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Preface 

Inspiration for this research project came out of a very practical assignment that I 

received in June 2020 as part of my position as a financial analyst at a mid-size senior housing 

operator in Michigan. I was tasked with conducting some analysis to assess how COVID was 

impacting elderly people’s decision to move into a senior housing facility. The senior housing 

industry has suffered immensely under this pandemic, and among one of the many major 

problems facing the industry was a steep decline in new residents moving into the facilities. I had 

plenty of operational data specific to that organization available to me as well as general public 

data about COVID, so I wanted to see if I could build a model that could reasonably explain the 

patterns we were seeing in new move-ins given how the COVID situation had developed. After a 

few weeks of playing around with some basic system dynamics model structures, I managed to 

create a simple model that was able to nicely replicate the historical move in patterns our 

organization witnessed during the initial months of the pandemic. I have to admit that I mostly 

stumbled into the model structure and while I was happy to see that the model could reproduce 

the historical data, I had no basis whatsoever for claiming that the model was producing the right 

behavior for the right reasons. After all, there were only a few months of data available at that 

point and any number of possible model formulations could have probably managed to 

reproduce such a short period of behavior. The project struck my curiosity though and I began to 

consider how I could go about testing if this model had any structural validity to it. As time went 

on and I continued to update the model with new COVID data, it continued to produce the trends 

we saw in the real number of move-ins, so I began investigating the model assumptions further.  

Around that time, I was also in the midst of trying to select a topic for my master thesis and 

being that I was already in the middle of investigating this model, it seemed like a natural choice 

to continue investigating it in a formal academic manner. However, I was hesitant to adopt this 

as a formal research project since the starting point would just be a model for which I had little 

reason to believe had any validity other than the fact it seemed like it worked pretty well for the 

very specific problem I was analyzing. The typical process for building system dynamics models 

starts by defining a problem, then investigating the structure of the system that produces that 

problem, and then building a model of the system (Luna-Reyes & Anderson, 2004). This project 

has undergone an inverted process by essentially starting with a model that seems to work for a 
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very specific problem, then investigating the structure of the model compared to the real-world 

system, and then finally determining how the model can be broadly applied and what kinds of 

questions it can actually answer. Given this inversion of the process, there was a significant risk 

that I would end up with a project for which all I could conclude from it was that I took a model 

with no theoretical foundation and found that it was invalid: hardly a valuable academic 

contribution. It felt like a gamble to conduct research that might only expose the model as 

insufficient, invalid, or lacking any sort of general applicability. However, the results I continued 

to get from the initial model were difficult to ignore, and the potential insights that could be 

gained from a model like this made it worth that risk, and I believe it has so far shown to pay off. 

However, the greater risk in this project has been and remains that of falling for the confirmation 

bias, whereby I set out only to prove what I suspect already to be true. After all, I had a structure 

that has worked well since the beginning, so I have only needed to find information that confirms 

the [unfounded] assumptions within my original model. While I do believe that this research 

process has led to a substantially more robust model, both from a theoretical and mathematical 

standpoint, and that it certainly makes a compelling case for explaining how certain cognitive 

processes shape people’s behavior in response to changes in COVID, ultimately much more 

empirical and experimental research will need to be undertaken to validate this model. The 

boundary for this model is also very tight and certainly ignores several other important factors. 

Additionally, I may have misconstrued what phenomena are truly responsible for the trends we 

observe and falsely attributed the effects we have observed to ultimately irrelevant causes. The 

model also runs a risk of being far too simple, and in being so fail to provide an accurate 

structural explanation of the trends we observe in people’s behavior. Therefore, the conclusions 

drawn in this research should be considered in light of the significant additional research that 

must be conducted. In fact, the best I hope to accomplish by this project is merely to propose a 

plausibly valid model with a good theoretical and mathematical foundation which may inspire 

further research and experimentation from other researchers in other fields who are more 

qualified for studying this kind of problem; I have after all just a layperson’s knowledge of the 

cognitive and psychological processes that underly the theory for this model. In the meantime, I 

hope it could at least be of some use to other modelers as they also grapple with how COVID is 

influencing people’s behavior in the problems that they are researching.   
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Abstract 

COVID-19 has instigated sweeping and universal changes in how people carry on their day to 

day lives as they are forced to adjust to a constantly evolving pandemic. This research project 

investigates how general behavior patterns in many different industries have emerged from the 

evolving COVID pandemic. This project specifically considers theories from psychology and 

behavioral and cognitive science that are most likely to explain how people perceive, understand, 

and react to news about COVID (including anchoring and perception biases, Weber-Fechner’s 

laws of psychophysics, and the log-normal distribution of risk assessment for the population). 

These theories and cognitive mechanisms are then represented in a simulation model as a means 

of testing to what extent they are capable of explaining the time-series behavior data taken from 

a variety of industries and domains. The results have shown that a simple and general model of 

these cognitive mechanisms is able to substantially explain observed behavior patterns in many 

industries, including airline travel, dining at restaurants, workplace mobility, senior housing, and 

others. The result of this research provides a general model structure that, given reasonable 

parameterizations, offers a causal explanation as to how a population behaves at the aggregate 

level in a wide variety of domain just by accounting for some basic cognitive biases and 

heuristics. The insights provided by this model are both theoretical and practical. First, it offers a 

causal explanation of how COVID causes changes in behavior by means of the cognitive 

processes people undergo to perceive, understand, and react to COVID. Second, it offers a 

quantified explanation as to why behavior differs in different industries and domains by 

estimating a response distribution of the population for each particular domain. Third, it provides 

insights to policy makers and business managers as to how people may respond under different 

hypothetical COVID scenarios. Finally, it provides a general cognitive model structure that can 

be used in other COVID modeling projects or potentially other crisis situations beyond the 

COVID pandemic.  
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Problem Introduction: 

Problem Background: 
On March 11, 2020, the World Health Organization declared COVID-19 to be a world pandemic 

(World Health Organization, 2020). The COVID pandemic quickly plunged the world into 

turmoil as economies shut down, governments enforced lockdowns and social-distancing 

restrictions, and fear swept the globe as to how this pandemic would impact the future of our 

increasingly global society. Needless to say, this pandemic has left almost no area of our 

economy, society, or culture unchanged. Furthermore, COVID remains an extremely 

unpredictable situation as new variants continually pop up and regions are battered with wave 

after wave of infections, lockdowns, hospital overloads, and social unrest due to the pandemic. 

Businesses and governments have continuously grappled with understanding how people 

respond to the ever-changing pandemic situation. For businesses it is critical understand how 

consumer behavior is impacted by the virus. Many industries, such as hospitality and travel, have 

suffered an especially debilitating loss of business due to fear of the virus as well as government-

imposed restrictions; and such industries are not anticipated to fully recover for many years 

(Constantin, Saxon, & Yu, 2020). Industries need to know how much business they are likely to 

lose or recover as the pandemic continues to evolve. Additionally, governments need to 

understand how people react to the pandemic so that they can design effective economic, social, 

and health-related policies to combat the pandemic and its effects. Proper behavior forecasting is 

an essential component to designing effective short and mid-term strategies, whether in the 

private or public sphere.  

As the pandemic is only a little over a year old as of the time of this research paper, little 

research has been completed that offers a structural and well-quantified explanation as to how 

COVID is affecting a population’s behavior in domains not directly related to COVID. For 

instance, while much initial research has been done to show how changes in the pandemic are 

affecting health behaviors, such as hygiene habits, social distancing, mask wearing, vaccine 

sentiment, etc. (see for example, (Volker, Weiss-Cohen, Filkukova, & Ayton, 2021; Gkini, 2020; 

Anaki & Sergey)), there has been little that provides a causal or structural explanation for how 

COVID impacts behavior in other domains (such as mobility or consumption); and while loads 

of behavior data are readily available, most research so far has been limited to merely drawing 
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correlational inferences from the data. This is certainly helpful and can point to interesting 

further research opportunities to gain a deeper understanding as to what really drives people’s 

behavior. Along this line, many theories have been proposed (but not formally modeled) that 

could offer a structural explanation for the trends that have been observed, such as the effect of 

pandemic fatigue diminishing people’s vigilance in the fight against COVID (Crabtree, 2020), or 

our own perceptive inability to understand the enormous numbers involved in the COVID 

statistics that are constantly reported (O'hara, 2020). Explicitly modeling some of these theories 

in light of the ample data available could offer new and valuable insights into how a population 

responds on an aggregate level to changes in the pandemic. Furthermore, the insights that could 

be drawn from a model like this would ideally extend beyond just the category of ‘health 

behavior’ and encompass many other types of behaviors that are certainly being impacted by 

COVID. 

Research Objectives 
The primary objective of this paper is to develop and test a generally applicable model structure 

that represents the cognitive processes that shape peoples’ behavior patterns in response to news 

about COVID. At this point, it would be helpful to define what is meant by the terms, ‘domain’ 

and ‘behavior’, since these are general terms and will be used often throughout this paper. 

‘Domain’ will refer typically to a specific industry, but could more generally refer to any 

economic, social, or cultural sector of society in which people participate, make decisions, and 

take actions. ‘Behavior’ is also a general term to refer to the relative level of activity within a 

particular domain. When the domain represents an industry, the behavior would mostly represent 

consumer behavior— or people’s demand or propensity to purchase what that industry has to 

offer. This research will be particularly interested in looking at domains where people’s behavior 

has been greatly impacted by COVID.  

As an example of the kinds of questions this research will explore, consider how the pandemic 

has affected airline travel in the US. Figure 1 shows the number of new daily reported COVID 

cases for the US from the beginning of the pandemic until May 14, 2020: 
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Figure 1: Daily reported cases in the US since the beginning of the pandemic. (CDC, 2021) 

As seen above, the pandemic hit the US in three progressively more severe waves; and based on 

this development, the impact on air travel (as measured in number of passengers) is shown by the 

blue line as compared to the pre-pandemic level of air travel as shown by the red line in Figure 2 

below. 

 

Figure 2: Passenger volumes through US airports before and after the start of the pandemic. (TSA, 2021) 
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The airline industry has been impacted severely, yet the effect of COVID on air travel has 

lessened substantially since the inception of the pandemic, in spite of the fact that the pandemic  

became significantly worse with each progressive wave. Trends like this indicate that people are 

do not necessarily adapt their behavior in a consistent or rational manner that might be expected 

as the pandemic continues to worsen. As such this project hopes to investigate the causal 

relationships that exist between news of COVID and changes in behavior to offer a general 

explanation of how COVID is impacting behavior. The research questions set forth by this 

project are as follows: 

Research Questions 
1. How does a population’s behavior change on the aggregate level in response to changes 

in the pandemic? 

a. Can a generic simulation model be developed and utilized that approximates for a 

variety of domains how these behavior patterns result from changes in COVID? 

b. Can such a model provide a better understanding of how the level of behavior 

could develop under different, hypothetical COVID scenarios? 

c. What are the implications of this analysis for policy-makers or industry leaders as 

they create short and mid-term strategies to combat the effects of COVID?  

2. Are there specific cognitive mechanisms or heuristics that can be used to offer a causal 

explanation of how people’s behavior changes in response to the COVID pandemic? 

a. Can such cognitive mechanisms be adequately represented in a simulation model? 

b. Can a populations behavioral response be sufficiently explained by only 

considering the cognitive mechanisms that shape a response given the current 

information about the pandemic? 

3. Are there meaningful differences in a population’s behavioral response in different 

domains? 

a. Can such differences be quantified in a meaningful way? 

b. Can such a quantification also be used to offer insights regarding people’s 

cognitive mechanisms under different situation? 

c. Could such a model be utilized in crisis situations beyond the covid pandemic?  
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Hypothesis 

The primary hypothesis of this research project is that a general model can be developed to 

sufficiently explain the historically observed behavior patterns at an aggregate population level 

in a variety of different domains and geographies merely by accounting for some relevant 

fundamental cognitive mechanisms governing how people perceive, understand, and respond to 

information about COVID. 

Literature Review: 
This section will review what research has already been conducted concerning behavioral 

responses to COVID as well as a review of some common cognitive processes that may be at 

work in shaping people’s responses to the pandemic. Immense research has gone into studying 

the behavioral response to the pandemic, with the area of greatest interest being that of the 

pandemic’s impact on health-related behavior, such as hand hygiene, social distancing, vaccine 

sentiment, or wearing masks (see (Volker, Weiss-Cohen, Filkukova, & Ayton, 2021; Anaki & 

Sergey)). Such research often seeks to understand correlations between different variables and 

construct a statistical model that identifies the strongest determinants of the desired health 

behavior (Volker, Weiss-Cohen, Filkukova, & Ayton, 2021). The studies by Anaki & Sergey and 

Volker, et al. conduct mass surveys and establish certain demographic factors, cognitive 

measures, and other potentially influencing factors that contribute to how people adapt their 

health behaviors. Using regression analysis, they identify the attributes that best predict the 

desired health behavior outcomes. This kind of analysis offers valuable insight into 

understanding what factors lead to the most and least compliant health behaviors. See Figure 3  

on the following page for some interesting statistics discovered in Anaki & Sergey’s study. 
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Figure 3: Results from a study about precautionary health behavior during COVID (Anaki & Sergey) 

Such research can also help identify possible chains of causality, such as the result of Anaki and 

Sergey’s research that linked together various theoretical determinants of health behavior, 

illustrated in Figure 4 below. This can help point toward more of a structural understanding of 

what drives health behaviors.  Additionally, many researchers have published models looking 

into the feedback processes of how the COVID situation impacts health behavior, and then how 

health behavior in turn changes the course of the 

pandemic. (see (Homer, 2020; Gkini, 2020)) These 

models attempt to establish even more of a 

structural understanding of what drives health 

behavior over simply just measuring correlations 

between variables. This has been incredibly 

effective research that helps policy makers 

understand the potential progression of the virus 
Figure 4: Theoretical model linking the primary 

determinants to health behavior (Anaki & Sergey). 
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considering the likely impact of different restrictions and infection control measures 

implemented for a country. 

Being that the fundamental claim made by this research is that a few basic cognitive processes 

can explain most of the variation in aggregate behavior that is observed over time in response to 

changes in the COVID situation, it is necessary to review the leading theories that can help to 

construct a basic cognitive framework upon which the model will be built. According to the 

theory of bounded rationality, rational decision making in humans is ultimately limited by 

information and computational capacity (Simon, 1990), so any realistic theory of behavior 

should consider the biases and heuristics people use to filter and understand the information 

informing their decisions. Here we can turn to cognitive psychology for a process structure 

which can be used as the framework for this model. The diagram in Figure 5 below illustrates a 

typical process for how people go from perception of a situation to an action (Davis, 2008). This 

framework also matches quite closely with the results from Anaki & Sergey’s empirical study 

discussed above.  

 

Figure 5: The cognitive process by which action emerges from perception. Adapted from (Davis, 2008). 

However, this is merely a high level, theoretical framework and specific cognitive mechanisms 

must be identified and quantified if a useful model is to be built. As a starting point, a list of the 

188 most influential cognitive biases that have been identified in the fields of psychology and 

behavior science are summarized in the image on the next page  (Figure 6 (Manoogian III & 

Benson, 2017)). Each bias listed here has been considered as to whether it might play a role in 

shaping the way that people respond to COVID. After investigating these and cross-referencing 

with the existing literature, a handful of likely candidates have emerged and are categorized in 

the following sections according to the theoretical framework shown above in Figure 5.  

 

Perception Affect Cognition Motivation Action
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Figure 6: Diagram that categorizes 188 different cognitive biases and heuristics (Manoogian III & Benson, 2017) 

 

Perception 
Perception of the prevalence of COVID is the very first step in the process of reacting to 

COVID. According to Funk, et al., behavior in the midst of the pandemic is assumed to be 

“prevalence elastic” meaning the behavior is ultimately assumed to be a function of the 

prevalence of the disease (Funk, Salathé, & Jansen, 2010), so it must be understood how people 

perceive the current pandemic. First and foremost, one must have a basic understanding of the 

situation as it is perceived to be. According to Sydhaugen, the goal of our perceptive capacities is 

to present the world to us the way it actually is. Our own ability to perceive represents an 

“openness to, or awareness of, the external world.” (Sydhagen, 2017). Unfortunately, in the case 

of COVID, perception is complicated by the reality that it is entirely intangible- not perceptible 

by any of our physical senses unless perhaps we happen to become infected ourselves. Many 
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have referred to COVID as ‘the invisible enemy’ (Patki, Banasal, & Basavaraja, 2020) and 

therefore our perception of the information has depended entirely upon the news and statistics 

that are reported about the situation. Typically, the daily cases, daily deaths, and hospitalizations 

are reported on a daily basis in most areas of the world and represent our most basic 

understanding of the current situation (Lehman, 2020). In fact, broadly speaking, there is no 

other way to understand the current severity of the pandemic other than to rely on the statistics 

produced by testing and data collected from hospitals. It is widely agreed that any effective 

public strategy against COVID demands timely, thorough, and accurate statistics about the virus 

(Pearce, Vandenbroucke, VanderWeele, & Greenland, 2020). Given the universal dependence on 

COVID data for properly understanding the current situation, in a behavior model, it is safe to 

assume that statistics reported about COVID are likely the key input to determining a 

populations perception of the pandemic. 

Affect 
Next, the perception will come amidst a perceptual/emotional backdrop, referred to as “affect”. 

According to the American Psychology Association, affect is “any experience of feeling or 

emotion” and “represents one of the three traditionally identified components of the mind.” 

(American Psychological Association, n.d.). As it pertains to COVID, the most prominent 

affective responses that have been identified include worry, fear, boredom, and annoyance 

(Selka, et al., 2020). The general affective state of a population will influence how the perception 

of the current situation is cognitively processed and can provide an emotional or mental context 

by which the perceived information will be evaluated. A variety of possible cognitive biases may 

come into play to shape our affective state in regard to COVID. 

For instance, there is a growing recognition that ‘pandemic fatigue’ is causing less and less 

adherence to social distancing restrictions. According to a Gallup poll conducted over the first 6 

months of the pandemic, there was a steadily decreasing trend of social distancing as time went 

on (Crabtree, 2020). This could show that new cases will be perceived against a backdrop of 

exhaustion, apathy, or strong desire for things just to go back to normal. People and governments 

alike may fall prey to the present bias or status-quo bias, whereby the present, status-quo 

situation comes to be accepted and preferred over any alternative options. This is not to say that 

people don’t want to go back to normal, but if they have grown accustomed to the current 
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pandemic and sufficiently adapted their lifestyle accordingly, it may seem better just to concede 

to the situation instead of make a concerted and costly effort to continue the fight against COVID 

(Soofi, Najafi, & Karami-Matin, 2020).  

Cognition 
Cognition involves the mental processes of understanding, evaluating, and judging information; 

it represents the process we go through to describe what we think about the current COVID 

situation (Sydhagen, 2017). People need to take the perception of the current state of the 

pandemic and assess it in the context of their current understanding and affective state toward the 

situation in order to make a judgment about the situation. First of all, there is likely an effect of 

anchoring bias at play, whereby the present condition is viewed in the context of the historical 

development of the pandemic. When historically there were zero cases of COVID, even a few 

numbers of COVID cases are unacceptable; however, after a year or more of wave after wave of 

COVID, the mental anchor by which one judges how many cases of COVID is to be expected 

inevitably increases over time (see: (Sterman J. , Expectation Formation in Behavioral 

Simulation Models, 1986). Therefore, the historical development of COVID provides the best 

context by which to understand the current situation. After this context has been determined, 

people need to evaluate the current condition.  

At this point a very important and powerful bias likely comes into play, which is 

described by Weber and Fechner’s Laws of Psychophysics. This law simply states that the 

magnitude by which we sense a stimulus is a power function of the actual magnitude of the 

stimulus (Stevens, 1986). It is widely speculated that this same law is at work in our ability to 

sense and understand the true magnitude of the COVID pandemic (O'hara, 2020); (Djulbegovic 

B, 2020 Oct). We have a fundamental limitation on our ability to accurately understand the scale 

of problems as they grow bigger; as such we are prone to dramatically discount the severity of 

the pandemic the worse it gets. Paul Slovic has observed the same dynamic at work when we 

judge the severity of other mass-tragedies such as genocides (Slovic, 2007). Figure 7 to the on 

the following page, taken from Slovic’s 2007 paper, illustrates the power law relationship he has 



   
 

 
 

16 

observed in the public assessment of genocides, 

whereby the value of saving a life increases only 

logarithmically as the number of lives 

potentially saved increases. This represents a 

very dangerous bias that could cause a massive 

underestimation of the true magnitude of the 

pandemic. This distorted understanding will 

certainly have an impact on the decisions and 

behavior that ultimately emerge from this 

process. 

Motivation 
Motivation represents the factors at play which a person uses to form the actions they take. In 

this case, people need to balance living as normal of a life as possible while sufficiently reducing 

the risk of being infected or inadvertently infecting others with the virus. Game theoretical 

approaches suggest that the primary motivation for a particular behavior is maximizing the 

cost/benefit outcomes of any situation  (von Neumann & Morgenstern, 1944). The benefits in the 

case of this research project are not limited to any particular area. The benefits may be social, 

economic, health-related, etc.: generally speaking, any benefit that engaging in ‘normal’ 

behavior patterns would otherwise produce. The complicating factor in this case is the risk cost 

that COVID adds to any of these cost-benefit appraisals. The appraised cost of the risk includes 

two components: the susceptibility to infection 

and the severity of infection (the probability and 

the impact if one were to get COVID) (Gkini, 

2020). The greatest perceived risk, and 

presumably the greatest impact on behavior, will 

emerge if both the susceptibility and severity of 

infection is assessed as high. However, the 

motivation for changed behavior in light of 

COVID is not necessarily only limited to 

personal risk assessment, but also can include 

pro-social choices to limit one’s impact on 

Figure 7: A psychophysical model describing how the saving 

of human lives may actually be valued. Taken from Slovic, 

2007 

Figure 8: Distribution of individual vs. social risk 

perceptions in Switzerland, according to a study 

conducted by Franzen & Wöhner, 2021. 
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others (Campos-Mercade, Meier, Schneider, & Wengström, 2021). Figure 8 on the previous page 

shows the results of a survey conducted in Switzerland that measured people’s individual and 

social assessments of the risks posed by COVID. Individual risk represents the perceived risk of 

COVID to their own health and social risk represents the perceived risk of COVID to society as 

a whole (Franzen & Wöhner, 2021). 

Motivation for behavior in light of COVID thus represents a complicated assessment of the 

personal and social costs and benefits of engaging in a particular behavior in light of the current 

pandemic situation. Such an assessment surely varies based on the state of the pandemic, the 

type/domain of behavior under consideration, as well as fundamental characteristics of the 

people making the decisions (as observed in the studies by Anaki & Sergey and Volker, et al. ).  

Action 
Finally, after going through this multi-stage process 

of perception, affect, cognition and motivation, a 

response can then be estimated. At this point only 

general data and processes have been described, yet 

the level of action that will be observed is the 

aggregation of many individuals making their own 

decision under the given circumstances. While this 

process starts with a general input, applies general 

theories, and returns a general estimate of behavior 

levels, the distribution of how each individual in a 

population is expected to respond cannot be ignored. 

At any point during the pandemic there will be people 

who decide to act ‘normally’ and those who abstain 

from ‘normal’ behavior-- no matter how good or bad 

the current situation is. This implies that at any given 

level of severity, there is a distribution of possible 

behavioral outcomes that reflects individual 

differences in risk tolerance, personality, 

demographics, etc. The results of the Swiss survey in 

Figure 9: Risk perception density plots by 

country, figure taken from (Dryhurst, et al., 2020) 
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Figure 9 illustrate this distribution of assessments of the situation. A more in-depth study, 

conducted by Dryhurst, et al. surveyed people in 10 different countries to construct risk 

perception distributions for each country (Dryhurst, et al., 2020). 

This concludes the brief review of the theoretical framework upon which this model will be built. 

The cognitive biases and heuristics described above, along with the rapidly changing nature of 

the COVID pandemic, contributes to a dynamic behavior pattern in many domains of private and 

public life. This research project will attempt to unify the most relevant of these cognitive 

heuristics into a simple model that can be used to explain how decision making and behavior 

patterns emerge at the aggregate level in response to the pandemic as it continues to unfold.  

Methodology: 
The methodology used for this research is simulation modeling. The general system dynamics 

modelling methodology is described below a specific description of how it will be applied for 

this research project follows afterwards. 

System Dynamics  
The system dynamics methodology is the ideal analysis methodology for this kind of research 

due to its capability to model dynamic complexity. The model in this research is not ultimately 

looking correlations among variables, but rather a causal explanation for the behavior of a 

complex phenomenon (people’s behavior in response to COVID) over time. Understanding this 

problem necessitates the inclusion of variables and processes from many different fields, 

including epidemiology, behavioral psychology, economics, and others. Simulation modeling 

allows one to construct a simplified model of the real-world processes that make up a complex, 

dynamic system to gain insight and understanding for the how the behavior emerges from that 

system. According to John Sterman, some of the attributes of complex dynamic systems are: 

• Dynamic- components of a system are constantly changing over different time scales and 

interacting with each other as each change. 

• Governed by Feedback- the chain of causality can, over time, come back to change the initial 

conditions, thereby creating feedback loops within a system. 

• Nonlinear- Effects are not proportional to their causes 

• History Dependent- the behavior of the system is governed by long time delays or results from 

an accumulation over time. 
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• Counterintuitive- due to the complex relationship between cause and effect, the behavior of 

dynamic systems often defies intuitive expectations.  (Sterman J. , 2000)  

These characteristics describe the problem set forth in this research project. In fact, many 

researchers have employed such simulation modeling in explaining cognitive processes, as this 

model will attempt to do (See (Sterman J. , 1986) for a model describing how people cognitively 

form expectations of future trends given) 

Specific considerations for this project 
System dynamics modeling necessitates an explicit representation of the assumptions used in the 

model, thus the methodology contrasts with black box modeling (as described by Townsend, 

Wenger, & Houpt, 2018, which simply tries to produce an algorithm that can properly predict 

output given a certain input, without emphasizing the structural set of real world processes and 

relationships that form the true chain of causality between the input and output. In other words, 

proper system dynamics models seek not just to produce the right behavior but also demonstrate 

with a level of confidence that the model produces the right behavior for the right reasons  

(Oliva, 2001). 

The specific modeling strategy employed for this particular project is what is referred to as 

phenomenon driven explanation (de Gooyert, 2018). Under this strategy, the starting point is the 

observation that current theories are not capable of explaining the observed empirical data. Then 

a new theory (or in this case a combination of existing cognitive and behavioral theories) is 

presented and a model is built to represent the new theory. If it can reproduce the observed 

behavior with a plausible model structure, then confidence is built in the theory. The end result 

offers, according to de Gooyert, “a potential explanation of the phenomenon by proposing the 

structure, in terms of causal relations, that drives the behavior.” (de Gooyert, 2018) 

It is worth noting here that the model is quite small compared to other system dynamics models 

that have been developed. The model does not contain any major feedback loops that are 

typically found in system dynamics models. The reason for this is that this model serves to 

explain one basic phenomenon, which the causal effects of how COVID influences a 

population’s behavior. Larger models might include many such phenomena interacting with each 

other, but the end product of this research will be a relatively small system dynamics model 
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component. The term ‘model component’ is used to emphasize that this project consists of a very 

simple piece of model structure, not a full system dynamics model in and of itself. The purpose 

of this project is to develop a new model structure (or component) that can capture, explain, and 

replicate the chain of causal relationships between COVID and changed behavior. Given the size 

and potential utility of such a model in larger projects, this research aims to thoroughly validate 

every single variable, equation, relationship, and theory inherent in this model and fully explore 

the applicability and explanatory power of the model in several different domains and areas. 

Data 
This research project benefits from an abundance of reliable, high-frequency, time-series data 

that has been made publicly available since the inception of the pandemic. COVID data has been 

downloaded from the CDC’s API, Socrata, and other data has been downloaded or scraped from 

various websites that continue to publish daily data that reflect behavior in different domains. 

The data has been cleaned and processed into a format that Stella Architect can read as input into 

the system dynamics model. Table 1 below shows a summary of the primary data sources used: 

Table 1: Summary of primary data sources used in this research project, with reference to how they were included in the 

model. 
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Research Ethics: 
As no primary data were collected during this research process, a statement of ethics regarding 

the collection, protection, use, and publication of such data is not applicable for this research. All 

data used in this project are from publicly available sources.  

Model Overview: 

Model Description 
Understanding how COVID effects people’s decision making requires a thorough look at the 

whole cognitive process one goes through from being confronted with the facts, to perceiving the 

facts, to making contextual judgements about the facts that lead to changed decision making 

behavior. This section will provide a detailed description of the model component that forms the  

core of this research project and attempts to model explicitly the cognitive processes people go 

through. The term ‘model component’ is used to emphasize that this project consists of a very 

simple piece of model structure, not a full system dynamics model in and of itself. This 

component is then applied, tested, and validated in a variety of different domains as you will find 

in the analysis section. What will be described in this section is the generic structure of this 

component outside of any domain specific context. Refer to Figure 10 below for the Stock and 

Flow Diagram of this model component.  

 

 

Figure 10: Overview of the structure of the model component developed for this research project. Each step in the 

cognitive process is colored differently and explained in detail below. 
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The model operates in 5 sequential steps that begins with information about the COVID situation 

and ends in a changed level of behavior that is observed over the population. The steps are listed 

below and color-coded to match the stock and flow diagram above: 

1. INPUT- INFORMATION ABOUT THE COVID SITUATION: Determine the relevant 

information that a population in a particular geographic area would use to guide their decisions in 

light of the pandemic. In this model the relevant information is always assumed to be the new 

daily reported COVID cases for that area. 

2. PERCEPTION OF THE SITUATION: The population then uses this information to form a 

present perception of the COVID situation and also to update their assessment of the average 

historical COVID situation. 

3. COGNITION AND JUDGMENT OF THE SITUATION: The number of cases is then 

distorted according to Stevens’ Power Law into the sensation produced by the observed 

condition. This sensation is what is used to evaluate the severity of the current situation. 

4. REACTION TO THE SITUATION: That evaluation is then considered in the context of how a 

population’s behavior is distributed within a particular domain. This is used to indicate the 

percentage of the population that would engage in the ‘normal’ behavior expected in that domain. 

5. OUTPUT- MODIFIED BEHAVIOR: This indicated level of behavior is finally materialized 

into an estimated level of the proportion of the population that will engage in normal behavior 

and decision making in light of the pandemic.  

Input- Information about the COVID Situation:  

The input to this model will be 

new daily reported cases as 

reported by the US Center for 

Disease Control; this 

represents the data that was 

reported throughout the 

pandemic which the federal, 

state, and local governments 

based their policies upon, and which people had available to them as they modified their normal 

behavior to minimize their own perceived risk of being infected. Number of new daily reported 

cases has universally been used as a key metric by which the severity of the pandemic is 
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Figure 11: The generic model with the primary inputs highlighted in red 
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measured. It is a leading indicator to hospitals, deaths, as well as used to estimate the R0 metric 

which is used to estimate whether the infections are spreading or decreasing in a given area 

(Lehman, 2020). 

The United States Center for Disease Control publishes daily statistics on the number of new 

reported COVID cases for each state in the US (United States Center for Disease Control, 2021). 

This data is fed into the model component under the ‘total new daily cases’ variable. The data 

used here will be whatever COVID data is applicable to the particular geographic area under 

consideration (which in this case will either individual states or the entire US). FIGURE below 

shows the number of new daily reported COVID cases for the entire US for the 500-day period 

from January 1, 2020, to May 14, 2021: 

 

Figure 12: New daily reported COVID cases in the US (United States Center for Disease Control, 2021) 
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Perception of the Situation:  
The first part of the model 

structure developed in this paper 

will borrow directly from the 

structure described in John 

Sterman’s 1986 paper, 

“Expectation Formation in 

Behavioral Simulation Models” 

(Sterman, 1986). In this paper, 

Sterman describes how the 

TREND function can be used to model how people take in an incoming stream of data and then 

use that data to form expectations for future trends in the data. While this research project does 

not look at how people develop future expectations about how COVID will develop, the basic 

processes of information gathering, and processing should mirror very closely those described in 

Sterman’s paper. As you can see in Figure 14 below, taken from Sterman’s original paper, the 

structure is quite simple. Information must 

first be gathered, which will happen with 

some delay due to the data collection and 

distribution time. Then this information about 

the present condition must be considered with 

some context. Because the only information 

immediately available to us is past 

information, and because information in the 

recent past is more easily remembered and 

considered than information in the distant 

past, the context we typically use to evaluate 

the present is some average experience of the 

past condition, which Sterman refers to as the 

‘reference condition’. These two information 

stocks are critical for the purposes of the 

model developed in this research paper, 

Figure 13: Stock and flow diagram of the TREND function 

with the portion that is used in this model indicated in the 

blue shaded rectangle. Adapted from Sterman, 1986. 
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Figure 14: Generic model with perceived and reference cases highlighted in 

gold. 
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though the model presented here will deviate at this point from Sterman’s model. This is due to 

the fact that the present and reference condition must be used in this case to make a judgment of 

the current condition rather than form an expectation of future development. Thus, the structure 

in this model will drop the trend stock and related structure and instead of calculating an 

indicated trend, calculate a judgment of the present condition, using the knowledge of the present 

condition and the context provided by the reference condition. Figure 14 on the previous page 

highlights the portion of the structure that will be used in this project. 

The structure provided by Sterman applies intuitively to the COVID pandemic. There are a 

handful of delays in getting from the real current COVID situation to what people perceive the 

situation to be. For one, it takes some amount of time to collect, aggregate, and publish the data 

(and then potentially revise and republish as additional data comes in or errors are discovered).  

After the data has been accurately published, it will take additional time for the population to 

fully absorb the news of the current condition. Due to the several stages of possible delay in this 

process, a third order exponential delay of 10 days of the ‘total new daily cases’ variable is used 

to compute the ‘perceived present condition’ in this model.  

Then, in order to form a historical context about the COVID pandemic, the perceived current 

condition is used to compute a ‘reference condition’. This is a first order delay of the ‘perceived 

present condition’ with generally a much longer delay time. The ‘reference condition’ represents 

what people perceive the recent average level of COVID to have been looking back some period 

of time. In this formulation, the most recent knowledge of the pandemic will carry the greatest 

weight in forming the reference condition. On average people are assumed to be looking a year 

back in time and offering increasingly discounted weight to information further in the past. The 

real-world application here is that this variable could represent the level at which people expect 

the new daily COVID cases should be. Of course, prior to the pandemic starting, no one 

expected there should be any COVID cases in their region and this assumption likely held for 

some period of time; but now a year or more later, most people would likely be incredulous to 

hear that there were zero new COVID cases in their region and would probably be pleased just to 

know that there were only a few cases. This simple mental exercise alone demonstrates that there 

has been an effect of people getting comfortable with a certain level of COVID. At what level we 

are comfortable is very likely correlated with what level the COVID cases has been in our recent 
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memory. This is why sentiment in the US now is very optimistic and states are quickly opening 

up despite the fact that cases are currently stable around the level of the peak of the second wave 

that hit the US late last summer; the reference level has raised substantially to allow people to 

perceive the current situation of 30,000 to 70,000 cases per day as generally ‘safe’. Refer to 

Figure 15 below for a demonstration of how the perceived present condition and reference 

condition change in response to COVID data as it is reported (Note that a delay time of 360 days 

is used to calculate the reference condition). 

 

Figure 15: Perceived and reference number of COVID cases in the US, using a 10 day and 360-day delay time 

respectively. 
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Cognition and Judgment of the Situation: 
Now that the perceived present 

condition and the reference 

condition can be plausibly 

estimated based on the recent 

development of COVID, it is 

necessary to transform these 

values into what people actually 

sense them to be.  

There is a significant distortion that takes place between the objective number of cases and the 

subjective sensation of the magnitude of those cases. The field of psychophysics has shown that 

the magnitude of a sensation about a stimulus grows as a power function of the magnitude of the 

stimulus (Zwizlocki, 2009). Conceptually the stimulus and the sensation are two completely 

different things. The stimulus can be objectively measured; the sensation or impression produced 

by that stimulus is the result of cognitive and psychological processes that produce a conscious 

sensation, impression, or feeling about the stimulus. In this case, the stimulus will be the 

perceived or reference level of COVID cases. It is assumed that people remember these values at 

their face value, but it should not be assumed that they sense them at those values; thus, a 

transformation from the objective to the subjective must take place. The field of Psychophysics 

began with E. H. Weber and Gustav Fechner in the mid 1800’s. They hypothesized and then 

proved through experimentation that people’s ability to sense or perceive changes in a stimulus 

decreases quickly as the stimulus intensity increases (Slovic, 2007). A common example of how 

this power law functions is by demonstrating how we perceive changes of brightness. If a room 

is completely dark and even a match is lit, it will be very noticeable how that small amount of 

light illuminates the entire room. However, when the room is already bright, lighting a match 

will not produce any sensation that the room is brighter, even though the same amount of light is 

still being added to the room. Therefore, our ability to sense changes in the level of light 

decrease as the room becomes brighter and brighter.  
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Figure 16: Generic model with the judgment process highlighted in green. 
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The psychologist, S. S. Steven first proposed that sensation follows a power law from the stimuli 

that produce it in his 1953 paper and suggested it as a general law applying to how we sense 

changes in any physical or subjective stimuli. The formula states that: 

𝜓 = 𝑘𝜙! 

Where 𝜓 represents the magnitude of the sensation, k represents a dimensional constant, 

𝜙 represents the intensity of the stimulus, and 𝜃 represents the power exponent 

(Zwizlocki, 2009).  

While this theory was born and developed through experiments with physical stimuli, such as 

light, sound, weight, etc., Stevens devotes an entire chapter in his book to discussing its 

relevance to a wide variety of social situations and non-physical and even non-quantifiable types 

of stimuli as well. These include applications in sociology, criminology, and politics  (Stevens, 

1986). Further research has been done by Paul Slovic, pioneering research of the theory of 

psychic numbing which applies the concept of these same power laws to situations involving 

people’s responses to mass tragedies, namely genocides. His research has shown that our 

capacity to experience affect, which he describes as “the positive and negative feelings that 

combine with reasoned analysis to guide our judgments, decisions, and actions,” increases only 

marginally as the magnitued of the situation increases (Slovic, 2007). His paper, entitled ’If I 

look at the mass I will never act’: Psychic numbing and genocide, offers ample anecdotal 

theoretical, and experimental evidence to show how people react very strongly to tragedies 

effecting small numbers of people, yet quickly lose interest as the number effected grows larger.  

This demonstrates that Steven’s power law could easily be extended to how people sense the 

scale of the COVID pandemic; and Slovic has even informally made this claim himself (O'hara, 

2020). In fact, there has already been research that shows that even the governors of US states 

have instituted state-wide lockdowns according to Weber and Fechner’s laws of psychophysics 

(Djulbegovic B, 2020 Oct). This means that people and governments alike will react very 

strongly to reported case numbers when the numbers are low and only marginally more so when 

the numbers are high. When there have been no cases in a particular region, news that a few 

cases have been discovered becomes cause for worry and concern, prompting people to stay 

home and prompting local governments to institute restrictions. However, if there are already 
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several thousand cases in a region, even news that a few hundred more have been discovered 

likely would not trigger any new meaningful response from people or the government; perhaps it 

would take thousands of additional cases to prompt the same magnitude of reaction as the first 

few cases initially did.  

This effect must then be included 

in the model if it is to produce 

reasonable estimates of how people 

respond to incoming news about 

the COVID pandemic. People will 

become desensitized to growing 

numbers of cases. For this model, 

both the ‘perceived present 

condition’ and the ‘reference 

condition’ have been subjected to 

Steven’s power law by using the 

equation presented previously. A 

power exponent of 0.5 is used in all domains to which the model is applied. This value was 

estimated based on a calibration of each domain that produced values between 0.4 and 0.8. The 

best estimate was shown to be 0.5. There is little research that would indicate we should expect 

drastically different power exponents given the same stimulus, so this variable should be fixed 

for all domains in this model. This exponent would imply the relationship shown in Figure 17 

between the objective, real-world value and the sensation magnitude it would induce. An 

example below is given for how the ‘magnitude sensation of the perceived present condition’ is 

impacted by the ‘perceived present condition’ according to Steven’s Power Law. The same 

relationship will also hold for the effect of ‘reference condition’ on ‘sensation magnitude of 

reference condition’. 

The constants are disregarded in this model since the subsequent ‘judgment of current condition’ 

variable will divide both sensation magnitudes by each other and would therefore cancel each 

constant value out. Figure 19 on the next page shows how the sensation magnitudes of the 

perceived present and reference conditions are estimated to change over time given how the 
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Figure 17: Graph showing the power law relationship between the 

objective values and the sensation magnitudes produced by those values 
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COVID pandemic has developed in the US (as shown if Figure 18). As you can see, the effect of 

the power law dramatically reduces the scale of each progressive wave. While the third wave 

was objectively four times more severe than the second, the power law shows that it was likely 

perceived to be only twice as bad. 

 

Figure 18: Perceived and reference number of COVID cases in the US, using a 10 day and 360-day delay time respectively 

(Thes represent the objective stimuli) 

 

 

Figure 19: The sensation magnitudes produced by the same graphs in Figure 11. Notice the change in scale and the slight 

change in shape of the graphs. (These represent the subjective sensations produced by the stimuli) 
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The next step is to conduct a simple comparison of the ‘sensation magnitude of the 

present condition’ and the ‘sensation magnitude of the reference condition’. At every point in 

time, people must evaluate how good or bad the COVID situation is before they can make a 

decision. This evaluation will involve a judgement as to what the current condition is and 

compare this to a judgement as to what the normative condition should be for them to evaluate 

whether the situation is good or bad, and to what extent it is so. This comparison thus represents 

the evaluation of the current situation by expressing a ratio of the ‘sensation magnitude of the 

present condition’ over the ‘sensation magnitude of the reference condition’. If the ‘sensation 

magnitude of the present condition’ is 250 cases per day and the ‘sensation magnitude of the 

reference condition’ is 50 cases per day, then the situation would be generally viewed to be 5 

times worse than it should be. On the other hand, if it were the same 250 cases per day, but after 

a severe wave of infections, the ‘sensation magnitude of the reference condition’ were 500 cases 

per day, then the situation would be generally viewed to be only half as bad as it should be and 

thus the situation would seem relatively good. This ratio can range from 0, which would be the 

worst possible scenario, to infinity, which would be the best possible scenario. A value of 1 

would represent a situation whereby on average the situation is as it is expected to be. The graph 

below (Figure 20) shows how this judgment (expressed as the sensation magnitude of the 

reference condition as a % of the sensation magnitude of the present condition) has been 

estimated to change over the course of the pandemic.  

 

Figure 20: The value over time of the judgment of the current condition. 
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 Reaction to the situation: 
Once a judgment value (the 

sensation magnitude of 

reference condition as a 

percentage of the sensation 

magnitude of the present 

condition) can be estimated, 

that judgment must be 

converted into a response. 

Populations, by nature of the inherent variability among its individuals, do not respond as a block 

to the average expected response. Even though the assumption is made in this model that a 

judgment value of 1 would indicate that the COVID situation is as expected, it cannot be 

assumed that the entire population would then en masse decide to engage in normal behavior 

once again. The individuals within a population rather exist on a spectrum whereby a judgment 

value of much less than one (say 0.5) would be enough for some more risk tolerant people to re-

engage in normal behavior and other more risk averse people will require a judgment value much 

higher than one before they engage in normal behavior.  

The log-normal distribution was selected as the most appropriate distribution for this case for a 

variety of reasons. To start, log-normal distributions appear ubiquitously in all sorts of natural 

and social phenomena, including the fields of economics, sociology, linguistics, biology, 

ecology, etc. (Limpert, Stahel, & Abbt, 2001). This fact alone makes it a likely candidate among 

the different common types of distributions. Additionally, the distribution of a population’s 

behavioral response conforms to the three traditional hallmarks of log-normal distributions, 

which, according to Limpert, et al. are: 

1. Values cannot be negative- the lowest number of people engaging in a certain behavior is 0. 

2. Mean values are low- the average person will be comfortable returning to normal behavior if the 

reference condition equals the present condition, representing a low value of 1. 

3. Variances are large- in many cases, there is extreme variation in how people adapt their behavior 

and decision making to COVID. 
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Figure 21: Generic model with reaction mechanism highlighted in blue. 
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Two parameters are needed to define a particular log-normal distribution: the mean and the 

standard deviation. The mean variable has the general effect of raising or lowering the 

distribution curve, while the standard deviation variable is responsible for the shape of the 

skewedness of the curve  In nearly all observed instances where data fits a log-normal 

distributions, the standard deviation variable typically ranges from 1.1 to 3, and while it is 

possible, and potentially common to find log-normal distributions with values less than 1.1, such 

a distribution would closely resemble a normal distribution (Limpert, Stahel, & Abbt, 2001). 

Such a flexibility may be useful in this model where behavior patterns in a particular domain 

may appear more normally distributed. Figure 22 below shows a sample of four different log-

normal distribution curves and their respective cumulative distributions. 

 

Figure 22: The probability density curves and cumulative distribution curves for a selection of four different log-normal 

distributions. 

This model will select an indicated behavior value based on the cumulative distribution of the 

population that is estimated to be engaging in normal behavior at the given judgment value. For 

example, consider the blue curve in Figure 22 above. If a ‘judgment of current condition’ value 

(reference condition as % of present condition) of 100% were passed to this function, it would 

indicate that roughly 60% of the population would be resuming normal behavior. If the judgment 

value increased to 200%, just shy of 75% of the population is expected to resume normal 

behavior.  
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Since each domain is very different in terms of necessity, risk perception, regulatory impact, etc., 

it is expected that each domain may have very different distribution curves that describe how 

behavior is affected by different judgment values. Some domains, such as grocery or workplace 

attendance are relatively unaffected by changes in the COVID situation; while other more 

discretionary domains that carry a higher risk of infection, such as dining out or air travel, are 

much more sensitive to changes in the COVID situation. This sensitivity can be described by a 

properly calibrated log-normal distribution. Since it is assumed that this distribution will have the 

greatest impact on how the various domains studied in this research are impacted by COVID, the 

only difference among each domain is the parameterization of the mean and standard distribution 

variables that characterize this log-normal distribution. The analysis section will discuss in more 

depth what different parameterizations mean from a practical and theoretical standpoint. 

Additionally, sensitivity analysis regarding the mean and standard deviation can be found in 

Appendix B.  

 Output- Modified Behavior: 
The final step is to materialize 

the indicated behavior into an 

actual behavior. Due to the 

natural delays that exist between 

decision and action, it is 

assumed that demand updates 

with a 10-day delay time on 

average. In many cases, people 

need to plan their behavior 

which may be difficult to change, require adjusting habits, or there simply may just be a delay in 

the entire cognition process which would be captured in this delay. The modeled behavior stock 

then represents the proportion (on a scale of 0-1) of the population who is engaging in normal 

behavior for the given domain. 

Depending upon the particular domain, additional adjustments may be necessary for the final 

output. These adjustments may include adjustment of the output to reflect external limitations to 

certain behaviors (for example government imposed categorical restrictions on certain activities 
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Figure 23: Generic model with the updating behavior component highlighted 

in purple. 
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or behaviors), aggregation of state output to a national output, or rescaling of the output to match 

data. Any such adjustments are thoroughly described in the analysis section of this paper or in 

Appendix A. 

 

Other modeling decisions 
The model logic and structure has now been fully discussed. This section describes other 

miscellaneous modeling decisions that have been made in the development of this model 

Parameterization: 
Table 2 below gives a summary of all exogenous parameters used in the generic model.  

Table 2: Table of parameter values used in this model. 

Parameter Value Units Description Source 

Time to perceive 
present condition 

10 days Assumption of the time it 
takes for the real data to be 
perceived by the population. 

Assumption 

Time to update 
reference condition 

360 days Assumption of the time it 
takes to grow accustomed to 
a certain level of COVID 

Calibrated 

exponent 0.5 dmnl Calibrated, should be 
between 0 and 1 

Calibrated; 
(Stevens, 1986) 

Shutdown begins 71 day Day that the pandemic 
begins to substantially effect 
general behavior patterns. 

(U.S. state and local 
government responses 
to the COVID-19 
pandemic, 2020) 

Standard Deviation 
(<stdev>) 

Calibrated 
per domain 

dmnl Describes the distribution of 
behavioral responses 

Calibrated 

Mean (<mean>) Calibrated 
per domain 

dmnl Describes the average 
behavioral response 

Calibrated 

Time to update 
behavior 

10 days Assumption of time to 
update actual behavior 
given an indicated behavior 

Assumption 

 

Calibration: 
Many of the parameter values mentioned above were estimated using a calibration routine. 

Additional information regarding how these parameters were calibrated can be found in the 

analysis section of this paper. 
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Time Horizon Choice: 
The time horizon for this model is relatively short as the model’s purpose is to demonstrate the 

immediate effects of changes in COVID cases on a population’s decision-making behavior. As 

such the model begins on January 1, 2020, and is run for 500 days until May 15, 2021. This 

allows for a period of approximately 60 – 70 days of steady state behavior prior to the start of the 

pandemic and covers substantially all behavior up to the submission deadline of this thesis. 

Level of Aggregation: 
The model has been built to work at a high level of demographic and geographic aggregation as 

it considers the entire population within the state level or within the US as a whole. Further 

research and testing could be undertaken to investigate this model’s validity at lower levels of 

aggregations (such as at the city or county level or looking at the response of particular 

subgroups of the population). There are a few reasons that it makes sense to test this model on 

higher levels of aggregation: 

1. Public policies regarding lockdowns and restrictions are established primarily at the state or 

federal level, so the effects of changes in the level of COVID in one state are likely to affect 

everyone within that state.  

2. Statistics are most commonly reported either for the US as a whole or for each state as a whole, 

so state-wide or country wide COVID information will be most readily accessible to people. 

3. The law of averages will smooth out other potential local factors that may influence how people 

react to COVID (these factors may include climate, general political leaning, demographic make-

up, local culture, etc.) As these factors fall outside of the boundary of this model, but might have 

a strong effect at smaller scales, using a larger scale will average out the effect of these local 

differences. 

Future research can test how the model holds up at more localized scales, but the purpose of this 

research is to identify the general response mechanisms that would be at play among the entire 

population.  

Model Boundary:  
There is a very tight boundary around the model used for this thesis. The only inputs to the 

model are the relevant number of COVID cases for the region being analyzed as a few other 

major influencing structural factors that may shape the outcome and which are known to exist in 
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that domain. The output is the average level of behavior that is to be expected in that domain 

based on the COVID situation  

The model only applies to domains where it is expected and observed that the level of behavior 

reduces from the pre-pandemic baseline. It has not been adapted to domains for which an 

increase in the level of behavior is expected or observed. 

DT and Integration Method: 
A DT of 1/16 with Euler’s integration method is used to run this model.  

Model Validation: 
A critical stage of any model’s development is its validation. According to J.W. Forrester and 

Peter Senge, 

“Validation is the process of establishing confidence in the soundness and usefulness of a 

model. Validation begins as the model builder accumulates confidence that a model behaves 

plausibly and generates the problem symptoms or modes of behavior seen in the real system.” 

(Forrester & Senge, 1980)  

Furthermore, Yaman Barlas explains that the assessment of the validity of a model cannot be 

divorced from a consideration of the purpose of the model. In other words, validating a model is 

fundamentally assessing “its usefulness with 

respect to its purpose” Thus validating this 

model requires assessing both its purpose and 

its usefulness of achieving that purpose, which 

is subjective and qualitative to some extent 

(Barlas, 1996).  

An important aspect of validating this 

particular model is establishing its usefulness 

across a variety of domains. Given that the 

model is able to reproduce behavior modes in 

several domains (given reasonable 

parameterization of the model as it is applied in 
Figure 24: Logical sequence of formal steps of model 

validation (Barlas, 1996) 
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each case), this lends good credibility to the usefulness of this model to its purpose—which is to 

develop a generic model capable of explaining how people change their behavior in response to 

COVID.  

Validation, after all, is built into the entire process of developing, testing, and analysing a model. 

Figure 24 on the previous page shows how validation comes into play at every stage and largely 

contributes to the iterative nature of simulation model development. The development of this 

model has undergone the same iterative process of development, testing, validation, then 

redevelopment, retesting, and revalidation until the end result converges toward a plausible 

model structure that is useful for its purpose and produces the right behavior for the right 

reasons.  

This being said, Barlas outlines a handful of formal validation tests that should always be carried 

out prior to presenting a model. They are outlined in Table 3 below: 

Table 3: Summary of validity tests according to (Barlas, 1996) 

Type of Test Test Purpose 

Direct Structure 
Tests 

Structure Confirmation Is the model structure consistent with the knowledge of the 
real-world system? 

Parameter Confirmation Are the parameter values used known or reasonable estimates 
of the real-world values? 

Extreme Conditions Do the equations in the model return logical outputs even if the 
input to each equation takes on extreme values? 

Dimensional 
Consistency 

Are the units of measurement consistent without use of scaling 
or dummy variables? 

Structure-oriented 
behavior tests 

Behavior Sensitivity Is the behavior of the model appropriately sensitive to changes 
in its various parameters? 

Boundary Adequacy Is the boundary (what is included in or excluded from the 
model) appropriate for the purpose of the model? 

Extreme Conditions Does the model overall behave logically if it is subject to 
extreme shocks or policies? 

Behavior Pattern 
Tests 

Behavioral validity Is the model capable of reproducing the behavior patterns 
observed in the real-world system? 

Structural Confirmation 
The structural confirmation of this model is supported by the literature that has informed the 

theoretical framework upon which this model was built. While the structure certainly over-

simplifies the real-world processes at play (all models do), the processes that are included have 

sufficient theoretical backing in the psychology literature to make us confident that the structure 

plausibly and sufficiently represents the real-world cognitive process.  



   
 

 
 

39 

Parameter Confirmation 
Parameter confirmation has been particularly speculative for this project due to the high 

proportion of variables in this model for which values cannot be corroborated through other 

research or literature. While the calibration routines discussed in the analysis section of this 

paper have been conducted in accordance with the best practices of the methodology and the 

values produces all fall within a logically reasonable range (when considered individually and 

when evaluated in the context of the values produced in other domains), the weakest basis for 

confidence in this model lies with the parameter values used.    

Extreme Conditions of Equations 
All equations produce logical outputs when subjected to extreme inputs.  

Dimensional Consistency 
All units are dimensionally consistent in this model and no dummy variables are introduced as a 

means of forcing dimensional consistency. It is worth noting, that the model file will indicate 10 

unit errors (all in the ‘sensation magnitude’ variables), yet these do not represent true logical 

dimensional inconsistencies. The software simply struggles to account for fractional exponents. 

Extreme Conditions  
The model has been subjected to extreme conditions and continues to produce logical results. For 

example, if COVID cases are zero, it would be expected that behavior would not be impacted. 

Sensitivity Testing 
The model has been subjected to sensitivity testing for each of the key parameters used. 

Additional information regarding the results of sensitivity analysis can be found in Appendix B, 

however it is worth noting here some observations that arose from the sensitivity tests: 

• There is potential overlap between the ‘time to update reference condition’ and the ‘mean’ 

variable in terms of the effect each has on the output of the system. Sensitivity testing revealed 

that changes in each variable led to similar changes in the behavior level estimated by the model. 
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A change up in either variable roughly causes the entire behavior curve to shift downwards, 

though the mean is much more sensitive. 

 

 

• There is also potential overlap between the ‘exponent’ and the ‘standard deviation’ variable in 

terms of each’s effect on the estimated behavior level. As each variable increases, the behavior 

pattern is stretched into more extreme patterns. The exponent variable stretches the behavior 

curve further from a judgment value of 1 and the standard deviation variable stretches the 

behavior curve further from the mean value. It is worth noting that a low standard deviation value 

produces more extreme behavior patterns, and a high exponent value produces more extreme 

behavior patterns.  
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Figure 25: Sensitivity results (Mean to the left; Time to update reference condition to the right) 
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These indicated that further testing and validation will need to be conducted to ensure that each 

of these variables is not falsely attributed a value that could be compensated for by a false value 

of the corresponding variable. In this case the calibration process and the reasonableness of the 

final parameter values for each domain must be thoroughly assessed. 

Behavioral Validation 
In order to assess the statistical significance of the model output compared to the historical data, 

the Theil statistics have been calculated and presented the in Table 4 below. The statistics were 

calculated using the module created by Rogelio Oliva (Oliva, 1995), which was based on John 

Sterman’s 1984 paper, Appropriate Summary Statistics for Evaluating the Historical Fit of 

System Dynamics Models (Sterman J. D., 1984). 

Table 4: Theil Statistics and R-squared results of the behavioral fit of the model output to the historical data. 

Domain MSE 𝑈" 𝑈# 𝑈$  𝑅% 

Airlines 0.00471 0.0152 0.0514 0.933 0.836 

Restaurants 0.0159 0.864 0.265 0.649 0.771 

Senior Housing* 0.000026 0.235 0.112 0.653 0.989 

Workplaces** 0.000627 0.00263 0.000593 0.997 0.857 

Retail and 

Recreation** 

0.00164 0.00106 0.106 0.893 0.782 

Transit 

Stations** 

0.00218 0.00393 0.0169 0.979 0.624 

Grocery and 

Pharmacy** 

0.00283 0.0169 0.685 0.298 0.285 

*Evaluated from time 0-456 since this is the timeframe of the available data. Additionally, the 
data was compared with the output of the industry sub-model, which used the output from the 
generic model as it’s input. 
**due to the high amount of noise in the historical mobility data, the Thiel statistics were 
calculated based on a 10-day first order exponential smooth of the data and model results. 
 
MSE = Mean Square Error 
𝑈"= Fraction of MSE due to bias 
𝑈#= Fraction of MSE due to unequal variance 
𝑈$= Fraction of MSE due to unequal covariance 
𝑅%= Correlation coefficient between modeled and actual data 
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Many of the above results indicate a very strong fit of the model results to the historical data. 

Generally, the model fits better in situations whereby the historical data describes more specific 

behavior patterns (e.g., in the restaurant, airline, and senior housing domains) and does not fit as 

well in the mobility domains which capture broader categories of behavior patterns. Given the 

tight boundary around this model, it can be assumed that taking more factors into consideration 

(such as the specific effects of government restrictions or other structural variations between 

each domain) would produce closer results than revealed here. The model limitations section and 

future research section will discuss further modifications that could be made to improve its 

output. 
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Analysis 

Domains studied 
As a means of testing this model and assessing the broadness of its application, in accordance 

with the research objectives, this model was tested in seven different domains. The term 

‘domain’ here refers to a certain class of observed behavior. For the sake of this model, it refers 

specifically to consumption behavior in a particular industry or the decision to go to a certain 

type of place. Some of the domains used in this model are more specific than others, for instance 

the example about the restaurant industry refers specifically to demand for dining out (not 

delivery or take away, which saw increases in demand during the pandemic (Guszkowski, 2020). 

It is important to make this distinction in this case since dining out was subject to an entirely 

different decision process than was ordering delivery or take away, and the specificity of the data 

in this case led to more compelling results as you will see. In other cases, particularly the 

mobility data, the behavior is much more generally defined, which can lead to some issues in 

terms of calibration. For instance, the retail and recreation mobility sector clearly includes a 

diverse variety of behaviors under its umbrella (including that of dining out at restaurants among 

many other domains that could fall into this category). Because the data is much more general in 

this case, it will be more difficult to calibrate the model to the data which inevitably includes 

many different sub-classes of behavior under its umbrella, many of which likely cancel each 

other out when calculating a change to an overall baseline. Therefore, domains for which very 

specific types of behavior are measured are preferable to those for which only general types of 

behavior are measured. In each domain tested, there will be a discussion on the impact of the 

data upon the results.  

 

Model Calibration 
Calibration has been a critical feature of this modeling process due to the number of parameters 

in this model with generally unknown values. According to Rogelio Oliva, calibration can serve 

as a valuable means of testing a model and linking its structure to the real-world behavior. Due to 

the relative importance of calibration to the development of this model, special attention has 

been paid to what Oliva lists as three critical heuristics to properly leverage calibration as a 

testing tool (Oliva, 2001): 
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1. Do not override known or observable structure 

2. Tackle small calibration problems 

3. Use automated calibration to test the dynamic hypothesis 

The model developed in this research project aims to conform as best as possible to these 

criteria, and for the sake of consistency, the same calibration procedures have been applied to 

each domain, with the exception of certain well-justified adjustments that will be explained in 

more detail under each domain’s results section. 

In order to conform to Oliva’s criteria, the model was subject to automated calibration routines 

built into the Stella Architect software (isee Systems , 2021); the details of which can be found in 

Appendix C. This is to ensure that the calibration is both replicable and statistically sound. 

Furthermore, a two-stage calibration process was undertaken for this model: the first step being 

to use automated calibration to determine likely values for the ‘time to update reference 

condition’ and ‘exponent’ variables, which in this model are treated as constants across all 

domains; then to determine the ‘mean’ and ‘standard deviation’ values for the distribution curves 

used in each domain. The first calibration step involved running, for each domain, a calibration 

routine to search for the combination of values for each of the four variables (‘time to update 

reference condition’, ‘exponent’, ‘mean’, and ‘stdev’) which produced the greatest fit between 

the model results and the data. This step is necessary because it is not known what specific 

values should be used for the ‘time to update reference condition’ and the ‘exponent’ variable, 

though it is assumed in this model that these values should be fixed for all domains. A 

fundamental [and untested] assumption of this research is that any variation in behavior patterns 

observed between domains emerges not from the fact that people perceive and evaluate the 

COVID situation differently in each domain, but rather that the differences emerge due to the 

fact that people react to the same situation differently from domain to domain. Therefore, all the 

domains were subject to the initial calibration for the purpose of discovering plausible values for 

those two variables; and after they were estimated, they were fixed for all domains to reflect the 

fundamental assumption discussed above. This helps this calibration process to conform to 

Oliva’s first criteria, which only treats truly unknown variables to the calibration process and 

does not overwrite other known variables. The second calibration then was carried out in 

accordance with Oliva’s second criteria, which is to limit calibration to the smallest possible 
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portion of the model. This second round of calibration was run for each domain to discover 

values for the ‘mean’ and ‘stdev’ variables that described the response distribution that 

facilitated the greatest fit between the model and the data. Given this, the primary difference 

between each of the domains studied in this model are different assumptions for the reaction 

distributions applied in each domain, and any differences in output can therefore be traced to the 

parameterization of these two variables. So, by splitting the calibration into two processes as has 

been done in this project, the outcomes of the first calibration routine produce estimated 

‘universal’ values for the exponent and time to update reference condition variables, thereby 

isolating these parameterizations to the generic model; then the outcome of the second 

calibration routine isolates any differences among the domains to the shape of the distributions, 

as described by the mean and standard deviation. Further discussion of this will follow in the 

sections below, and further details of the calibration routines can be found in Appendix C.  

 

Model Results 
Following a full discussion of the model structure, calibrations, and consideration of its validity, 

the results from each of the seven domains studied in this research project are described below.  

Airline Industry 

Introduction: 
The airline industry has felt an extreme impact due to COVID (Hotl & Mumbower, 2021). In the 

US, there were never any explicit regulations against domestic travel, though regulations in some 

states made domestic travel less appealing through quarantine requirements. International travel 

has been severely impacted due to federal regulations restricting travel for non-residents from 

many countries, currently including anyone coming from the EU, China, India, Brazil, or South 

Africa (United States Center for Disease Control, 2021). This domain will look at how COVID 

has impacted peoples demand for air travel. 

Data:  
The data used for this model comes from the Transportation Security Administration’s statistics 

for number of passengers traveling through all US airports on a given day (United States 

Transportation Security Administration, 2021). The data is reported from January 1, 2019, 
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providing a full year of pre-COVID data for comparison. As such, and due to the seasonal 

cyclicality of airline traffic, the post-COVID data has been normalized to the passenger traffic 

observed on the same day in 2019 so that the seasonal fluctuations are not considered in this 

model. 

Model: 
The model used in this domain utilizes the generic structure, but for this domain, an adjustment 

to the output has been made that substantially eliminates 90% of international travel since these 

restrictions have remained in place since the beginning of the pandemic. Thus, most international 

travel is not subject to the behavior model as it has remained categorically restricted. 

Additionally, an adjustment has been made to the generic model in this case to reflect the fact 

that demand for air travel is raised much slower than it is lost. Changes in COVID can cause 

rapid declines in air travel as it is a relatively quick process for either the airline to cancel flights 

or the passenger to cancel their tickets. However, as the situation improves, demand will catch up 

more slowly due to the time it takes to plan air travel and schedule flights in response to the 

increased indicated demand. Thus, behavior in this domain is assumed to contract with a delay of 

10 days and expand with a delay of 45 days. The modified model is pictured below in Figure 27 

and the changes from the generic structure are highlighted in yellow to reflect the adjustments 

discussed above: 

 

Figure 27: Modified generic structure for the airline industry. 

Calibration: 
This domain was subject to the standard calibration procedure as described in the calibration 

section and Appendix C; no modifications were made to the standard procedure. 
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Results: 
Figure 28 shows he results of the model (red) compared to the historical data (blue) below. 

Additionally, the distribution and cumulative distribution curves that were used in this domain 

are shown below. 

 

Figure 28: Historical data vs. simulated data when the model is applied to the airline industry 

 

Figure 29: Probability Distribution and Cumulative Distribution of reaction to COVID in the airline industry. 

Discussion: 
The results of the model indicate a good fit to the historical data. The model fits less well during 

the period of the holiday, though this could be due to the fact that the holiday’s skewed the 

decision-making behavior by altering the motivation for travel that resulted in a different 

risk/reward appraisal. This is untested speculation as to what causes the difference, but on the 

whole, the results match very well, with an 𝑅% value of 0.863.  

���������	
����������

����

�
�
�
�

��

���

����

����

����

�������� �����	�� �������� �������� �����	��

��������������
���������� �����������
���

���������	
��������	������������	
����

��������	��	�������	���������



�
�
�
�
��
�
�
	�
��
��
��
�
��
�
�

��

���

���

���

����

�� ��� ���� ���� ����

���������	����������	�������	�����

��������	��	�������	���������

�
��
��
��
�
��
�
�

��

��

��

�� ��� ���� ���� ����



   
 

 
 

48 

Restaurant Industry 

Introduction:  
The pandemic has hit the restaurant industry from two different angles: changes in consumer 

demand and impact of strict government regulations. In this domain, only dine-in behavior is 

considered. Given the affront on the industry from both the demand side and the supply side 

(government enforced supply restrictions to capacity and operations) This model will primarily 

consider the impacts due to demand. Even though it is shown that government restrictions are 

also subject to the same general forces affecting individual behavior (Djulbegovic B, 2020 Oct), 

so there is potential overlap of the model to both effects here, the model will certainly 

underestimate behavior levels during periods whereby substantially all dine-in restaurants were 

forced to close. 

Data: 
The ‘behavior level’ in this domain is estimated using changes in dine-in revenue reported by 

restaurants as compared to their pre-COVID levels. The data comes from Opentable.com, a 

popular restaurant reservation app used in the United States, and shows day to day aggregate 

dine-in revenue as a percentage of revenue on the same day in 2019 (OpenTable, 2021).  

Model: 
No adjustments have been made to the generic model in this case, though it is worth noting that 

this domain has been arrayed by state. The results displayed here represent a weighted average 

(weighted by state population) of the results from each individual state; where the COVID cases 

from each state were used as the input to the model. This is an important distinction, since the 

situation in a particular state is much more likely to affect behavior (and restrictions) than the 

situation in the US as a whole. Therefore, this model has been disaggregated and run on the state 

level, and then aggregated up to the US as a whole. The exact same parameterization is used for 

each state; therefore, the value in disaggregation is purely to account for how the local COVID 

situation would impact behavior, not to account for potential local differences in parameter 

values.  

Calibration: 
This domain was subject to the standard calibration procedure as described in the calibration 

section and Appendix C; no modifications were made to the standard procedure.  
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Results: 

 

Figure 30: Historical data vs. simulated data when the model is applied to the restaurant industry 

 

Figure 31: Probability Distribution and Cumulative Distribution of reaction to COVID in the restaurant industry. 

Discussion: 
The results of this domain indicate a strong fit to the historical data. Although the model 

overestimates demand in the initial period of the pandemic, this is due to the fact that 

substantially all states had categorically restricted dine-in restaurants from opening. An analysis 

of the state-by-state results show a similar issue on the state-wide level when the model 

overestimates periods where restrictions obviously precluded any supply from being made 

available. Overall, considering the entire US, the model has an 𝑅% value of 0.771, indicating a 

good correlation between the model and the data. Appendix D shows the state-by-state results of 

the model. Unsurprisingly, the model over and underestimates results in many states due to the 

ignorance of possible locally-specific parameter values in this model. One such plausible 
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difference, which was outside of the boundary of this model, but which may offer an explanation 

of the divergence on the state-by-state level, is that of how the politics of the particular state 

affected behavior in that state (Akovall & Yilmaz, 2020); (Pew Research Center, 2020); (Hallas, 

Hatibie, Majumdar, Pyarali, & Hale, 2020). For instance, New York was known for a 

particularly strong lockdown, so being that this was not considered in the model, it is 

unsurprising that the model overestimates the level of behavior (Figure 32 below). On the other 

end of the spectrum, Florida was known for particularly weak lockdown measures, so it is 

unsurprising that this model would underestimate the true level of demand (Figure 32 below).  

 

Figure 32: State-specific results for New York and Florida 

In general, the state-specific results show that the model produces reasonable results (adjusting 

for other local factors) and is generally able to identify the timing of the peaks and valleys in 

behavior and the direction and scale by which demand moves during the pandemic. Refer to 

Appendix D for more results. 

Workplace mobility 

Introduction: 
Many workplaces have had to temporarily or permanently shut down, or have offered ‘work 

from home’ arrangements with their employees. Therefore, there has been a significant decline 

in people going to a physical workplace. This represents a different kind of domain from those 

studied so far in that this domain does not represent consumer demand, but represents more 

employee and employer adaptations of work behavior in response to COVID.  
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Data: 
Google publishes mobility data for workplaces. The data is expressed as a percentage of a 

baseline level of workplace mobility, calculated using the average mobility from the beginning 

of 2020, before the pandemic started (Google LLC, n.d.). For this project, the data has been 

rescaled from a baseline of 0 (with declines going negative and increases going positive) to a 

scale of 0 – 100 (where 100 represents the baseline value and subsequent changes are scaled 

accordingly). 

Model: 
No significant changes were made to the generic model. 

Calibration:  
To calibrate the model to the data, a 10-day smooth of the data was compared to a 10-day 

smooth of the model results. This was done to smooth out the extreme daily variability in the 

data caused by weekends. Additionally, the other sharp decreases in mobility as seen in the data 

are due to public holidays. The effect of these was not adjusted for in the calibration process, 

though they likely have some impact on the results. Further research could adjust for this effect 

and likely get a more realistic behavior pattern.  Other than these points, the calibration routine 

followed the standard process.  

Results: 

 

Figure 33: Historical data vs. simulated data when the model is applied to workplace mobility 
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Figure 34: Probability Distribution and Cumulative Distribution of reaction to COVID in workplace mobility. 

Discussion: 
The model is able to fit the historical data quite well, both on the US level as a whole, as pictured 

in Figure 34 above, and to a lesser extent on a state-wide basis. The model output correlates 

strongly to the data, with an 𝑅% value of 0.857. Additionally, insights can be gained from the 

shape of the distribution curve, which shows that behavior in workplace mobility settles around 

75% of the baseline level on average if the judgment of current condition value is 100%. As the 

situation changes, there is limited flexibility of behavior, but only if the situation were to get very 

bad would more dramatic declines in workplace mobility be observed. On the other end, the 

situation will have to improve dramatically if mobility is to surpass 90% of its baseline level. 

Retail and Recreation Mobility 

Introduction: 
This sector looks at a very broad swath of behavior related to going to retail and recreation 

locations. This can include malls, restaurants, movie theaters, stores, and many other possible 

locations that fall under this general category.  

Data: 
Google publishes mobility data for retail and recreation. The data is expressed as a percentage of 

a baseline level of retail and recreation mobility, calculated using the average mobility from the 

beginning of 2020, before the pandemic started (Google LLC, n.d.). For this project, the data has 

been rescaled from a baseline of 0 (with declines going negative and increases going positive) to 

��������	
��������	����������������	

����	���������	������������

�

�

��
��
�
	
��
��
��
��

��
�
�

��

���

���

���

����

�� ��� ���� ���� ����

��������	
� ���������!��	����!����	

����	���������	������������

�
��
��
��

��
�
�

��

���

���

�� ��� ���� ���� ����



   
 

 
 

53 

a scale of 0 – 100 (where 100 represents the baseline value and subsequent changes are scaled 

accordingly). 

Model: 
No significant changes were made to the generic model. 

Calibration: 
To calibrate the model to the data, a 10-day smooth of the data was compared to a 10-day 

smooth of the model results. This was done to smooth out the daily variability in the data likely 

caused by weekends. Other than this modification, the calibration routine followed the standard 

process.  

Results: 

 

Figure 35: Historical data vs. simulated data when the model is applied to retail and recreation mobility 

 

Figure 36: Probability Distribution and Cumulative Distribution of reaction to COVID in the retail and recreation 

mobility. 
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Discussion: 
Given the broad scope of this domain compared to, for example, the restaurant domain which 

specifically looks at demand for dine-in, it would be expected the model might not calibrate as 

nicely to this particular domain. In fact, the model generally tracks the behavior well (𝑅% value 

of 0.782), though with some discrepancies at times. Particularly, the model does not show as 

strong of a rebound coming out of the first wave, and the model does not show as severe of a 

drop going into the third wave. A state-by-state analysis of this domain finds that most states 

have undergone a very similar development as it pertains to retail and recreation mobility. Some 

states saw a surge in mobility (which this model would not replicate but would pull up the 

national average as seen in Figure 35 above). Some states had very different developments from 

what the model predicted, but typically the model tracked very well the state-by-state scenario. 

See Appendix D for state-by-state results. Further investigation would be needed to look into the 

discrepancies of certain states, that are certainly affecting the final output shown here. 

 

Grocery and Pharmacy Mobility 

Introduction: 
The grocery and pharmacy domain tracks how many people were found to be going to grocery 

stores and pharmacies. It was included in this model due to the fact that it is known that grocery 

and pharmacy mobility has seen very little impact overall due to COVID, so it seemed to be an 

interesting case to test the model against. 

Data: 
Google publishes mobility data for grocery and pharmacies. The data is expressed as a 

percentage of a baseline level of grocery and pharmacy mobility, calculated using the average 

mobility from the beginning of 2020, before the pandemic started (Google LLC, n.d.). For this 

project, the data has been rescaled from a baseline of 0 (with declines going negative and 

increases going positive) to a scale of 0 – 100 (where 100 represents the baseline value and 

subsequent changes are scaled accordingly). 

Model: 
No significant changes were made to the generic model. 
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Calibration: 
To calibrate the model to the data, a 10-day smooth of the data was compared to a 10-day 

smooth of the model results. This was done to smooth out the daily variability in the data likely 

caused by weekends. Other than this modification, the calibration routine followed the standard 

process.  

Results: 

 

Figure 37: Historical data vs. simulated data when the model is applied to grocery and pharmacy mobility 

 

Figure 38: Probability Distribution and Cumulative Distribution of reaction to COVID in grocery and pharmacy 

mobility. 
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Discussion: 
The model is not capable of producing as good of a behavioral fit in this domain due to a 

fundamental limitation of the model in not being able to account for situations in which behavior 

actually increases above the pre-pandemic baseline as a result of COVID. Additionally, this 

sector does not fully account for additional variables and processes likely driving people’s need 

to go to grocery stores or pharmacies.  

As seen in the US data and state level data, there are periods of increased behavior over the 

baseline, which this model will not replicate. It could also be that this domain needs additional 

model structure (as in the senior housing domain presented later in this analysis section) to fully 

explain the behavior patterns observed. The reality is that people go grocery shopping to stock up 

on groceries. Initially, there was a strong trend of people stocking up and hoarding food items as 

the nature of the pandemic was highly uncertain. People then maintain an inventory of food at 

their homes and will go shopping again only once the supplies in their homes are sufficiently 

depleted. This indicates additional model structure may be necessary to account for this. 

Regardless, the model is able to roughly be calibrated to the data (although only with an 𝑅% value 

of 0.28) and the resulting distribution curve does make sense in this situation. It suggests that 

people’s behavior in grocery and pharmacy mobility is almost completely unaffected by COVID; 

which makes sense in that grocery shopping is a necessary activity and would only be reduced if 

the situation was so severe that people were afraid even to go out and perform the most 

necessary errands.  

Transit Station Mobility 

Introduction: 
Transit stations represent a very broad category of places, such as bus stops, train stations, 

airports, taxi stands, subways, etc. Generally, this domain will capture to what extent people are 

traveling around. The category is broad but represents an interesting case to apply the model to. 

Data: 
Google publishes mobility data for transit stations. The data is expressed as a percentage of a 

baseline level of transit station mobility, calculated using the average mobility from the 

beginning of 2020, before the pandemic started (Google LLC, n.d.). For this project, the data has 

been rescaled from a baseline of 0 (with declines going negative and increases going positive) to 
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a scale of 0 – 100 (where 100 represents the baseline value and subsequent changes are scaled 

accordingly). 

Model: 
No significant changes were made to the generic model. 

Calibration: 
To calibrate the model to the data, a 10-day smooth of the data was compared to a 10-day 

smooth of the model results. This was done to smooth out the daily variability in the data likely 

caused by weekends. Other than this modification, the calibration routine followed the standard 

process.  

Results: 

 

Figure 39: Historical data vs. simulated data when the model is applied to transit station mobility. 

 

Figure 40: Probability Distribution and Cumulative Distribution of reaction to COVID in transit station mobility. 
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Discussion: 
The model of the transit mobility domain did not provide as close of a fit to the real data, 

apparently for many of the same reasons as discussed in the retail and recreation domain. 

Additionally, there may be an element of seasonality in the data that is not properly adjusted for 

(similar to what was done in the airline domain). These factors aside, the mode does produce an 

𝑅% value of 0.624, which tells that the model still is capturing a significant portion of the 

behavior.  

The Senior Housing Industry: an extended application of the model component 

Introduction:  
The senior housing industry has bet hit by many factors due to COVID. These include loss of 

residents due to pre-mature deaths caused by COVID, decreased people moving in due to fear of 

infection, and increased costs due to government regulations to name just a few of the prominent 

challenges. (Shaver, 2020) As indicated in the preface of this paper, analyzing the impact of 

COVID on the senior housing industry was the initial inspiration for this research, so it will be 

included here, though in a very different manner from the other sectors. This domain analyses to 

a deeper level how the change in behavior due to COVID has interacted with how the senior 

housing industry works to produce the observed historical data, which will be occupancy in 

senior housing facilities. This domain perhaps best serves as an example of the potential utility of 

this research: that the model component developed here can be plugged into larger models to 

solve deeper problems.  

Data: 
Reliable, daily data about people’s decision to move into a senior housing facility is not available 

for the US as a whole, so instead, to estimate the impact of COVID on move-in behavior, proxy 

data will be used. This domain looks to operating data from the largest provider of senior 

housing in the United States, Brookdale Senior Living, which operates over 62,000 beds in 41 

US states (Brookdale Senior Living INC, 2021). Throughout the pandemic, Brookdale has 

reported its overall occupancy percentage across its portfolio, which is assumed to be 

representative of the entire US due to the scale and the presence of its operations in the US.  
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Model: 
The following model structure (Figure 41) was introduced to represent the basic structure of the 

Senior Housing Industry. The model is a very basic pipeline model showing how leads are 

generated, and in turn move in to represent occupancy in the facility. Occupancy is the primary 

operating metric and is a stock value, while demand and the decision to move in represents a 

flow value. In addition to COVID’s effect on move-ins (represented by the red variable), there 

was also a strong impact of COVID on move-outs in the US senior housing industry due to 

fatalities. It is estimated that up to 34% of all COVID deaths that have occurred in the US 

occurred in senior housing facilities (The New York Times, 2021).  

 

Figure 41: Stock and Flow diagram of the Senior Housing Industry sub-model 

Calibration: 
This domain was subject to the standard calibration procedure as described in the calibration 

section and Appendix C; no modifications were made to the standard procedure other than that 

the model was calibrated from time 0 – 456 due to data only being available until this date.  
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Results: 
In the results, the modeled occupancy of the senior housing industry is compared with the actual 

reported occupancy. In contrast with the other domains studied in this research, these results 

don’t show the behavioral outcome relative to the pre-pandemic baseline; rather they show the 

true (modeled) occupancy percentage of senior housing homes given changes in move-in rates 

relative to the baseline. The graph to the 

left (Figure 42) shows what the generic 

model assumes as the change in move-

ins from the baseline and then this is 

plugged into the industry model to 

produce the overall occupancy results as 

shown in Figure 43 below. 

 

 

 

Figure 43: Historical data vs. simulated data when the model is applied to the Senior Housing industry. 
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Figure 44: Probability Distribution and Cumulative Distribution of reaction to COVID in the Senior Housing industry. 

Discussion: 
This domain demonstrates the model components potential utility in being incorporated into 

larger models. In this case, to understand senior housing occupancy, one needs to take into 

account move-in patterns and move-out patterns. In this case both have been impacted by 

COVID, but the impact of COVID on move-in patterns is really just one piece of this particular 

analysis. So, this component can be used to estimate the move-in side, data about deaths can be 

used to estimate the impact on move-outs (due to deaths), and the basic industry structure can be 

brought in to tell the full story of how occupancy has been impacted over time due to COVID.  

 

Analysis of All results 

Contribution of calibration 
The calibration process (discussed in the model description section of this paper) provides a 

twofold benefit to estimating and validating the parameters in this model: 

1. As Oliva has suggested, the calibration can be used to test the structure of the model itself 

(Oliva, Model Calibration as a Testing Strategy, 2001). Given that reasonable 

parameterization of the model in different domains can reproduce the historically 

observed behavior, confidence can be gained that the structure does plausibly represent 

the real-world system, and that the structure is generally applicable, through different 
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parameterizations, to many different domains. In this case, the calibration of the model 

has not disproven the hypothesis put forth in this research. 

2. Second, given confidence in the structure, the automated calibration routine used here can 

provide reasonable estimates of real-world variables that would otherwise be very 

difficult to estimate. The structure put forth in this project, when subjected to proper and 

reasonable calibration routines, can offer estimated values for the following parameters: 

a. Time to update reference condition- How fast is the process of people ‘growing 

accustomed’ to a certain level of COVID? 

b. Exponent- What would be a reasonable estimate for the power law relationship 

between the objective number of cases and the ‘sensation magnitude’ produced by 

those cases? (Slovic, 2007); (Stevens, 1986) 

c. Effect of judgment of indicated behavior (or the reaction distribution)-  For the 

possible range of severity of the COVID situation at any given time, what is the 

estimated distribution of reactions in a given population for a given domain. By 

calibrating the mean and the standard deviation of the log-normal distribution 

used in each domain, the model can reasonably estimate the shape of this 

distribution. 

Significance of estimated response distribution curves 
The variability among the distribution curves in each domain provides interesting insight into 

how behavior is effected by the same COVID situation in different domains. The shape of the 

distribution curves (shown in Figure 45 on the next page) can offer several insights, including: 

1. The general range of sensitivity of a population’s behavior in a particular domain to the current 

level of COVID. 

2. The proportion of the population willing to re-engage in normal decision making when the 

judgment value is one 

3. Identify a potential long-term decrease in behavior activity as long as COVID remains a current 

issue 

4. Identify potential thresholds below which any further decline in the COVID situation would 

cause increasingly decreased levels of behavior. 



   
 

 
 

63 

 

Figure 45: The estimated distribution curves for each of the seven domains studied in this model. 

 

Figure 46: The estimated cumulative distribution curves for each of the seven domains studied in this model. 
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Comparing the shapes of the distribution curves of the various domain introduces some 

interesting characteristics of the domains. At one extreme, there is the curve produced by the 

grocery and pharmacy domain, which indicates that within a wide range of possible COVID 

scenarios, there will be little change in demand. It is only as the judgment variable approaches 0 

(the worst possible case scenario) that people would begin to dramatically alter their behavior 

patterns. On the other end of the spectrum would be restaurants, whose curve suggests that even 

at a judgment value of 1, it is only expected that roughly 75% of people would be dining-out 

normally. As the situation improves from here, modest gains would be expected; however, as the 

situation deteriorates, significant reductions of dining out is to be expected until a point at which 

there would be almost no dining out at all if the situation were bad enough (perhaps around 10% 

to 20%). Therefore, people’s decision to dine-out is extremely sensitive to different [reasonably 

expected] levels of COVID. In order to better understand the meaning of the distribution curves, 

below describes the general characteristics of the curves and what real-world insights they may 

hold 

Pictured below are examples of four different probability density and cumulative probability 

curves produced with different combinations of mean and standard deviation values.  

• The mean value (ranges from -3.59 to -0.626 among the domains studied here) generally 

indicates the average impact that COVID has on decreasing behavior levels in a particular 

domain. . A higher value (moving closer toward, or past 0) indicates that a lower proportion of 

the population would engage in ‘normal’ behavior at any given level of COVID; a lower value 

will indicate the opposite. A sufficiently low value would indicate that there would be no 

substantial impact of COVID on a particular behavior whereas a sufficiently high value would 

indicate that the presence of COVID has substantially eliminated a particular behavior. 

• The standard deviation value (ranges from 0.698 to 2.99 among the domains studied here) 

generally indicates the range of variability among the population’s response to levels of COVID. 

Low values for standard deviation imply that the population acts more in unison, so the behavior 

levels become more sensitive to the COVID situation around the mean; high values imply a wider 

distribution of behaviors, so the behavior changes in a smoother manner as the COVID situation 

changes. An extreme value of 0 for the standard deviation would indicate that the entire 

population changes its behavior in unison, whereas a sufficiently high value would indicate that 

all behavioral responses are observable at all levels of COVID. 
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Figure 47: Examples of four different log-normal distributions 

Table 5: Profiles of four types of log-normal distribution curves 

 Low Mean Value  High Mean Value 
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         A distribution with a low mean and high 

standard deviation indicates that society 

predominantly retains its normal behavior 

patterns regardless of the COVID situation, the 

high standard deviation creates the conditions 

whereby behavior would only drop substantially 

if the situation got especially severe; yet will 

only return to fully normal after the pandemic is 

fully over. Examples here include necessary 

domains, such as grocery. 

       A high mean and standard deviation indicates that 

on average the population is more reluctant to re-

engage in normal behavior, regardless of the current 

situation, however due to the high level of variability, 

there is a relatively smooth change in behavior as 

COVID changes. Examples here include necessary, 

yet flexible domains, such as workplaces. Generally, 

going to work is not dependent on COVID, though if 

many places are allowing remote work, it could lower 

the average mobility in workplaces. 
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       A low mean and low standard distribution 

would produce a very interesting behavior 

pattern whereby the population acts in unison 

around one particular level of COVID. No 

examples of this were found in this research 

project and it seems unlikely that such a 

scenario would exist in the US. It is possible that 

in a country such as China, with high levels 

social conformity and extremely low tolerance 

for COVID, that such a pattern could exist. 

       A high mean value and low standard deviation 

indicates that for a population to engage in normal 

behavior, the situation has to be fairly good. 

Additionally, there is less variation among the 

population in their response, so there is a higher 

elasticity between the COVID situation and behavior. 

Such a distribution is more likely to resemble a 

normal distribution, therefore producing an S-shaped 

cumulative distribution curve. Examples here likely 

include discretionary domains, such as restaurants and 

airlines as we have seen in this research. 
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Behavioral response estimated by the model under various hypothetical COVID scenarios: 
For the sake of better understanding the model structure and how behavioral responses change in 

response to the COVID situation, this section will analyze the model’s behavior given several 

different, hypothetical COVID scenarios. The reason for this hypothetical testing is that it can be 

difficult to parse out the actual trends in behavior patterns given the messy, organic development 

of the true COVID situation; therefore, some simple hypothetical situations are input to the 

model so that the resulting behavior patterns can be clearly identified. Seven different 

hypothetical scenarios were tested and are summarized in Table 6  and Figure 49 below. 

Table 6: Extreme Conditions of COVID input 

Run Test Input 
Run 1 STEP(1000, 10)-STEP(1000, 310) 
Run 2 STEP(10000, 10)-STEP(10000, 310) 
Run 3 RAMP(100, 10)+RAMP(-200, 310) 
Run 4 10000+SINWAVE(10000, 100) 
Run 5 STEP(25000, 10)+RAMP(-100, 10, 260) 
Run 6 10^(TIME/100) 
Run 7 Infection curve (from a basic SIR model) 

 
Figure 48: SIR model to create an infection rate test input 
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Figure 49: Extreme Conditions test of COVID input 

There are a handful of interesting insights we gain about the model by subjecting it to these 

hypothetical COVID developments: 

1.  It is not the scale of cases that counts in this case, but rather the shape and speed of the 

development.  

For instance, consider Run 1 and Run 2. Both runs assume COVID cases immediately jump up 

on day 10, remain steady at that level for 300 days and then jump back down to 0. The difference 
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in each case is that the scale by which cases jump up under each scenario is different by a factor 

of 10. This makes sense mathematically given that the judgment is ultimately determined as a 

ratio of two values that grow by an exponential delay process. So, all else being equal, inputs on 

two different scales will produce the same ratio (reference over perceived present). Does this 

make sense realistically though? To some extent yes, and to some extent no. It is worth 

remembering that a fundamental feature of the COVID pandemic is its identification as a global 

pandemic. Therefore, COVID carries with it an extreme weight of importance that does indeed 

cause people to react drastically even to a few cases (as we saw in the beginning of the 

pandemic). The declaration by the WHO of COVID as a global pandemic represented a 

paradigm shift in how people and governments viewed the news about COVID; this is why the 

‘shutdown begins’ variable must be included in the model, since there wasn’t large scale impact 

to behavior in the US until after the declaration of a global pandemic or state of emergency was 

declared. After this point, the reaction seems to be independent of the number of cases. In fact, 

countries the world over generally reacted with tight lockdowns and restrictions, regardless of 

the actual severity of the spread of the virus in that country.  

2. The adjustment over time of the reference condition causes a reduction in response over time, 

all else held equal. 

There is a reduction in the impact of COVID over time due to the impact of the reference 

condition. This demonstrates a growing level of comfortability with some amount of COVID 

over time no matter how the pandemic develops. In Run 4, even with a steady fluctuation in the 

number of infections, each progressive wave prompts a lesser impact to behavior. Interestingly, 

in Run 3, even a linearly increasing number of cases still results in a reduced response over time. 

Only in Run 6, which assumes an exponentially increasing number of infections, is there not an 

effect of decreasing behavioral impact; instead, the behavior just remains steadily low. So, 

essentially the model produces no behavior pattern that can decrease further than the initial 

decrease at the outset of the pandemic.   

3. A change in the exponent variable effects the response according to the scale of the pandemic 

at any given time. 
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The exponent refers to Steven’s power law, 

in other words, the effect of our own 

understanding of the case numbers being 

distorted by the incomprehensibly large 

numbers involved. The effect of this must 

be demonstrated with a sensitivity run that 

compares the results of different scenarios 

assuming different exponents. Figure 50 to 

the right shows the result of the sensitivity 

analysis using the US actual cases as the 

input. Exponents ranging incrementally 

from 0.25 (Run 1) to 0.75 (Run 11) were used to generate these results. 

While the exponent is not likely to change, it is interesting when considered in combination with 

point 2 above. A change in the exponent variable adjusts for the diminished response as the scale 

of the pandemic increases, while the reference condition adjusts for the diminished response over 

time as the pandemic carries on. As the exponent decreases, the impact of the pandemic on 

behavior lessens. In FIGURE above, the same situation can prompt a weak response (Run 1) or a 

strong response (Run 11) depending on the effect of this bias. Therefore, the primary cognitive 

mechanisms at play here effectively diminish the assessed severity both as it increases in scale 

and as it goes on in time. So, the point of strongest behavior impact happens right at the 

beginning of the pandemic before these cognitive effects begin to corrode its assessed severity.  
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Figure 50: Sensitivity analysis results: Exponent 
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Summary of parameters 
This section discusses what differences among the domains might mean from a practical and 

theoretical standpoint. Table 7 below summarizes the parameter values used in each domain. 

Table 7: Parameterizations and other adjustment of the model for each domain studied. 

Domain Mean Stdev Other adjustments to the model or calibration routine 

Airlines -0.726 0.698 *The adjustment times for demand were adjusted so that 

increases and decreases in demand happened with different 

delays. 

Restaurants -0.626 0.930 None 

Workplaces -2.24 2.99 None to the model, though a smoothed version of the data was 

used for calibration and the period of the holidays (from 

Thanksgiving through New Year’s) was removed for 

calibration. 

Retail and 

Recreation 

-2.37 1.79 None to the model, though a smoothed version of the data was 

used for calibration. 

Grocery and 

Pharmacy 

-3.59 2.20 None to the model, though a smoothed version of the data was 

used for calibration. 

Transit Stations -2.00 2.99 None to the model, though a smoothed version of the data was 

used for calibration. 

Senior Housing -1.27 0.78 None to the generic structure, but in this case the calibrated 

values considered how the basic industry structure of the senior 

housing industry responds to changes in number of move-ins, 

which was determined by the generic model component 

developed in this research. 
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Implications of Findings 

Overview 
The primary hypothesis of this research project is that a general model can be developed 

to sufficiently explain the historically observed behavior patterns at an aggregate population 

level in a variety of different domains and geographies merely by accounting for the fundamental 

cognitive mechanisms governing how people perceive, understand, and respond to information 

about COVID. 

After a thorough analysis of the model and its results when tested across various domains and 

geographies, the hypothesis is supported with a sufficient degree of confidence. A general model 

has been developed that can offer a causal explanation of how real-world behavior patterns in a 

variety of domains and geographies have emerged from some fundamental cognitive 

mechanisms governing how people perceive, understand, and respond to information about 

COVID. This model has suggested the cognitive mechanisms likely at play and demonstrated 

that they can plausibly explain how behavior patterns are influenced by COVID. This section 

will reflect on the practical and theoretical implications of the findings from this model as well as 

review its limitations and the further research that can be done. After this the conclusions will 

summarize the answers to the original research questions posited in the introduction.   

Practical and Theoretical Implications: 
This research rests on the assumption that there are a handful of basic cognitive processes that 

people go through to update their behavior and decisions in light of the current pandemic 

situation. A model that brings together these processes could be used to understand in general 

terms how a populations perceptions, judgments, and reactions to the virus change as the 

pandemic situation continues to evolve. Given that the model utilizes general cognitive 

mechanisms as the means of determining how a behavior will change in response to a change in 

the COVID situation, it should then also work in general circumstances if it is to be held to be 

plausibly valid. Therefore, the model should be generally applicable and should be able to 

explain how people in different demographic groups, in different geographic locations update 

their behavior in a variety of different domains or situations as a result of changes in COVID. 

Such a model will inevitably lump together many specific, real-world effects under the umbrella 

of just a few general effects, but this is appropriate for the purposes of this model and there are 
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many practical and theoretical insights that can come from this model. The points below 

represent the most interesting findings from this research: 

Simulate future Covid Scenarios 
The model could be used to test how future developments of the COVID situation are likely to 

affect behavior. While assessing the predictive capacity of the model was not an objective of this 

research, if the structure is held to be valid, it should produce appropriate output for future 

scenarios. It could, for example, estimate how big an additional wave would need to be to cause 

behavior to drop to a certain level. This could also be of use to business managers as they try to 

estimate the range of possible outcomes for how COVID could continue to impact their business. 

Implications for policy makers 
Policy makers can benefit from the insights of this model as they craft policies to limit the spread 

of the virus and its impact to the economy. This model demonstrates that the best opportunity for 

intervention occurs right at the beginning of a pandemic, as this is where people’s responses are 

most sensitive to the situation. From the testing of hypothetical COVID developments, it was 

found that it should not be expected, that behavior will change more dramatically than the 

beginning of the pandemic.  

Estimation of the distribution curves, Steven’s exponent, and time to update reference. 
While it is very plausible that the cognitive mechanisms identified in this research projects are at 

play, quantifying those phenomena can be quite difficult. While this project does not claim to 

offer precise values for these numbers, it does offer a reasonable basis for plausibly estimating 

their values. The estimation of the distribution curves is a particularly interesting insight as it 

quantifies in a distribution curve the differences in reaction from domain to domain. In this case, 

insights can be gained for how a domain influences behavior (e.g., Is the domain necessary or 

discretionary and is it flexible or inflexible?); and insights can be gained for how a population is 

likely to respond to COVID in that situation (e.g., Are there threshold levels where behavior 

becomes very sensitive to COVID? Is there a more or less permanent drop in behavior levels as 

long as COVID is a prevalent issue?) Additionally, the distribution curves could be used in and 

of themselves in other research and despite that they were developed indirectly through the 

models structure, they could be estimated and corroborated in future studies by means of 
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empirical testing, similarly to the research presented in the literature review (see (Franzen & 

Wöhner, 2021; Dryhurst, et al., 2020)) 

Use in other modeling projects 
 An important practical implication of this research is its potential to be incorporated into other 

research projects. This point is given its own section due to the depth in which it will be 

discussed in comparison to the other points listed above. A stated objective of this project was to 

build a generally applicable model component that could be plugged into other more 

comprehensive models analyzing specific problems. An example of this potential is 

demonstrated in the ‘Senior Housing’ domain of this project. Another example would be for 

domains whereby the baseline level of behavior is suspected to be changing over time. In this 

model, it is assumed that the baseline level of behavior remains fixed at its pre-pandemic level; 

however, the baseline in many domains is likely undergoing a dramatic structural transformation 

that will permanently shift what is considered to be ‘normal’. Overlaying this model, which 

tracks the short-term responses to COVID with a model which estimates the long-term change in 

the baseline may produce more compelling insights. In other words, this model could potentially 

be used to help parse out permanent shifts in behavior modes from those directly caused by 

COVID. Additionally, there may be additional feedback loops that can be drawn through 

extended model structures, whereby the other model(s) could, for instance, be used to estimate 

changes in the future COVID situation based on how people behave or estimate how some of the 

other parameter values might change over time in response to other effects. Figure 51 below 

demonstrates how this model could be incorporated into, extended by, or otherwise enhanced by 

combining it with additional model structure. 

Therefore, this model could be copied and pasted into other models, though it will be crucial to 

make certain modifications and undertake a thoughtful assessment and thorough testing of its 

usefulness, validity, and impact when combined with other model structure. Figure 51 and 

following steps outline how it can be incorporated into other models. 
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Figure 51: Diagram showing the potential incorporation of this model into a larger model structure. 

 
1. Obtain the required inputs- The key input to this component is daily reported COVID 

cases for a particular geographic region under consideration. Either historical data, or an 

exogenous or endogenous estimate for future COVID cases should be plugged in as the 

input to this model.  

2. Calibrate the parameters- Until further experimental and empirical research is done to 

validate the parameters used in this model, the values used in this model represent the 
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best estimates for what they are likely to be (these values include all exogenous 

parameters except the parameters describing the distribution curve, which is known to 

vary from domain to domain). The parameters describing the distribution curve will need 

to be calibrated to the particular case under research. Ideally, one would have a historical 

reference mode of behavior to which this model could be calibrated. If so, one could 

follow the calibration procedures described in Appendix C for direction on how to 

estimate the distribution curves.  

3. Plug the output of this model (behavior level) into another model sector- Once the 

COVID input is determined and parameters are estimated, the resulting behavior pattern 

can be modeled, which can be useful input into other model structures (as demonstrated 

in the Senior Housing example).  

4. Analyze, Validate, and Test- Of course, there will need to be extensive analysis, 

validation, and testing of this model structure as it is plugged into other models. This 

should be done for this individual component after it is adapted, calibrated, and 

parameterized according to the specific domain in which it is used, and this should be 

done to the model as a whole to be sure it is behaving as expected and producing 

reasonable output. Additionally, this model should only be used with a full understanding 

of its limitations, which are described in the following section. 

5.  

Model Limitations: 
While the model can offer some interesting insights, its limitations and any reservations as to its 

applicability should be fully disclosed. The primary limitations are summarized below: 

• The model analyzes only one effect, where several effects are likely at play 

This model uses COVID cases as an input and processes this input through one cognitive 

‘pathway’ to produce the behavioral output. This is certainly a simplification of the real-

world processes that are going on. The reality is that multiple inputs are being considered 

(COVID cases, deaths, hospitalizations, personal experience, among many others) and 

people undergo several different cognitive processes to shape their behavior to the 

situation. For instance, the behavioral chain of events presented in Gkini’s, model shows 

very explicitly the risk assessment processes going on in people’s minds (Gkini, 2020). 



   
 

 
 

76 

On the other hand, this model wraps all such considerations into an assumed distribution 

of outcomes. There is certainly a benefit to modeling such processes more explicitly than 

is done here, and it would lead to a more in-depth structural understanding of the 

decision-making process. Additionally, because this model only analyzes one effect, it is 

possible (or likely) that the model is misattributing a certain amount of the effect to this 

cognitive process, when in reality there may be a change in the baseline (as discussed 

above) that is fundamentally shifting the true behavior patterns over time. For example, 

government restrictions have been seen to plausibly follow the same patterns that 

populations follow (Djulbegovic B, 2020 Oct), there is still an important distinction 

between the organic response of a population versus the imposed restrictions that force a 

certain response. The restaurant sector provides an interesting example of this in that the 

model expects low, but not zero, dining in during the worst parts of the pandemic. In this 

case, government restrictions certainly lowered the behavior of dining-out beyond what 

some people may have wanted. In other words, this model mostly gets at the organic, 

demand side effects of COVID, when there are also supply-side effects that should be 

accounted for as well.  

• Does not mathematically allow for a transition between lower or higher demand. 

From a mathematical standpoint, this model does not allow for analysis of any domains 

for which behavior has increased from the baseline. Naturally, this means that the model 

cannot also explain behavior patterns that have been observed to increase and decrease 

from the baseline (as is seen in certain individual states in some of the mobility data used 

in this project (see Appendix D for additional information). 

• Is the model ultimately a black box?  

There is a possibility that this model does not produce true structural understanding and is 

more functioning as a black box model. Townsend et al. describe a common phenomenon 

of model mimicry whereby a model is able to produce the historical behavior, and a 

plausible structural explanation is provided, yet the effects produced by the model (even 

if they are correct) are due to fundamentally different processes than those posited in the 

hypothesis (Townsend, Wenger, & Houpt, 2018). This is certainly not the ideal outcome 

of a system dynamics model, so much additional empirical testing should be conducted to 
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further validate that this model does in fact produce the right behavior for the right 

reasons, as Oliva asserts these models must do (Oliva, 2001). 

Future Research Opportunities: 
As mentioned throughout this paper, a huge opportunity exists for further application and testing 

of this model. It should be applied to more domains, more geographic regions (both to different 

countries, and to different scales of regions), and should be included as a component in more 

specific and complex models. If the model continues to hold up under a variety of different 

applications, then this would both extend the usefulness and the validity of the model. 

Additionally, as the cognitive processes described in this model are not fundamentally processes 

belonging only to behavior under a pandemic, the model could be useful in other types of large-

scale, ongoing disaster situations whereby people’s behavior must be constantly adapted due to 

the conditions of the prevailing crisis. Perhaps additional examples of such crises could be 

identified, and this model adapted to that situation.  

There is potential to use this research to not only quantify differences from one domain to 

another, but to also quantify differences from one geographic region to another. For instance, if a 

substantial drop in demand is observed in a particular industry, it may not be so clear to what 

extent the drop was caused by imposed government restrictions, genuine human response, or a 

combination of both. Being that the purpose of this model has been to estimate the aggregate 

behavioral response of a population to COVID, it may not be so important to consider these two 

effects separately, especially if it can be shown that aggregate individual response and 

government response are subject to the same types of response mechanisms. However, we 

should expect that the output of this model may certainly produce biased results if it is to, for 

instance, ignore the effects that a particularly strong or weak lockdown may have on aggregate 

response within a state. Also, while this model will not be parameterized to specific geographic 

locations, it could reasonably follow that specific geographic parameterization may be 

appropriate and capture the differences in individual and government response from one region 

to another, say for example differences in very liberal versus very conservative states (Akovall & 

Yilmaz, 2020). 

Finally, future research should include specific, empirical testing of the assumptions made in this 

model. By conducting surveys or other studies, it may be possible to corroborate the assumptions 
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made in this model, thus building additional confidence in its usefulness and further extending 

the theories underlying the cognitive processes used in this model. For instance, further 

investigation and testing could be undertake to more precisely estimate Steven’s exponent as it 

pertains to COVID. Additionally, the shapes of  the distribution curves hold interesting potential 

for further exploration into how they can be used to categorize differences from domain to 

domain (or as mentioned above, from region to region), and how they can be extended into other 

situations, for instance estimation of risk perception distribution in other areas outside of 

COVID.  

  



   
 

 
 

79 

Conclusion 

This research project has offered an explanation as to how the COVID pandemic has impacted 

behavior patterns in a variety of domains and geographic regions within the US. After a thorough 

review of the cognitive mechanisms most likely responsible for shaping people’s behavior, as 

well as other leading theories about what might be impacting behavior patterns in the midst of 

COVID, a simulation model was developed to replicate these cognitive mechanisms and other 

theories to test if they can explain the real-world behavior patterns that have emerged from 

COVID. The model developed in this project shows how behavior in several domains changes as 

a direct result of changes in the COVID situation. The model is able to quantify the effect of the 

cognitive processes that shape a population’s response to incoming news about COVID and 

offers valuable theoretical and practical implications for business leaders, policy makers, and 

others looking to better understand how COVID is impacting people’s behavior and decision 

making. Furthermore, the model component developed here can be plugged into other models 

that are studying more specific effects of COVID on other areas of society and require a model 

structure that can translate the COVID situation into some change in behavior. 

 

To better summarize the findings of this research in an organized manner, the original research 

questions listed in the introduction will be revisited and answered below: 

1. How does a populations behavior change on the aggregate level in response to changes 

in the pandemic? 

This project has demonstrated that behavior patterns can be reasonably estimated given 

the news about COVID cases.  

a. Can a generic simulation model be developed and utilized that approximates for a 

variety of domains how these behavior patterns result from changes in COVID? 

The behavioral results of the model developed in this research suggest that a 

generic model can be used to show how behavior in a variety of different domains 

is impacted by COVID. The model, under different parameterizations, is able to 

reproduce a wide variety of behavior modes across several different types of 

domains. 
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b. Can such a model provide a better understanding of how the level of behavior 

could develop under different, hypothetical COVID scenarios? 

After the model had been tested, calibrated, and validated using the historical 

COVID cases (both at the national and state levels), hypothetical COVID 

scenarios were passed into the model to gain better understanding as to how 

behavior adapts overtime under a variety of different situations (including 

exponential growth, cycles, and linear, steady state developments of different 

scales and directions. Doing this revealed a clear effect of people getting used to 

COVID over time, thus offering a theoretical, model-based validation of the 

‘pandemic fatigue’ phenomenon. Additionally, it revealed what kinds of COVID 

developments would cause certain behavior patterns, such as exponential growth 

causing a steady level of behavior.  

c. What are the implications of this analysis for policy-makers or industry leaders as 

they create short and mid-term strategies to combat the effects of COVID?  

The model produces interesting insights for public policy makers and industry 

leaders as they engage in strategic planning in the midst of COVID. Based on the 

results of the model, we can expect a people to grow more and more comfortable 

with COVID and as a result, continue to engage in more normal behavior patterns 

as time goes on regardless of if the situation continues to worsen overall. 

Additionally, the model can be calibrated to specific domains to allow for 

scenario testing of future potential COIVD developments and their expected 

impact on behaviors. Public health officials could incorporate this model into 

existing COIVD projection models to estimate how behaviors in other domains 

outside of immediate health behaviors could impact the spread of the infection. 

Finally, it shows that when future pandemics or crises come, the time of greatest 

leverages is in the initial stages of the pandemic, so such opportunities for action 

should not be wasted in the future. 

2. Are there specific cognitive mechanisms or heuristics that can be used to offer a causal 

explanation of how people’s behavior changes in response to the COVID pandemic? 
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This project has shown that modeling some of the relevant cognitive mechanisms and 

heuristics is capable of offering a causal explanation of the processes that shape people’s 

response to COVID. 

a. Can such cognitive mechanisms be adequately represented in a simulation 

model? 

Several cognitive mechanisms have been successfully brought together into this 

model, including perception, anchoring and habituation, Steven’s power law of 

psychophysics, and the estimated distribution of populations risk assessment and 

behavioral outcomes given a situation. Each of these have been mathematically 

represented in a reasonable and theoretically sound manner. 

b. Can a populations behavioral response be sufficiently explained by only 

considering the cognitive mechanisms that shape a response given the current 

information about the pandemic? 

A handful of relevant cognitive mechanisms have been identified and unified into 

a causal model that is capable of reproducing the observed behavior patterns. Of 

course, there are several known factors that have fallen outside of the boundary of 

this model (and some simple and obvious ones have been included), by 

accounting for how a population perceives, understands, and acts on information, 

and by accounting for differences from domain to domain, these cognitive 

mechanisms can explain a significant portion of the responses that have been 

witnessed throughout the pandemic. It is reasonable to expect that more detailed 

models that bring in additional known factors would further improve the 

behavioral fit and estimations of the real-world distribution curves. 

 

3. Are there meaningful differences in a population’s behavioral response in different 

domains? 

The model has revealed that a generic structure can be applied to a wide variety of 

domains despite the known differences among those domains. 

a. Can such differences be quantified in a meaningful way? 

The primary difference that has been quantifiably singled out among the domains 

is in the way that people respond to the COVID situation. While it is reasonable to 
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expect that in all domain people will perceive the situation the same, of course 

there are differences among the domains in terms of how necessary or 

discretionary the domain is, as well as how flexible or inflexible people are in 

adapting their behavior in that domain. These differences can be adequately 

reflected in the shape of the log-normal distribution used to describe a populations 

expected response in a domain under different COVID situations. By calibrating 

each domain with a distribution curve characterized by a specific mean and 

standard deviation, the same model structure is able to replicate behavior under 

many very different domains. 

b. Can such a quantification also be used to offer insights regarding people’s 

cognitive mechanisms under different situation? 

The mean and standard deviation values that characterize each domains 

behavioral distributions have significant meaning in and of themselves as to how 

a population responds in that domain. It has been shown that necessary and 

largely inflexible domains such as grocery and pharmacy mobility is characterized 

by a high mean and low standard deviation; likewise, domains with a low mean 

and high standard deviation are typically very flexible and discretionary domains, 

such as restaurants and airlines.  

c. Could such a model be utilized in crisis situations beyond the covid pandemic?  

While not explicitly proven in this research project, there is good reason to 

believe that the model developed here could have application beyond this COVID 

pandemic. Since the model reflects general cognitive processes rather than 

anything specific to COVID (or even a pandemic for that matter), it is reasonable 

to expect that the model could be adapted and useful in estimating potential 

population-wide behavioral responses to other large-scale, ongoing, and societally 

transformative crisis situations.  

 

This concludes the findings of this research project. While COVID will likely come to represent 

a paradigm shift in our expectations of what it means to live in a global society, it will not likely 

be the last such shift in this generation. The problems facing the world are becoming much more 

global and complex; we must be able to understand how people will react to these problems as 
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they emerge and evolve if we are to have a hope of managing and overcoming these problems of 

ever greater scale and frequency in our collective future. I hope this research has taken one small 

step forward toward a greater understanding of this and that it inspires others to study further. 

Thank you for taking the time to read this paper. 
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Appendices 

Appendix A: Model Documentation 

 
 
Start Time: 0 (January 1, 2020) 
End Time: 500 (May 14, 2021) 
Time Units: Days 
DT: 1/16 
Integration Method: Euler’s 
Software version: Stella Architect 2.1.1 
 
The model has 229 (5001) variables (array expansion in parenthesis). 
In root model and 7 additional modules with 14 sectors. 
Stocks: 20 (726)  
Flows: 23 (829)  
Converters: 186 (3446) 
Constants: 59 (577)  
Equations: 150 (3698)  
Graphicals: 0 (0) 
There are also 4191 expanded macro variables. 
 

Top-Level Model: 
new_daily_cases[state] = NAN 
    UNITS: cases/day 

DOCUMENT: This data comes from the United States CDC API (Socrata) and 
represents the daily new recorded deaths for each of the 50 US states plus Washington 
DC. (United States Center for Disease Control, 2021) 

 
new_daily_deaths[state] = NAN 
    UNITS: people/day 

DOCUMENT: This data comes from the United States CDC API (Socrata) and 
represents the daily new recorded deaths for each of the 50 US states plus Washington 
DC. (United States Center for Disease Control, 2021) 
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sample_data = IF 
"switch_1_=_senior_housing_2_=_restaurants_3_=_airlines_4_=_mobility[sector]" = 1 
THEN Senior_Housing.brookdale_historical ELSE IF 
"switch_1_=_senior_housing_2_=_restaurants_3_=_airlines_4_=_mobility[sector]" = 2 
THEN Restaurants.us_dinein_revenue ELSE IF 
"switch_1_=_senior_housing_2_=_restaurants_3_=_airlines_4_=_mobility[sector]" =3 
THEN Airlines.normalized_demand ELSE Mobility.us_mobility_data[work] 

UNITS: dmnl 
 

sample_model_results = IF 
"switch_1_=_senior_housing_2_=_restaurants_3_=_airlines_4_=_mobility[sector]" = 1 
THEN brookdale.brookdale_occupancy ELSE IF 
"switch_1_=_senior_housing_2_=_restaurants_3_=_airlines_4_=_mobility[sector]" = 2 
THEN Restaurants.effect_of_covid_on_decision_to_dine_out ELSE IF 
"switch_1_=_senior_housing_2_=_restaurants_3_=_airlines_4_=_mobility[sector]" = 3 
THEN Airlines.effect_of_covid_on_airline_passenger_traffic ELSE 
Mobility.effect_of_covid_on_mobility[work] 

UNITS: dmnl 
 

shutdown_begins = 71 
    UNITS: day 

DOCUMENT: For simplicity, it is assumed that the pandemic began to effect behavior 
patterns within the entire US on March 11, 2020, the day that COVID was declared a 
global pandemic by the WHO. Until this day, the model will produce no effect on 
demand. (World Health Organization, 2020) 
 

state_population[state] = NAN 
    UNITS: people 

DOCUMENT: Population data as of 2019 by US state. This is used to calculate 
weighted averages when aggregating state-wide model results into an overall US 
result. (United States Census Bureau, 2019) 
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"switch_1_=_senior_housing_2_=_restaurants_3_=_airlines_4_=_mobility[sector]" = 2 
UNITS: dmnl 
 

us_new_daily_cases = SUM(new_daily_cases) 
    UNITS: cases/day 

DOCUMENT: This variable sums the total new daily cases from each individual US 
state into an aggregated US amount. 
 

us_new_daily_deaths = SUM(new_daily_deaths) 
UNITS: people/day 
DOCUMENT: This variable sums the total new daily deaths from each individual US 
state into an aggregated US amount 

Generic_Model: 
DOCUMENT: This module contains the generic model structure used throughout this research 
project. Here it is not applied to any particular domain nor is it arrayed. Additional graphs, 
analysis, and supporting structures can be found in this variable. All documentation as to the 
generic structure of this model will be found here. 

 
modeled_behavior(t) = modeled_behavior(t - dt) + (updating_behavior) * dt 
    INIT modeled_behavior = 1 
    UNITS: dmnl 

DOCUMENT: The modeled demand is the final output variable of this model and 
represents what the model would project the overall level of demand to be given the 
current and historical COVID situation in light of the various cognitive biases applied 
in this model. It is this output that will be evaluated against the real-world data to judge 
the behavioral validity of this model. 
The stock is initialized with a value of 1, meaning that behavior is assumed to start in a 
steady state at 100% of its pre-pandemic level. 

State population State population State population
[AL] 4,903,185         [LA] 4,648,794         [OH] 11,689,100       
[AK] 731,545            [ME] 1,344,212         [OK] 3,956,971         
[AZ] 7,278,717         [MD] 6,045,680         [OR] 4,217,737         
[AR] 3,017,825         [MA] 6,949,503         [PA] 12,801,989       
[CA] 39,512,223       [MI] 9,986,857         [RI] 1,059,361         
[CO] 5,758,736         [MN] 5,639,632         [SC] 5,148,714         
[CT] 3,565,287         [MS] 2,976,149         [SD] 884,659            
[DE] 973,764            [MO] 6,137,428         [TN] 6,833,174         
[FL] 21,477,737       [MT] 1,068,778         [TX] 28,995,881       

[GA] 10,617,423       [NE] 1,934,408         [UT] 3,205,958         
[HI] 1,415,872         [NV] 3,080,156         [VT] 623,989            
[ID] 1,787,065         [NH] 1,359,711         [VA] 8,535,519         
[IL] 12,671,821       [NJ] 8,882,190         [WA] 7,614,893         

[IN] 6,732,219         [NM] 2,096,829         [WV] 1,792,147         
[IA] 3,155,070         [NY] 19,453,561       [WI] 5,822,434         
[KS] 2,913,314         [NC] 10,488,084       [WY] 578,759            
[KY] 4,467,673         [ND] 762,062            [DC] 705,749            
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reference_condition(t) = reference_condition(t - dt) + (updating_reference_condition) * 
dt 
    INIT reference_condition = 0 
    UNITS: cases/day 
    DOCUMENT: The idea of a reference condition comes from John Sterman's 
expectation formation paper. The basic idea here is that the reference condition represents 
the recent memory of an ongoing condition. The formulation here utilizes a first order 
exponential delay process meaning that the most recent information is weighted most 
heavily, and older information is discounted at an exponential rate. The reference 
condition is a key part of the basic TREND function as Sterman describes in his paper 
(Sterman, 1986).  
    Functionally this would represent what people would consider to be the average 
condition over some backwards looking period-- that period being determined by the 
'time to update reference condition' variable.  
    The practical implication of this variable is that the reference condition, which will be 
the standard by which the present condition is compared to later on in the model, does in 
fact change over time and can represent the level to which people grow comfortable with 
a certain number of COVID cases.  

The stock is initialized with a value of 0 since the model begins well before the 
pandemic starts. 

 
updating_behavior = ((effect_of_judgment_on_indicated_behavior)-
modeled_behavior)/time_to_update_behavior 
    UNITS: dmnl/days 

DOCUMENT: The flow here is determined by a basic goal/gap formulation 
characteristic of a first order delay process. 
 

updating_reference_condition = (perceived_present_condition-
reference_condition)/time_to_update_reference_condition 
    UNITS: cases/day/days 

DOCUMENT: The flow here is determined by a basic goal/gap formulation 
characteristic of a first order delay process. 
 

"<mean>" = -.5 
    UNITS: dmnl 

DOCUMENT: The value here describes the mean of the lognormal distribution drawn 
in the 'effect of judgment on indicated behavior' variable. This variable is calibrated to 
each specific domain and is explained more thoroughly in the written report. 

    See appendix B for sensitivity analysis 
See appendix C for the calibration procedure used 
 

"<stdev>" = 2 
    UNITS: dmnl 
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    DOCUMENT: The value here describes the standard deviation of the lognormal 
distribution drawn in the 'effect of judgment on indicated behavior' variable. This variable 
is calibrated to each specific domain. 
    See appendix B for sensitivity analysis 

See appendix C for the calibration procedure used 
 

effect_of_covid_on_baseline_behavior = MIN(1, modeled_behavior) 
    UNITS: dmnl 

DOCUMENT: This is the output variable. In this case, it is equivalent to the 'modeled 
demand' stock, but in other cases, this is where the aggregation of state specific results 
would take place to produce a result for the US as a whole or this is where additional 
particular adjustment calculations may take place to match the output data to the 
reference mode data. 
 

effect_of_judgment_on_indicated_behavior = IF TIME <.shutdown_begins THEN 1 
ELSE NORMALCDF(-99, LN(judgment_of_current_condition+1e-12), "<mean>", 
"<stdev>") 
    UNITS: dmnl 
    DOCUMENT: The purpose of this variable is to translate the 'judgment of current 
condition' into an indicated demand level. This is a complex calculation and requires a 
proper accounting for the fact that at any level of 'judgement of current condition' there is 
a distribution of people who would or would not change their behavior at that given level. 
This variable evaluates the cumulative probability of a lognormal distribution with a 
given mean and standard deviation (calibrated to the particular domain) at a given z value 
(where z is the value given by 'judgment of current condition').  
    We assume that behavior in this case represents a simple 'yes' or 'no' decision on the 
part of the individual people in the population, and we are looking at the proportion of the 
population that chooses 'yes' or 'no'. Note that this model scales normal behavior to 
whatever levels were typical before the pandemic began. Thus, everything is scaled to the 
pre-pandemic levels and expressed as a percentage of pre-pandemic behavior. In most 
cases in this research, the terms behavior and demand are used interchangeably; so that 
100% represents everyone who would have normally made a  'yes' decision makes a 'yes' 
decision currently.  
    The following 3 criteria point toward a lognormal distribution (Limpert, Stahel, & 
Abbt, 2001): 

1. If 'judgment of current condition' were to equal 0, then 0 percent of the 
population should engage in normal behavior. Thus, there is no possibility for 
negative values. 

     2. the mean value is low 
     3. the variance among the population is high 
    An additional criterion is presented here: 
     4. Only if  'judgment of current condition' were to equal infinity (meaning 
COVID has completely disappeared), would we expect 100% of the population should 
engage in normal behavior.  

It is assumed that this effect will only register once an official crisis has been declared. 
When a global pandemic was declared and the US federal and state governments began 
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enforcing various restrictions, it represented a paradigm shift in how a population made 
their decisions. Thus, the effect is deactivated until the official start of the pandemic, at 
which point it is turned on and left on indefinitely. 

  
exponent = .5 
    UNITS: dmnl 

DOCUMENT: The exponent is used in Steven's Power Law to calculate the 
relationship between an objective real world stimulus intensity and its value of its sensory 
intensity  (Zwizlocki, 2009). In this case Steven's Power Law is being extended from the 
realm of physical stimuli to non-physical stimuli; thus, the number of cases in the 
perceived present condition and the reference condition are considered the stimuli and the 
exponent will be used to calculate the sensation magnitude of each, respectively. When 
an exponent of less than 1 is used, it implies that the sensed magnitude of the stimulus 
will increase at an exponentially decreasing rate compared to the actual magnitude of the 
stimulus. Thus, we can say that low numbers of cases will be perceived more accurately 
than high numbers of cases, which will be increasingly discounted the larger the stimulus 
gets. Utilizing Steven's Power Law in this way corresponds to research in the field of 
'psychic numbing' that as the magnitude of a catastrophe increases, the emotional 
response increases only marginally so (Slovic, 2007). 

It is assumed for this model that the same exponent can be used here regardless of the 
domain to which it is applied, since the exponent refers to the particular stimulus. While 
there certainly can be variation of the exponent within a particular stimulus (depending 
on its sensory context and the stakes of accurately judging the condition), it will be 
assumed for simplicity that all domains assessed in this model will utilize an estimated 
exponent value of 0.5 and that any small error in estimation (if variation were in fact to 
be expected) would be compensated for by a slight change to the '<stdev>' variable 
(explained below).  
    It was known beforehand that this variable should be a value between 0 and 1 based on 
the theoretical implication of Slovic's research on psychic numbing (see (Slovic, 2007).) 
This value was then roughly estimated to be 0.5 for all domains by performing a 
calibration routine for each individual domain whereby 'time to update reference 
condition', 'exponent', '<mean>', and '<stdev>' were all calibrated at once to find a value 
for each that produced the best behavioral fit to the data. After doing this for each domain 
discussed in this research project, the calibrated exponent variable fell roughly within a 
range of 0.3 to 0.7, so an average value of 0.5 was assumed to be adequate here to 
describe all domains. Sensitivity analysis further revealed that opposite changes in both 
the 'exponent' variable and the '<stdev>' variable could produce similar behavioral 
changes within a certain range. This ultimately made calibration difficult when both these 
values were allowed to be changed, since a change in one variable could be compensated 
for to a large extent by an opposite change in the other. Therefore, the decision was to fix 
the 'exponent' value at a value that was deemed appropriate for all domains (0.5), and 
then allow the burden of producing variability in the model output, all else being equal, 
thus fell upon the '<mean>' and '<stdev>' variables. This is further theoretically justified 
in that it is fully expected that there will be wild variations in the distributions of 
outcomes (as represented by the 'effect of judgment on indicated behavior' variable) from 
domain to domain, so the variables describing the distribution should bear the weight of 
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calibration much more than the 'exponent' variable which is much more commonly 
known to be relatively stable with little difference between values within the same 
stimulus.  
     
extreme_condition = STEP(100000, 10)-STEP(100000, 730) 
    UNITS: cases/day 

DOCUMENT: test input used in extreme conditions testing 
 

judgment_of_current_condition = 
sensation_magnitude_of_reference_condition//sensation_magnitude_of_present_conditio
n 
    UNITS: dmnl 

DOCUMENT: This is a simple comparison of the 'sensation magnitude of reference 
condition' to the 'sensation magnitude of present condition'. The result is a ratio of the 
reference over the present condition. A value of 1 would indicate that it is perceived that 
the present condition is equivalent to the reference condition, and thus under control. A 
value approaching 0 would indicate that the reference condition is much few cases than 
the present condition; thus, this would indicate a worst-case scenario. A value 
approaching infinity would indicate that the reference condition represents many more 
cases than the present condition; thus, this would indicate a very safe and favorable 
scenario.  

This equation borrows somewhat from John Sterman's Expectation Formation paper 
(Sterman, 1986); except in this case people are not using the present and reference 
conditions to estimate a future trend, they are rather using these to judge a current 
condition.  

 
lognormal_cumulative_distribution_curve = NORMALCDF(-99, LN(RAMP(0.01)+1e-
12),"<mean>", "<stdev>") 
    UNITS: dmnl 

DOCUMENT: The equation for drawing a lognormal cumulative probability density 
curve was given by Billy Schoenberg, who offered an adaptation of the NORMALCDF 
built-in function in Stella (Schoenberg, 2021)  (Isee Systems , 2021). Then an input of the 
ramp(.01) function was given for the z argument so that when plotted over time, it would 
draw a cumulative probability density curve with the given mean and standard deviation. 
The x axis should be interpreted as a dimensionless axis and divided by 100. 

 
lognormal_probability_density_curve = 
(1//(RAMP(.01)*"<stdev>"*SQRT(2*PI)))*(EXP(1)^(-.5*(((LN(RAMP(.01))-
"<mean>"))//"<stdev>")^2)) 
    UNITS: dmnl 

DOCUMENT: The equation for drawing a lognormal probability density curve was 
taken from https://www.real-statistics.com/normal-distribution/log-normal-distribution/. 
Then an input of the ramp(.01) function was given for the z argument so that when 
plotted over time, it would draw a probability density curve with the given mean and 
standard deviation. The x axis should be interpreted as a dimensionless axis and divided 
by 100. 
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perceived_present_condition = SMTH3(.us_new_daily_cases, 
time_to_perceive_present_condition) {DELAY CONVERTER} 
    UNITS: cases/day 
    DOCUMENT: The perceived present condition is assumed to be a third order 
exponential delay of the total new daily cases. A third order delay is used to account for 
the fact that there are many stages in the process between collecting data and it being 
perceived by the public. (Sterman, Business Dynamics: Systems Thinking and Modeling 
for a Complex World, 2000)  

 
sensation_magnitude_of_present_condition = 
DELAY(perceived_present_condition^exponent, DT) 
    UNITS: cases/day 
    DOCUMENT: As explained in the 'exponent' variable, this variable calculates the 
sensory magnitude of the 'perceived present condition' by taking the stimulus and raising 
it to the exponent. This is calculated using Steven's Power Law, which states that: 
    sensation magnitude = constant * stimulus^ exponent (Zwizlocki, 2009) 
    The constant is irrelevant in this model since in the 'judgment of current condition' 
variable, the result of this equation will be divided by the result of the same equation 
applied to the 'reference condition'. Both the exponent and constant are assumed to be the 
same in both cases since they are both the same kind of stimuli. Since the constant is 
applied linearly in the equation, they will cancel each other out when it comes to the 
'comparison' calculation. Note that the unit error here does is not due to a real 
dimensional inconsistency, but due to the difficulty the software has in assessing the units 
of equations utilizing non-integer exponents. The effect of this variable is to distort the 
objective cases per day into the sensed cases per day, no unit transformation should result 
from this calculation. 
     
sensation_magnitude_of_reference_condition = reference_condition^exponent 
    UNITS: cases/day 
    DOCUMENT: As explained in the 'exponent' variable, this variable calculates the 
sensory magnitude of the 'reference condition' by taking the stimulus and raising it to the 
exponent. This is calculated using Steven's Power Law, which states that: 
    sensation magnitude = constant * stimulus^ exponent (Zwizlocki, 2009) 

The constant is irrelevant in this model since in the 'judgment of current condition' 
variable, the result of this equation will be divided by the result of the same equation 
applied to the 'perceived present condition'. Both the exponent and constant are assumed 
to be the same in both cases since they are both the same kind of stimuli. Since the 
constant is applied linearly in the equation, they will cancel each other out when it comes 
to the 'judgment of current condition' calculation. Note that the unit error here does is not 
due to a real dimensional inconsistency, but due to the difficulty the software has in 
assessing the units of equations utilizing non-integer exponents. The effect of this 
variable is to distort the objective cases per day into the sensed cases per day, no unit 
transformation should result from this calculation. 

 
time_to_perceive_present_condition = 10 
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    UNITS: days 
DOCUMENT: This represents the average amount of time that it takes for a population 

within the given region to perceive the real level of COVID cases. This delay time can 
account for the time needed to collect, aggregate, and publish the final data figures as 
well as the time it takes for people to hear of the news of the new daily cases. This 
number is assumed to be 10 days, though the real number may be more or less depending 
on the reporting procedures in the given region or depending on how interested people 
are in keeping up to date with the latest figures. Sensitivity testing on this variable reveals 
that the model is not particularly sensitive in terms of behavior mode as this variable is 
adjusted up or down. See Appendix B for more details.  

 
time_to_update_behavior = 10 
    UNITS: days 

DOCUMENT: This variable represents how long on average it takes to change one’s 
demand or consumption behavior in response to updated signals coming from the COVID 
situation. A first order process is used here, so it assumes most people will update their 
behavior rather quickly with some waiting potentially a few weeks to change their 
behavior (whether it is increasing or decreasing).  

 
time_to_update_reference_condition = 360 
    UNITS: days 
    DOCUMENT: This variable represents the time frame by which the reference 
condition is formed (Sterman, 1986).  
    A short delay time here would indicate that the reference condition is based on a fairly 
recent period of time and thus the reference condition would be liable to change quickly 
as the actual situation changed quickly. Conversely, a longer delay time would indicate 
that the reference condition is based on a much longer backwards looking time horizon 
and that the older information is discounted much slower. This would mean the reference 
condition moves very slowly compared to the present condition.  
    While this variable theoretically could be different when assessed in different domains, 
for this model it is assumed that all domains use a value of 360 days. Sensitivity testing 
reveals that changes in this variable as well as the '<mean>' variable both can affect the 
final 'modeled behavior' in similar ways. Therefore, any reduction in 'time to update 
reference condition' can to some extent be offset by an adjustment to the assumed 
'<mean>' variable. Since it is fully expected that the '<mean>' variable will be different 
from domain to domain, and since calibration techniques are not able to properly 
differentiate between these two variables, the decision was made to fix the value of this 
variable and let the '<mean>' variable bear the burden of calibration for this model.  

However, in order to determine the value of 360, each domain was calibrated with this 
variable, along with the 'exponent', '<mean>', and '<stdev>' variables subject to change. 
After testing each domain separately, most came in around 360 days with the exception 
of one or two outliers. Thus 360 will be assumed for all of them and any required 
adjustment from this variable will be accounted for by slight changes to the '<mean>' 
variable.  
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Airlines: 
DOCUMENT: This sector applies the model structure to the airline industry in the US, looking 
specifically at how the COVID pandemic has affected demand for air travel. The analysis here 
looks at overall US cases and produces an estimated demand over time for the entire US. This 
sector need not be aggregated by state, since local COVID conditions are not as likely to 
influence a decision to travel  than overall COVID conditions for the US as a whole.  
 

modeled_behavior(t) = modeled_behavior(t - dt) + (positive_change_in_behavior - 
negative_change_in_behavior) * dt 
    INIT modeled_behavior = 1 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

reference_cases(t) = reference_cases(t - dt) + (updating_reference) * dt 
    INIT reference_cases = 0 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

negative_change_in_behavior = MAX(0, ((modeled_behavior)-
effect_of_judgment_on_indicated_behavior)/time_to_reduce_behavior) 
    UNITS: dmnl/days 
    DOCUMENT: Refer to generic model 
    For the airline industry, it should not be assumed that the behavior in this case 
(traveling by plane) can expand or contract at the same rate. While in other domains, this 
may be true, the reality in airlines is that flights can very quickly be canceled and 
passengers may very quickly decide to cancel or reschedule their itinerary, however it 
usually takes at least few weeks to plan air travel. Thus, if the COVID situation worsens, 
demand (and supply) of air travel can quickly be lost, however it will take longer to build 
back up again (since people need to plan and book in advance and additional flights must 
be scheduled in advance). Therefore, loss of demand will happen with a 10-day delay 
time (as in all other domains) yet will only be gained back again with a 45-day delay 
time. 

 
positive_change_in_behavior = MAX(0, ((effect_of_judgment_on_indicated_behavior)-
modeled_behavior)/time_to_increase_behavior) 
    UNITS: Per Day 
    DOCUMENT: Refer to generic model 

For the airline industry, it should not be assumed that the behavior in this case 
(traveling by plane) can expand or contract at the same rate. While in other domains, this 
may be true, the reality in airlines is that flights can very quickly be canceled and 
passengers may very quickly decide to cancel or reschedule their itinerary, however it 
usually takes at least few weeks to plan air travel. Thus, if the COVID situation worsens, 
demand (and supply) of air travel can quickly be lost, however it will take longer to build 
back up again (since people need to plan and book in advance and additional flights must 
be scheduled in advance). Therefore, loss of demand will happen with a 10-day delay 
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time (as in all other domains) yet will only be gained back again with a 45-day delay 
time. 

 
updating_reference = (perceived_present_condition-
reference_cases)/time_to_update_reference 
    UNITS: cases/day/days 

DOCUMENT: Refer to generic model 
 

"2019_passengers" = 1908805 
    UNITS: people 
    DOCUMENT: Data taken from the Transportation Security Administration website for 
passenger counts going through all US airports on each day in 2019. 
(United States Transportation Security Administration, 2021) 
Refer to FIGURE 

 
"2020_passengers" = 689951 
    UNITS: people 
    DOCUMENT: Data taken from the Transportation Security Administration website for 
passenger counts going through all US airports on each day in 2020. 
(United States Transportation Security Administration, 2021) 
Refer to FIGURE 

 
 

"<mean>" = -.726 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced a value of -0.73 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

"<stdev>" = .698 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced a value of 0.69 
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    Details of the calibration routine used can be found in appendix C 
Details of the sensitivity analysis can be found in appendix B 
 

airlines_lognormal_cumulative_distribution_curve = NORMALCDF(-99, 
LN(RAMP(0.01)+1e-12),"<mean>", "<stdev>") 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

airlines_lognormal_probability_density_curve = 
(1//(RAMP(.01)*"<stdev>"*SQRT(2*PI)))*(EXP(1)^(-.5*(((LN(RAMP(.01))-
"<mean>"))//"<stdev>")^2)) 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

banned_international_flights = 1+STEP(-
relative_volume_of_intl_flights,  .shutdown_begins) 
    UNITS: dmnl 

DOCUMENT: This variable enforces the supply restriction after the pandemic has 
begun and leaves it in place during the horizon of this model. 

 
effect_of_covid_on_airline_passenger_traffic = 
modeled_behavior*banned_international_flights 
    UNITS: dmnl 
    DOCUMENT: This is the modeled level of demand for airline travel based upon the 
output of the model developed for this research project.  

Special assumptions include an adjustment down for international travel, two different 
delay times for positive or negative changes in demand, and using total US cases as the 
input to the model. 

 
effect_of_judgment_on_indicated_behavior = IF TIME <.shutdown_begins THEN 1 
ELSE NORMALCDF(-99, LN(judgment_of_current_condition+1e-12), "<mean>", 
"<stdev>") 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

exponent = .5 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

judgment_of_current_condition = 
(sensation_magnitude_of_reference_condition//sensation_magnitude_of_present_conditi
on) 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

normalized_demand = "2020_passengers"/"2019_passengers" 
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    UNITS: dmnl 
DOCUMENT: This variable expresses the actual demand seen from January 1, 2020 to 

present by taking the number of passengers observed during this time frame divided by 
the number of passengers observed on the same day of the year in 2019. This produces a 
normalized stream of data that expresses the level of demand compared to pre-pandemic 
levels, expressed as a percentage. Doing this also removes seasonal variations in the data. 

 
perceived_present_condition = SMTH3(.us_new_daily_cases, 
time_to_perceive_present_condition) {DELAY CONVERTER} 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

relative_volume_of_intl_flights = (241.3/1052.8)*.9 
    UNITS: dmnl 
    DOCUMENT: An adjustment is made in this model that assumes a near complete 
elimination of international travel due to strict border controls that have been in place 
since the onset of the pandemic. As of May 2021, most of these travel restrictions remain 
in place (United States Center for Disease Control, 2021). Therefore, it is assumed that 
this segment of air travel will not rebound until these restrictions are broadly lifted, 
despite the demand that may exist for international travel. This percentage is calculated 
using passenger data from 2019 (US Bureau of Transportation Statistics, 2020), and it is 
assumed that 90% of this demand is suppressed due to ongoing border controls. 
     
sensation_magnitude_of_present_condition = 
DELAY(perceived_present_condition^exponent, DT) 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

sensation_magnitude_of_reference_condition = reference_cases^exponent 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

time_to_increase_behavior = 45 
    UNITS: days 
    DOCUMENT: Refer to generic model 

In this case the assumption of 45 days is only applied to a gain in demand for air travel, 
losses are treated separately. 

 
time_to_perceive_present_condition = 10 
    UNITS: days 

DOCUMENT: Refer to generic model 
 

time_to_reduce_behavior = 10 
    UNITS: days 
    DOCUMENT: Refer to generic model 
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In this case the assumption of 10 days is only applied to a loss in demand for air travel, 
gains are treated separately. 

 
time_to_update_reference = 360 
    UNITS: days 
    DOCUMENT: Refer to generic model 

 
 

Mobility: 
DOCUMENT: This sector analyzes Google mobility data. The data is available in 6 broad 
categories (four of which are used in this model) and is available on a statewide level. The model 
is applied at a statewide level to the mobility data and is also aggregated to the US as a whole. 
Whereas the restaurant and airlines sectors explicitly represent consumption behavior, the 
mobility data represents where people spend their time. We can infer their decision making 
based on where they are spending time, though this data is perhaps not as neat of a fit to the 
purpose of this model. 

Note that most variables in this module are arrayed by both state and mobility sector  
(workplaces, retail and recreation, grocery and pharmacy, and transit stations). 
 

modeled_behavior[mobility_category, state](t) = modeled_behavior[mobility_category, 
state](t - dt) + (updating_behavior[mobility_category, state]) * dt 
    INIT modeled_behavior[mobility_category, state] = 1 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 

Note: this stock (as are most variables in this module) is arrayed by both state and 
mobility sector. 

 
reference_cases[mobility_category, state](t) = reference_cases[mobility_category, state](t 
- dt) + (updating_reference[mobility_category, state]) * dt 
    INIT reference_cases[mobility_category, state] = 0 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

updating_behavior[mobility_category, state] = 
((effect_of_judgment_on_indicated_behavior)-
modeled_behavior)/time_to_update_behavior[mobility_category] 
    UNITS: Per Day 

DOCUMENT: Refer to generic model 
 

updating_reference[mobility_category, state] = (perceived_present_condition-
reference_cases)/time_to_update_reference[mobility_category] 
    UNITS: cases/day/days 

DOCUMENT: Refer to generic model 
 

"<mean>"[work] = -2.24 
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    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced the following values for each of the mobility sectors: 
    workplaces (work): -2.24 
    retail and recreation (retail): -2.37 
    grocery and pharmacy (grocery): -3.56 
    transit stations (trans):-2.00 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

"<mean>"[retail] = -2.37 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced the following values for each of the mobility sectors: 
    workplaces (work): -2.24 
    retail and recreation (retail): -2.37 
    grocery and pharmacy (grocery): -3.56 
    transit stations (trans):-2.00 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

"<mean>"[grocery] = -3.56 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced the following values for each of the mobility sectors: 
    workplaces (work): -2.24 
    retail and recreation (retail): -2.37 
    grocery and pharmacy (grocery): -3.56 
    transit stations (trans):-2.00 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

"<mean>"[trans] = -2 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced the following values for each of the mobility sectors: 
    workplaces (work): -2.24 
    retail and recreation (retail): -2.37 
    grocery and pharmacy (grocery): -3.56 
    transit stations (trans):-2.00 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

"<stdev>"[work] = 2.99 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
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    The calibration routine produced the following values for each of the mobility sectors: 
    workplaces (work): 2.99 
    retail and recreation (retail): 1.79 
    grocery and pharmacy (grocery): 2.2 
    transit stations (trans): 2.99 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

"<stdev>"[retail] = 1.79 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced the following values for each of the mobility sectors: 
    workplaces (work): 2.99 
    retail and recreation (retail): 1.79 
    grocery and pharmacy (grocery): 2.2 
    transit stations (trans): 2.99 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

"<stdev>"[grocery] = 2.2 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced the following values for each of the mobility sectors: 
    workplaces (work): 2.99 
    retail and recreation (retail): 1.79 
    grocery and pharmacy (grocery): 2.2 
    transit stations (trans): 2.99 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

"<stdev>"[trans] = 2.99 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced the following values for each of the mobility sectors: 
    workplaces (work): 2.99 
    retail and recreation (retail): 1.79 
    grocery and pharmacy (grocery): 2.2 
    transit stations (trans): 2.99 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

"calibration_variable_(data)" = IF TIME > 320 AND TIME < 380 THEN 0 ELSE 
smoothed_us_workplaces 
    UNITS: dmnl 
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DOCUMENT: This variable excludes the period of the holidays (from roughly 
Thanksgiving around day 320 to after New Year’s around day 380) so that the unique 
behavior pattern caused by the holiday season is not included in the calibration. 

 
"calibration_variables_(model)"[work] = IF TIME > 320 AND TIME < 380 THEN 0 
ELSE SMTH1(effect_of_covid_on_mobility[work], 10) 
    UNITS: dmnl 

DOCUMENT: This variable applies certain transformations to the output of the model 
so that it can be more accurately calibrated to the actual data. Since the actual data 
contains significant day to day variation, the actual data has been smoothed by 10 days; 
therefore, the model output must also be smoothed by 10 days so that it is equally 
distorted. Additionally, for the workplaces sector, the period of the holidays (from 
roughly Thanksgiving around day 320 to after New Year’s around day 380) has been 
excluded since the holidays have driven behavior patterns that are outside of the scope of 
this model. All of these transformations are only done so that the software can calibrate to 
the actual trends and not to the noise or to known external factors beyond COVID that 
may be impacting the trends. 

 
"calibration_variables_(model)"[retail] = SMTH1(effect_of_covid_on_mobility[retail], 
10) 
    UNITS: dmnl 

DOCUMENT: This variable applies certain transformations to the output of the model 
so that it can be more accurately calibrated to the actual data. Since the actual data 
contains significant day to day variation, the actual data has been smoothed by 10 days; 
therefore, the model output must also be smoothed by 10 days so that it is equally 
distorted. Additionally, for the workplaces sector, the period of the holidays (from 
roughly Thanksgiving around day 320 to after New Year’s around day 380) has been 
excluded since the holidays have driven behavior patterns that are outside of the scope of 
this model. All of these transformations are only done so that the software can calibrate to 
the actual trends and not to the noise or to known external factors beyond COVID that 
may be impacting the trends. 

 
"calibration_variables_(model)"[grocery] = 
SMTH1(effect_of_covid_on_mobility[grocery], 10) 
    UNITS: dmnl 

DOCUMENT: This variable applies certain transformations to the output of the model 
so that it can be more accurately calibrated to the actual data. Since the actual data 
contains significant day to day variation, the actual data has been smoothed by 10 days; 
therefore, the model output must also be smoothed by 10 days so that it is equally 
distorted. Additionally, for the workplaces sector, the period of the holidays (from 
roughly Thanksgiving around day 320 to after New Year’s around day 380) has been 
excluded since the holidays have driven behavior patterns that are outside of the scope of 
this model. All of these transformations are only done so that the software can calibrate to 
the actual trends and not to the noise or to known external factors beyond COVID that 
may be impacting the trends. 
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"calibration_variables_(model)"[trans] = SMTH1(effect_of_covid_on_mobility[trans], 
10) 
    UNITS: dmnl 

DOCUMENT: This variable applies certain transformations to the output of the model 
so that it can be more accurately calibrated to the actual data. Since the actual data 
contains significant day to day variation, the actual data has been smoothed by 10 days; 
therefore, the model output must also be smoothed by 10 days so that it is equally 
distorted. Additionally, for the workplaces sector, the period of the holidays (from 
roughly Thanksgiving around day 320 to after New Year’s around day 380) has been 
excluded since the holidays have driven behavior patterns that are outside of the scope of 
this model. All of these transformations are only done so that the software can calibrate to 
the actual trends and not to the noise or to known external factors beyond COVID that 
may be impacting the trends. 

 
data[state] = workplaces+1 
    UNITS: dmnl 

DOCUMENT: This variable holds the real data to be plotted state by state. 
 

effect_of_covid_on_mobility[mobility_category] = MIN(1, 
SUM(percentage_of_total_population_per_state[*]*modeled_behavior[mobility_categor
y,*]))-1 
    UNITS: dmnl 

DOCUMENT: This variable shows the effect of covid on mobility for the US as a 
whole by taking a weighted average (weighted by state population) of the modeled 
results. This variable is arrayed by each of the domains (workplaces, retail and recreation, 
grocery and pharmacy, and transit stations) that are covered in this module.  

 
effect_of_judgment_on_indicated_behavior[mobility_category, state] = IF TIME 
<.shutdown_begins THEN 1 ELSE NORMALCDF(-99, 
LN(judgment_of_current_condition+1e-12), "<mean>"[mobility_category], 
"<stdev>"[mobility_category]) 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

exponent[work] = .5 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

exponent[retail] = .5 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

exponent[grocery] = .5 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
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exponent[trans] = .5 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

grocery_and_pharmacy[state] = NAN 
    UNITS: dmnl 

DOCUMENT: Mobility data from Google. It tracks by state the number of people that 
passed through grocery store or pharmacy locations and is expressed as a percentage 
relative to the number of people found in the same places during the pre-pandemic period 
of January and February 2020 (Google LLC, n.d.) 

 
judgment_of_current_condition[mobility_category, state] = 
(sensation_magnitude_of_reference_condition//sensation_magnitude_of_present_conditi
on) 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

mobility_lognormal_cumulative_distribution_curve[mobility_category] = 
NORMALCDF(-99, LN(RAMP(0.01)+1e-12),"<mean>", "<stdev>") 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

mobility_lognormal_probability_density_curve[mobility_category] = 
(1//(RAMP(.01)*"<stdev>"*SQRT(2*PI)))*(EXP(1)^(-.5*(((LN(RAMP(.01))-
"<mean>"))//"<stdev>")^2)) 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

model[state] = modeled_behavior[work,state] 
    UNITS: dmnl 

DOCUMENT: This variable holds the modeled data to be plotted state by state. 
 

perceived_present_condition[mobility_category, state] = 
SMTH3(.new_daily_cases[state], 
time_to_perceive_present_condition[mobility_category]) {DELAY CONVERTER} 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

percentage_of_total_population_per_state[state] 
= .state_population/SUM(.state_population) 
    UNITS: dmnl 

DOCUMENT: This variable expresses each states' population as a percentage of the 
total US population. 

 
retail_and_recreation[state] = NAN 
    UNITS: dmnl 
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DOCUMENT: Mobility data from Google. It tracks by state the number of people that 
passed through retail and recreation locations and is expressed as a percentage relative to 
the number of people found in the same places during the pre-pandemic period of January 
and February 2020 (Google LLC, n.d.) 

 
sensation_magnitude_of_present_condition[mobility_category, state] = 
DELAY(perceived_present_condition^exponent[mobility_category], DT) 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

sensation_magnitude_of_reference_condition[mobility_category, state] = 
reference_cases^exponent[mobility_category] 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

smoothed_us_grocery_and_pharmacy = SMTH1(us_grocery_and_pharmacy, 10) 
UNITS: dmnl 
DOCUMENT: In order to smooth out the noise in this data to get a better calibration of 

the underlying trends happening in the data, the data was subjected to a 10 first order 
exponential delay.  

 
smoothed_us_retail_and_recreation = SMTH1(us_retail_and_recreation, 10) 
    UNITS: dmnl 

DOCUMENT: In order to smooth out the noise in this data to get a better calibration of 
the underlying trends happening in the data, the data was subjected to a 10 first order 
exponential delay.  

 
smoothed_us_transit_stations = SMTH1(us_transit_stations, 10) 
    UNITS: dmnl 

DOCUMENT: In order to smooth out the noise in this data to get a better calibration of 
the underlying trends happening in the data, the data was subjected to a 10 first order 
exponential delay.  

 
smoothed_us_workplaces = SMTH1(us_workplaces, 10) 
    UNITS: dmnl 

DOCUMENT: In order to smooth out the noise in this data to get a better calibration of 
the underlying trends happening in the data, the data was subjected to a 10 first order 
exponential delay.  

 
time_to_perceive_present_condition[mobility_category] = 10 
    UNITS: days 

DOCUMENT: Refer to generic model 
 

time_to_update_behavior[mobility_category] = 10 
    UNITS: days 

DOCUMENT: Refer to generic model 
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time_to_update_reference[work] = 360 
    UNITS: days 

DOCUMENT: Refer to generic model 
 

time_to_update_reference[retail] = 360 
    UNITS: days 

DOCUMENT: Refer to generic model 
 

time_to_update_reference[grocery] = 30 
    UNITS: days 

DOCUMENT: Refer to generic model 
 

time_to_update_reference[trans] = 360 
    UNITS: days 

DOCUMENT: Refer to generic model 
 

transit_stations[state] = NAN 
    UNITS: dmnl 

DOCUMENT: Mobility data from Google. It tracks by state the number of people that 
passed through transit stations(including highway rest stops, subway stations, taxi stands, 
etc.) and is expressed as a percentage relative to the number of people found in the same 
places during the pre-pandemic period of January and February 2020 (Google LLC, n.d.) 

 
us_grocery_and_pharmacy = NAN 
    UNITS: dmnl 

DOCUMENT: Mobility data from Google. It tracks for the entire US the number of 
people that passed through grocery store or pharmacy locations and is expressed as a 
percentage relative to the number of people found in the same places during the pre-
pandemic period of January and February 2020 (Google LLC, n.d.) 

Refer to FIGURE 
 
 

us_mobility_data[work] = us_workplaces 
UNITS: dmnl 
 

us_mobility_data[retail] = us_retail_and_recreation 
UNITS: dmnl 
 

us_mobility_data[grocery] = us_grocery_and_pharmacy 
UNITS: dmnl 
 

us_mobility_data[trans] = us_transit_stations 
UNITS: dmnl 
 

us_retail_and_recreation = NAN 
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    UNITS: dmnl 
DOCUMENT: Mobility data from Google. It tracks by state the number of people that 

passed through retail and recreation locations and is expressed as a percentage relative to 
the number of people found in the same places during the pre-pandemic period of January 
and February 2020 (Google LLC, n.d.) 

Refer to FIGURE 
 

us_transit_stations = NAN 
    UNITS: dmnl 

DOCUMENT: Mobility data from Google. It tracks for the entire US the number of 
people that passed through transit stations(including highway rest stops, subway stations, 
taxi stands, etc.) and is expressed as a percentage relative to the number of people found 
in the same places during the pre-pandemic period of January and February 2020 (Google 
LLC, n.d.) 

Refer to FIGURE 
 

us_workplaces = NAN 
    UNITS: dmnl 

DOCUMENT: Mobility data from Google. It tracks for the entire US the number of 
people that passed through workplace locations and is expressed as a percentage relative 
to the number of people found in the same places during the pre-pandemic period of 
January and February 2020 (Google LLC, n.d.)  

Refer to FIGURE 

 
 

workplaces[state] = NAN 
    UNITS: dmnl 
    DOCUMENT: Mobility data from Google. It tracks by state the number of people that 
passed through workplace locations and is expressed as a percentage relative to the 
number of people found in the same places during the pre-pandemic period of January 
and February 2020 (Google LLC, n.d.) 

 

Restaurants: 
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DOCUMENT: This sector applies the model structure to the restaurant industry in the US, 
looking specifically at how the COVID pandemic has affected demand for dine-in spending. The 
analysis here is arrayed by state and then aggregated to overall US results. This is because the 
particular COVID situation within a state is much more likely to influence consumer behavior 
than the situation for the US as a whole. It is assumed that the overall daily revenue (as 
compared to 2019 revenue on the same day) can reasonably represent how consumer behavior 
has changed from day to day throughout the pandemic. 
 

modeled_behavior[state](t) = modeled_behavior[state](t - dt) + 
(updating_behavior[state]) * dt 
    INIT modeled_behavior[state] = 1 
    UNITS: dmnl 
    DOCUMENT: This is the modeled level of demand for dining out at restaurants l 
based upon the output of the model developed for this research project. The results are 
achieved using new daily cases as the input and by adjusting the values of three 
parameters (time to update reference, exponent, and percentage at 1). This is the result for 
each individual state within the US 
reference_cases[state](t) = reference_cases[state](t - dt) + (updating_reference[state]) * dt 
    INIT reference_cases[state] = 0 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

updating_behavior[state] = ((effect_of_judgment_on_indicated_behavior)-
modeled_behavior)/time_to_update_behavior 
    UNITS: dmnl/days 

DOCUMENT: Refer to generic model 
 

updating_reference[state] = (perceived_present_condition-
reference_cases)/time_to_update_reference 
    UNITS: cases/day/days 

DOCUMENT: Refer to generic model 
 

"<mean>" = -.626 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced a value of -0.63 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

"<stdev>" = .93 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced a value of 0.93 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
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calibration_variable = IF TIME < .shutdown_begins THEN 1 ELSE IF TIME < 152 
THEN 0 ELSE effect_of_covid_on_decision_to_dine_out 
    UNITS: dmnl 
    DOCUMENT: So that the calibration does not consider the unique period of time from 
end of March to end of May whereby substantially all states had full dine-in restrictions, 
this variable transforms the 'effect of covid on decision to dine out' variable so that it is 0 
during the period from day 71 (the beginning of the pandemic) to day 152 (May 31, 
2020). Thus, the calibration will focus on the time after day 152. 
data[state] = SMTH1(dineinrevenue+1, 10) 
    UNITS: dmnl 

DOCUMENT: This variable holds the real data to be plotted state by state. 
 

dineinrevenue[state] = NAN 
    UNITS: dmnl 

DOCUMENT: This data comes from OpenTable.com, a popular restaurant reservation 
platform in the United States. It has collected and published daily data estimating the 
percentage change in dine in customers for a variety of geographic regions since the start 
of the pandemic. The data is normalized to 2019 levels. In this variable, the data is 
arrayed by state. (OpenTable, 2021) 

Refer to Appendix E for a state-by-state example of the data. 
 

effect_of_covid_on_decision_to_dine_out = 
SUM(modeled_behavior*percentage_of_total_population_per_state) 
    UNITS: dmnl 

DOCUMENT: This is the modeled level of demand for dining out at restaurants l 
based upon the output of the model developed for this research project. This is the 
aggregated result for the entire US calculated by taking a weighted average (weighted by 
population) of the results of each individual US state. 

 
effect_of_judgment_on_indicated_behavior[state] = IF TIME <.shutdown_begins THEN 
1 ELSE NORMALCDF(-99, LN(judgment_of_current_condition+1e-12), "<mean>", 
"<stdev>") 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

exponent = .5 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

judgment_of_current_condition[state] = 
(sensation_magnitude_of_reference_condition//sensation_magnitude_of_present_conditi
on) 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

model[state] = SMTH1(modeled_behavior, 10) 
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    UNITS: dmnl 
DOCUMENT: This variable holds the modeled data to be plotted state by state. 
 

perceived_present_condition[state] = SMTH3(.new_daily_cases, 
time_to_perceive_present_condition) {DELAY CONVERTER} 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

percentage_of_total_population_per_state[state] 
= .state_population/SUM(.state_population) 
    UNITS: dmnl 

DOCUMENT: This variable expresses each states' population as a percentage of the 
total US population. 

 
restaurants_lognormal_cumulative_distribution_curve = NORMALCDF(-99, 
LN(RAMP(0.01)+1e-12),"<mean>", "<stdev>") 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

restaurants_lognormal_probability_density_curve = 
(1//(RAMP(.01)*"<stdev>"*SQRT(2*PI)))*(EXP(1)^(-.5*(((LN(RAMP(.01))-
"<mean>"))//"<stdev>")^2)) 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

sensation_magnitude_of_present_condition[state] = 
DELAY(perceived_present_condition^exponent, DT) 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

sensation_magnitude_of_reference_condition[state] = reference_cases^exponent 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

time_to_perceive_present_condition = 10 
    UNITS: days 

DOCUMENT: Refer to generic model 
 

time_to_update_behavior = 10 
    UNITS: days 

DOCUMENT: Refer to generic model 
 

time_to_update_reference = 360 
    UNITS: days 

DOCUMENT: Refer to generic model 
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us_dinein_revenue = usdineinrevenue+1 
    UNITS: dmnl 

DOCUMENT: This variable transforms the data to a scale of 0-1 
 

usdineinrevenue = NAN 
    UNITS: dmnl 

DOCUMENT: This data comes from OpenTable.com, a popular restaurant reservation 
platform in the United States. It has collected and published daily data estimating the 
percentage change in dine in customers for a variety of geographic regions since the start 
of the pandemic. The data is normalized to 2019 levels. (OpenTable, 2021) 

 

 
 

Senior_Housing: 
DOCUMENT: This sector analysis how COVID has impacted occupancy in Senior Housing 
facilities across the US. This case differs from the other cases used in this model in that it takes 
one step further into modeling how a change in demand caused by COVID would specifically 
affect the senior housing industry. Thus, additional model structure is introduced to analyze not 
only how COVID effects demand, but how that change in demand effects key operating metrics 
of the senior housing industry. This sector serves as an example of how the basic model 
component developed in this project can be used as a component in a more specific research 
project that analyses how the impact of COVID materializes in a specific situation/domain.  
 
modeled_behavior[state](t) = modeled_behavior[state](t - dt) + (updating_behavior[state]) * dt 
    INIT modeled_behavior[state] = 1 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

reference_cases[state](t) = reference_cases[state](t - dt) + (updating_reference[state]) * dt 
    INIT reference_cases[state] = 0 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
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updating_behavior[state] = ((effect_of_judgment_on_indicated_demand)-
modeled_behavior)/time_to_update_behavior 
    UNITS: Per Day 

DOCUMENT: Refer to generic model 
 

updating_reference[state] = (perceived_present_condition-
reference_cases)/time_to_update_reference 
    UNITS: cases/day/days 

DOCUMENT: Refer to generic model 
 

"<mean>" = -1.27 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced a value of -1.35 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

"<stdev>" = .78 
    UNITS: dmnl 
    DOCUMENT: Refer to generic model. 
    The calibration routine produced a value of 0.86 
    Details of the calibration routine used can be found in appendix C 

Details of the sensitivity analysis can be found in appendix B 
 

brookdale_historical = NAN 
    UNITS: dmnl 

DOCUMENT: This is the historical month end census data for Brookdale Senior Living, the 
largest provider of senior housing in the United States. The data comes from the company's 
website (Brookdale Senior Living, 2021) 

 

 
 
 

COVID_effect_on_demand_for_senior_housing[state] = modeled_behavior 
    UNITS: dmnl 

date time occupancy
31-Mar-20 91 82.8%
30-Apr-20 121 80.0%
31-May-20 152 78.5%
30-Jun-20 182 77.8%
31-Jul-20 213 76.6%
31-Aug-20 244 75.5%
30-Sep-20 274 75.0%
31-Oct-20 305 74.1%
30-Nov-20 335 73.1%
31-Dec-20 366 71.5%
31-Jan-21 397 70.4%
28-Feb-21 425 70.1%
31-Mar-21 456 70.6%
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DOCUMENT: This is the output from the primary model of this research project. As a 
demonstration of its potential use in future research. It is being used in this domain as the input 
to a model that specifically looks at how the senior housing industry responds to changes in 
demand. The final output will be the occupancy percentages that result from the changes in 
demand predicted by the generic model presented here. 

 
effect_of_judgment_on_indicated_demand[state] = IF TIME <.shutdown_begins THEN 1 ELSE 
NORMALCDF(-99, LN(judgment_of_current_condition+1e-12), "<mean>", "<stdev>") 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

exponent = .5 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

judgment_of_current_condition[state] = 
(sensation_magnitude_of_reference_condition//sensation_magnitude_of_present_condition) 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

perceived_present_condition[state] = SMTH3(.new_daily_cases, 
time_to_perceive_present_condition) {DELAY CONVERTER} 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

senior_housing_lognormal_cumulative_distribution_curve = NORMALCDF(-99, 
LN(RAMP(0.01)+1e-12),"<mean>", "<stdev>") 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

senior_housing_lognormal_probability_density_curve = 
(1//(RAMP(.01)*"<stdev>"*SQRT(2*PI)))*(EXP(1)^(-.5*(((LN(RAMP(.01))-
"<mean>"))//"<stdev>")^2)) 
    UNITS: dmnl 

DOCUMENT: Refer to generic model 
 

sensation_magnitude_of_present_condition[state] = 
DELAY(perceived_present_condition^exponent, DT) 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

sensation_magnitude_of_reference_condition[state] = reference_cases^exponent 
    UNITS: cases/day 

DOCUMENT: Refer to generic model 
 

time_to_perceive_present_condition = 10 
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    UNITS: days 
DOCUMENT: Refer to generic model 
 

time_to_update_behavior = 10 
    UNITS: days 

DOCUMENT: Refer to generic model 
 

time_to_update_reference = 360 
    UNITS: days 

DOCUMENT: Refer to generic model 
 

Brookdale: 
DOCUMENT: Brookdale Senior Living is the largest provider of Senior Living in the United 
States. Because it publishes timely data and is present in most of the United States, it is used to 
represent the entire US senior housing market. 
 

occupancy[state](t) = occupancy[state](t - dt) + (move_ins[state] - COVID_moveouts[state] - 
normal_moveouts[state]) * dt 
    INIT occupancy[state] = brookdale_bed_capacity*beginning_brookdale_occupancy 
    UNITS: people 

DOCUMENT: This stock represents the estimated occupancy (number of residents) who 
are living in Brookdale buildings in each state. It is initialized by taking the bed capacity in 
each state multiplied by the average occupancy percentage at the start of the pandemic. 

 
waitlist[state](t) = waitlist[state](t - dt) + (add_to_waitlist[state] - move_ins[state]) * dt 
{NON-NEGATIVE} 
    INIT waitlist[state] = occupancy/average_stay_length*time_to_move_in 
    UNITS: people 

DOCUMENT: This stock represents the group of people who have decided to move into 
senior housing but are not yet occupants of any facility. There is typically a period of a few 
weeks between the decision and the actual moving in. It is initialized in equilibrium 

 
add_to_waitlist[state] = 
new_demand*(Senior_Housing.COVID_effect_on_demand_for_senior_housing) 
    UNITS: people/day 

DOCUMENT: This represents the number of people who are expected to decide to move 
into an assisted living home. It is calculated by taking the normal equilibrium demand (new 
demand) multiplied by the effect of COVID on demand, which will effectively reduce the 
number who are added to the wait list as long as COVID remains.  

 
COVID_moveouts[state] = 
((.new_daily_deaths*fraction_of_deaths_from_LTC*portion_of_senior_market)) 
    UNITS: people/day 

DOCUMENT: This flow tracks how many moveouts have been specifically caused by 
COVID deaths. While it is not certain how many deaths are attributable to Brookdale 
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facilities, an average is used that is in line with national averages. The estimated COVID 
moveouts is calculated by taking the total number of deaths within a state, multiplied by the 
fraction of deaths from assisted living facilities (10%) times the portion of the senior housing 
market that Brookdale serves in that state.  

 
move_ins[state] = DELAYN((add_to_waitlist), time_to_move_in, 3) 
    UNITS: people/day 

DOCUMENT: This flow represents how many people are moving into Brookdale facilities. 
 

normal_moveouts[state] = occupancy/average_stay_length 
    UNITS: people/day 

DOCUMENT: This flow represents the normal number of people moving out. 
 

"%_of_total_capacity"[state] = brookdale_bed_capacity/SUM(brookdale_bed_capacity) 
    UNITS: dmnl 

DOCUMENT: This variable calculates the percentage of Brookdale's beds that are found in 
each state. 

 
"%_of_total_senior_population"[state] = senior_population/SUM(senior_population) 
    UNITS: dmnl 

DOCUMENT: The percentage of the total US population that is older than 65 years living 
in each US state 

 
"%_senior"[state] = NAN 
    UNITS: dmnl 

DOCUMENT: An estimate of the percentage of population in each US state that is over 65 
years old. (PRB, 2018) 

 
 

average_stay_length = 28*30.42 (Breeding, 2021) 
UNITS: days 
 

State % senior State % senior State % senior
[AL] 16.9% [LA] 15.4% [OH] 17.1%
[AK] 11.8% [ME] 20.6% [OK] 15.7%
[AZ] 17.5% [MD] 15.4% [OR] 17.6%
[AR] 17.0% [MA] 16.5% [PA] 18.2%
[CA] 14.3% [MI] 17.2% [RI] 17.2%
[CO] 14.2% [MN] 15.9% [SC] 17.7%
[CT] 17.2% [MS] 15.9% [SD] 16.6%
[DE] 18.7% [MO] 16.9% [TN] 16.4%
[FL] 20.5% [MT] 18.7% [TX] 12.6%

[GA] 13.9% [NE] 15.7% [UT] 11.1%
[HI] 18.4% [NV] 15.7% [VT] 19.4%
[ID] 15.9% [NH] 18.1% [VA] 15.4%
[IL] 15.6% [NJ] 16.1% [WA] 15.4%

[IN] 15.8% [NM] 17.5% [WV] 19.9%
[IA] 17.1% [NY] 16.4% [WI] 17.0%
[KS] 15.9% [NC] 16.3% [WY] 16.5%
[KY] 16.4% [ND] 15.3% [DC] 15.0%
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beds_in_each_state[state] = "%_of_total_senior_population"*beds_in_US_market 
    UNITS: beds 

DOCUMENT: An estimate of the number of assisted living beds in each state by allocating 
the total number of beds in the US multiplied by the percentage of total elderly people living 
in each state. While some states have a higher or lower prevalence of assisted living beds than 
the national average, this will be a close enough approximation for the purpose of this model. 

 
beds_in_US_market = 996100 
    UNITS: beds 
    DOCUMENT: An estimate of the number of licensed assisted living beds in the United 
States. (NCAL National Center for Assisted Living, 2019) 
 
beginning_brookdale_occupancy = .828 

UNITS: dmnl 
 

brookdale_bed_capacity[state] = NAN 
    UNITS: beds 
    DOCUMENT: Number of beds operated by Brookdale per state, as of December 31, 2020 

(Brookdale Senior Living INC, 2021) 

 
 

brookdale_occupancy = SUM("%_of_total_capacity"*occupancy_%) 
    UNITS: dmnl 

DOCUMENT: This is the modeled occupancy percentage over time for Brookdale Senior 
Living given the output of the generic model (calibrated to the senior living industry) and the 
response of this output when taken as the demand input into the senior housing industry 
model. 

 
fraction_of_deaths_from_LTC = .1 
    UNITS: dmnl 
    DOCUMENT: This variable represents an estimate for what percentage of COVID deaths 
are attributable to people living in assisted living facilities. While this number is not perfectly 
known, it is estimated to be around 10%. 

State # beds State # beds State # beds
[AK] 494         [KY] 283         [NY] 1,500        
[AL] 804         [LA] 486         [OH] 2,971        
[AK] -          [KY] 899         [NY] 979           
[AL] 2,153      [LA] 560         [OH] 1,805        
[AK] 6,961      [KY] -          [NY] 766           
[AL] 3,380      [LA] 1,678      [OH] 532           
[AK] 636         [KY] 538         [NY] 611           
[AL] -          [LA] -          [OH] -            
[AK] 105         [KY] 386         [NY] 1,494        
[AL] 6,384      [LA] 137         [OH] 9,023        
[AK] 717         [KY] 3,401      [NY] 55             
[AL] -          [LA] -          [OH] 1,206        
[AK] -          [KY] -          [NY] 101           
[AL] 548         [LA] 90           [OH] 2,833        
[AK] 3,027      [KY] 1,147      [NY] 712           
[AL] 830         [LA] 457         [OH] 93             
[AK] 1,114      [KY] 256         [NY] 46             
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According to The New York Times, 32% of all COVID deaths in the US have come from 
long term care facilities (The New York Times, 2021). This includes primarily assisted living 
as well as nursing homes. Nursing homes on average serve higher acuity residents, so it is 
expected the deaths will be skewed toward nursing homes over assisted living, and nursing 
homes account for a majority of long-term care facilities. Therefore, this model estimates that 
10% of total COVID deaths are attributable to assisted living. 

 
new_demand[state] = INIT(occupancy)/average_stay_length 
    UNITS: people/day 

DOCUMENT: New demand is assumed to be a value that would keep the senior housing 
market in equilibrium given normal move-out rates. In the short term this is a reasonable 
assumption, though for longer term projections this should reflect the natural growth of the 
market.  

 
occupancy_%[state] = occupancy//brookdale_bed_capacity 
    UNITS: dmnl 

DOCUMENT: This calculates the occupancy percentage for Brookdale in each state it 
operates in 

 
portion_of_senior_market[state] = brookdale_bed_capacity/beds_in_each_state 
    UNITS: dmnl 

DOCUMENT: This variable estimates what percentage of assisted living beds in each state 
belong to Brookdale. 

 
senior_population[state] = "%_senior"*.state_population 
    UNITS: people 

DOCUMENT: An estimate of the total population over 65 years old in each US state. 
 

time_to_move_in = 21 
    UNITS: days 

DOCUMENT: It is assumed that it takes on average 3 weeks from the decision to move into 
senior housing to actually move in. 

 

Theil_Statistics: 
DOCUMENT: This is a module, developed by Rogelio Oliva, which calculates the Theil 
Statistics of a model’s behavior mode with the reference mode of historical behavior. It is used to 
calculate the statistics of historical fit for the models in this research project. (Oliva) 

count(t) = count(t - dt) + (add_one) * dt {NON-NEGATIVE} 
    INIT count = 1e-9 

UNITS: unitless 
 

Sum_Di(t) = Sum_Di(t - dt) + (add_Di) * dt {NON-NEGATIVE} 
    INIT Sum_Di = 0 

UNITS: stats 
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Sum_Dsq(t) = Sum_Dsq(t - dt) + (add_Dsq) * dt {NON-NEGATIVE} 
    INIT Sum_Dsq = 0 

UNITS: stats^2 
 

"Sum_M-Dsq"(t) = "Sum_M-Dsq"(t - dt) + ("add_M-Dsq") * dt {NON-NEGATIVE} 
    INIT "Sum_M-Dsq" = 1e-9 

UNITS: stats^2 
 

Sum_Mi(t) = Sum_Mi(t - dt) + (add_Mi) * dt {NON-NEGATIVE} 
    INIT Sum_Mi = 0 

UNITS: stats 
 

Sum_Msq(t) = Sum_Msq(t - dt) + (add_Msq) * dt {NON-NEGATIVE} 
    INIT Sum_Msq = 0 

UNITS: stats^2 
 

Sum_MY(t) = Sum_MY(t - dt) + (add_MD) * dt {NON-NEGATIVE} 
    INIT Sum_MY = 0 

UNITS: stats^2 
 

Sum_PE(t) = Sum_PE(t - dt) + (add_PE) * dt {NON-NEGATIVE} 
    INIT Sum_PE = 0 

UNITS: unitless 
 

add_Di = Di/DT 
UNITS: stats/days 
 

add_Dsq = Di*Di/DT 
UNITS: stats^2/days 
 

"add_M-Dsq" = (Mi-Di)*(Mi-Di)/DT 
UNITS: stats^2/days 
 

add_MD = Mi*Di/DT 
UNITS: stats^2/days 
 

add_Mi = Mi/DT 
UNITS: stats/days 
 

add_Msq = Mi*Mi/DT 
UNITS: stats^2/days 
 

add_one = pick/DT 
UNITS: Per Day 
 

add_PE = IF Di > 0 OR Di < 0 THEN  (((Mi-Di)/Di)^2)/DT ELSE 0 
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UNITS: Per Day 
 

Bias = (Mm-Md)*(Mm-Md)/MSE 
UNITS: unitless 
 

Covariation = 2*Sm*Sd*(1-R)/MSE 
UNITS: unitless 
 

Data = .sample_data 
UNITS: dmnl 
 

Di = pick*Data*units_conversion 
UNITS: stats 
 

end = 5000  {any time greater than the end of the simulation run} 
UNITS: days 
 

Md = Sum_Di/count 
UNITS: stats 
 

Mdsq = Sum_Dsq/count 
UNITS: stats^2 
 

Mi = pick*Model*units_conversion 
UNITS: stats 
 

Mm = Sum_Mi/count 
UNITS: stats 
 

Mmd = Sum_MY/count 
UNITS: stats^2 
 

Mmsq = Sum_Msq/count 
UNITS: stats^2 
 

Model = .sample_model_results 
UNITS: dmnl 
 

MSE = "Sum_M-Dsq"/count 
UNITS: stats^2 
 

pick = PULSE(DT,start,1)*(STEP(1,start)-STEP(1,end+DT/2)) 
UNITS: unitless 
 

R = (Mmd-Mm*Md)/(Sm*Sd+(1e-9)) 
UNITS: unitless 
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RMSPE = SQRT(Sum_PE/count) 

UNITS: unitless 
 

Rsq = R^2 
UNITS: unitless 
 

Sd = SQRT(Mdsq-Md*Md) 
UNITS: stats 
 

Sm = SQRT(Mmsq-Mm*Mm) 
UNITS: stats 
 

start = STARTTIME 
UNITS: days 
 

units_conversion = 1 
UNITS: stats/dmnl 
 

Variation = (Sm-Sd)*(Sm-Sd)/MSE 
    UNITS: unitless 

 
  



   
 

 
 

124 

Appendix B: Sensitivity Analysis Results 
This appendix shows the results of sensitivity analysis run on all exogenous parameters of the 

generic model. A base case run is given below, and each sensitivity run utilizes these values and 

changes one of the values incrementally within a preset range that is described below in Table 8. 

A brief discussion about the insights of the sensitivity analysis will follow the results for each 

tested parameter. 

Base Case Run (Generic Model Component Structure) : 

Table 8: Standard values for the sensitivity analysis: 

Variable Base Case Value Units 
Total new daily cases CDC data aggregated for the entire United States 

 

 

Cases/day 

Time to perceive 
present condition 

10 days 

Time to update 
reference condition 

360 days 

Exponent 0.5 dmnl 
Shutdown begins 71 days 
<stdev> 2 dmnl 
<mean> -0.5 dmnl 
Time to update 
demand 

10 days 

 
  



   
 

 
 

125 

Time to Perceive Present Condition: 
The follow are the results of the sensitivity analysis conduction on the ‘time to perceive present 

condition’ variable. The model was run in the base case except for changing the ‘time to perceive 

present condition’ variable incrementally from 0 to 30 as described in Table 9 below. As the 

length of time increases, the effect is an equivalent delay of the behavior mode of the model. The 

behavior model is not substantially changed due to changes in this variable. Given level of 

estimation and uncertainty around quantifying this variable, it is encouraging to see that errors in 

its estimation are not likely to have material results on the behavior of the model.  

Table 9: Sensitivity values: 
Time to perceive present 

condition 

 time to 
perceive 
present 
condition 

Run 1 0 
Run 2 3 
Run 3 6 
Run 4 9 
Run 5 12 
Run 6 15 
Run 7 18 
Run 8 21 
Run 9 24 
Run 10 27 
Run 11 30 
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Figure 52: Sensitivity Analysis: Time to Perceive Present Condition 
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Time to Update Reference Condition 
The following are the results of the sensitivity analysis conduction on the ‘time to update 

reference condition’ variable. The model was run in the base case except for changing the ‘time 

to update reference condition’ variable incrementally from 60 to 720 as described in TABLE 

below. As the length of time increases, it has the effect of lowering the output curve, though the 

strength of how much it increases or decreases does weaken over time; in other words, the lines 

converge slightly over time. 

Table 10: Sensitivity values: 

time to update reference 

condition. 

 time to 
update 
reference 
condition 

Run 1 60 
Run 2 120 
Run 3 180 
Run 4 240 
Run 5 300 
Run 6 360 
Run 7 420 
Run 8 480 
Run 9 540 
Run 10 600 
Run 11 660 
Run 12 720 
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Figure 53: Sensitivity Analysis: Time to update reference condition 
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Exponent: 
The exponent has the effect of exaggerating the peaks and valleys of the behavior mode. It has 

been tested incrementally from .25 to .75 and will stretch the behavior output further from 

whatever percentage a ‘judgment of current condition’ value of 1 would produce when passed 

through the distribution. In this example, this line runs at about effect of COVID on baseline 

behavior = 0.60. Lowering the exponent will draw all behavior closer to this line; raising it will 

distort behavior further from this line. 

Table 11: Sensitivity 

values: Exponent 

 exponent 

Run 1 0.25 

Run 2 0.3 

Run 3 0.35 

Run 4 0.4 

Run 5 0.45 

Run 6 0.5 

Run 7 0.55 

Run 8 0.6 

Run 9 0.65 

Run 10 0.7 

Run 11 0.75 
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Figure 54: Sensitivity Analysis: Exponent 
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Stdev 
The standard deviation value has been tested incrementally from 0.5 (a tight distribution) to 3.0 

(a wide distribution). This variable has the effect of stretching the behavior mode further from 

the mean value. In the case below, the mean of the distribution used in the model was constant at 

-0.5, which indicates that the mean behavior level given all different judgment values is 0.5, so 

the larger the standard deviation, the closer the behavior will stay to the mean given a different 

judgment value. 

Table 12: Sensitivity values: 

Stdev 

 <stdev> 

Run 1 0.5 

Run 2 0.75 

Run 3 1.0 

Run 4 1.25 

Run 5 1.5 

Run 6 1.75 

Run 7 2.0 

Run 8 2.25 

Run 9 2.5 

Run 10 2.75 

Run 11 3.00  

 

Figure 56: Sensitivity Analysis: Effect of change in the standard deviation on the shape of the probability and cumulative 

probability density curves 
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Figure 55: Sensitivity Analysis: Standard Deviation 
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Mean 
The mean of the lognormal distribution used in the model was analyzed with values ranging 

from -3.67  to -0.33 As the mean reduces, it means that behavior will be overall less impacted by 

COVID.  

Table 13: Sensitivity 

values: Mean 

 <mean> 

Run 1 -3.67 

Run 2 -3.33 

Run 3 -3.0 

Run 4 -2.67 

Run 5 -2.33 

Run 6 -2.0 

Run 7 -1.67 

Run 8 -1.33 

Run 9 -1.0 

Run 10 -0.67 

Run 11 -0.33 

 

 

Figure 58: Sensitivity Analysis: Effect of change in the standard deviation on the shape of the probability and cumulative 

probability density curves 
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Figure 57: Sensitivity Analysis: Mean 
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Time to Update Behavior 
The time to update behavior was run with values ranging from 0 to 100 days. While it is not 

expected that in most cases the time to update behavior will vary that much (unless there is 

known to be considerable lag time between the indicated behavior and the actual behavior (as in 

the case of the airlines)), this analysis nonetheless demonstrates that the model is highly sensitive 

to this value, and even small changes of a few days may make a difference in the model output. 

The longer this delay, the smoother the output behavior will be. 

Table 14: Sensitivity values: 

Time to update behavior 

 time to 

update 

behavior 

Run 1 0 

Run 2 10 

Run 3 20 

Run 4 30 

Run 5 40 

Run 6 50 

Run 7 60 

Run 8 70 

Run 9 80 

Run 10 90 

Run 11 100 
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Figure 59: Sensitivity Analysis: Time to Update Behavior 
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Sensitivity of different combinations of distribution parameters 
Table 15: Sensitivity values: 

distribution parameters 

 Mean Stdev  

Run 1 -2.5 0.5 

Run 2 -2.5 1 

Run 3 -2.5 1.5 

Run 4 -2.5 2 

Run 5 -2.5 2.5 

Run 6 -2 0.5 

Run 7 -2 1 

Run 8 -2 1.5 

Run 9 -2 2 

Run 10 -2 2.5 

Run 11 -1.5 0.5 

Run 12 -1.5 1 

Run 13 -1.5 1.5 

Run 14 -1.5 2 

Run 15 -1.5 2.5 

Run 16 -1 0.5 

Run 17 -1 1 

Run 18 -1 1.5 

Run 19 -1 2 

Run 20 -1 2.5 

Run 21 -0.5 0.5 

Run 22 -0.5 1 

Run 23 -0.5 1.5 

Run 24 -0.5 2 

Run 25 -0.5 2.5 
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Figure 61: Sensitivity Analysis: Effect of different combinations of mean and 

standard deviation values on the model output 

Figure 60: Sensitivity Analysis: Effect of different combinations of mean and 

standard deviation values on the respective cumulative distribution curves. 
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The results on the previous page indicate that just by utilizing a different combination of mean 

and standard deviation values, drastically different behavior can result from the model. 

Ultimately it is the power of these variables in combination with each other that calibrates the 

model so nicely in each of the domains.  

Sensitivity of Daily Cases Input 
This section tests how different hypothetical COVID developments would impact behavior 

patterns. It must be noted that the ‘shutdown begins’ variable has been changed to day 10 for 

each of these tests. A further discussion of this can be found in the body of the paper under the 

analysis section, but the results are shown again here as sensitivity analysis. As you can see, in 

all cases the onset of the pandemic causes behavior levels to drop it like it’s hot.  

Table 16: Sensitivity inputs to daily cases 

Run Equation 

Run 1 STEP(1000, 10)-STEP(1000, 310) 

Run 2 STEP(10000, 10)-STEP(10000, 310) 

Run 3 RAMP(100, 10)+RAMP(-200, 310) 

Run 4 10000+SINWAVE(10000, 100) 

Run 5 STEP(25000, 10)+RAMP(-100, 10, 260) 

Run 6 10^(TIME/100) 

Run 7 Infection curve (from a basic SIR model) 
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Figure 62: Results of sensitivity of daily cases input 
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Appendix C: Calibration Routines 
This section describes the calibration routines used to set the key parameter values for each 

domain studied in this model. There were two calibration routines as described in the calibration 

section of this paper. In all cases the exact same calibration routine was used; the primary 

settings are described in Table 18, a few pages from here. Screenshots of the results from 

calibration process 1 are included as well. Note that in cases where each calibration run produced 

very similar payoff runs with different parameter values, the most reasonable set of parameters 

was selected and included in Table 17. 

 
Table 17: Domain-specific information regarding process 1 

Domain Mean Stdev exponent TURC Calibration variable 
(model) 

Calibration variable 
(data) 

Airlines -1.25 0.875 0.564 1000 
(max) 

effect of covid on 
airline passenger 
traffic 

normalized demand 

Restaurants -0.656 0.892 0.486 404 calibration variable us dinein revenue 
Workplaces -1.83 2.85 0.549 121 calibration 

variables (model) 
[work] 

smoothed us 
mobility data 
[work] 

Retail and 
Recreation 

-1.91 1.80 0.647 73 calibration 
variables (model) 
[retail] 

smoothed us 
mobility data 
[retail] 

Grocery 
and 
Pharmacy 

-5.06 3.04 0.587 31 calibration 
variables (model) 
[grocery] 

smoothed us 
mobility data 
[grocery] 

Transit 
Stations 

-1.65 3.27 0.806 54 calibration 
variables 
(model)[trans] 

smoothed us 
mobility data 
[trans] 

Senior 
Housing 

Not Considered at this stage due to the added model structure 
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In each calibration of process 2, the same variables (<mean> and <stdev>) were selected to be 

subject to the calibration routine. A summary of those two variables is below in Table 19. These 

variables, after reviewing the theoretical basis for the model structure as well as after confirming 

via sensitivity analysis are considered to be the two key variables capable of meaningfully 

affecting the behavior of the model. They were tested within the ranges listed below and the 

summary results of the calibration are given in Table 19. 

Table 18: Calibration process 2 settings: 

Setting Selection 
Payoff [payoff]  
Action minimize 
Kind Calibration 
Element [output variable of module] 
Weight 1 
Comparison Variable [imported data] 
Comparison Run Current Run 
Comparison Type Squared Error 
Comparison Tolerance 0 
Additional Runs 2 
Method Powell 
Initial Step 1 
Max Iterations 1000 
Tolerance .00001 

 

Table 19: Domain-specific information regarding calibration process 2. 

Domain Mean Stdev Calibration variable 
(model) 

Calibration variable 
(data) 

Calibration 
Period 

Airlines -0.726 0.698 effect of covid on 
airline passenger 
traffic 

normalized demand 0-500 

Restaurants* -0.626 0.930 calibration variable us dinein revenue 0-500 
Workplaces -2.24 2.99 calibration variables 

(model)[work] 
smoothed us 
mobility data [work] 

0-500 

Retail and 
Recreation 

-2.37 1.79 calibration variables 
(model)[retail] 

smoothed us 
mobility data [retail] 

0-500 

Grocery and 
Pharmacy 

-3.59 2.20 calibration variables 
(model)[grocery] 

smoothed us 
mobility data 
[grocery] 

0-500 

Transit 
Stations 

-2.00 2.99 calibration variables 
(model)[trans] 

smoothed us 
mobility data [trans] 

0-500 
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Senior 
Housing 

-1.27 0.78 brookdale.brookdale 
occupancy 

Brookdale historical 0-456 

 
*A special calibration variable was used in the restaurants sector so that the period of full 
mandatory lockdown in most states from roughly mid-March to early-June was ignored. 
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Appendix D: State-by-State output graphs for restaurant and mobility domains. 

Restaurant results: state-by-state 
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Restaurants, continued: 
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Transit Stations Mobility Results: state-by state 

 

 

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

��� �� ������ ��

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

���!�� ������!��

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

���"�� ������"��

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

���"�� ������"��

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

���"�� ������"��

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

����#� �������#�

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

����$� �������$�

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������

����

�
�
�
�

�

	





�
���� 
�
���� 
�
����� 
�
	��� 
�
	���

������ ���������



   
 

 
 

143 

Transit Stations, continued: 
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Retail and Recreation Mobility Results: state-by-state 
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Retail and recreation, continued: 
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Workplace Mobility Results: state-by-state 
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Workplace results, continued: 
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Grocery and Pharmacy results: state-by-state 
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Grocery and Pharmacy results, continued: 
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