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ABSTRACT

 

Coronaviruses (CoVs) are single stranded RNA viruses of positive polarity which assemble by 

budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum 

(ER)-Golgi interface. Previously, these viruses have been mainly of veterinary interest, but 

since 2002 they have also been connected to serious and readily transmissible disease in 

humans. Therefore, particularly in light of the ongoing COVID-19 pandemic, it is important to 

understand the life cycle of the virus to be able to fight CoV infections. While the mechanisms 

of CoV entry into their host cells have been more extensively studied, the pathway(s) and 

mechanisms of their cellular exit remain poorly understood. 

Using the avian infectious bronchitis virus (IBV) – a non-human pathogen – as a model virus 

the main aim of this study was to employ various microscopic techniques to obtain detailed 

information of the pathway(s) that CoVs follow during their delivery from the cell interior to 

the extracellular space. For this purpose, it was important to establish the conditions for 

cultivating the virus in Vero cells, determine the growth kinetics of the virus by plaque titration, 

as well as characterize the antibody tools available against the structural proteins of IBV. In 

addition, the applicability of antibodies against markers of organelles of interest (IC, cis-Golgi 

and recycling endosomes) was determined in both infected and uninfected Vero cells. 

Interestingly, we obtained results showing that low temperature (31oC) can potentially be used 

to synchronize the release process in future experiments employing the IBV M-protein as a 

marker for intracellular virus particles. Finally, our preliminary findings suggest that – as 

reported in the case of several other RNA viruses – the pericentrosomal endocytic recycling 

compartment (ERC) and the GTPase Rab11 may also play key roles in cellular exit of CoVs.   
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1. INTRODUCTION

 

1.1. Viruses 
 

Viruses can be defined as sub-light microscopic disease agents that have a parasitic intracellular 

life cycle. They require the machinery of a cell for their replication and thus cannot be referred 

to as the simplest form of life [1]. Virions are infectious virus particles which are made up of 

a nucleic acid genome, either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), coated 

with a protein shell known as the nucleocapsid and in the case of membrane viruses, an outer 

envelope. These coats in the virions enable the stabilization of nucleic acid which carries the 

information needed for virus replication and the creation of the next virus generation called 

progeny viruses.  

The DNA or RNA genome of viruses may be either double or single stranded. The bigger the 

viral genome, the more complex structure they have and the more viral proteins they synthesize 

(see Fig.1, poxvirus). Conversely, the smaller the genome, the smaller the virus particles. For 

example, in the case of a simple naked virus, such as poliovirus (Fig.1), the nucleocapsid 

consists of a single type of capsid protein. Replication in viruses that have DNA genomes is 

more accurate because DNA polymerase proofreads the sequence to check for eventual errors. 

By contrast, the replication of viruses with RNA genomes is less accurate leading to increased 

mutation rate due to the lack of proofreading, since the cell recognizes RNA as a messenger 

molecule and not as genetic material [1]. 

Viruses can be defined structurally, molecularly, immunologically or clinically. Thus, they can 

be classified based on their biological properties, virion structure, antigenic properties, mode 

of replication, or genome organization. They can also be classified based on the host cells that 

they infect. Furthermore, animal viruses can be classified based on the strategies they employ 

for messenger RNA (mRNA) synthesis. Viruses that infect bacteria are known as 

bacteriophages, those that infect fungi are known as mycophages, while those infecting plants 

and animals are called plant and animal viruses, respectively. Some animal viruses can only 

infect a limited number of cell types, which express the right surface cell receptors to which 

the virions can bind, i.e. they are said to have a limited host range [2]. 

Viruses are polyphyletic and are likely to have multiple origins. It has been suggested that they 

originate from various sources, such as escaped genes from the genomes of cellular organisms, 
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escaped nuclei of eukaryotic cells, degenerated cells that have lost the functions needed for 

independent existence, or represent pre-cellular life forms. However, determining their origin 

is difficult because they are ancient and due to their small size, the fossil records of viruses are 

non-existent. Since viruses depend on their host cells for replication, there have acquired 

genetic elements from other sources [1]. 

 

 

Figure 1. Examples of different DNA and RNA viruses. This figure shows schematically the structure 

of some naked (non-membrane) or enveloped (membrane) DNA or RNA viruses. In general, the size 

of the particle reflects the genomic complexity of the virus in question, as exemplified for example by 

poxvirus and poliovirus. However, although coronaviruses are not the largest RNA viruses in size, they 

have the largest known RNA genome. The figure was taken from [3]. 

 

1.2. Membrane viruses 

Membrane viruses are viruses that have a viral envelope as an outermost layer to protect the 

genetic material. The envelope is derived from parts of the host cell’s membrane which have 

been modified through the incorporation of virus-specific membrane glycoproteins [4]. These 

glycoproteins at the surface of the virion enable the virus to bind to plasma membrane (PM) 

receptors of the host cell. When the binding occurs, the viral envelope can fuse with the host 

cell membrane, enabling the virus to enter the cell and start the infection. Membrane viruses 

show limited survival outside their hosts, since their lipid bilayers are sensitive to detergents, 

heat and desiccation [5]. Membrane viruses can be classified based on their genomic compo-

sition (DNA or RNA), or structure, as shown below in Table 1. 
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Table 1: Selected membrane viruses and the origin of their envelopes. 

  

Membrane virus (example viruses) 

 

Genome 

 

Origin of envelope 

Asfarviridae (African swine fever) 

Hepadnaviruses (Hepatitis B) 

Herpesviruses (Epstein-Barr) 

Poxviruses (Vaccinia) 

Arterivirus (Simian hemorrhagic fever) 

Bunyaviruses (Hantaan) 

Coronaviruses (IBV, SARS, MERS) 

Deltaviruses (Hepatitis D) 

Filoviruses (Ebola) 

Flaviviruses (Hepatitis C, Zika) 

Orthomyxoviruses (Influenza) 

Paramyxoviruses (Mumps, Measles) 

Retroviruses (HIV) 

Rubella virus 

DNA 

DNA 

DNA 

DNA 

RNA 

RNA 

RNA 

RNA 

RNA 

RNA 

RNA 

RNA 

RNA 

RNA 

ER or PM? 

ER or IC? 

NE and IC/Golgi? 

ER, IC? 

ER 

Golgi  

IC 

ER 

PM 

ER 

PM 

PM 

PM 

Golgi or PM 

 

The table was adapted from [6]. Abbreviations: Intermediate compartment (IC), Endoplasmic 

reticulum (ER), Nuclear envelope (NE), Plasma membrane (PM).  

1.3. Entry of membrane viruses into their host cells 
 

The entry of membrane viruses into a host cell depends on the fusion of the viral membrane 

with a cellular membrane with the help of fusion proteins present at the surface of the 

virion. As shown in Fig. 2, specialized viral membrane proteins can act as fusogens 

following their activation either at the cell surface or inside the endosome [7]. Some 

membrane viruses have only a single protein mediating both the attachment and 

subsequent membrane fusion, while other viruses encode several proteins connected to 

these functions. The fusion needs to be precisely controlled, since it is very important for 

the accurate entry of the virus into the cell, resulting in the release of the genome at the 

right place and right time to start virus replication. Accurate fusion is also particularly 
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important for intracellularly budding viruses, because if the viral fusogens are prematurely 

activated, the viruses will fuse inside the cells and fail to be secreted.  

 

Figure 2. Entry of an enveloped RNA virus, such as a CoV, into its host cell. The virus recognizes and 

binds to a specific receptor at the cell surface (Step 1). This may lead to a conformational change in the 

receptor-binding viral protein, triggering fusion of the viral membrane with the plasma membrane (Step 

2a). Alternatively, the virus is taken up by the cell via receptor-mediated endocytosis and enters 

endosomes, where the low lumenal pH triggers fusion between the viral and endosomal membranes 

(Step 2b). Subsequently, the nucleocapsid undergoes uncoating in the cytosol and the viral RNA 

genome is released so that its replication and transcription of the viral genes can begin (Step 3). The 

specific events shown here relate to CoV replication, as discussed below. The figure is from [8]. 

 

Upon activation of the fusion protein, the fusion of the viral membrane with a cellular 

membrane can take place either in pH-independent or -dependent manner. In the first case, 

the interaction of the virus with its receptor triggers a conformational change in the fusion 

protein, leading to fusion of the viral membrane with the PM and subsequent release of 

the genetic material of the virus to the cytosol (Fig. 2). In the latter case, the virus-receptor 

complex is internalized and transported to the endosome where the acidic lumen conditions 

trigger the conformational change of the viral fusion protein [9] [10]. This change allows 

direct interaction between the two bilayers. For example, in the case the retrovirus human 

immunodeficiency virus (HIV), the fusion can take place already at the cell surface. By 

contrast, influenza virus which employs its hemagglutinin (HA) both in virus attachment 
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and membrane fusion is a typical example of a virus that first enters the cell and fuses with 

the endosomal membrane  [11].  

1.4. Membrane viruses budding at the PM 
 

Budding is a very important step in the life cycle of membrane viruses because of its role in 

the production of progeny viruses. Many membrane viruses are released from infected cells by 

maturing and budding at the PM. In case of several viruses, budding has been shown to occur 

at particular regions of the PM known as lipid rafts. Lipid rafts are plasma membrane domains 

that are highly concentrated in sphingomyelin, sphingoglycolipids and cholesterol and play an 

important role in transport and cellular signaling [12].  

The site of viral assembly and budding is thought to be largely determined by the localization 

of viral membrane proteins. During the budding process, many components interact (Fig. 3). 

The capsid protein(s) that bind to the viral nucleic acid form the nucleocapsid, which can 

directly interact with the viral transmembrane or matrix proteins that line the cytoplasmic side 

of the PM [12] [13]. According to many studies, viral spike glycoproteins which are necessary 

for infectivity are integrated into the forming virions through direct contacts between their 

cytoplasmic domains and viral core nucleocapsid components. However, recent studies have 

shown that negative strand RNA viruses and retroviruses may represent exceptions to this 

general rule as they can bud in the absence of the spike proteins with the help of the viral core 

components and matrix proteins [13]. 

Influenza virus is one of the best characterized membrane viruses budding at the PM (Fig. 3). 

It has a segmented single stranded RNA genome of negative polarity, which encodes for eleven 

proteins, including the neuraminidase (NA) and hemagglutinin (HA) spike proteins of its 

envelope. Both proteins are glycosylated and delivered to the PM via the secretory pathway 

[12]. At the late stage of virus replication, the export of the viral ribonucleoproteins (vRNPs) 

from the nucleus is followed by the assembly and budding of progeny viruses at the PM of the 

host cell. [14].  Before the newly budded viral particles leave the PM, the sialic acid residues 

of glycoproteins and glycolipids in the influenza virus envelope must be cleaved and removed 

by the enzymatic action of NA [15]. Influenza virus assembles at lipid raft-like microdomains 

like other membrane viruses such as  HIV, Ebola, measles and Marburg viruses [16]. The amino 

acid residues in the transmembrane domains of HA and NA are crucial for their raft association 

[17]. 
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Figure 3. Budding of a membrane virus at the PM. The final assembly of many membrane viruses, such 

as influenza virus, takes place at the cell surface. The viral nucleocapsids, which are assembled in the 

cytosol from newly made viral genomes and capsid protein(s) interact with the tails of viral membrane 

(envelope) proteins, which have been transported to the PM. Due to this interaction the lipid bilayer 

bends, resulting in virus budding and release from the cell. The figure is from [3]. 

 

1.5. Membrane viruses that bud into the lumen of intracellular compartments 
 

Although the majority of membrane viruses assemble and bud at the PM, a number of viruses 

are also known to bud at intracellular compartments. Their ability to form at intracellular sites 

stems from the fact that the viral membrane proteins mediating the budding event contain 

targeting information, which causes them to be retained inside the cell [18]. 

 

The intracellular compartments where these viruses assemble are usually referred to as viral 

factories. This is because these replication organelles shield the viruses from host defense 

mechanisms and make the viral replication and assembly processes more efficient [19]. The 

virally encoded membrane glycoproteins determine the site of viral assembly in a sub- 

compartment of the ER or the Golgi apparatus. The membrane viruses that assemble at intra-

cellular compartments include: coronaviruses, herpesviruses, poxviruses, bunyaviruses and 

flaviviruses (Table 1). Some unusual events take place during the assembly of large DNA 

viruses, such as the passage of virions from the nucleus to the cytoplasm across the nuclear 

envelope, as seen in herpes viruses and, the successive envelopment by several membranes that 

lead to the formation of a four-membrane mature form of poxviruses [19]. The budding of 
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bunyaviruses into the Golgi apparatus is determined by the G1 and G2 glycoproteins of the 

virus, which interact with the helical viral nucleocapsids via their cytoplasmic tails. After their 

budding, bunyaviruses are thought to be transported along the secretory pathway from the 

Golgi apparatus to the extracellular space [19]. The G1 and G2 are integral membrane 

glycoproteins, which are generated from a common polypeptide precursor. They are both N-

glycosylated during synthesis and undergo intramolecular disulfide bond formation. A number 

of studies indicate that the G1 protein contains the information that enables it to be retained in 

the Golgi, whereas the G2 protein has no retention signal and can only be retained in the Golgi 

when associated with G1 [20]. Furthermore, flaviviruses bud at an ER-associated compartment, 

which may also be related to the IC. Though the budding strategies of bunya- and flaviviruses 

may differ from that of CoVs, they can be expected to be released from the cell via very similar 

pathway [21]. 

 

According to Garoff and coworkers, the budding strategies of membrane viruses can be 

classified into four categories. Thus, budding can depend on both capsid and spike proteins, or 

is mediated only by the capsid or core protein. Furthermore, budding can depend on the viral 

membrane proteins only or is accomplished by a matrix protein with the help of viral membrane 

proteins and the ribonucleoprotein (RNP) [22]. Assembly at an intracellular compartment is 

advantageous for the membrane virus in the sense that the viral membrane proteins are 

efficiently kept within the cell, thus helping to reduce the chances that the infected cells are 

recognized by antibodies and killed before the production of infectious viruses takes place. 

 

1.6. Coronaviruses (CoVs) 
 

Coronaviruses (CoVs) are membrane viruses with a non-segmented single-stranded RNA of 

positive polarity, meaning that following virus entry the released RNA genome can function 

directly as a mRNA (see Fig. 2) [23]. They have club-like spikes projecting from their envelope 

giving the viruses their name. They belong to the order Nidovirales which are known to have 

highly conserved genomic organization, unique enzymatic activities within the replicase-

transcriptase multiprotein complex and abilities to express many non-structural genes by 

ribosomal frameshifting and to express downstream genes by synthesis of 3′-nested sub 

genomic mRNAs (Fig. 2). However, members of the Nidovirus family have developed into 

different types of variable size or number of structural proteins [23]. They cause diseases in 

mammals and birds. 
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CoVs have the largest genome among the RNA viruses, about 30 kilobases in size. About two-

thirds at the 5' end encode for two polyproteins, which give rise to the viral replicase, while 

about one-third at the 3' end consists of the genes for the structural proteins, as well as the 

accessory proteins (ORFs) [24]. CoVs possess a feature that is uncommon among positive-

sense RNA viruses and in that contain helically organized nucleocapsids, which protect the 

RNA genome. They can mutate, recombine, and infect multiple species and cell types. The 

virions of CoVs are pleomorphic, showing considerable heterogeneity in their size and ranging 

from 100 nm to 160 nm in diameter [21]. They contain four main structural proteins namely: 

the spike (S) protein, a single-spanning membrane glycoprotein of approximately 150 kDa, 

which is heavily N-glycosylated. It mediates attachment to the host receptor and functions as a 

fusion protein during virus entry (Fig. 2) [25] [26]. The M protein of about 25-30 kDa is the 

most abundant structural protein in the virus envelope having three transmembrane domains 

and interacting with the other structural proteins and the genomic RNA thus giving the virion 

its shape. It can be modified by either addition of  N-linked or O-linked sugars or in some cases 

both, depending on the type of CoV [21] [27]. 

The envelope (E) protein is a single spanning small membrane protein of about 8-12 kDa [28]. 

It displays ion channel activity and facilitates the assembly and release of the virus [29]. It is 

modified by palmitoylation and expressed abundantly in infected cells but exists only in small 

quantities in the virion [28]. The E protein interacts with the M protein to bring about 

membrane curvature during the budding process or completes virus assembly by acting as a 

membrane scission protein [21]. In CoV-infected cells, there are two pools of the E-protein; a 

monomeric pool, which interacts with a still unknown host component(s) to neutralize the 

luminal pH of a secretory compartment such as the Golgi apparatus. The activity of this pool 

supports the release of virus and as well induces disassembly of the Golgi apparatus. The 

second oligomeric pool of the protein participates in virus assembly [30] [31].  

The nucleocapsid (N) protein is the single protein component of the CoV nucleocapsid and 

made up of two separate N-terminal and C-terminal domains. It uses different mechanisms to 

bind to the viral genome RNA in a beads-on-a-string manner [32]. Some β-CoVs contain a fifth 

transmembrane structural protein called the hemagglutinin-esterase (HE) which binds sialic 

acids on surface glycoproteins and uses its enzymatic acetyl-esterase activity to enhance S 

protein-mediated cell entry and virus spread through the mucosal layers of the respiratory and 

intestinal epithelium [33] [34].  
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Figure 4. Structure and assembly of CoVs. (A) CoV particles consist of an envelope – a lipid bilayer 

(light green) containing the viral spike (S), membrane (M), envelope proteins (E). In the nucleocapsid 

the N protein (blue) binds in a “beads on a string” fashion from the 5’ to the 3’ end of the single-stranded 

viral genome RNA (ssRNA). (B) The budding of CoVs takes place at IC membranes close to ER exit 

sites (ERES). Step 1: The cytosolic nucleocapsids formed by the association of the N proteins with new 

viral RNA genomes, interact at the IC with the viral membrane proteins, which have been synthesized 

on the ER-associated ribosomes and moved to the IC in transport vesicles. Step 2: These interactions 

lead to the budding of the virus into the IC lumen. Step 3: The released large virus particles are now 

ready to move towards the PM in special transport carriers. The figure is from [21]. 

 

1.6.1. Coronavirus life cycle 

The life cycle of CoVs occurs in successive stages: i) viral attachment and entry, ii) synthesis 

of the viral replicase, iii) genome replication and transcription, iv) synthesis of virus structural 

proteins, assembly, and release [23]. Mediating the attachment and entry of CoVs into their 

host cells, the S protein binds to a specific receptor, the angiotensin-converting enzyme 2 

(ACE2), leading to its conformational change. This change enables the fusion of the viral 

envelope with the cell membrane already at the cell surface or following the uptake of the virus 

to endosomes through receptor-mediated endocytosis (see Fig. 2) [35].  Subse-quently, the 

genomic RNA is released into the cytosol and functions as an mRNA in the translation of 

polyproteins (PP1a and PP1b), which are cleaved by virus-specific enzymes (viral proteinases) 

into final products, leading to the production of the viral replicase (Fig. 2). The replicase then 

uses the positive strand genomic RNA as a template to make ssRNAs of negative polarity, 

which when are again transcribed to full-length new genomes or subgenomic mRNAs coding 

for the viral structural proteins (Fig. 2) [36] [37]. 
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Figure 5. Release of CoVs from the infected cells. This diagram shows two possible routes for CoV exit 

from their host cells. Following their budding into the slightly acidic IC lumen (Step 4), the newly 

formed progeny viruses may reach the extracellular space either via a Golgi-dependent pathway (5a), 

or a Golgi-independent pathway (5b). This figure is derived from [8]. 

 

The viral membrane proteins (S, E and M) are translated on ER-associated ribosomes and 

inserted into the ER membrane. They move along the early secretory pathway to the pre-Golgi 

IC, where interactions between the genome RNA- and N protein-containing helical 

nucleocapsids and the cytoplasmic domains of the viral membrane proteins take place, resulting 

in virus assembly by budding into the IC lumen (Figs. 4 and 5) [37] [38]. The newly formed 

progeny viruses may now gain access to the extracellular space either via a Golgi-dependent 

pathway (Fig 5a) or a Golgi-independent pathway (Fig. 5b) [8]. 

Electron microscopic (EM) studies carried out by Tooze and coworkers on mouse hepatitis 

virus (MHV)-infected mouse fibroblasts revealed that at early times of infection the budding 

of new progeny viruses starts in pleomorphic smooth membrane structures at the ER-Golgi 

inter-face [39]. Subsequent work showed that this CoV “budding compartment” corresponds 

to the IC [40] [41] [42]. To understand the mechanisms that determine the intracellular budding 

of CoVs, Machamer and coworkers a undertook mutational analysis of the transiently 

expressed IBV M protein. These studies revealed the existence of a  specific sequence motif in 

the first transmembrane segment of this multi-spanning membrane protein that dictated its 

efficient retention to the IC/cis-Golgi region [43] [44] [45].  
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1.6.2. Human coronaviruses 

The different types of CoVs infecting various mammalian or avian species can be classified 

into four main subgroups: α-, β-, γ-, and δ- CoVs. The CoVs that infect humans belonging to 

the α- and β- CoV subgroups were first identified in the 1960s. The four CoV strains, α- CoVs 

human coronavirus-229E (HCoV-229E) and -NL6 (HCoV-NL6), and the β- CoVs HCoV-

OC43 and HCoV-HKU frequently infect humans causing an upper respiratory tract illness 

known as common cold [46]. Additional CoVs infecting humans include the three recent 

viruses causing serious epidemic or pandemic: Middle East respiratory syndrome coronavirus 

(MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV) and the recent 

SARS-CoV-2 causing the pandemic coronavirus disease 2019 (Covid-19) [47]. 

Interestingly, these human CoVs exhibit considerable genetic variability. The site of variation 

for the SARS-CoV is seen at two gene loci: The S protein gene and the accessory gene ORF8. 

The MERS-CoV sites of variation are located at the S, ORF3 and ORF4b genes [48]. The 

newly discovered SARS-CoV-2 shows some differences in its S gene sequence which has three 

short insertions at the N-terminus and changes in four of the five residues in the receptor 

binding motif [49]. However, these three human CoVs are similar in structure, give similar 

symptoms and share a common mode of transmission [50] [33]. 

The SARS-CoV, a β-CoV causing severe respiratory disease was identified in Foshan China 

in November 2002. It caused the most severe human disease related to CoVs [51]. After the 

SARS epidemic was brought under control in 2003, a new CoV, the MERS-CoV was identified 

in 2012 in the Middle East, as indicated by its name. MERS-CoV is a CoV closely related to 

the Tylonycteris bat CoV HKU4 and Pipistrellus bat CoV HKU5 [52]. Originating from bats, 

and to be able to infect humans, it needs an intermediate host, which in the case of MERS was 

identified as camels, since humans rarely have contacts with bats. It has the longest duration of 

infection as compared to the SARS-CoV and SARS-CoV-2 and, during the early phase of its 

outbreak, approximately 50% death rate was recorded.  MERS-CoV has the ability to recognize 

dipeptidyl peptidase 4 (DPP4) as its receptor at the cell surface, promoting the fusion of the 

viral envelope with the PM [53]. 

The SARS-CoV-2 is a β-CoV that causes Covid-19. It was discovered in November 2019 at 

Wuhan in China. As compared to the SARS-CoV and MERS-CoV, it is less deadly but the 

most infectious and most readily transmissible.  It uses the ACE2 as its receptor but can also 

recognize another cell surface protein, the CD147 [54] [49]. Like MERS, it most likely 
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originates from bats and, when transferred to humans, its primary site of infection is the 

epithelial cells within the upper respiratory system. The receptor binding domain (RBD) in the 

S protein of the new SARS-CoV-2 has a much higher affinity to the human ACE2, explaining 

why it can spread more rapidly [50]. ACE2 is highly expressed in the epithelial cells of the 

lungs and gastrointestinal tract. However, it is also expressed in the kidney, heart, esophagus, 

ileum, testis, bladder and adipose tissues [55].  

1.6.3. Avian infectious bronchitis virus (IBV) 

IBV belongs to the γ- subgroup (genus) of CoV family and causes respiratory disease in 

different avian species (such as fowls) and replicates at the epithelial surfaces of non-

respiratory organs, such as kidneys and gonads. Isolated in 1930, it represents the first 

identified CoV. IBV does not cause only respiratory diseases in birds, but also results in kidney 

damage and lowers egg production due to the fact that chicks affected by this virus at an early 

age receive permanent damage to their oviduct, preventing them from laying eggs later on [56]. 

This virus has proven difficult to control because many strains are distributed worldwide and 

mutations and recombination in the viral genome continuously give rise to new types of virus 

[57]. The S protein of IBV is cleaved into its amino terminal S1 subunit and carboxyl terminal 

S2 subunit. S1 enables the virus to attach to cells while the more conserved S2 enables 

membrane fusion. However, for IBV, the location of the RBD in S1 is unknown [58] [59]. 

 

1.7. An introduction to the conventional secretory pathway 
 

The secretory pathway is employed by cells to deliver proteins and large particles (such as 

lipoproteins) to the extracellular environment, as well as to transport proteins and lipids to the 

cell surface and the different membrane organelles of the endomembrane system, such as 

lysosomes [60]. The organelles of the classical secretory pathway include the endoplasmic 

reticulum (ER), the pre-Golgi intermediate compartment (IC) and the Golgi apparatus, which 

are connected by vesicular trafficking [60]. In contrast to the cytosol, which is an oxidative 

environment, the luminal spaces of the secretory compartments have reducing conditions. This 

is important for the folding and post-translational modification of the various cargo proteins 

that follow this pathway, including soluble secretory proteins, membrane-bound PM or 

organelle proteins and lysosomal enzymes. To facilitate protein folding, the secretory pathway 

also contains luminal chaperones, which help the transported proteins to achieve their 

functional conformation [60].  
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The ER is the first organelle in the secretory pathway [61]. It is continuous with the outer 

nuclear membrane and consists of two membrane subdomains termed the rough and smooth 

ER. The rough ER is covered with ribosomes which are the sites of protein synthesis, while the 

smooth ER is devoid of ribosomes and functions in lipid synthesis. The proteins destined to 

enter the secretory pathway contain an N-terminal signal sequence, which directs the ribosomes 

to the rough ER. After the ribosomes have attached the rough ER, the newly made proteins 

enter the ER lumen or are incorporated into the ER membrane. Secretory proteins become 

enriched in ER-derived vesicles and subsequently transported via the IC to the Golgi apparatus 

to be further sorted and delivered to other cell organelles or secreted from the cell [60]. The 

currently prevailing cisternal progression or maturation hypothesis proposes that anterograde 

protein transport from cis- to trans-Golgi is based on the movement of the Golgi cisternae. To 

compensate for this process, COPI coated retrograde transport vesicles continuously retrieve 

resident Golgi proteins from later to earlier Golgi cisternae in the Golgi stacks. Finally, in the 

trans-Golgi network (TGN) proteins are sorted into transport vesicles that move to the PM and 

release their contents through exocytosis. Some secretory proteins are continuously secreted, 

while others are first stored inside the cell in secretory granules until the cell receives a stimulus 

that triggers their exocytosis [60]. 

1.7.1. Pre-Golgi intermediate compartment 

The IC is an organelle in eukaryotic cells that mediates the communication between the ER 

and the Golgi apparatus and functions as an important sorting station for anterograde and 

retrograde trafficking in the early secretory pathway [41]. It is also referred to as the 

endoplasmic reticulum-Golgi intermediate compartment (ERGIC). In addition to protein 

sorting and trafficking at the ER-Golgi interface the IC has been recently assigned new 

functions related to cell signaling, autophagy and Golgi-independent trafficking [41]. Different 

models of the IC are presented in Fig. 6. The first model (Fig. 6, Model a) proposes that the IC 

represents a collection of transient transport intermediates that form at ER exit sites (ERES) 

through the fusion of ER-derived COPII-vesicles. They then move to the cell center developing 

Golgi-like properties and may gradually obtain a flat cisternal shape [41]. Such transformation 

of the IC into a cis-Golgi cisterna could result from alteration of its composition caused by 

COPI vesicle-mediated membrane recycling [62] [63] 
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Figure 6. Different models of the IC in mammalian cells. Model a): The IC functions as a transient 

transport carrier (TC). The tubulovesicular IC elements form de novo at the ERES via homotypic fusion 

of ER-derived COPII vesicles (light blue) and fuse with or transform into Golgi elements (light green). 

Model b): A stable and immobile IC close to the ERES maintains two-way communication with the ER 

and the Golgi apparatus. Model c): According to this model the IC elements constitute a permanent 

membrane network, which is anchored to the centrosome (red). This model combines key aspects of 

the first two other models by considering that the dynamic vacuolar and tubular IC elements mediate 

long-distance communication within a widely distributed permanent IC system. AC = anterograde 

carrier. BRC = biosynthetic recycling compartment. The figure was taken from [41]. 

 

However, several studies have shown that the IC elements are not just present at the ER-Golgi 

boundary, but also present in the pericentrosomal region and at the cell periphery [41]. 

Interestingly, these widely distributed IC elements, containing the GTPase Rab1, are spatially 

and functionally linked to the recycling endosomes (REs) defined by the GTPase Rab1 that 

congregate around the centrosome [64]. Moreover, close association of these compartments is 

maintained when the Golgi stacks are disassembled by the drug brefeldin A (BFA), which 

removes membrane-bound COPI coats [65] [66]. These observations have contributed to an 

alternative model of the IC as a dynamic but permanent membrane system (Fig. 6, Model c). 

Together with the endocytic recycling system the IC network is proposed to function in the 

biogenesis of the more transient Golgi stacks, and also establish an unconventional pathway to 

the cell surface that is resistant to BFA, i.e. independent of the Golgi stacks [41].  

The individual IC elements are often described morphologically as vesicular tubular clusters 

(VTCs), representing assemblies of small tubules and vesicles [67]. However, based on studies 

employing EM and analytical cell fractionation the IC also contains an additional saccular 

component of up to 0.5 µm in diameter. These large IC elements also have the ability to expand.   
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Since the narrow tubules and small vesicles of the VTCs lack the required luminal space to 

accommodate the large CoV particles, these saccular IC elements would provide a suitable IC 

domain where the budding of the virus can take place [40] [68]. They could also act as large-

sized carriers for the transport of the newly assembled CoV particles from ERES to the central 

Golgi region  [69].  

Various molecular machineries are involved in the regulation of transport in the early secretory 

pathway, including cargo receptors (such as p58/ERGIC-53), Rab GTPases (such as Rab1), 

ADP ribosylation factors (ARFs), vesicular protein coats (COPI and COPII), tethering factors 

and fusion proteins [41]. Rab proteins are thought give different organelles their identity by 

organizing the formation of specific membrane domains through the recruitment of e.g. lipid-

modifying enzymes and peripheral membrane proteins [70]. Rab1 and COPI appear to play 

important roles in IC organization by specifically associating with the different saccular and 

tubular subdomains of this organelle [41]. 

1.8. Unconventional protein secretion (UPS) 
 

The conventional pathway of protein secretion, which most secretory proteins are thought to 

follow, involves the passage of ER-derived cargo through the Golgi apparatus. Interestingly, 

these is now increasing evidence showing that many proteins can be delivered to the cell 

surface or extracellular space in an unconventional (or non-classical) manner that is inde-

pendent of the ER and/or Golgi apparatus [71]. The proteins employing such unconventional 

trafficking can be divided into two main categories: i) proteins containing signals for ER 

translocation that are transported to the cell surface in a Golgi-independent manner and ii) 

cytoplasmic or nuclear proteins that despite lacking an ER-translocation signal can be exported 

from the cell. It is important to understand these pathways because this novel mode of secretion 

turns out to be employed by important regulators of cell growth, differentiation, angiogenesis 

or immune response [71]. Examples of ER signal peptide-containing proteins that bypass the 

Golgi apparatus on their way to the PM include the cystic fibrosis transmembrane conductance 

regulator (CFTR) and Drosophila melanogaster α-integrin [72]. It has been suggested that 

CFTR passes via the endocytic recycling compartment during its delivery to the PM [71]. The 

Drosophila α-integrin again has been shown to reach the cell surface in the presence of 

brefeldin A (BFA), which disassembles to Golgi stacks [73].  

Interestingly, the Golgi reassembly and stacking proteins (GRASPs) appear to be important 

players in both above described two forms of UPS [74]. These transport machinery proteins 
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were previously shown to be responsible for the stacked organization of the Golgi apparatus, 

as well as lateral linking of the stacks into a Golgi ribbon in vertebrate cells [74]. The multiple 

roles of the GRASPs suggest that although unconventional secretion is independent of Golgi 

integrity, it is nonetheless closely connected to the normal organization of the Golgi system  

[75] [76] [77]. 
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2. AIMS OF THE STUDY

 

This master project addresses the late stages of coronavirus (CoV) life cycle. Of special interest 

was to obtain information on the still enigmatic pathways and mechanisms that these viruses 

employ during their transport from their site of budding in the pre-Golgi intermediate 

compartment (IC) to the extracellular space.  

The specific aims were as follows: 

1. To characterize organelle markers that can be used in subsequent experiments to follow the 

intracellular transport of CoVs. 

2. To develop experimental approaches to study the release of CoVs from the infected cells 

using different microscopic techniques. 
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3. MATERIALS

 

Tables 2-9 list the reagents, chemicals, cell lines, antibodies, technical equipment, and dispo-

sable materials used in this study. 

3.1.Basic laboratory reagents 

Table 2 

Reagents Abbreviation 

or formula 

Specifications Source 

Ammonium chloride 

 

NH4Cl 50 mM solution  

in PBS  

Sigma 

Di-sodium hydrogen 

phosphate-dihydrate 

 

Na2HPO4 -

2H2O 

 Merck 

Dulbecco’s phosphate 

buffered saline 

 

PBS Powder Sigma 

Ethanol 

 

EtOH 100% VWR 

Glycerol 

 

C3H8O3 100% Sigma 

Guanidine-HCl 

 

Guan-HCl 6 M solution in 50 mM 

Tris-buffer, pH 7.5 

Sigma 

Milli-Q  

 

ddH2O Double-distilled water IBM 

Sodium azide 

 

NaN3 1000 x stock solution 

(20% in ddH2O)  

Sigma 

Sodium dihydrogen 

phosphate-monohydrate 

 

NaH2PO4 -H2O  Merck 

Sodium hydroxide 

 

NaOH 1 M solution Merck 

Tris (hydroxymethyl)-

aminomethane 

Tris 0.5 M solution, pH 7.5 Merck 
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3.2. Reagents for cell culture 

Table 3 

Reagents Abbreviation 

or formula 

Specifications Source 

Dulbecco’s Modified 

Eagle’s Medium 

DMEM (1X) With 1g/L D-glucose, 

L-glutamine, sodium 

pyruvate 

Gibco 

Dulbecco’s Modified 

Eagle’s Medium 

DMEM Powder (without 

sodium bicarbonate) 

Gibco 

Fetal Calf Serum 

 

FCS Heat-inactivated Gibco 

HEPES buffer solution 

 

HEPES  1 M solution, pH 7.2 Gibco 

L-Glutamine, 100x 

 

L-Glu 200mM (100 x) Gibco 

Penicillin-Streptomycin 

 

Pen-strep Antibiotics (100 x stock 

solution) 

Gibco 

Trypsin-Ethylenediamine-

tetraacetic acid 

Trypsin-EDTA 0.5% trypsin Gibco 
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3.3. Reagents for immunofluorescence staining and microscopy 

Table 4 

Reagents Abbreviation 

or formula 

Specifications Source 

Blocking buffer  Washing buffer with 0.2% 

saponin and 5% GS 

(filtered) 

 

Bovine Serum Albumin 

 

BSA Fraction V Roche 

Coverslips CVL 18 mm diameter, thickness 

(0.17 ± 0.01mm) 

 

Chemi- 

Teknikk AS 

Goat Serum 

 

GS Heat Inactivated Gibco 

Microscope objective slides 

 

  VWR 

Paraformaldehyde 

 

PFA 3% solution in 0.1 M 

phosphate buffer, pH 7.2 

Sigma 

Saponin 

 

  Sigma 

Triton X-100 

 

TX-100 10% stock solution Pierce 

Vectashield Mounting 

Medium 

 Mounting medium for 

fluorescence with DAPI 

 

Vector 

Laboratories  

Washing buffer  Washing buffer with 0.2% 

BSA and 0.02% azide 

 

 

Washing buffer with 

saponin 

 Washing buffer with 0.2% 

saponin, 0.2% BSA and 

0.02% azide 
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3.4. Reagents for virus infection 

Table 5 

Reagents Abbreviation 

or formula 

Specifications Source 

Crystal violet 

 

 0.05% in 20% EtOH  Sigma 

Virus growth medium 

 

 DMEM with 2% FCS 

and Pen-Strep 

 

Sodium bicarbonate NaHCO3 7% solution Sigma 

 

 

 

3.5. Reagents for plaque titration 

Table 6 

Reagents Abbreviation 

or formula 

Specifications Source 

Agarose  1.8% in dH2O. 

Analytical grade. Low 

EEO 

Sigma 

Virus growth medium (2x) 2 x medium 2 x DMEM (prepared 

from powder) with 4% 

FCS and sodium 

bicarbonate 
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3.6. Disposables 

Table 7 

Materials Specifications Source 

Centrifuge tubes 

 

15 ml and 50 ml Sarstedt 

Culture plates 

 

6-well plates, 25 and 75 cm2 

culture flasks 

 

NUNC or Sarstedt 

Disposable pipettes 

 

5, 10 and 25 ml Sarstedt 

Filter paper 

 

 Whatman 

Microfuge tubes 

 

1.5ml  Sarstedt 

Syringe filters 

 

0.2µm Millipore 

Parafilm 

 

 VWR 

Pasteur pipettes 

 

 VWR 

pH indicator 

 

 Merck 

 

3.7. Technical equipment used in the experiments 

Table 8 
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Equipment 

 

Specification Supplier 

Biosafety laminar flow hood Holten LaminAir Labexchange, Germany 

 

Confocal microscope 

 

Leica TCS SP8 STED 3X 

 

Leica Microsystems, 

Germany 

Fluorescence microscope  

 

Axiovert 200M Zeiss 

IncuSafe CO2-incubator 

 

For virus experiments SANYO, Japan 

Light microscope 

 

CKX31 Olympus 

Milli-Q ultrapure water 

purification system 

 Millipore 

Mini see-saw rocker 

 

SSM4 STUART Scientific 

Steri-cycle CO2 incubator 

 

For routine cell culture  Panasonic 

Table-top centrifuge 

 

Centrifuge 5415D Eppendorf 

VACUSAFE aspiration 

system 

 Integra Biosciences 

Water bath 

 

SWBD STUART Scientific 
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3.8. Cell Line 

Vero cells, the host cells for IBV in this study, are kidney epithelial cells derived from African 

Green Monkey. Originally purchased from the European Collection of Authenticated Cell 

Cultures (ECACC), these cells were provided to us by Yuta Ishizuka (Clive Bramham’s 

laboratory). They can go through many cycles of division without becoming senescent. Also, 

unlike typical mammalian cells, they do not secrete - or -interferon when infected with 

viruses [78] and therefore can support the replication of a variety of virus types. 

 

3.9. Virus 

The model CoV used in this study is the Avian Infectious Bronchitis Virus (IBV). We obtained 

the original stock virus from Prof. Carolyn Machamer at the Department of Cell Biology, 

John’s Hopkins School of Medicine (Baltimore, USA). IBV is a -CoV that causes respiratory 

and gastrointestinal disease in birds, but is harmless to humans, thus requiring only a BSL-2 

facility in the laboratory. It was the first CoV that was identified and has been actively used as 

a model virus to study CoV replication. 

 

 

3.10. Primary and secondary antibodies 

Table 9a. 

Primary antibodies  

against cellular proteins 

 

Compartment Source Working 

dilution (IF) 

 

Mouse anti-ERGIC-53 

 

Mouse anti-LAMP1 

 

Mouse anti- Rab1 

 

Mouse anti-Rab11 

 

Mouse anti-transferrin 

receptor (TfR) 

Rabbit anti-p58 

 

 

IC/cis-Golgi 

 

Lysosome 

 

IC/cis-Golgi 

 

RE 

 

RE 

 

IC/cis-Golgi 

 

Alexis 

 

BD Pharmingen 

 

Angelica Barnekow 

(Münster, Germany) 

 

BD Transduction labs 

 

Invitrogen 

Sigma 

 

 

1:200 or 1:400 

 

1:100 

 

1:200 

 

1:200 

 

1:200 

 

1:200 
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Rabbit anti-Rab1 

 

 

Rabbit anti-Rab11 

(monoclonal) 

 

Rabbit anti-Rab11 

 

 

Rabbit anti-Rab11 

(polyclonal) 

 

 

 

IC/cis-Golgi 

 

RE 

 

 

RE 

 

 

RE 

Bruno Goud (Paris, France), 

affinity purified by us  

 

 

Invitrogen 

 

 

 

US Biologicals 

 

 

Invitrogen  

 

 

1:20 

 

1:50 or 1:100 

 

 

1:50 or 1:100 

 

 

1:50 

 

 

 

 

Table 9b. 

Primary antibodies against 

IBV proteins 

Abbreviation/code Working dilution (IF) 

 

Anti-IBV 

 

Anti-IBV E 

 

Anti-IBV M 

 

Affinity-purified anti-M 

 

Anti-IBV N 

 

Anti-IBV S 

 

JH3006 

 

JH3012 

 

JH1643 

 

AP35B 

 

1154-1 (E. Collisson) 

 

JH4926 

 

1:100 

 

1:500 

 

1:250 or 1:500 

 

1:40 

 

1:100 or 1:200 

 

1:500 

 



26 
 

 

 

 

 

Table 9c. 

Secondary antibodies Source Working dilution (IF) 

 

Goat anti-Mouse IgG coupled to Alexa 488 

 

Goat anti-Mouse IgG coupled to Alexa 596 

 

Goat anti-Rabbit IgG coupled to Alexa 488 

 

Jackson Labs 

 

Jackson Labs 

 

Jackson Labs 

 

1:50 

 

1:50 

 

1:50 

 

 

3.11. Inhibitors 

Brefeldin A (BFA) is a fungal compound isolated from Penicillium brefeldianum. By 

preventing the association of COPI-coats with IC and cis-Golgi membranes it disassembles the 

Golgi stacks within minutes and interferes with protein transport from the ER to the Golgi 

complex [79]. Notably, the IC persists after BFA treatment and maintains its association with 

the endocytic recycling system [80] [66]. 

 

3.12. Software 

The software used here was the AxioVision Imaging System (based on release 4.5, 12/2005) 

configured to the Zeiss Axiovert 200M microscope equipped with 63x and 100x oil immersion 

objectives, i.e., the objectives used in most of the current experiments. 
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4. METHODS

 

 

The flow chart below summarizes the basic methods used in the experiments involving the use 

of the epithelial Vero cells as host cells for IBV infection to obtain information of the pathway 

that CoVs use for their transport from the IC to the extracellular space.  

 

 

 

         Storage of cells                                                                 Passage of host cells 

 

          Cell passage                                                                         Virus dilution 

  

            Fixation            Drug treatment                                               Infection 

 

 Guanidine-HCl treatment          Blocking and permeabilization         Fixation 

 

                                                                                                           Staining with antibodies 

Staining with antibodies                                  Plaque titration 

 

            Microscopy                                    Calculation of virus titer          

 

      Evaluation of results                          One-step growth curve       Evaluation of results 

 

II.   

 

     Stock preparation 

  

Uninfected Vero cells Infected Vero cells 

Microscopy 

IBV 

Storage (-800C) 

Flow chart summarizing the cells, virus and various methods used in this study 
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4.1 Storage of Vero cells 

The cells grown in 75 cm2 flasks were retrieved from the 37oC CO2-incubator, the growth 

medium was removed by suction and the cells were washed with 10 ml of PBS to remove the 

serum containing trypsin inhibitors. 5 ml of trypsin-EDTA was added to each flask of which 

about 4 ml was removed by suction, leaving a small volume to keep the cells covered for 

effective trypsinization. The cells were viewed in the microscope to observe the effects of 

trypsin.  After the cells rounded up, the flasks were gently hit to loosen up the cells and 10 ml 

of complete growth medium (see below) was pipetted into the flasks containing the loosened 

cells which were mixed by pipetting. The suspended cells were transferred into 15 ml tubes 

and pelleted by centrifugation for 3 min at 1000 rpm. The supernatant was removed by suction, 

the pelleted cells were carefully resuspended in the ice-cold DMEM containing 10% DMSO 

and 40% FCS (freezing medium) and the cell suspension was aliquoted in 1 ml portions into 

cryotubes. The tubes were first placed in the -20oC freezer for 3 hours, then frozen down 

overnight at -80oC in a controlled fashion in a Nalgene cryo-freezing container and finally 

transferred to a liquid nitrogen tank for long-term storage at 196oC. 

4.1.1. Thawing of cells 

At regular intervals, individual cell vials were retrieved from the liquid nitrogen tank and 

thawed in a 370C water bath. The cells were transferred into a 15 ml tube containing 10 ml ice-

cold complete growth medium and pelleted by centrifugation for 3 min at 1000 rpm. Then, the 

supernatant containing DMSO was removed by suction. Finally, the cells were resuspended in 

5 ml of fresh growth medium and placed into 25 cm2 cell culture flask for growth. 

4.2 Cell culture 

4.2.1. General maintenance of Vero cells 

Vero cells were grown at 37oC in 5% CO2 atmosphere. The complete growth medium was 

DMEM supplemented with 10% FCS heat inactivated, 2 mM L-glutamine, and 50 units/ml 

penicillin and 50 µg/ml streptomycin. The cells were grown in a 25 cm2 filter-capped culture 

flasks until they reached about 70-95% confluency depending on the experiment. The growth 

and maintenance of cells, as well as other experimental processes involving the cells were 

performed under sterile conditions. All solutions used in the project were either purchased 

sterile or sterilized by filtering through a 0.2 µm pore size filters before use. 

4.2.2 Cell passaging 

The cell cultures were monitored daily using a light microscope equipped with phase contrast 

optics to check for confluency. The cells were routinely passaged at 60-90% confluency. 

During the passaging, the cells were rinsed with PBS, and released by the addition of trypsin-

EDTA as described above. Cell aggregates were disrupted by rigorous pipetting after addition 

of complete growth medium into the flasks. The cells were split into new 25 cm2 flasks in a 

fresh growth medium at dilutions ranging from 1:2 to 1:10, depending on the confluency of the 

culture used for passaging. The newly split cultures were put back in the CO2-incubator for 

growth and further passaging, or for use in experiments.     

 



29 
 

4.3 Sample preparation for immunofluorescence microscopy 

In general, for the immunofluorescence staining experiments, cells were plated on glass 

coverslips in 6-well plates, grown for 1-2 days until they reached a confluency of about 60-

80% and then fixed with PFA. The fixation of cells must be done properly because 

incompletely fixed samples can develop artifacts. The antibodies used for double-staining must 

be checked for eventual cross-reactivity. 

4.3.1. Plating of cells on coverslips  

The cells retrieved from the CO2-incubator were examined under a light microscope equipped 

with phase contrast optics to ascertain the confluency of the cell monolayer. The cells were 

released by trypsinization as described above and resuspended in fresh complete growth 

medium at about 1:5 dilution. 2 ml of the cell suspension was added in each well of the 6-well 

plates containing a coverslip and the plates were placed for 2 days in the CO2-incubator. 

4.3.2. Fixation of cells with PFA 

At the end of the 2-day incubation, the 6-well plates were viewed in the microscope to ensure 

that the cells were in good condition. The medium was removed by suction and 2 ml of the 

fixative (3% PFA in 0.1M phosphate buffer, pH 7.2) was pipetted in each well. To make the 

fixative, 3 g of PFA powder was dissolved in 50 ml MilliQ water to which 5 drops of 1 M 

NaOH was added, and which was slowly heated to 60o C. When the PFA had dissolved and the 

solution became clear, 50 ml of 0.1 M Phosphate buffer pH 7.2 was added to adjust the pH. 

The fixative was finally passed through two filter papers (Whatman) in a funnel. The standard 

fixation time was 60 min, whereafter the cells were washed once with washing buffer (PBS + 

0.2%BSA).  

4.3.3. Guanidine-HCl treatment, blocking and permeabilization of the cells. 

The washing buffer was removed by suction and 50 µl of 6 M guanidine-HCl in 50mM Tris-

buffer, pH 7.5 was pipetted onto each coverslip, resulting in the case of some antibodies in the 

retrieval of antigenic sites. After the 5 min guanidine-HCl treatment, the cells were washed 

extensively (5 times) with PBS to remove all salt. Then, 700 µl of blocking buffer – i.e., 

washing buffer supplemented with 0.2% saponin and 5% goat serum (filtered through a 0.2 µm 

Millipore filter) – was pipetted into each well to permeabilize the cells and to block unspecific 

binding of secondary goat antibodies, followed by incubation for 60 mins on a shaker at RT0C. 

4.3.4. Staining of the cells with antibodies 

After blocking and permeabilization, the medium was removed by suction, the immediate 

surroundings of the coverslips were dried by suction and 40-50 µl of antibody in blocking 

buffer was pipetted onto each coverslip (see Tables 10a-c for the lists of primary and secondary 

antibodies), followed by incubation for 60-120 min or overnight – in the latter case in a humid 

chamber. The cells were then washed 4 times with washing buffer (PBS with 0.2% BSA, 0.2% 

saponin and 0.02% azide) and left on a shaker for about 2 hrs. The medium was then removed 

and as described above, 45 µl of secondary antibody was added on each coverslip. The plates 

were kept for 90 min in the dark covered with a foil.  Cells were rinsed again with the washing 

buffer and then left in the last wash for 2 hrs on a shaker (still covered with foil). 



30 
 

In the experiments where double staining was carried out, the incubation with the two antibody 

pairs (primary antibody and the secondary fluorochrome-coupled antibody) was carried out 

successively, involving the steps described above. After the stainings were completed, the cells 

were washed twice with PBS, followed by mounting on clean objective slides in a drop of 

Vectashield Mounting Medium containing the DNA stain DAP1. 

4.3.5. Microscopy and image acquisition 

The antibody-stained cells were examined in Zeiss Axiovert 200M inverted microscope 

equipped with long working distance (LD) objectives, phase contrast capability, AxioCam 

HRm camera and fluorescence filters which were appropriate for DAPI and the two 

fluorophores used in this study, Alexa 488 (green channel) and Alexa 596 (red channel), 

coupled to the secondary anti-rabbit or anti-mouse antibodies. 

Three objectives were alternatively used to view the cells. For imaging of a large number of 

cells at low magnification, the LD plan-NEOFLUAR 20 X/4.0 Ph2 dry objectives was used. 

Most experiments involved use of the two oil immersion objectives for imaging of the cells at 

higher magnification: LD Plan-NEOFLUAR 63X/0.75 Ph2 and Plan-NEOFLUAR 100X/1.30 

Ph3.  

Zeiss Axiovert 200M is an inverted microscope. Thus, the filtered light of appropriate 

wavelength enters the specimen from the top and excites the fluorophore. The fluorophore 

receiving light of a certain wavelength changes the structure of its atomic shell, leading it to 

emit light of another (longer) wavelength. Alexa 488 is excited by blue light and emits green 

light, whole Alexa 596 is excited by green light and emits red light. The excited light from the 

stained specimen passes down through the objective lens system to reach the eyes or the 

camera. 

4.4 Treatment of cells with brefeldin A 

After reaching about 70-90% confluency the cells on coverslips were treated for 60 min with 

BFA by adding 2 ml of prewarmed complete growth medium containing 5µg/ml of the drug, 

while other coverslips served as untreated controls. After the treatment, the cells were fixed for 

60 min with PFA. Following permeabilization and blocking, the cells were double-stained for 

IC (Rab1) and RE (Rab11, TfR) markers as described above. 

4.5 Preparation of IBV stocks 

The virus used in this work was provided by Prof. Carolyn Machamer. Upon arrival, the virus 

was stored in the -800C freezer. For stock preparation, one of the virus-containing tubes was 

retrieved from the freezer; the virus was thawed in a 37oC water bath and kept on ice. Vero 

cells grown in two 10 cm diameter culture dishes were washed once with plain DMEM to 

remove the serum. The virus (250µl) was mixed with plain DMEM to give a final dilution of 

1:8, whereafter 1ml of the virus dilution was added into each culture dish and gently mixed to 

spread the virus over the whole cell monolayer. The two dishes were then placed for 60 min in 

a CO2-incubator and gently mixed at every 10 min to keep the cell monolayer covered with the 

medium. Thereafter, the virus-containing medium was removed and 6 ml of prewarmed 

DMEM containing 2% FCS was added to each culture dish, which were incubated at 37oC in 

a CO2-incubator for about 20 hrs until syncytia started to form based on viewing in the 
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microscope. At harvest, the dishes were covered tightly with Parafilm and subjected to 3x 

freezing (at -800C) and thawing (warm plate at 37oC) to release intracellular progeny virus 

particles, as well. Thereafter, the virus-containing homogenates were mixed carefully with a 

micropipette, transferred into two 15ml tubes and the contents of the tubes were vortexed 

extensively and centrifuged for 15 mins at 2000 rpm. The supernatants were divided into 250 

µl and 500 µl aliquots in sterile 1.5 ml tubes, which were stored in the -80oC freezer for future 

use. 

4.5.1. Plaque assay for virus titration 

Plaque assay is an important method in virology. It is used to quantify the number of infectious 

virus particles in a given sample. The number is given as plaque forming units (PFU)/ml. In 

the present study, plaque titration was first carried out to determine the number of infectious 

particles in the newly prepared virus stock. For this purpose, Vero cells in 6-well plates were 

grown for 2 days to reach ~ 95% confluency. The wells were labelled to indicate the dilutions 

from 10-1 to 10-6.  An aliquot of the virus stock was retrieved from the -800C freezer and thawed 

in a 37oC water bath. Ten-fold serial dilutions were prepared in 1.5 ml microfuge tubes (see 

Results, Figure 8) with careful mixing in between. The cells in the 6-well plates were rinsed 

with serum-free medium and 200 µl of the virus dilution was added into each well and properly 

mixed to cover the monolayer. The plates were placed for 60 min in the CO2-incubator for 

virus infect-ion to take place and rocked at 10 min intervals. Meanwhile, the 1.8% agarose 

solution was melted in the microwave oven and kept at 55oC in a water bath. 2x DMEM 

containing 4% FCS was prewarmed and kept in a 37oC water bath until the end of adsorption. 

Towards the end of infection, the agarose was put for about 90 sec at RT0C to cool to about 

45oC, whereafter; equal volumes (20 ml) of prewarmed 2x medium and agarose were mixed. 

Subsequently, the virus inoculums were aspirated, and 2 ml of the agarose-medium mix was 

gently added into each well and allowed to solidify for about 2 min. After solidification, the 

plates were kept in the CO2-incubator for 2-3 days to allow for plaque formation. After the 

incubation, the plates were put for 30 min in the refrigerator. Thereafter, the solid agarose 

overlay was removed with a spatula and the cells in each well were stained for 10 min with 1 

ml of crystal violet solution (0.05% crystal violet in 20% EtOH). The staining solution was 

removed by suction and the wells were rinsed with ddH2O and allowed to dry. 

4.5.2. Determination of virus titer 

The number of plaques was counted from the wells/dilutions containing an easily calculable 

number (10 - 50) (see Results, Figure 8). With the formula shown below, the titer (PFU/ml) of 

the virus stock (or a medium sample containing released virus; see below) was calculated: 

Number of plaques    

 

Where:     D = dilution factor 

                 V = ml of diluted virus added per well 

Standard volume of diluted virus per well in this work was 0.2 ml. 

 

D x V 
= virus titer (PFU/ml) 
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4.5.3. Infection of Vero cells with IBV 

Vero cells grown on coverslips were infected with IBV to test the effect of virus dilution on 

efficiency of the infection as well as the properties of the IBV antibodies (see Table 9b). 

In the first case, Vero cells added at appropriate dilutions onto coverslips were grown for 2 

days to reach 60-70% confluency. Aliquots of our own IBV stock were retrieved from the -

80oC freezer and thawed in a 37oC water bath. Different dilutions of the stock (1:4, 1:8, 1:16) 

were prepared and 50 µl of the diluted virus preparations were pipetted on each coverslip, while 

some coverslips received undiluted virus. The plates were incubated for 60 min for the infection 

to take place while mixing at 10 min intervals. After the infection, the virus inoculum was 

removed by suction and the coverslips were washed once with prewarmed plain DMEM. After 

the wash, 2 ml of growth medium (DMEM + 2% FCS) was pipetted into each well and the 

plates were kept for 8 hr in the CO2-incubator. At harvest, the cells were fixed for 60 min with 

2 ml of 3% PFA. After the fixation, the cells were rinsed twice with washing buffer (PBS with 

0.2% BSA). Following permeabilization and blocking, the cells were stained for 120 mins with 

anti-N antibodies (1:200). After appropriate staining with secondary antibodies, the coverslips 

were mounted on microscope slides in Vectashield Mounting Medium containing DAPI. 

4.5.4. Testing of IBV antibodies 

The testing of the IBV antibodies first involved single staining of infected Vero cells for the 

determination of their suitable working dilutions (see Table 9b). Furthermore, double staining 

with rabbit anti-M antibodies and different organelle markers (IC, RE and lysosome) was 

carried out. In some experiments, overnight staining with affinity purified anti-M was carried 

out using 1:40 dilution of the antibody. The mouse antibodies against organelle markers 

included: anti-ERGIC-53 (1:200), anti-Rab1 (1:200), anti-Rab11 (1:50), anti-TfR (1:200) and 

anti-LAMP1 (1:100). Incubation was overnight in a humid chamber at RT0C. 

4.5.5. Determination of the one-step growth curve of IBV 

By applying plaque titration, the growth curve for IBV was generated in this work to determine 

the kinetics of virus release. In addition, we examined the effect of low temperature (31oC) on 

virus release. The infection of Vero cells with IBV was done as described above (4.5.3). The 

virus dilution of 1:4 was employed to reduce the concentration of FCS, which is inhibitory to 

virus adsorption. To obtain efficient one-step infection, the multiplicity of infection (MOI) of 

1 PFU/ml was used. For the generation of the growth curve, following the 60 min infection 

with IBV, 1 ml of prewarmed growth medium (DMEM + 2% FCS) was added into each well 

and the plates were placed in the CO2-incubator. At regular intervals (2, 4, 6, 8, 10, 12, 14 and 

16 hr), medium samples were harvested. The samples were put in 1.5 ml microfuge tubes and 

spinned for 60 sec at 13,000 rpm in an Eppendorf table-top centrifuge. The supernatants were 

frozen in 100 – 500 µl aliquots at -800C. The low temperature incubation of infected cells was 

carried out on water bath at 31oC in medium (DMEM + 2% FCS) was supplemented with 

20mm HEPES, pH 7.2 to maintain the pH. Plaque titration of the medium samples was done 

as described above. 
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4.6 Confocal imaging 

The cells were monitored using the Leica TCS SP8 STED 3X confocal system equipped with 

a 100 x oil immersion objective (numerical aperture 1.4). For standard fixed samples such as 

those used here, the 100 x oil STED WHITE is the best objective lens to use because of its 

high-resolution power and excellent performance that goes up to 30 µm deep into the sample. 

For co-localization analysis of IBV M protein with Rab1 and TfR, a single STED line and 

fluorescent labels with different emissions were used. The lasers used were blue diode laser for 

DAPI excitation (405 nm), white laser for excitation of the green fluorophore (Alexa 488), and 

STED-laser 1 for the red fluorophore (Alexa 594). The Lightning Software module was used 

for adaptive deconvolution which improves confocal images by mathematical algorithms 

towards a resolution of 120 nm. 
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5. RESULTS 

 

As discussed above, various studies and experiments have addressed the process of entry of CoVs 

into their host cells. By contrast, the endomembrane compartments that operate in the cellular exit 

of these viruses – during their transport from the IC to the extracellular space – are less well 

understood. For a long time, it has been commonly thought that CoVs employ the Golgi-

dependent classical secretory pathway for their release from the infected cells. However, 

alternative routes for virus exit have also been recently suggested, involving the endocytic 

recycling system and/or the lysosomal compartment [81] [21]. It was therefore of interest to 

investigate the role of the endolysosomal membrane system in CoV release, as well as to find out 

if their exit occurs in a Golgi-dependent or Golgi-independent fashion. These considerations 

explain the choice of the endogenous organelle markers that were characterized and used in the 

experiments described below. 

5.1 Testing of antibodies against organelle markers in Vero cells 

First, several antibodies against the IC, RE and lysosomal markers were tested in the green 

monkey kidney (Vero) cells, which were used here as host cells for IBV. It was of particular 

interest to identify monoclonal antibodies that work well in Vero cells and therefore could be used 

in double staining as pairs for the CoV antibodies (obtained from Prof. Carolyn Machamer; see 

below), which have all been prepared in rabbits. The antibodies were tested in different dilutions 

and using various fixation and permeabilization conditions. Good results were obtained with 

monoclonal mouse antibodies against a set of organelle markers that are briefly introduced in the 

following. 

5.1.1. IC/cis-Golgi Markers  

p58/ERGIC-53 – a non-glycosylated single-spanning membrane protein – was the first marker 

protein of the IC to be identified [82]. Rat p58 and its human homologue ERGIC-53 function as 

cargo receptors during the exit of newly synthesized mannose-containing cargo proteins from the 

ER, facilitating their transport to IC/cis-Golgi. These proteins become enriched in the IC elements 

due to their continuous cycling between ER exit sites (ERES) and cis-Golgi [83] [80]. 

p58/ERGIC-53 consists of a large luminal part containing the carbohydrate recognition domain 

(CRD) which is crucial for the binding of glycoprotein cargo, a transmembrane domain, and short 

cytoplasmic tail. The latter harbors a conserved KKFF (-Lys-Lys-Phe-Phe) sequence at its C-

terminus which plays an important role in the bidirectional trafficking of the protein [84]. 
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Rab1 is a member of the large family of regulatory Rab GTPases, which play key roles in various 

steps of membrane trafficking. They specifically associate with different organelles of the 

endomembrane system and are considered to give organelles their identity. Rab1 specifically 

associates with the IC and regulates bidirectional transport at the ER-Golgi boundary [85]. The 

two isoforms of Rab1 – Rab1A and Rab1B – share about 92% identity at the amino acid level and 

may be rather similar in their biochemical functions and properties [86] [87]. The function of 

Rab1 is also crucial for the biogenesis and maintenance of the Golgi apparatus and its over-

expression leads to enlargement of the Golgi [88]. Immunogold labeling of NRK cells showed the 

localization Rab1 to tubulovesicular IC elements and the cis-most cisterna of the Golgi stacks 

[89]. 

 

5.1.2. Markers of recycling endosomes and lysosomes 

Rab11, another member of the Rab GTPase family, is the best characterized marker for recycling 

endosomes (REs). Initially, some studies suggested that Rab11 functions in the post-Golgi 

secretory pathway between the trans-Golgi network (TGN) and the cell surface until it was 

established that it is in fact a specific marker for the endocytic recycling system [90]. It is localized 

to peripheral REs and the pericentrosomal endocytic recycling compartment (ERC) and operates 

in membrane recycling back to the PM. However, its localization pattern varies in different cell 

types which has complicated the determination of its exact functions in intracellular membrane 

transport [91]. There are indications that Rab11 is needed by many transport pathways that begin 

at the ERC. However, the mechanisms by which it regulates endocytic recycling remain only 

partially under-stood [90]. Expression of the dominant negative mutant form of Rab11 

(Rab11S25N) reduced the rate of transferrin recycling in Chinese hamster the ovary cells, while 

the internalization of the transferrin was unaffected [92].  

 

Transferrin receptor (TfR) is a well-characterized recycling single-spanning PM protein, which 

binds the iron-carrier protein transferrin at the cell surface and mediates its cellular uptake via 

receptor-mediated endocytosis [90]. As receptor-bound transferrin enters the endocytic pathway, 

the acidic pH in the lumen of endosomes induces the release of the bound iron, while the iron-free 

carrier protein (apotransferrin) remains attached to its receptor. The receptor-apotransferrin 

complex then enters tubular extensions of endosomes and is recycled back to the PM [90]. The 

recycling of TfR can take place either from the early endosomes (short loop), or from the 

pericentrosomal ERC (long loop).  
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Lysosome-associated membrane protein-1 (LAMP-1), a glycosylated type I integral membrane 

protein, is an abundant component of the lysosomal membrane. Together with LAMP-2, this 

protein has been estimated to correspond to approximately 50% of all proteins of the lysosome 

membrane [93] [94]. LAMP-1 has a luminal domain which is heavily glycosylated, a trans-

membrane domain and a short C-terminal cytoplasmic tail [93]. Following its synthesis, LAMP-

1 is transported to the trans-Golgi network (TGN) for further sorting and delivery to the 

lysosomes. It functions in the maintenance of the structural integrity of the lysosomal membranes, 

maintenance of the acidity of the lysosome and protection of the lysosome from autodigestion 

[94]. 

 

5.2 Immunofluorescence microscopy (IF) of the organelle markers in Vero cells 

Immunofluorescence microscopy was carried out to determine the applicability in Vero cells of a 

number of available antibodies against different markers for the intracellular compartments of 

interest for the present study. To identify appropriate markers for the IC/cis-Golgi, mouse anti-

ERGIC-53, affinity purified rabbit anti-Rab1, as well as a mouse antibody against Rab1 were 

tested. For the endocytic recycling pathway, mouse anti-Rab11, monoclonal rabbit anti-Rab11 

and mouse anti-TfR were tested. Moreover, mouse anti-LAMP-1 was tested as a possible marker 

for late endosomes/lysosomes. The IF staining was carried out on Vero cells grown on coverslips 

to reach about 70-80% confluency (for details see Materials and methods). Importantly, the three 

antibodies tested against markers of the IC/cis-Golgi membranes all worked well in these cells 

(Fig. 7), giving similar staining patterns as previously observed in other cell types. Whereas all 

highlighted the cis-Golgi region, the two antibodies against Rab1 also detected peripheral IC 

elements (Figs. 7C and D, arrowheads). A cytosolic pool of Rab1 was detectable as faint diffuse 

staining (Fig. 7C). It should also be noted that the cis-Golgi staining patterns of anti-p58/ERGIC-

53 and anti-Rab1 were similar, but not identical.  
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Figure 7. Immunofluorescence microscopy of IC/cis-Golgi markers in Vero cells. The cells grown on 

glass coverslips to 80% confluency were fixed, permeabilized and stained with antibodies against 

ERGIC-53 (A and B) or Rab1 (C and D). Both antibodies highlight the Golgi ribbon (cis-Golgi), 

whereas the mouse and rabbit antibodies against Rab1 also show the peripheral IC elements 

(arrowheads in C and D), which are also more weakly detected by anti-ERGIC-53 (arrow heads in B). 

B shows at higher magnification the Golgi ribbon indicated with a dashed area in A.  

 

The tested antibodies against RE markers also worked well in Vero cells, with the exception of 

the mouse anti-Rab11 antibody, which after the routine saponin permeabilization gave only very 

weak fluorescence signal (Fig. 8A). Hence, pre-treatment of the fixed cells guanidine-Hcl was 

done (see Materials and methods), giving rise to strong staining of the ERC (Fig. 8B and C, open 

arrowheads), similar to that obtained with the polyclonal rabbit anti-Rab11 (Fig. 8D). In addition 

to the pericentrosomal ERC, the antibodies against the RE markers – including the mouse anti-

TfR anti-body (Fig. 8E) – all high-lighted individual REs scattered throughout the cytoplasm (Fig. 

8B-E).  

Finally, the lysosomal marker LAMP-1 was included in our work due to the recent paper 

providing evidence that CoVs utilize the lysosomal compartment for their cellular exit [81]. Like 

mouse anti-Rab11, the mouse anti-LAMP-1 antibody also required the guanidine-HCl pre-

treatment of fixed cells to work. Under these conditions the antibody gave punctate staining of the 

lysosomes concentrating in the perinuclear region (Fig. 8F). 
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Figure 8. Immunofluorescence microscopic localization of markers for recycling endosomes and 

lysosomes in Vero cells. The mouse and rabbit antibodies against Rab11 (A-D) or TfR (E) all highlight 

the perinuclear endocytic recycling compartment (ERC; open arrowheads) next to the centrosome, as 

well as individual recycling endosomes scattered throughout the cytoplasm. Note that the mouse anti-

Rab11 antibodies only work well, when the fixed cells are pretreated with guanidine-HCl (compare A 

and B). (C) shows the pericentrosomal ERC at higher magnification. (F) Labeling of perinuclear 

lysosomes by the mouse antibody against LAMP-1. 

 

Based on the above results, we could conclude that all the mouse antibodies tested against relevant 

organelle markers could potentially be applied in the further experiments with IBV-infected Vero 

cells. Furthermore, having established the applicability of the markers of interest, treatment of 

Vero cells with brefeldin A (BFA, 5 g/ml) was carried out, followed by double staining with 

antibodies against different IC and RE proteins (Rab1, Rab11, TfR). This experiment showed that 

after dis-assembly of the Golgi stacks by 60 min treatment with BFA, the spatial connection of 

the IC and RE elements is maintained, as described in other cell types [66] (data not shown). 
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5.3 Infection of Vero cells with infectious bronchitis virus (IBV) 

5.3.1. The plaque assay 

The plaque assay (also called plaque titration) is an important technique in animal virus research. 

It is a method used to quantity the number of infectious virus particles in a given virus preparation. 

Accordingly, the number of viruses is expressed as plaque forming units (PFU)/ml. An earlier 

procedure used in studies of bacteriophages (viruses infecting bacteria) was modified in 1952 by 

Renato Dulbecco for application in animal virology [95].  

 

 

 
 

Figure 9. The method of plaque titration. First, a series of 10-fold dilutions is prepared from a virus 

stock (or another virus-containing sample). Subsequently, the cells in 6-well plates are infected with 

different virus dilutions and the cultures are overlaid with agarose-containing medium. After 

solidification of the agarose, the cultures are placed for 2 days in the CO2-incubator. Due to the agarose 

overlay, the progeny viruses can only spread to the neigbouring cells, resulting in plaque formation. 

The plaques become visible after staining of the cells with crystal violet. The virus titer is determined 

from wells containing easily calculatable number of plaques (see Materials and methods). 

 

The principle of this technique is described in Figure 9. After pipetting a series of 10-fold dilutions 

from a virus-containing sample, confluent cultures of cells in 6-well plates (as in our case) are 

infected with the different virus dilutions, whereafter the cultures are covered with agarose-

containing medium. Following solidification of the agarose, the cultures are placed in a CO2-

incubator for two to three days. During this period, the agarose overlay enables the progeny 

viruses to spread to only neighboring cells giving rise to the formation of plaques, which become 

visible after crystal violet staining (see Fig. 8) and can thereafter be counted.  
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5.3.2. Preparation of one-step growth curve of IBV 

We obtained the original IBV stock from Prof. Carolyn Machamer at Johns Hopkins School of 

Medicine (Baltimore, MD, USA). As described in detail in Materials and methods, we prepared 

two own laboratory stocks of IBV from this original stock and used the plaque assay to determine 

their virus titers. The one with a better titer was used to generate the growth curve shown in Figure 

10. 

 

 

Figure 10. Determination of the IBV growth curve by plaque titration. Vero cells were infected with 

IBV and samples of the culture medium were harvested at the indicated time points after infection, 

whereafter the number of released infectious virus particles (PFU/ml) was quantified by plaque titra-

tion (see Figure 8). The curve shows the three growth phases of the virus: i) a lag phase (2 to 4hr p.i.) 

which corresponds to virus entry and early replication, ii) an exponential phase of virus release (4 to12hr 

p.i.) and the plateau phase (12 to 16hr p.i.) when virus release gradually levels off.  

 

A one-step growth curve of IBV was determined using the new high titer virus. After infecting 

the cells with high multiplicity, medium samples were collected after different time periods and 

the amounts of released virus were quantified by plaque titration. The obtained S-shaped growth 

curve (Fig. 10) highlights three different phases of virus replication. First, a lag phase from 2 to 

4hr p.i. when the virus penetrates the host cells and virus replication starts. The infectious virus 

measured in the medium during this phase does not correspond to new progeny virus, but residual 

extracellular viruses that remain associated with the cell monolayers after the infective virus 
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sample has been removed. However, after 4 hr p.i. the first progeny virus particles start to exit the 

cells. They are released in an exponential fashion between 6 and 12hr p.i., whereafter virus release 

gradually slows down and a plateau phase is reached between 14 and 16 hr. Based on the growth 

curve, maximum virus release occurs between 6 and 12 hr p.i. (Fig. 10). 

 

5.4 Testing of antibodies against structural proteins of IBV  

Next, the reactivities and specificities of the different rabbit antibodies against structural 

components of IBV (kindly provided by Prof. Carolyn Machamer, Johns Hopkins School of 

Medicine; see Table 9b) were examined in infected Vero cells. For this test, the cells were 

harvested at 8hr p.i. since based on the virus growth curve (Fig. 10) it was expected that at this 

time point – in the middle of the active virus release phase – the virus structural proteins would 

have been synthesized in sufficiently large amounts. Also, at this relatively early phase of virus 

replication, the cells would not yet have undergone major virus-induced alterations. 

 

The antibodies – all whole rabbit sera – were first tested at different dilutions and appropriate 

dilutions (in the range 1:100 to 1:500) giving a strong fluorescence signal but minimal back-

ground was selected for further work. The IBV N-protein was readily detected by anti-IBV and 

anti-N antibodies (see Fig. 11A and B, respectively). Both antibodies gave diffuse cytoplasmic 

staining, as expected for the viral nucleocapsid. In cells at an earlier phase of infection, expressing 

lesser amounts of the N-protein, a punctate pattern was observed (Fig. 11A), possibly due to the 

association of the protein with membranous structures operating in viral RNA replication [96]. 

Antibodies against the viral membrane proteins E, S and M gave similar results in that they all 

high-lighted the Golgi area (Fig. 11C-E, asterisks). They also gave variable punctate staining 

throughout the cytoplasm, which at least partially corresponds to the peripheral IC elements. This 

pattern was most pronounced with anti-M (Fig. 11E). Antibodies against the S protein also showed 

some labeling of the nuclear membrane and the reticular ER (Fig. 11D). 
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Figure 11. Testing of antibodies against IBV structural proteins in Vero cells. The cells were fixed at 

8hr p.i. and stained with different polyclonal rabbit antibodies. The anti-IBV (A) and anti-N (B) 

antibodies both detect the IBV N-protein, showing its diffuse cytoplasmic distribution. The antibodies 

against viral membrane proteins: E (C), S (D) and M (E) all give staining of the Golgi area (asterisks). 

Anti-S also labels the ER, including the nuclear envelope, whereas anti-M highlights numerous punctate 

structures throughout the cytoplasm, many of which are expected to correspond to the peri-pheral IC 

elements. 

 

5.5 Improving the efficiency of IBV infection 

When infecting Vero cells grown on glass coverslips, we noticed that the efficiency of the 

infection was quite low (about 20%) and also variable from one experiment to the next. Therefore, 

we introduced two additional steps in the protocol to increase the efficiency of virus infection.  

 

First, instead of adding virus in a large volume (ca. 750 l/well) in the bottom of the 6-well plates, 

it was applied in a small volume (50 l) just on top of the coverslips. This “drop method” would 

allow the use of the virus in a more concentrated form without depletion of our virus stocks. In 

this way, using the available IBV stocks, a multiplicity of infection of approximately 1 PFU/cell 

could be achieved. Second, we tested how virus adsorption at low temperature – keeping the 6-

well plates for 60 min on ice prior to their placement in the CO2-incubator – would affect the 

efficiency of infection. In this case, the virus particles were expected to gain more time to 
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effectively settle onto and bind to their host cells, prior to virus entry. As shown in Fig. 12, the 

employment of the “drop method” alone already appeared to give a partial increase in the 

efficiency of infection (27%), while the “low temperature adsorption method” gave an additional 

almost 2-fold increase (52 %). Due to these improvements, these steps were introduced in all 

subsequent infections.  

 

 
 

Figure 12. Improving the efficiency of IBV infection. Following the addition of virus in a small volume 

(“drop method”) onto Vero cells grown on coverslips, the cells were either directly placed for 60 min 

in the 37oC CO2 incubator (A and B), or the virus was first allowed to adsorb to the cells during a 60 

min incubation on ice (C and D). The cells were fixed at 7 hr p.i. and stained with anti-N antibodies (to 

identify the infected cells) and DAPI (to visualize the nuclei). The infection efficiencies shown on the 

left reveal an about 2-fold enhancement due to the low temperature pre-treatment. 

  

5.6 Effect of virus infection on organelle markers 

5.6.1. Localization of p58/ERGIC-53 shows Golgi fragmentation 

Having determined the localization of different organelle markers in uninfected Vero cells (see 

above; Figs. 7 and 8), it was necessary to see whether the infection of cells with IBV affects their 

distribution or the morphology of the different compartments where they reside. Hence, Vero cells 

were infected employing the drop and low temperature adsorption methods (Fig. 12), fixed at 6, 

8, 10 and 12hr p.i. and double stained with anti-IBV N and mouse anti-ERGIC-53 antibodies and 

analyzed by immunofluorescence microscopy. 
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Figure 13. Immunofluorescence microscopy of IBV-infected Vero cells double stained with rabbit anti-

N and mouse anti-ERGIC-53 antibodies reveals Golgi fragmentation. The cells grown on coverslips 

were infected employing the drop method and initial virus adsorption on ice (see Fig. 11). The cells 

were fixed at different times (6, 8, 10 and 12hr) p.i. for double staining with the two antibodies. N 

protein expression was used to identify virus-infected cells, while the uninfected cells are indicated with 

asterisks. Compact cis-Golgi staining similar to that seen in uninfected cells (see also Fig. 6) was 

observed at the early times of infection (E and F). The punctate staining (arrowheads) corresponds to 

peripheral IC elements. Note that at later times of infection (G and H) the Golgi undergoes 

fragmentation and the peripheral puncta (arrowheads) become stronger. Staining with anti-N antibodies 

(A-D) indicates that the number of cells strongly expressing this viral protein, displaying diffuse 

cytoplasmic fluorescence, gradually increases. 

 

At 6 and 8hr p.i. a typical compact Golgi ribbon pattern, similar to that seen in uninfected cells, 

was observed (Fig.13E and F), However, at later times of infection – that is at 10 and 12hr p.i. – 

the Golgi apparatus became clearly fragmented (Fig. 13G and H). In addition, the staining of the 

peripheral IC elements significantly increased (Fig. 13G and H, arrowheads). This may indicate 

that the apparent dispersal of the Golgi apparatus was partly due to the redistribution of 

p58/ERGIC-53 from the cis-Golgi, where it is normally concentrated, to the peripheral IC where 
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virus budding takes place. Preliminary analysis of cells at the different time points gave the 

following percentages of cells with Golgi fragmentation: 6hr (30%), 8hr (36%), 10hr (59%) and 

12hr (71%). 

 

At the earlier time points – particularly at 6hr p.i. – the expression level of the N-protein in most 

of the infected cells was still low, revealing a punctate fluorescence pattern. As the infection 

progressed, more N-protein was synthesized, resulting in an intensive, diffuse cytoplasmic 

staining of the cells with antibodies against the N protein. 

 

5.6.2. Localization of Rab1 in the infected cells 

Next, double staining of infected cells fixed at 6, 9 and 12hr p.i with antibodies against IBV N 

protein and Rab1 was carried out to examine the effect of virus infection on Rab1 localization. 

Mock-infected cells were used both as a negative control for antibody staining, as well as to rule 

out any possible effects of the infection protocols (e.g., the low temperature incubation step) on 

cell or organelle morphology.  

 

As shown in Fig. 14, the distribution of Rab1 in the mock-infected cells appeared very similar to 

that previously seen in uninfected cells (Fig. 7), verifying that the distribution and staining patterns 

of the protein are not affected by the protocols as such. At 6 hr p.i. no major differences between 

the infected and uninfected cells were observed, except that the fluorescence staining intensity for 

Rab1 appeared to increase. Subsequently, at 9 hr p.i. some of the cells showed more dispersed 

staining in the Golgi area, while in others the Rab1-positive Golgi elements still displayed a 

compact pattern (Fig. 14G). At 12 hr p.i. the fluorescence intensity for Rab1 appeared to further 

increase, raising the possibility that its expression is enhanced or, alternatively, its membrane-

association is increased. Also, the peripheral IC elements, which showed relatively modest 

staining at the early times of infection (6 hr), became much brighter as the infection progressed, 

suggesting increased association of the protein to these membranes, where active virus budding 

takes place.  
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Figure 14. Localization of Rab1 during IBV infection. Vero cells grown on coverslips were infected as 

described for Fig. 11, employing virus adsorption on ice, and fixed at 6, 9 or 12hr p.i. for double staining 

with anti-N and anti-Rab1 antibodies. Expression of the N protein marks the virus-infected cells, while 

uninfected cells are indicated by asterisks (B, C, F and G). Whereas the Rab1 staining patterns in mock-

infected cells (E) and after 6hr of infection (F) show no clear differences as compared to control Vero 

cells (see Fig. 6), at later times of infection, i.e., at 6hr (G) and 12hr (H) p.i., the peripheral IC elements 

(arrowheads) display stronger fluorescence and the Rab1-positive structures in the central Golgi area 

appear fragmented in some of the cells. Notably, the overall Rab1 signal in the infected cells (F-H) 

seems appears increased as compared to the mock-infected cells (E). 

 

5.6.3. Localization of TfR in IBV-infected cells  

Similarly, immunofluorescence double staining with anti-IBV N and anti-TfR was carried out to 

test for the effects of virus infection on TfR distribution using mock-infected cells and IBV-

infected cells fixed at 6, 9 or 12hr p.i. As in the case of p58/ERGIC-53 and Rab1, the mock 

infection did not affect the fluorescence pattern of TfR (compare Fig. 15E with Fig. 8E). At the 

early times of infection (6hr p.i.) the pericentrosomal ERC (Fig. 15, arrowheads) showed a more 

diffuse pattern in some of the infected cells and a quite compact pattern in others, similar to the 

mock-infected and uninfected cells. Interestingly, however, as the infection progressed (9 and 
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12hr p.i.) the ERC gradually assumed a more compact pattern in most of the infected cells (Fig. 

15G and H).  

 

 

Figure 15. The effect of IBV infection on the localization of TfR. The cells infected with IBV were 

fixed at different times (6, 9 and 12hr) p.i. for double staining with anti-N and anti-TfR antibodies. The 

uninfected cells showing the absence of N protein signal are indicated with asterisks (see panels B, D, 

F and H). The open arrowheads indicate the TfR-positive pericentrosomal ERC, which becomes more 

compact in the majority of the cells as the infection progresses.  

 

5.6.4. Compaction of the Rab11 pattern during IBV infection  

Double staining of cells with anti-N and anti-Rab11 antibodies gave results that were very similar 

to those obtained with TfR (Fig. 16, compare with Fig. 15).  Namely, as the infection progressed, 

the staining of the pericentrosomal ERC (Fig. 16, arrowheads) became more intensive and 

compact, indicating that the expression of Rab11 or its membrane-association may be affected. 

However, this has to be substantiated by further analysis. In parallel, staining of peripheral REs 

was diminished.  Mock infection did not affect the distribution of Rab11, either (compare Figs. 

16E and Fig. 8).  
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Figure 16. The localization of Rab11 changes during IBV infection. The virus-infected cells were fixed 

at different times (6, 9 and 12hr p.i.) for double staining with antibodies against the viral N protein and 

Rab11. Uninfected cells lacking N protein expression are indicated with asterisks (B, C, F and G). Very 

similar staining patterns, including labeling of the pericentrosomal ERC (open arrow-heads), are seen 

in mock- and IBV-infected cells at 6hr p.i. (compare E and F), whereas after longer times of infection 

the ERC signal for Rab11 gradually becomes more compact in the majority of the cells (G and H).  

 

5.6.5. Localization of LAMP-1 in IBV-infected cells  

Finally, double staining with anti-N and anti-LAMP-1 was employed to test for the effect of virus 

infection on LAMP-1 localization. However, in this case the results for the 9hr time point are not 

shown. As shown in Fig. 17, mock infection as such did not affect the distribution of the LAMP-

1. At 6hr p.i. variable perinuclear localization of lysosomes was observed, as previously seen in 

uninfected Vero cells (Fig. 8F). Notably, at 12hr p.i. the LAMP-1 signal of the infected cells was 

clearly diminished. Thus, in contrast to the other markers examined, the infection has a negative 
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effect on LAMP-1 expression. One possibility is that the protein has been largely destroyed by 

lysosomal degradation. Alternatively, major redistribution of the protein – for example to the PM 

– could lead to apparent diminishing of its intracellular signal.  

 

 

Figure 17 . IBV infection reduces the intracellular signal of LAMP-1. Following IBV infection the cells 

grown on coverslips were fixed at 6 and 12hr. p.i. for double staining with anti-N and anti-LAMP-1 

anti-bodies. N protein expression identifies the virus-infected cells, while uninfected cells showing no 

N protein signal are shown by asterisks (B, C, E and F). Interestingly, while at 6hr. p.i. the LAMP-1 

pattern is com-parable to that seen in the mock- or uninfected cells, by 12hr p.i. the LAMP-1 signal of 

the IBV-infected cells is considerably diminished. 

 

5.7 Comparing the localization of the IBV M-protein with selected organelle markers 

It was next of interest to compare the localization of the IBV M protein with some of the 

organelle markers described above. Rab1 and TfR were selected as markers for the IC and REs, 

respectively. To obtain better resolution, confocal microscopy was used for the analysis of the 

IBV-infected cells harvested at 9.5 hr p.i. and double stained for the M protein and the two 

organelle marker proteins. Knowing that after labeling of the virus-infected cells with 

antibodies against the M protein, approximately 90% of the signal is in virus particles [81], 

confocal microscopy can be expected to be a key method also in future experiments addressing 

the pathway of IBV release. 
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As shown in Fig. 18, the M protein and Rab1 showed considerable co-distribution in the peri-

nuclear Golgi region of the infected cells. Complete overlap of the two proteins in central and 

peripheral structures was also frequently encountered, as indicated by the yellow colour in this 

merged image (Fig. 18A, arrowheads). This result was not unexpected, since the IBV M-

protein is efficiently retained in the IC [43] where it mostly associates with progeny virus 

particles. It should also be pointed out that the Rab1- and M protein-containing central IC/cis-

Golgi elements already appear highly fragmented at this relatively late stage of infection 

(Fig.13). 

 

Figure 18. Confocal microscopic double-localization of the IBV M-protein with Rab1 and TfR. Cells 

infected with IBV were fixed at 9.5 hr p.i and double stained for the M-protein and Rab1 (A) or TfR 

(B). The white arrowheads in panel A denote complete overlaps of the M-protein and Rab1), giving rise 

to a yellow colour. Panel B shows that although there is no precise overlap between the M protein-

containing IC elements and TfR-containing REs, the two types of structures display co-clustering in the 

juxtanuclear region (open arrowheads). The asterisk indicates an uninfected cell which only contains 

the perinuclear TfR signal. Scale bar: 10 µm 

 

As the localizations the M-protein and TfR were compared, it was clear that they did not show 

the same kind of overlap as seen in the case Rab1. However, an apparent clustering of the M 

protein-containing IC elements around the juxtanuclear REs/ERC was observed (Fig. 18B, 

open arrowheads). As shown earlier (Fig. 16), the perinuclear ERC displayed a more compact 

pattern in many of the infected cells, as compared to uninfected cells (Fig. 18B, asterisk). 

 

5.8 Effect of low temperature on IBV release 
 

Previous work carried out by Sharon Tooze and coworkers showed that the shift of MHV-infected 

cells at 6-8 hr p.i. to low temperature (31oC) does not significantly affect the budding of the virus, 

but efficiently inhibits release of the virus to the extracellular space [96]. The authors further 
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showed that the return of cells back to 37oC lead to rapid virus release, showing that the low 

temperature effect is readily reversible. Since MHV is a -CoV, it was of interest to see if the low 

temperature effect also applies to IBV, a -CoV. 

 

Figure 19. Effect of low temperature on IBV release. Medium samples were harvested at different times 

after IBV infection at 37oC and the amounts of released viruses (PFU/ml) were quantified by plaque 

titration. At 8 hr p.i. some cultures were shifted to 310C leading to the efficient inhibition of virus 

release. After 4 hr at 310C, some of the cultures were returned back to 37oC, revealing the rever-sibility 

of the low temperature effect.  

 

Hence, we again infected Vero cells with IBV at high MOI and measured virus release by plaque 

titration (see Fig. 9). At 8 hr p.i. – in the middle of the exponential phase of virus release – some 

of the cultures were shifted for 4 hr to 31oC, whereafter some cultures were again shifted back to 

physiological temperature (37oC). Interestingly, very similar results to those reported for MHV 

were also obtained in the case of IBV. The experiment was repeated, but this time carrying out 

the first temperature shift at 6 hr, verifying the results shown in Fig. 19 (data not shown).  

 

6. DISCUSSION

 

For a long time, the prevailing idea has been that CoVs are released from cells via the classical 

secretory pathway via the Golgi apparatus. However, recent studies have opened the possibility, 
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that these viruses could in fact employ another pathway for their exit – an unconventional route 

that bypasses the Golgi stacks. Namely, there are now more results showing that many proteins 

can be secreted or reach the cell surface in a Golgi-independent manner. Studies carried out by this 

group, as well as others, have provided evidence that such Golgi-independent trafficking is based 

on a direct connection between the pre-Golgi IC and the endocytic recycling pathway, bypassing 

the Golgi stacks completely [97]. One can distinguish between classical and Golgi-independent 

secretion by using BFA, a drug which rapidly breaks down the Golgi stacks. Interestingly, many 

unconventionally secreted proteins are delivered to the PM in the presence of this drug. Strikingly, 

a recent paper published in Cell showed that the -CoV MHV is released from infected HeLa cells 

in a BFA-resistant manner, suggesting that this virus employs an unconventional Golgi-

independent pathway for its exit [81]. Since CoVs assemble by budding into the IC lumen, it is 

likely that they follow the BFA-resistant direct route from the IC to the endosomal system [66] 

[21]. 

The selection of the organelle markers for this study using Vero cells was based on the above 

reasoning, addressing the possibility that IBV also employs direct IC-RE communication for its 

release. Several mostly commercial antibodies were tested and the overall results were very 

promising, although in some cases variations in the staining protocols had to be introduced. We 

were able to identify different markers for each of the membrane systems, the IC and REs/ERC.  

Having different characteristics they can help to investigate the events of interest from different 

angles, thereby providing more information. For example, the two markers p58/ERGIC-53 and 

TfR are both integral membrane receptors that continuously cycle in the early secretory pathway 

and the endosomal system, respectively. By contrast, Rab1 and Rab11 – associating with the 

cytoplasmic side of the IC and RE membranes, respectively – are more compartment-specific, 

cycling between the cytosol (inactive form) and the organelle membranes (active form). 

Having established the antibodies that work well in the Vero cells, it was important to find out 

what happens to the distribution of the corresponding markers and compartments in the course of 

IBV infection. As reported earlier [98], we could show that the Golgi gets fragmented during the 

infection. However, the effects of IBV replication on the distribution of p58/ERGIC-53 and Rab1 

were distinct. While p58/ERGIC-53 demonstrates better the fragmentation of the cis-Golgi over 

time, Rab1 shows more persistent piling up of in the juxtanuclear region. This difference could be 

due to the different characteristics of the markers, or the possibility that they associate with 

different domains of the IC/cis-Golgi membranes. Since the infection of cells with IBV changes 

the luminal conditions of the secretory compartments [99], the transport machineries that are 
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responsible for the cycling of p58/ERGIC-53 could be affected, resulting in its redistribution from 

cis-Golgi to the peripheral IC elements. 

An important novel finding of this study, which most likely relates to the process of virus release, 

was the observation regarding the gradual accumulation REs – and in particular the RE-associated 

GTPase Rab11 – around the centrosomes in the course of IBV infection. The compaction of the 

ERC was already evident at 7-8 hr after IBV infection, but became more prominent between 9-12 

hr, that is, towards the end of the period of active virus release. Importantly, this phenomenon was 

specific for the virus-infected cells and was not observed in the neighboring non-infected cells. It 

should be pointed out that the pericentrosomal ERC and Rab11 have been previously implicated 

in the assembly and/or release of various RNA viruses, such as orthomyxo- (influenza), 

paramyxo- (Newcastle disease virus), retro- (HIV) and bunyaviruses (Hantavirus) [100] [101], 

strongly suggesting that they may also participate in the late steps of CoV life cycle. It will be of 

interest to quantify and compare the kinetics of Golgi fragmentation and ERC compaction in the 

course of IBV infection to be able to determine whether they represent distinct or possibly related 

events. 

The time frame of this study, and the prevailing circumstances, did not allow extensive application 

of confocal microscopy in this project. However, an encouraging pilot experiment was carried out 

where the localization of the IBV M protein was compared with those of Rab1 (IC) and TfR (REs). 

As expected, Rab1 and M protein showed extensive co-localization both in the peripheral and 

central IC/cis-Golgi elements. Notably, an apparent co-distribution of the M protein-containing 

IC elements and TfR-positive REs was also observed. Since approximately 90% of the M-protein 

signal is in intracellular virus particles [81] [102], future application of these antibodies in 

confocal microscopy will provide an important method to follow the transport process of virus 

release. Whereas the IBV M protein is efficiently retained in the IC/cis-Golgi membranes and 

incorporated into virus particles, the two other CoV membrane proteins have more widespread 

intracellular distributions [21]. Moreover, the IBV E protein has a large intracellular pool, but is 

present only in small amounts in the virus particles [31] 

 

7. CONCLUSIONS AND FUTURE PERSPECTIVES

 

In conclusion, this study has laid down methodological groundwork for future experiments where 

the intracellular transport route of CoVs can be further investigated. These experiments have also 
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paved the way for new ideas on how the release of the CoVs from cells can possibly either be 

stimulated or synchronized. Since BFA does not inhibit virus release, it will for instance be of 

interest to compare the localizations of the M protein and the various organelle markers at different 

times after drug addition. Moreover, the verification that low temperature also blocks the exit of 

IBV opens the possibility that this approach can be used in future experiments to synchronize this 

process so that it can be also followed in the absence of drugs. 

Since the pathway of CoV exit currently still remains poorly understood, future work based on the 

present results will hopefully provide novel insight on the mechanisms of virus release and in the 

long run contribute to the development of new anti-viral therapies. 
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