. ELASTICITY 23

and
ε11 = −ν σ33

E
ε22 = −ν σ33

E
ε33 =

σ33

E
, (1.39)

respectively. The principle of superposition allows us to add the strains produced
by the stresses acting on each direction independently. Using this principle on
equations (1.37) - (1.39), and expressing the stress as a function of strains, we end
up with

σ11 =
E

(1 + ν)(1− 2ν)

(
(1− ν)ε11 + νε22 + νε33

)
σ22 =

E

(1 + ν)(1− 2ν)

(
(1− ν)ε22 + νε11 + νε33

)
σ33 =

E

(1 + ν)(1− 2ν)

(
(1− ν)ε33 + νε11 + νε22

)
,

which is valid as long as ν 6= 0.5 or ν 6= −1. The shear stresses are given by

σ12 = 2Gε12

σ23 = 2Gε23

σ31 = 2Gε31.

We follow the convention described in [17], and represent the strains and stresses
as column matrices, in order to conveniently express the stress-strain relationship.
Using this notation, we have

σ =



σ11

σ22

σ33

σ23

σ31

σ12


, ε =



ε11

ε22

ε33

2ε23

2ε31

2ε12


.

Finally we can express the stress-strain relationship, called the generalized Hooke’s
law, as

σ = Cε, (1.40)
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where C is a fourth-order tensor called the stiffness tensor, defined as

C =
E

1 + ν



1−ν
1−2ν

ν
1−2ν

ν
1−2ν

0 0 0

ν
1−2ν

1−ν
1−2ν

ν
1−2ν

0 0 0

ν
1−2ν

ν
1−2ν

1−ν
1−2ν

0 0 0

0 0 0 1
2

0 0

0 0 0 0 1
2

0

0 0 0 0 0 1
2


. (1.41)

1.2.5 Governing equations of linear elasticity

The principle of conservation of linear momentum, which is based on Newton’s
second law, states that the rate of change of the linear momentum of an arbitrary
part of a continuous medium is equal to the resultant force acting on that part
[21]. The resultant force is the sum of body forces f and surface forces T = σ ·n.
Integrating the sum of these forces over a volume gives us Cauchy’s momentum
equation

ρ
Dv

Dt
= ∇ · σ + f , (1.42)

where ρ is the density. If we assume the body has negligible acceleration, we can
set Dv

Dt
= 0, which corresponds to the equilibrium equations. We can now present

the governing equations of linear elasticity:

� Equilibrium equations
∇ · σ + f = 0

� Stress-strain relationship
σ = Cε

� Strain-displacement relationship
ε = 1

2

(
∇u+ (∇u)T

)
The stress-strain relationship is dependent on the material, and for isotropic ma-
terials, the stress-strain relationship is given by

σ = 2µε+ λ(tr(ε))I = 2µε(u) + λ (∇ · u) I, (1.43)

where λ and µ are the first and second Lamé parameter respectively, and tr(·) is the
trace function. The first Lamé parameter λ is related to resistance to compression,
and the second parameter µ represents resistance to shear strain. In general, the
parameters can be spatially varying, i.e. λ(x) and µ(x).
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We can insert the stress-strain and strain-displacement relationship into the equi-
librium equations to obtain

∇ ·
(
2µε(u) + λ(∇ · u)I

)
+ f = 0, (1.44)

which is often referred to as the displacement formulation, as it is formulated with
u as the only unknown.

1.2.6 Navier-Lamé equations

If we now assume that the Lamé parameters are constants, equation (1.44) can be
written as

0 = σij,i + fi

= µ(ui,ji + uj,ii) + λuk,ki + fi

= µuj,ii + (µ+ λ)uj,ji + fi, (1.45)

or in vector form
µ∇2u+ (µ+ λ)∇(∇ · u) + f = 0, (1.46)

where ∇2 = ∇ ·∇ is the Laplace operator. These equations are called the Naiver-
Lamé equations of elasticity [20].

It is often useful to express the stress-strain relationship (1.43) with other elastic
moduli, as they can be easier to interpret. Examples of such moduli are the bulk
modulus K, which measures resistance to compression [22], and the previously
introduced Poisson’s ratio ν. The relationship to the Lamé parameters is given by

K = λ+
2µ

3
, ν =

λ

2(λ+ µ)
. (1.47)

Note that the second Lamé parameter is identical to the shear modulus, often
denoted by G.

1.3 Calculus of variations and energy minimiza-

tion

This section gives a short overview of calculus of variations, and the Navier-Lamé
equations from subsection 1.2.6 are derived using energy minimization and varia-
tional principles.

In ordinary differential calculus, if we want to find the extreme points of a func-
tion, we take the derivative and set it equal to zero. Calculus of variation is,
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broadly speaking, a generalization of this approach. Instead of a function we have
a functional, and the points we seek are now functions.

A functional is a mapping that transforms functions from a function space into a
real number field. An integral of the form

I(u) =

∫
Ω

F (x,u,∇u) dx

whose value is a real number, is an example of a functional. The minimum of
the functional I(u) involves differentiation with respect to the dependent vari-
ables. The derivative with respect to a dependent variable is know as the Gâteaux
derivative, and is defined as [20]

δF (u;v) = lim
ε→0

1

ε

(
F (u+ εv)

)
=

d

dε
F (u+ εv)

∣∣∣∣
ε=0

. (1.48)

The operator δ is known as the variational operator, and δF (u;v) is the first
variation of the function F (u) in the direction of v. The quantity εv is called the
first variation of u and is denoted as δu.

The necessary and sufficient conditions for the minimum of the functional are

δI = 0,

δ2I > 0,

where the first is necessary and the second is sufficient [20].

1.3.1 Minimization of total potential energy

For a linearly elastic body B, occupying volume Ω, with boundary ∂Ω, the total
strain energy is given by

U =
1

2

∫
Ω

σ : ε dx =
1

2

∫
Ω

σijεij dx. (1.49)

This can be seen as the energy stored within B when work has been done on it.
The total work done by applied body forces f and surface forces T is given by

V = −
[∫

Ω

f · u dx+

∫
∂Ω

T · u ds
]
. (1.50)

The energy U is the available strain energy stored in the body, and the energy
in V is expended, hence the negative sign. The total potential energy functional
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Π(u), of body B, is the sum of the strain energy and work done by external forces

Π(u) = U + V =
1

2

∫
Ω

σ : ε dx−
[∫

Ω

f · u dx+

∫
∂Ω

T · u ds
]

(1.51)

=

∫
Ω

(
1

2
σ : ε− f · u

)
dx−

∫
∂Ω

T · u ds. (1.52)

Notice the dependent variable here is the displacement field u. If the body is
in equilibrium, then out of all admissible displacements fields u, the one that
minimizes the total potential energy, denoted u0, corresponds to the equilibrium
solution, i.e.

Π(u0) ≤ Π(u). (1.53)

This is the principle of minimum total potential energy [20]. An admissible dis-
placement field is one that satisfies the geometric constraints of the problem.

1.3.2 Derivation of Naiver-Lamé equations through energy
minimization

We can apply the principle of minimum potential energy to the total potential
energy functional derived in the previous section to obtain the Navier-Lamé equa-
tions of elasticity.

Let us again consider a isotropic linear elastic body B, occupying volume Ω with
boundary ∂Ω. The body is subjected to a body force f , and traction force T̂ on
a portion ∂ΩN of the surface (Neumann boundary condition). The displacement
vector u is specified to be û on ∂ΩD (Dirichlet boundary condition), which is the
remaining portion of the boundary. Note that ∂Ω = ∂ΩN ∪ ∂ΩD.

From eq (1.51) we have the total potential energy of B given as

Π(u) =

∫
Ω

(
1

2
σ : ε− f · u

)
dx−

∫
∂ΩN

T̂ · u ds

=

∫
Ω

(
1

2
σijεij − fiui

)
dx−

∫
∂ΩN

T̂iui ds, (1.54)

As B is linearly elastic and isotropic, we have strain-displacement relation given by
(1.33), and the stress-strain relation given by (1.43). Assuming the body is homo-
geneous, meaning constant Lamé parameters, we can substitute these equations



1.3. CALCULUS OF VARIATIONS AND ENERGY MINIMIZATION 28

into (1.54) to get

Π(u) =

∫
Ω

[
µ

4

(
ui,j + uj,i

) (
ui,j + uj,i

)
+
λ

2
ui,iuk,k − fiui

]
dx

−
∫
∂ΩN

T̂iui ds. (1.55)

Using the principle of minimum potential energy and setting the first variation of
Π to be zero, we obtain

0 =

∫
Ω

[
µ

2
(δui,j + δuj,i)(ui,j + uj,i) + λδui,iuk,k − fiδui

]
dx

−
∫
∂ΩN

T̂iδui ds. (1.56)

Here we have used the product rule of variation and combined terms. We want to
set the coefficient of δui to zero, but first we need to relieve it of any derivatives.
To do so, we use integration-by-parts, which can be expressed as follows∫

Ω

δui,j(ui,j + uj,i) dx =

∫
∂Ω

δui(ui,j uj,i)nj ds−
∫

Ω

δui(ui,j + uj,i),j dx,

where nj is the outward unit vector in the jth direction. Using this in equation
(1.56) we get

0 =

∫
Ω

[
−µ

2
(ui,j + uj,i),jδui −

µ

2
(ui,j + uj,i),iδuj − λuk,kiδui − fiδui

]
dx

+

∫
∂Ω

[
µ

2
(ui,j + uj,i)(njδui + niδuj) + λuk,kniδui

]
ds−

∫
∂ΩN

δuiT̂i ds

=

∫
Ω

[
−µ(ui,j + uj,i),j − λuk,ki − fi

]
δuidx

+

∫
∂Ω

[
µ(ui,j + uj,i) + λuk,kδij

]
njδui ds−

∫
∂ΩN

δuiT̂i ds. (1.57)

Next we note that µ(ui,j + uj,i) + λuk,kδij = σij and by the Cauchy stress formula
we have σijnj = Ti. Therefore the first surface integral in (1.57) can be rewritten
as ∫

∂Ω

[
µ(ui,j + uj,i) + λuk,kδij

]
njδui ds =

∫
∂Ω

Tiδui ds.

Further, we can split this surface integral to obtain∫
∂Ω

Tiδui ds =

∫
∂ΩN

Tiδui ds+

∫
∂ΩD

Tiδui ds =

∫
∂ΩN

Tiδui ds.
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Notice that the surface integral over ∂ΩD was set to zero as ui is specified there,
meaning we have δui = 0. Inserting this into (1.57), we are left with

0 =

∫
Ω

[
−µ(ui,j + uj,i),j − λuk,ki − fi

]
δui dx+

∫
∂ΩN

δui(Ti − T̂i) ds. (1.58)

Finally we use the fundamental lemma of calculus of variations and set the coeffi-
cients of δui in Ω and ∂ΩN to zero separately, and obtain

µui,jj + (µ+ λ)uk,ki fi = 0 in Ω

ui − ûi = 0 on ∂ΩD

Ti − T̂i = 0 on ∂ΩN

or in vector form

µ∇2u+ (µ+ λ)∇(∇ · u) + f = 0 in Ω (1.59)

u− û = 0 on ∂ΩD

T − T̂ = 0 on ∂ΩN

Equations (1.59) are the familiar Navier-Lamé equations with boundary condi-
tions.

1.4 Numerical methods

In this section, we give an overview of the numerical methods used in this thesis.
Quasi-Newton methods are needed to efficiently solve the optimization problems
arising in image registration, and the multi-point stress approximation will be used
to robustly solve the equations of elasticity.

1.4.1 Quasi-Newton methods

Quasi-Newton methods are a family of optimization methods used to find maxima
and minima of functions, and are based on Newtons method. They approximate
the Hessian matrix in order to avoid some of the disadvantages with the regular
Newton method. Two quasi-Newton methods will be discussed here, the BFGS and
Gauss-Newton method, as they will be used to efficiently solve the minimization
problems found in image registration.
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We start by introducing Newtons method for optimization. Given a twice differ-
entiable function f : Rn → R, dependent on x = [x1, x2, . . . , xn], we want to solve
the minimization problem

min
x ∈ Rn

f(x). (1.60)

The second-order Taylor expansion of f around an iterate xk is given by

f(xk + p) ≈ f(xk) +∇f(xk)
Tp+

1

2
pTHf (xk)p, (1.61)

where p is the search direction, and Hf (x) is the Hessian matrix of f at point x.
The minimum of f(xk + p) in p can give us a new direction towards x∗ which
minimizes f . This is given by the solution of

∇f(xk + p) = ∇f(xk) +Hf (xk)p = 0 (1.62)

with respect to p. We solve for p to get an expression for the search direction

p = −H−1
f (xk)∇f(xk). (1.63)

Finally, we can define Newtons method as

xk+1 = xk −H−1
f (xk)∇f(xk). (1.64)

There are several issues with Newtons method. Firstly, the Hessian matrix needs
to be positive-definite to guarantee the existence of its inverse, and as a conse-
quence the existence of the search direction (1.63). Even when it does exits, it
is not guaranteed to satisfy the decent property ∇f(xk)Tp < 0 [23]. Secondly,
the computation of the Hessian matrix is often a costly procedure in terms of
computational power.

BFGS

Quasi-Newton methods are designed to approximate the Hessian matrix instead
of computing it at every iteration. The approximations are often done in a way
to avoid problems with non-positive-definite and non-invertible Hessian matrices
[24].

The approximated Hessian matrix Bf (xk) is updated at every iteration to incor-
porate new information about the curvature. It is required to satisfy the so called
secant equation [23]

Bf (xk+1)sk = yk, (1.65)

where
sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk).
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Several popular Hessian approximation exits, however, we only note the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method as it will be the one used in this thesis.
The BFGS update formula is given by

Bf (xk+1) = Bf (xk) +
yky

T
k

yTk sk
− Bf (xk)sks

T
kBf (xk)

sTkBf (xk)sk
, (1.66)

and the iterative formula for updating xk is given by

xk+1 = xk − γkBf (xk)
−1∇f(xk), (1.67)

where γk modifies the step-length to ensure sufficient decrease of the objective
function through a line-search. See e.g. Numerical Optimization by Jorge Nocedal
for a more detailed discussion [23].

Gauss-Newton

In the case of the minimization problem being a least-square problem, we can ex-
ploit certain characteristics to efficiently search for the minimum. We now assume
f in equation (1.60) can be expressed as

f(x) =
1

2

m∑
i=1

(
qi(x)

)2
=

1

2
q(x)Tq(x), (1.68)

where q : Rn → Rm, with m ≥ n. The Jacobian matrix of q is given as

Jq(x) =

∇q1(x)T

...
∇qm(x)T

 ,
and the by the chain rule we have the gradient of f(x)

∇f(x) =
m∑
i=1

qi(x)∇qi(x) = Jq(x)Tq(x) (1.69)

Further, the Hessian matrix is given by

Hf (x) = Jq(x)TJq(x) +
m∑
i=1

qi(x)Hqi(x). (1.70)

The defining characteristic of the Gauss-Newton method is that it approximates
the Hessian matrix by neglecting the last term in (1.70), leaving us with the Gauss-
Newton iterative scheme

xk+1 = xk − γk
(
Jq(xk)

TJq(xk)
)−1

Jq(xk)
Tq(xk). (1.71)

The Gauss-Newton scheme is favorable for minimizing least square problems as it
only requires the calculation of the Jacobian of q. Further, if Jq has full rank, the
direction calculated is guaranteed to be a decent direction [23].
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1.4.2 Multi-point stress approximation

The multi-point stress approximation (MPSA) is an an extension to the well es-
tablished multi-point flux approximation (MPFA) developed for flow simulations
in porous media [25]. It is a cell-centered finite volume method that solves vector
variable problems, in our case Hooke’s law for linearly elastic materials where we
solve for the displacement. The method is particularly favorable for its ability to
handle heterogeneous and discontinuous coefficients, which will be important to
us when we solve the elasticity equations with heterogeneous Lamé parameters.
This section is based on Cell-centered finite volume discretizations for deformable
porous media by Nordbotten [26].

Let Ω be some domain with boundary ∂Ω. The static momentum balance equa-
tions for an elastic medium reads∫

∂Ω

T dA+

∫
Ω

f dV = 0, (1.72)

where T are the surface traction vectors on the boundary, and f are the body
forces acting in the material. Recall that in the case of small deformations and a
linear stress-strain relationship, we have the Cauchy stress formula

T = σ · n, (1.73)

where σ is the Cauchy stress tensor, and n is the outward facing normal vector.
Equation (1.72) and (1.73) can be rewritten into the equilibrium equations

∇ · σ + f = 0. (1.74)

Discrete momentum conservation

We partition our domain into non-overlapping cells Ωi. For two cells Ωi and Ωj,
denote their shared boundary ei,j, called a cell face. We can now rewrite (1.72) for
each cell as ∑

j

∫
ei,j

T dA+

∫
Ωi

f dV = 0. (1.75)

Let fi be the volume average force over the cell Ωi and Ti,j the surface average
stress over face ei,j. This subscript notation must not be confused with Einstein
notation. Using this notation, (1.75) can be written as

1

|Ωi|
∑
j

∣∣ei,j∣∣Ti,j + fi = 0 (1.76)
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Discrete stress

The finite volume method is completed through the choice of a discrete expression
for the stress on cell faces. This is where Hooke’s law comes in. We want to
express the surface stress Ti,j as a linear function of the displacement ui. For the
conservation property in (1.75) to be fulfilled, we must require that Ti,j = −Tj,i,
where for each face we linearly approximate the traction vector as

Ti,j =
∑
k

ti,j,kuk, (1.77)

where ti,j,k = −tj,i,k are called the stress weight tensors, and k denote cells neigh-
boring the edge ei,j.

The calculation of ti,j,k for face ei,j is split into smaller calculations by using a dual
grid that divides the faces into subfaces, see Figure 1.7. The volume associated
with corner l and cell Ωi we call a subcell and is denoted Ω̃i,l. Further, we have
subfacecs denoted ẽi,j,l, and stress weights for subface ẽi,j,l are denoted t̃i,j,l,k, and
we have

ti,j,k =
∑
l

t̃i,j,l,k. (1.78)

Given a corner l, the number of subcells to consider when calculating the stress
weight tensor for each subface will depend on the type of MPSA method used.
The most popular being the O, L, and U-method.

Calculation of stress weights

To calculate the stress weights for each subface, we first need to define the dis-
placement within each subcell. To do so, consider a linear approximation of the
stress weights for subface ẽi,j,l to the displacement within each subcell Ω̃i,l, which
is then approximated by a multi-linear function of the spacial coordinates

u = ui +∇ui,l · (x− xi) for xi ∈ Ω̃i,l, (1.79)

where ∇ui,l is the gradient of the displacement within Ω̃i,l.

We now impose continuity requirements for the traction and displacement. Trac-
tion continuity over a subface is given by

Ti,j,k = −Tj,i,k. (1.80)

Remembering that T = σ · n, we can write it as[
Ci :

(
∇ui,l +

(
∇ui,l

)T)]·ni,m,l =

[
Cj :

(
∇uj,l +

(
∇uj,l

)T)]·ni,m,l if ẽi,m,l ⊂ ẽi,j,l,
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Figure 1.7: Visualization of grid with solid black lines, and the dual grid with
dashed lines. Cell centers are marked by dots. Note that the grid is shown as
non-orthogonal to highlight the capabilities of the MPSA method, however, we
use orthogonal girds in all our experiments. Figure is adapted from [26].

where ni,m,l is the average normal vector of subface ẽi,m,l.

Displacement continuity is given by

ui +∇ui,l · (x̃i,m,l,n − xi) = uj +∇uj,l · (x̃i,m,l,n − xj), (1.81)

where x̃i,m,l,n is called a continuity point.

Finally, one can now assemble linear system for the unknown gradients∇ui,l within
the interaction regions. Once we have the gradients, we can calculate the local
stresses from the constitutive relation and finally the traction vector for each face
and cell-centered displacement.



Chapter 2

Elastic Image Registration

In this chapter, traditional elastic registration is derived through the use of fun-
damental concepts from linear elasticity and energy minimization. The arising
image-derived forces are discussed, along with some disadvantages of the method.
Then, a novel elastic registration method presented and discussed. Implementation
details of both methods are covered.

2.1 Traditional elastic image registration

The elastic registration method assumes that the image subject behaves linearly
elastic, and intends to regularize the problem such that the resulting displacement
field conforms with this assumption. It is widely used in medical imaging, as the
linear elastic model can be used to model tissue and organs. Registration is often
required as changes in the anatomy during the imaging process is a normal, and
often unavoidable occurrence. These changes can, for example, come as a result
of patient movement, respiration, or the heart beating.

Elastic registration is now derived using fundamentals from linear elasticity and
principals of energy minimization. Recall from subsection 1.3.1 that the total
potential energy for a body is given by the functional

Π = U + V, (2.1)

where U is the strain energy, defined as the energy stored in the body due to some
deformation, and V is work done by external forces. If the body is linearly elastic,
the strain energy is given by

U =
1

2

∫
Ω

σ : ε dx. (2.2)

35
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Further, if the body it is isotropic, we have the familiar stress-strain and strain-
displacement relations

σ = 2µε+ λtr(ε)I, and ε =
1

2

(
∇u+ (∇u)T

)
,

which we can insert into (2.2) to get

U =
1

2

∫
Ω

σ : ε dx =

∫
Ω

µ

4

(
ui,j + uj,i

) (
ui,j + uj,i

)
+
λ

2
ui,iuk,k dx. (2.3)

We can recognize the above equation as the elastic regularizer first introduced in
subsection 1.1.4. Elastic registration mimics the functional Π from (2.1) by using
a distance measure D to model the work done by external forces V . This is added
to the physical measure of strain energy U , giving us the defining functional for
elastic registration

J (u) = D(Tu,R) + α

∫
Ω

µ

4

(
ui,j + uj,i

) (
ui,j + uj,i

)
+
λ

2
ui,iuk,k dx, (2.4)

where Tu and R are the transformed moving image and reference image respec-
tively, and α is the regularization parameter. By the principle of minimum poten-
tial energy, the problem is now to find the displacement field u which minimizes
J (u). In other words, elastic registration is defined by the following minimization
problem

min
u

J (u), (2.5)

which we from now on refer to as the traditional elastic registration method, to
differentiate it from the elastic method to be derived later in this chapter.

2.1.1 Solution strategies

To solve (2.5), one has to choose between the so called discretize-then-optimize
(DTO) approach, and the optimize-then-discretize (OTD) approach. With the
DOP approach, the minimization problem is directly discretized to obtain a high
dimensional nonlinear optimization problem, which is then typically solved with
an iterative solver [27, 3].

The OTD approach solves the problem using variational principles. It begins by
finding the necessary continuous optimality conditions analytically, known as the
Euler-Lagrange equations, and then optimizes the equivalent system [6]. In other
words, we find the stationary points of the equations. The optimality conditions
are found by using calculus of variation and calculating the first variation, or
the Gâteaux derivative, of J (u). The derivation is analogous to the one done
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in subsection 1.3.2. This results in the Euler-Lagrange equations, which for the
traditional elastic registration problem becomes [6]{

fIR(x,u) + α
(
µ∇2u+ (λ+ µ)∇(∇ · u)

)
= 0 in Ω

σ · n = 0 on ∂Ω
(2.6)

where fIR(x,u(x)) is the Gâteaux derivative of the distance functional. We rec-
ognize (2.6) as the Navier-Lamé equations. The homogeneous Neumann boundary
conditions are the natural conditions arising when deriving the Euler-Lagrange
equations, which must be satisfied when no condition is prescribed on the bound-
ary (see e.g. [6] for a more detailed discussion). The equations would now be
discretized and solved for u, typically with either a fixed-point iteration method,
or by introducing an artificial time variable and determining the steady-state so-
lution of the system.

2.1.2 Image-derived forces

In equation (2.6), we see the appearance of fIR(x,u), and if we were to use the
terminology from subsection 1.3.1, it would be natural to view this as a force acting
on the body. Lets call fIR(x,u) the image force, and notice that it is dependent
on both x and u, meaning it is a nonlinear term. It can be viewed as an external
force that pushes every individual point in the moving image in a specific direction,
in order to minimizes the distance measure. The regularizing term can be viewed
as internal forces resisting this displacement until an equilibrium state is found.

As previously stated, the image force is the Gâteaux derivative of the distance
functional. If D = DSSD is chosen as the distance measure, the image force
becomes [6]

fIR(x,u) = (Tu −R)∇Tu. (2.7)

Clearly, the image force is an unphysical force. No matter what distance measure
is chosen, the image force will always be computed from image data alone. If the
regularization parameter α is chosen to be too small, the image force will start to
fit noise. If we were to a use a different distance measure, e.g. the NGF from (1.6),
we would get a different expression for the image force, which would in turn act
differently on the body. The force will be non-zero at locations where there is a
measurable difference between the moving and reference image, and zero in areas
with constant intensities.

2.1.3 Disadvantages of the traditional method

The traditional elastic image registration approach will often produce satisfactory
results, however, it has several intimidate disadvantages: It relies solely on the



2.2. BOUNDARY-DRIVEN ELASTIC IMAGE REGISTRATION 38

unphysical image force to ”drive” the registration forward, as made clear by the
previous section. As a consequence, the parameters µ and λ loses most of its
original physical meaning, and is often refereed to as ”regularization parameters”
in image registration literature, as opposed to ”material/tissue parameters”. The
process of finding a displacement field is often reduced to manually tuning the
parameters α, µ, and λ so that the resulting transformed image is visually accept-
able, while making sure the displacement field is physically possible, e.g. avoiding
folding of the tissue. There is no unified way of choosing the regularization pa-
rameters, and the order of magnitude can greatly change based on which distance
measure is chosen. Further, as the traditional elastic method solves the Navier-
Lamé equations, the Lamé parameters are assumed to be constants for the entire
domain, which means that assigning different parameters to different regions of
the image is not possible with this method.

Equation (2.4) is essentially a sum of a physical measure of the strain energy, and
an unphysical measure of the applied forces. This can be troublesome when image
registration is applied to problems where the goal is to recover an appropriate
approximation of the underlying displacement field. Examples of such studies
can be found in [5, 28], where they conclude that one cannot expect to restore a
physically correct displacement field with traditional elastic registration.

2.2 Boundary-driven elastic image registration

In many cases, the elastic deformation of a body is due to an applied force on
the boundary, rather than a body force. This is not possible to model with the
traditional approach due to unphysical image force and the other previously men-
tioned disadvantages. We now present a novel image registration method where
the image force is avoided.

Let us first recall the equilibrium equations for a linearly elastic isotropic body
with domain Ω, and boundary ∂Ω = ∂ΩU ∪ ∂ΩN ,

fb(x) +∇ ·
(
2µε(u) + λ(∇ · u)I

)
= 0 in Ω,

u = gD on ΩD,

σ · n = gN on ΩN ,

(2.8)

where u(x) is the displacement, σ = 2µε+λtr(ε)I is the stress tensor, fb(x) is the
body force, λ(x) and µ(x) are the first and second Lamé parameters respectively,
gD and gN are boundary conditions on parts of the boundary where Dirichlet and
Neumann conditions are assigned respectively, and n is the outward normal vector.

Given a body force and boundary conditions, we can solve (2.8) for the displace-
ment field u. However, the actual boundary conditions are in most cases unknown,



2.2. BOUNDARY-DRIVEN ELASTIC IMAGE REGISTRATION 39

and this is what the our new method, which we will call boundary-driven image
registration (BDIR), will search for. To do so, we propose the following PDE
constrained minimization problem

min
p

D (Tu,R)

s.t. fb(x) +∇ ·
(
2µε(u) + λ(∇ · u)I

)
= 0 in Ω,

u = gD(x;p) on ∂ΩD,

σ · n = gN(x;p) on ∂ΩN ,

(2.9)

where the variable we are minimizing over, p, is present in the cost function im-
plicitly through u on the boundary. Tu and R are the transformed moving image
and reference image respectively. gD(x;p) and gN(x;p) should be interpreted as
functions defined by the parameter p and gives a value for every x ∈ ΩD and
x ∈ ΩN respectively.

The PDE in the first constraint in (2.9), i.e. the equilibrium equation, is purposely
kept in its most general form to avoid needing to make assumptions about µ
and λ. This means the BDIR method will be able handle heterogeneous Lamé
parameters, which opens up the possibility of optimizing over them, as will be
done in section 3.3.

If we were to assume µ and λ are constants in Ω, the BDIR problem can be written
as

min
p

D(Tu,R)

s.t. fb(x) + µ∇2u+ (µ+ λ)∇(∇ · u) = 0 in Ω,

u = gD(x;p) on ∂ΩD,

σ · n = gN(x;p) on ∂ΩN ,

(2.10)

where the first constraint is now the Navier-Lamé equations. There is a clear
similarity between the above minimization problem and the traditional elastic
image registration equation in (2.6). However, notice the important difference in
the body force term. In equations (2.9) and (2.10), fb(x) should be interpreted
as the physical body force acting on the body. Typically, this is a gravitational
force acting on the entire domain. This is in contrast to the previously described
nonlinear image force fIR(x,u) in (2.6), which has no physical meaning. Note also
that there is no longer a registration parameter α needed, as we are not balancing
similarity and regularity as in the traditional case.

The BDIR method is designed for registration problems where the underlying
deformation comes as a result of a force and/or displacement on the boundary. The
resulting displacement field will satisfy the momentum balance equation without
the need for an unphysical image force.
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2.3 Implementation

The traditional elastic registration problem and the elastic BDIR problem are
fundamentally different, so the implementation of the two methods will naturally
differ. Implementation details for both problems are explained in is this section.

The traditional elastic registration problem is solved using the Flexible Algorithms
for Image Registration (FAIR) toolbox for MATLAB [3]. As the minimization
problem in (2.5) can be formulated as a least squares problem, a Gauss-Newton
optimization method, described in subsection 1.4.1, with an Armijo line-search,
used to minimize the problem. This means the computation of the Hessian matrix
can be done with a relatively low computational cost.

A multilevel approach is used, where the images are represented through several
levels of coarseness. The coarsest level is registered first, and the result is used
as an initial guess for the next level. This is done to decrease the chances of the
solver being stuck at a local minimum, and fewer computations is need on the
finer, more expensive levels to converge.

Figure 2.1: Multilevel representation of an image. Registration of the coarsest
image is performed first, and its solution is used a a starting guess for the finer
level.

The BDIR procedure can summarized in three steps: First, given a set of boundary
conditions, solve the governing equations of linear elasticity for the displacement
field. Then, transform the moving image using the computed displacement field
and check the distance measure. Finally, if convergence is not reached, step in the
direction minimizing the distance measure by updating the boundary conditions,
and repeat the process. A general schematic diagram of the registration process
is shown in Figure 2.2.

To solve the governing equations of linear elasticity, the MRST package for MAT-
LAB [29]. MRST, or MATLAB Reservoir Simulation Toolbox, is a SINTEF de-
veloped open-source software primarily designed for reservoir modeling and sim-
ulations. The module fvbiot is used to discretize and solve the equations, with
an implementation of the MPSA method explained in subsection 1.4.2. This cell-
centered finite volume method is capable of robustly handling spatially varying



2.3. IMPLEMENTATION 41

and discontinuous Lamé parameters. Implementation details for the fvbiot mod-
ule can be found in [30]. The optimization is done with the use of MATLABs
optimization toolbox, using a quasi-Newton scheme with the BFGS update of the
Hessian matrix, as explained in subsection 1.4.1.

Figure 2.2: Schematic diagram of the BDIR process.



Chapter 3

Experiments

In this chapter, several image registration experiments are done, and is divided
as follows. Experiment 1 explores the role of the image force by investigating the
agreement between image similarity and displacement field error. In Experiment
2, use of the novel BDIR method is demonstrated on both synthetic and real
data. Both time-dependent and independent images are considered. Finally, in
Experiment 3, we explore the use of the BDIR method to estimate the Lamé
parameters. The results are discussed in section 3.4

Experimental setup

We present the experimental setup and state some information which apply to all
experiments.

Image data

The image data1 is from an unpublished calibration study in collaboration with
Department of Radiology Haukeland University Hospital Bergen Norway. The ac-
quisition was performed using T1-weighted 3D spoiled gradient recall echo (GRE)
FLASH3D pulse sequence on a 3T Siemens MR scanner. The MRI images were col-
lected under deep breathing to achieve a dynamic sequence containing significant
amount of breathing motion. The acquisition parameters were: FOV = 400mm
× 325mm × 42mm, matrix size = 192 × 156, pixelsize = 2.08mm × 2.08mm ×
3.00mm. Total number of time points was 40.

All experiments are done in 2D, meaning we only use the first two spatial di-
mensions of the image data. Thus we have u = [u1(x), u2(x)] and x = [x1, x2].

1Courtesy of Dr. Erik A. Hanson.

42
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Figure 3.1: Moving image T (x) of a human abdomen. The axes are according to
a Cartesian coordinate system.

To keep computational time at a reasonable level, the image data was resized by
a factor of 0.5. For time-dependent registration, as done in Case 3 of Experi-
ment 2, the moving image is T (x, t), where all time points of the image data is
used. For time-independent registration, the moving image T (x), with domain
Ω = [0, D1]× [0, D2], is taken as a fixed time point of the image data, and is shown
in Figure 3.1. As the images are monomodal, we use D = DSSD as the distance
measure for all experiments.

Forward simulation

We define a forward simulation as: Let I(x) be some image. Given some bound-
ary conditions, we solve the elasticity equations from subsection 1.2.5 to obtain
the displacement field uforw. This is then used to transform the image I(x) into
Iforw(x) = I(x+uforw). Experiment 1 uses forward simulations to obtain ground
truths, and in Experiment 2 and 3, synthetic cases are considered where the dis-
placement field is obtained from a forward simulation.

Boundary conditions and body forces

Boundary conditions for the elasticity equations are chosen based on assumptions
we make about the image data. As the images were collected under deep breathing,
we assume the displacement comes solely as a result of respiration. The bottom side
is set to zero displacement (homogeneous Dirichlet), the left and right side are set
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to zero traction (homogeneous Neumann). The top boundary, which corresponds
to the domain

Γ = {x ∈ Ω : x2 = D2} , (3.1)

is prescribed a Dirichlet boundary condition specific to the experiment being done.

For forward simulations, we define the boundary displacement function

F : Γ→ R2, F (x) = [F1(x), F2(x)]. (3.2)

We assume the displacing force is only asserted vertically. To model this, we set
F1(x) = 0 and

F2(x) = M

((
x1 −

D1

2

)2

−
(
D1

2

)2
)(

x1 −
D1

2

)2

(3.3)

where M is a scaling factor. F is designed to mimic the displacement introduced
as a result of respiration [28]. We have used M = 10 in our experiments.

For BDIR, we optimize over the boundary condition on Γ. To do so, we define the
boundary displacement function

gD(x;p) = [0, gD(x;p)], (3.4)

where
gD : Rk → {f : Γ→ R} . (3.5)

Again, the first component of (3.4) is set to zero as the displacement is assumed
to be only asserted vertically. gD(x;p) is set to be a cubic spline interpolating
function, which for a parameter p, defines a function which can be evaluated at
x ∈ Γ, giving us the value of u in the vertical direction for every point on the
boundary. We have used k = 20 in our experiments.

We neglect any body forces, e.g. gravity, and set fb = 0 for all forward simulations
and BDIR experiments.
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3.1 Experiment 1 - Similarity vs displacement

field error

In this experiment, we investigate the role of the image force by exploring the
agreement between image similarity and displacement field error when performing
traditional elastic registration. As discussed in Chapter 2, the image force act as an
unphysical body force driving the registration forward, and we aim to explore the
effects it has on the result. In an ideal scenario, we would want the displacement
field resulting in the lowest image similarity error to correspond with the lowest
displacement field error.

First, we need a known displacement field to compare the registration results
against. However, in practice we rarely know the underlying displacement field.
We obtain a known displacement field uforw and corresponding transformed image
Tforw = T (x+ uforw) through a forward simulation.

Next, we want to recover Tforw and uforw through image registration. To do
so, we set Tforw as the reference image and T as the moving image, and regis-
ter them with traditional elastic registration. By doing so, we obtain uIR and
TIR(x) = T (x + uIR). We are now able to compare the relative displacement
field error Edisp(uIR,uforw) using (1.14) and the relative image intensity error
Eimg

(
TIR, Tforw

)
using (1.15). The experiment is done with both homogeneous

and heterogeneous Lamé parameters in the forward simulation.

3.1.1 Case 1: Homogeneous Lamé parameters

In this case, we perform the forward simulation to get uforw using homogeneous
Lamé parameters in the entire domain, specifically µ = λ = 1. The moving image
T is shown in Figure 3.1. On the top boundary Γ we, use F from (3.2). Figure 3.2
shows T with F2 superimposed. Figure 3.3 visualizes the displacement field uforw
along with Tforw.

The images are registered with T and Tforw as moving and reference image re-
spectively, giving us uIR and TIR. This is done with increasing values of µIR
and λIR, and we calculate Edisp and Eimg for each registration result. Note the
difference between {µ, λ}, which are the first and second Lamé parameter when
solving the elasticity equations in the forward simulation, and {µIR, λIR}, which
are registration parameters. Table 3.1 lists all relevant registration parameters.



3.1. EXPERIMENT 1 - SIMILARITY VS DISPLACEMENT FIELD ERROR46

Figure 3.2: Moving image T with F2 superimposed on top of the abdomen to
simulate breathing motion. The amplitude of F2 is shown in arbitrary units
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(a) Absolute displacement field |uforw|
with homogeneous Lamé parameters. Col-
orbar in mm.

(b) Transformed image Tforw(x) = T (x+
uforw).

Figure 3.3: (a) Displacement field and (b) transformed image from forward simu-
lation. Computed with homogeneous Lamé parameters.
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Parameter Symbol Value
Distance measure D SSD
Regularizer R Elastic
Regularization parameter α 1000
1st Lamé parameter µIR [0.1, 0.2, . . . , 4]
2nd Lamé parameter λIR [0.1, 0.2, . . . , 4]

Table 3.1: Registration parameters. µIR and λIR are varied from 0.1 to 4 with an
increment of 0.1.

Figure 3.4 shows plots of Edisp and Eimg for fixed values µIR and λIR. Surface plots
are shown in Figure 3.5. We note that Edisp has a clear minimum point. However,
this does not correspond to a minimum in Eimg. In fact, Eimg keeps increasing as
we increase µIR and λIR. Possible reasons for this behavior will be discussed in
section 3.4.
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(a) Varying µIR with fixed λIR = 1.
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(b) Varying λIR with fixed µIR = 1.

Figure 3.4: Values of Edisp
(
uIR,uforw

)
in blue and Eimg

(
TIR, Tforw

)
in orange

for varying values of (a) µIR and (b) λIR. The forward simulation is done with
homogeneous Lamé parameters.
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Figure 3.5: Surface plots of Edisp and Eimg. Note the clear minimum of Edisp as
opposed to Eimg. Forward simulation is done with homogeneous Lamé parameters.

3.1.2 Case 2: Heterogeneous Lamé parameters

To further investigate the agreement between image similarity and displacement
field error, we let µ(x) and λ(x) vary in space in the forward simulation. This
will model a more complex case as we can assign different Lamé parameters to
different regions.

Segmentation masks of the spine and both kidneys, shown in Figure 3.6, were
manually drawn and assigned values according to Table 3.2. This gives us three
distinct regions; spine, kidney, and other organs. ”Other organs” consists mostly
of the liver and spleen, and reefers to the remaining soft tissue.

It is important to note that the main goal here is to create a more complex dis-
placement field to see how it affects the agreement between image similarity and
displacement field error. However, the actual values of µ(x) and λ(x) are not
necessarily physically correct. The values in the region labeled as other organs
are arbitrarily set to µ = λ = 1, while the kidneys are set to be stiffer than the
surrounding tissue. The spine is set to a value of order 108 rendering it almost com-
pletely rigid. Figure 3.7 visualizes the displacement field uforw. We see that the
region corresponding to the spine has zero displacement, and the kidneys displace
differently than the surrounding organs due to its higher Lamé parameters.

The registration is done with the same parameters as in Case 1, with registration
parameters listed in Table 3.1. From the results in Figure 3.8, we again note that
the minimum of Edisp does not correspond to a minimum of Eimg. This is further
discussed in section 3.4.
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Figure 3.6: Manual segmentation of the
MRI image. Spine in yellow and kidneys
in red. Tissue specific Lamé parameters
were assigned according to the segmen-
tation

Parameter Kidney Spine Other organs
µ 4 1× 108 1
λ 2 1× 108 1

Table 3.2: Lamé parameters for kidney,
spine and generic organ.
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Figure 3.7: Absolute displacement field |uforw| with heterogeneous Lamé parame-
ters. Notice there is no deformation along the spine, and the outline of the stiffer
kidneys are visible. Colorbar in mm.
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Figure 3.8: Values of Edisp
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for varying values of (a) µIR and (b) λIR. The forward simulation is done with
heterogeneous Lamé parameters.
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Figure 3.9: Surface plots of Edisp and Eimg. Forward simulation is done with
heterogeneous Lamé parameters.
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3.2 Experiment 2 - Boundary-driven image reg-

istration

In this experiment, we demonstrate the capabilities of the novel BDIR method,
presented in section 2.2. Both synthetic and real cases are considered, where in
the latter case, both time-dependent and independent images are registered. The
results are compared to the ones produced by traditional elastic image registration.
The minimization problem defining the elastic BDIR method is repeated here for
ease of reading:

min
p

D(Tu,R)

s.t. fb(x) +∇ ·
(
2µε(u) + λ(∇ · u)I

)
= 0 in Ω,

u = gD(x;p) on ∂ΩD,

σ · n = gN(x;p) on ∂ΩN ,

(3.6)

where Tu and R are transformed moving image and reference image respectively,
fb(x) are body forces, gD(x;p) and gN(x;p) are boundary conditions. Note the
dependency of the optimizing variable p. Domains ∂ΩD and ∂ΩN are parts of the
boundary prescribed with Dirichlet and Neumann boundary conditions respec-
tively, and the full boundary of the domain Ω is ∂Ω = ∂ΩD ∪ ∂ΩN .

3.2.1 Case 1: Synthetic displacement

To demonstrate the validity of the registration method, we construct a case where
the displacement is known, and try to recover it with BDIR. The purpose of this
test is to ensure that the method gives reasonable results in predictable cases.

The known displacement field is obtained by a forward simulation, giving us uforw
and Tforw = T (x + uforw). This is done with F from (3.2) as the top Dirichlet
boundary condition for domain Γ in (3.1). Further, we use homogeneous Lamé
parameter equal to 1 for the entire domain.

Tforw and uforw are reconstructed using BDIR, setting Tforw as the reference image,
and T as the moving image. For the domain Γ from (3.1), corresponding to the top
boundary, we use gD from (3.4). As we have homogeneous Neumann conditions
on ∂ΩN , we set gN = 0. Finally, the Lamé parameters are set to be homogeneous
equal to 1. The BDIR results gives us uBDIR and TBDIR = T (x+ uBDIR).

Figure 3.10 shows the resulting boundary displacement, gD, found to satisfy (3.6),
along with F2. Notice that they are nearly identical. The relative error between

boundaries were found to be
‖F−gD‖2
‖F ‖2

= 3.89 × 10−3 %. Further, the relative dis-

placement field error Edisp(uBDIR,uforw) = 6.50 × 10−2 % and relative image in-
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Figure 3.10: (a): Boundary displacement used in the forward simulation F2 and
boundary gD found to satisfy (3.6). Note that they lie on-top of each other. (b):
Convergence plot

tensity error Eimg(TBDIR, Tforw) = 2.38× 10−3 %, which both suggest a successful
registration.

3.2.2 Case 2: Real displacement - Time-independent reg-
istration

A real case using the MRI image data is now considered. A time-independent
image is registered to a reference image using BDIR. As the images are taken from
an MRI-scan of the human abdomen, the true displacement is now unknown.

The reference and moving images, R and T , can be seen in Figure 3.11. They differ
from each other as a result of the person breathing during the imaging process.
The displacement is assumed to be caused solely by the respiration force, which
we again model by using gD from equation (3.4) as the top boundary condition.
Homogeneous Lamé parameters equal to 1 is used.

Figure 3.12a shows the resulting boundary displacement. Note that gD is close to
zero where the spine lies, and has maxima located between the spine and left and
right boundary. Figure 3.12b visualizes the resulting displacement field.

In Figure 3.13, two different visualizations of the BDIR results are shown. The
colored visualization shows a magenta/green color where the images differ in in-
tensity, while the difference visualization shows |TBDIR − R|. The results are
compared to the ones produced by a traditional elastic registration approach. In
terms of relative intensity error Eimg, the BDIR method achieved an error of 19.2%



3.2. EXPERIMENT 2 - BOUNDARY-DRIVEN IMAGE REGISTRATION 53

(25.1% decrease), while the traditional method achieved an error of 11.5% (53.8%
decrease). The results will be discussed in section 3.4.

(a) T (b) R

Figure 3.11: (a) Moving image and (b) reference image used for single image BDIR.
They differ from each other as a result of the person breathing during the imaging
process.
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Figure 3.12: Registration result: (a) Optimal boundary displacement found to
satisfy the BDIR problem (3.6), and (b) the corresponding absolute displacement
field. Colorbar in mm.



3.2. EXPERIMENT 2 - BOUNDARY-DRIVEN IMAGE REGISTRATION 54
C

ol
or

ed

Unregistered BDIR Traditional IR

D
iff

er
en

ce

Figure 3.13: Visualizations of the BDIR results. First column shows the unregis-
tered images, the second is registered with BDIR, and the last is registered with
traditional elastic registration.

3.2.3 Case 3: Real displacement - Time-dependent regis-
tration

The time-dependent image T (x, t) from the MRI data is now registered using
BDIR. Registering time-dependent images is one of the most common tasks in
medical image registration, and is a suitable way of demonstrating the capabilities
of the method.

The MRI image is registered in sequence, meaning all time-points are registered
with Figure 3.11b as the reference R(x) = T (x, t = 0). Registration of T (x, t)
gives us the registered image TBDIR(x, t). To illustrate the results, vertical slices at
different spacial positions are taken from T and TBDIR from each time-point. The
slices are displayed along the horizontal axis, which can be seen as a time-axis.
Figure 3.14 shows the results. Notice how in the unregistered image, wave-like
patterns can be seen. This is a result of the breathing cycle of the person being
scanned. Straight horizontal lines in the registration result indicate spacial align-
ment. To compare the results, the same image was registered using the traditional
method. In terms of average relative image intensity error, BDIR achieved an error
of 15.6%, while the traditional method achieved an error of 10.2%.

Figure 3.15 shows the found optimal boundary displacement gD for several different
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time instances. Here we can clearly see the periodic nature of the breathing cycle.
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Figure 3.14: Vertical cuts through the images at two different spacial positions.
First column shows slices form the unregistered image, the second is from the
registered image using BDIR, and the last is registered using the traditional elastic
method.
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Figure 3.15: Optimal boundary displacement shown in different colors for various
time instances. .
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3.3 Experiment 3 - Tissue parameter estimation

In this experiment, we expand on the BDIR minimization problem, and simul-
taneously search for optimal boundary conditions and optimal tissue parameters,
i.e. the Lamé parameters µ(x) and λ(x). This greatly increases the complexity
of the problem, as the Lamé parameters can significantly impact the boundary
condition values. Being able to estimate tissue parameters with non-invasive tools
can potentially improve the diagnosis of diseases like chronic kidney disease, see
e.g. articles by Hodneland et al. [28, 5]. With this experimental setup, we do not
intend to accurately estimate physically correct tissue parameter values, but rather
explore the effects of using image registration to optimize over the parameters.

A synthetic case is first considered, where a known displacement field, with known
Lamé parameters, is used to transform an image. The displacement field, and
specifically the Lamé parameters, are attempted reconstructed. A real case, with
unknown displacement, is then considered, where different setups are tested to
explore the effects of the addition to the problem.

With the addition of the Lamé parameters, the BDIR method reads

min
p, µ, λ

D(Tu,R)

s.t. fb(x) +∇ ·
(
2µ(x)ε(u) + λ(x)(∇ · u)I

)
= 0 in Ω,

u = gD(p) on ∂ΩD,

σ · n = gN(p) on ∂ΩN .

(3.7)

To reduce computational complexity, we add further constraints to the problem
by modeling the Lamé parameters as piecewise constant, and only optimize over
the value inside a region of interest.

3.3.1 Case 1: Synthetic displacement

For the moving image T (x), we define a subdomain Ωkid according to the segmen-
tation shown in Figure 3.16. For the forward simulation, the Lamé parameters are
set to

µforw(x) =

{
4, if x ∈ Ωkid

1, otherwise,
and λforw(x) =

{
2, if x ∈ Ωkid

1, otherwise.

The boundary displacement function F from (3.2) is set as the top Dirichlet bound-
ary condition. The forward simulation gives us uforw and Tforw
Solving (3.7), we obtain uBDIR and TBDIR. Optimal Lamé parameters found were
µ = 4.000597 and λ = 1.99615 which is corresponds well with µforw and λforw.
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Figure 3.16: Manual segmentation of the kidneys, corresponding to Ωkid, shown in
red.

Further, the relative boundary error was found to be
‖F−gD‖2
‖F ‖2

= 3.89 × 10−3 %.

Relative displacement field error Edisp(uBDIR,uforw) = 6.49× 10−2 % and relative
image intensity error Eimg(TBDIR, Tforw) = 2.39×10−3 % both indicate a successful
registration.

3.3.2 Case 2: Real displacement

The MRI image data is registered with BDIR meaning the true displacement
field and Lamé parameters are unknown. This experiment is similar to Case 2 in
Experiment 2, with the addition of optimization over the Lamé parameters.

As suggested by S. Kabus [31], the Lamé parameters should be set in a relative
way, as the reported values for the same tissue-type varies a lot across different
literature. In our experimental setup, the values of µ(x), λ(x)∀x /∈ Ωkid are
arbitrarily set to 1, and we therefore have

µ(x) =

{
µkid, if x ∈ Ωkid

1, otherwise,
and λ(x) =

{
λkid, if x ∈ Ωkid

1, otherwise,

where µkid and λkid are optimized over. This means that the meaning these pa-
rameters should be seen as a stiffness value relative to the surround tissue, rather
than a physically correct value.

The moving and reference image from Figure 3.11, with the kidney segmentation
from Figure 3.16, are registered with BDIR by solving solving (3.7). We define
four different cases to explore the interplay between the parameters:
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A Reference case with homogeneous parameters, i.e µkid = λkid = 1.

B Both µkid and λkid is optimized over.

C λkid is held constant equal to 1. µkid is optimized over.

D µkid is held constant equal to 1. λkid is optimized over.

For each case we note the relative intensity error Eimg, the bulk modulus Kkid =
λkid + 2µkid

3
, and the average volume changes of the kidneys, i.e. the mean of ∇ ·u

for x ∈ Ωkid. Table 3.3 lists the results, which will be discussed in next section.

Case SSD×106 Eimg × 100% µkid λkid Kkid ∇ · u
Ureg. 1.297 - - - - -
A 0.728 19.18% 1 1 1.67 2.01× 10−4

B 0.718 19.06% 3.37 4.97× 10−4 2.25 1.81× 10−4

C 0.720 19.07% 4.54 1 4.02 1.31× 10−4

D 0.724 19.13% 1 3.82× 10−7 6.67× 10−1 2.97× 10−4

Table 3.3: Registration results for the four different cases. ∇ · u denotes the
average divergence of u in Ωkid.
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3.4 Discussion

The results from each experiment are discussed and in this section.

Experiment 1

In Experiment 1, we highlighted the lack of agreement between image similarity
and displacement field error using traditional registration methods.. From Fig-
ure 3.4 and Figure 3.9, it is clear that when varying µIR and λIR, the solution
giving minimum displacement field error does not correspond with the minimum
image similarity error. In fact, Eimg keeps decreasing as we decrease µIR and λIR,
and one possible reason for this is clear. Looking at the joint energy functional
to be minimized in equation (2.4), we see that lowering the regularization param-
eters puts more emphasis on the similarity term, and as a consequence, less on
the smoothness of the displacement field. Hence we see a decrease in image sim-
ilarity error. Lowering the parameters even further would eventually defeat the
purpose of regularization, and we could expect a decrease of Eimg along with a
highly unphysical displacement field, until the solver is unable to escape a local
minimum.

In Case 2 of Experiment 1, the same setup is repeated, but with a more complex
displacement field as the ground truth. A similar behavior as the first case is
found, as shown in Figure 3.8 and Figure 3.9. We note that values of Edisp is
higher for all values compared to Case 1. Furthermore, we note that lower values
of µIR and λIR is needed to minimize Edisp. A possible reason for this is the fact
that the Lamé parameters are constant for the entire domain in traditional elastic
registration, and needs to be set to a lower value to compensate for the larger local
changes in ∇u in Case 2 compared to Case 1.

The results found in this experiment illustrate that unphysical image-derived forces
will align images with a relative similarity error of approximately only 2%, while
at the same time having a relative displacement field error of approximately 10%.
Note that the results are sensitive to the specific images used, specifically the
amount of details in the image. Similar studies have found that traditional reg-
istration methods align images to the same degree as ours, but with a relative
displacement field error as high as 40% [5, 28, 32].

Experiment 2

In Experiment 2, the capabilities of the novel BDIR scheme is demonstrated.
A synthetically deformed image where the boundary conditions and displacement
field were known, was registered using the scheme. From the results in Figure 3.10,
we see that the boundary displacement found is close to the true displacement, with
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a relative error of order 10−3%, and relative displacement field error Edisp of order
10−2%. It is important to note that this test can be seen as a so-called inverse crime
verification test, as we are optimizing with the same numerical implementation as
the ground truth was calculated with. Is is done to ensure that the method gives
reasonable results in predictable cases. Relative displacement field error found with
BDIR is significantly better than the traditional methods, however, the results are
not directly comparable because of the inverse-crime bias.

Using a real dataset, MRI images of the human abdomen are registered with the
BDIR method. Both time-independent and dependent images are registered. From
Figure 3.13 and Figure 3.14 we see that the registration produces satisfying visual
results. In particular, the latter figure illustrates that BDIR produces comparable
visual results to traditional elastic registration.

In terms of reduction of the SSD, i.e. relative intensity error, traditional elastic
registration produces superior results. This is not surprising, considering that the
traditional approach has significantly higher degrees of freedom in the optimiza-
tion, where every point in the moving image can individually be displaced. This
is a direct result of the unphysical image force.

From Figure 3.15 we see that the found optimal boundary displacement is con-
sistently close to zero where the spine lies, and has maxima located between the
spine and left and right boundary. As we know the displacement is caused by deep
breathing, these results are in line with what we would expect.

The motivation for the BDIR method was to avoid the use of unphysical im-
age forces, and put more emphasis on the physical correctness of the resulting
displacement field, which was achieved by placing the source of displacement on
the boundaries of the domain. Unfortunately, as pointed out in subsection 1.1.5,
evaluation of the displacement field is difficult as the real displacement field is in
practice never known.

Experiment 3

In Experiment 3, we expand on the BDIR method to include optimization over
the Lamé parameters in selected regions on interest. A synthetic inverse-crime test
was performed, similar to the one in Experiment 2. The Lamé parameters of the
kidneys were recovered with an error of order 10−3.

Several cases were considered when optimizing over the Lamé parameters of the
kidneys to explore the interplay. From the results in Table 3.3, we note that the
lowest relative intensity error was achieved when optimizing over both parameters,
however, the difference between cases were found to be small. The average volume
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changes saw little variation in the different cases, which is desirable for the robust-
ness of the method, and values found are comparable to the ones in [28]. Finally,
we note that the highest bulk modulus found, corresponds to the lowest average
volume changes, and vice versa, which is consistent with what we could expect.



Chapter 4

Conclusions and Outlook

This thesis has two contributions. The effects of unphysical image-derived forces
are explored and highlighted, and a novel image registration method is presented.

In light of the image force, we investigated the usage of traditional elastic regis-
tration to accurately estimate displacement fields. Results from Experiment 1 in
section 3.1 show that the agreement between relative image similarity error and
relative displacement field error is poor, and the registration parameters strongly
influence the result. This is unavoidable, as the method tries to balance an unphys-
ical image force which tries to minimize similarity error, and a physical measure
of the displacement field.

A novel image registration approach was presented, the boundary-driven image
registration method, motivated by the need for a method where the resulting dis-
placement comes as a result of a force/displacement on the boundary, and avoiding
the image force. To validate the method, several experiments were done on both
synthetic and real data. The results from Experiment 2 in section 3.2 indicate
satisfactory visual results, comparable to traditional elastic registration, and per-
forms well in synthetic cases. The resulting displacement fields are guaranteed
to be physically plausible and obeys the governing equations of linear elasticity.
However, this is at the cost of a worse performance in terms of image similarity
error.

The BDIR method was expanded to explore the effects of optimizing over the Lamé
parameters and boundary conditions simultaneously. The results from section 3.3
indicate that we achieve a better registration in terms of image similarity error,
and we obtain relative tissue parameter values. This experiment serves mainly as
a proof of concept, and should be further investigated by adding more regions of
interest.

62
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The proposed method has the potential to be further developed into a more robust
registration algorithm to accurately estimate the physical displacement that has
occurred and the material parameters. Nevertheless, it has several limitations
which needs to be considered. The biggest limitation is computational cost. As we
assume the displacement is only driven by a force/displacement on the boundary,
the tissue parameters should be spatially varying to a much higher degree that what
is done in this thesis, in order to obtain a more physically correct displacement field.
However, optimizing over µ(x), λ(x) ∀ x ∈ Ω would require too much possessing
power with the current implementation. The MRST package was preferred in this
thesis as it allowed for rapid prototyping and robust solvers, but it was not used
to its full potential. The possibility of implementing automatic differentiation [33,
34], possibly with MRSTs own automatic differentiation framework [29], should
be explored in order to allow for higher degrees of freedom in the minimization
problem, while at the same time keeping the computational cost at a reasonable
level.

Finally, we risk loosing a significant amount of information when only performing
the registration in 2D. Hence, an extension to 3D registration [8, 35] should be
investigated. This could especially impact the results from the tissue parameter
estimation experiment, as tissue can expand/contract in every direction.
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