
fbioe-08-00968 August 17, 2020 Time: 16:41 # 1

ORIGINAL RESEARCH
published: 19 August 2020

doi: 10.3389/fbioe.2020.00968

Edited by:
Wan-ju Li,

University of Wisconsin–Madison,
United States

Reviewed by:
Francesco Grassi,

Rizzoli Orthopedic Institute (IRCCS),
Italy

Zetao Chen,
Sun Yat-sen University, China

*Correspondence:
Siddharth Shanbhag

siddharth.shanbhag@uib.no
Kamal Mustafa

kamal.mustafa@uib.no

Specialty section:
This article was submitted to

Tissue Engineering and Regenerative
Medicine,

a section of the journal
Frontiers in Bioengineering and

Biotechnology

Received: 22 April 2020
Accepted: 27 July 2020

Published: 19 August 2020

Citation:
Shanbhag S, Suliman S,

Bolstad AI, Stavropoulos A and
Mustafa K (2020) Xeno-Free

Spheroids of Human Gingiva-Derived
Progenitor Cells for Bone Tissue

Engineering.
Front. Bioeng. Biotechnol. 8:968.

doi: 10.3389/fbioe.2020.00968

Xeno-Free Spheroids of Human
Gingiva-Derived Progenitor Cells for
Bone Tissue Engineering
Siddharth Shanbhag1* , Salwa Suliman1, Anne Isine Bolstad1, Andreas Stavropoulos2,3

and Kamal Mustafa1*

1 Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway, 2 Department
of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden, 3 Division of Regenerative Medicine and
Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland

Gingiva has been identified as a minimally invasive source of multipotent progenitor
cells (GPCs) for use in bone tissue engineering (BTE). To facilitate clinical translation,
it is important to characterize GPCs in xeno-free cultures. Recent evidence indicates
several advantages of three-dimensional (3D) spheroid cultures of mesenchymal
stromal cells (MSCs) over conventional 2D monolayers. The present study aimed
to characterize human GPCs in xeno-free 2D cultures, and to test their osteogenic
potential in 3D cultures, in comparison to bone marrow MSCs (BMSCs). Primary GPCs
and BMSCs were expanded in human platelet lysate (HPL) or fetal bovine serum
(FBS) and characterized based on in vitro proliferation, immunophenotype and multi-
lineage differentiation. Next, 3D spheroids of GPCs and BMSCs were formed via
self-assembly and cultured in HPL. Expression of stemness- (SOX2, OCT4, NANOG)
and osteogenesis-related markers (BMP2, RUNX2, OPN, OCN) was assessed at
gene and protein levels in 3D and 2D cultures. The cytokine profile of 3D and 2D
GPCs and BMSCs was assessed via a multiplex immunoassay. Monolayer GPCs in
both HPL and FBS demonstrated a characteristic MSC-like immunophenotype and
multi-lineage differentiation; osteogenic differentiation of GPCs was enhanced in HPL
vs. FBS. CD271+ GPCs in HPL spontaneously acquired a neuronal phenotype and
strongly expressed neuronal/glial markers. 3D spheroids of GPCs and BMSCs with high
cell viability were formed in HPL media. Expression of stemness- and osteogenesis-
related genes was significantly upregulated in 3D vs. 2D GPCs/BMSCs; the latter
was independent of osteogenic induction. Synthesis of SOX2, BMP2 and OCN was
confirmed via immunostaining, and in vitro mineralization via Alizarin red staining. Finally,
secretion of several growth factors and chemokines was enhanced in GPC/BMSC
spheroids, while that of pro-inflammatory cytokines was reduced, compared to
monolayers. In summary, monolayer GPCs expanded in HPL demonstrate enhanced
osteogenic differentiation potential, comparable to that of BMSCs. Xeno-free spheroid
culture further enhances stemness- and osteogenesis-related gene expression, and
cytokine secretion in GPCs, comparable to that of BMSCs.

Keywords: platelet lysate, mesenchymal stromal cells, gingival stem cells, spheroid culture, bone tissue
engineering, regenerative medicine
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INTRODUCTION

Adult mesenchymal stromal cells (MSCs) are increasingly being
used in bone tissue engineering (BTE) for the reconstruction
of clinically challenging bone defects. MSCs were originally
identified in the bone marrow (BMSCs), and these are still
the most frequently tested cells in clinical studies (Friedenstein
et al., 1968; Pittenger et al., 2019). However, the yield of
BMSCs obtained from the marrow mononuclear cell fraction
is relatively low (≤0.01%) (Pittenger et al., 1999). Moreover,
considerable donor-related variations in BMSCs, in addition
to the morbidity associated with bone marrow harvesting,
have prompted the investigation of ‘MSC-like’ cells from other,
relatively less invasive, tissue sources (Mohamed-Ahmed et al.,
2018; Wilson et al., 2019).

Oral tissues, such as dental pulp, mucosa, periodontal
ligament (PDL) and gingiva, represent alternative sources
of ‘MSC-like’ progenitor cells (Sharpe, 2016). Gingiva, in
particular, can be harvested with minimal morbidity and rapid
scarless healing, and is reported to contain a subpopulation
of multipotent progenitor cells (GPCs) (Fournier et al., 2010;
Mitrano et al., 2010). GPCs demonstrate the characteristic MSC-
phenotype, immunomodulatory properties, and multi-lineage
differentiation, possibly owing to their neural crest origins
(Xu et al., 2013). Notably, GPCs have demonstrated superior
properties in comparison to other MSCs in vitro (Yang et al., 2013;
Sun et al., 2019), and the ability to regenerate bone in vivo (Wang
et al., 2011; Ge et al., 2012). However, in all of these studies, GPCs
were cultured in xenogeneic media.

A critical aspect in the clinical translation of MSC-based
therapies is the use of safe and standardized culture conditions.
Although commonly used for MSC expansion, several limitations
of xenogeneic fetal bovine serum (FBS) supplementation have
been highlighted, and current recommendations from health
authorities advocate the use of ‘xeno-free’ protocols whenever
possible (Bieback et al., 2019). Accordingly, xeno-free alternatives
to FBS, such as human platelet lysate (HPL), have emerged
(Shanbhag et al., 2017). HPL is shown to be comparable, and
often superior, to FBS for the proliferation and multi-lineage
differentiation of MSCs from various tissues (Burnouf et al.,
2016). Moreover, MSCs expanded in HPL demonstrate enhanced
osteoblastic differentiation, suggesting particular benefits for BTE
(Shanbhag et al., 2017). However, no studies have yet reported on
HPL-cultured GPCs.

In order to obtain clinically relevant cell numbers, current
strategies demand the large-scale ex vivo expansion of MSCs,
most commonly via plastic adherent/monolayer culture.
However, this two-dimensional (2D) culture system is not
representative of the 3D in vivo microenvironment (Sart
et al., 2014; Petrenko et al., 2017). Moreover, expansion of
MSCs via serial passaging in plastic-adherent cultures may
alter their phenotype and diminish their regenerative and
immunomodulatory potential (Follin et al., 2016; Ghazanfari
et al., 2017). In contrast, the self-assembly or spontaneous
aggregation of MSCs into 3D structures, mediated by unique
cell-cell and cell-extracellular matrix (ECM) interactions,
biomechanical cues and signaling pathways, more closely

simulates their in vivo microenvironment or niche (Ahmadbeigi
et al., 2012; Sart et al., 2014). The cytoskeletal changes induced
by 3D culture have also been linked to ‘mesenchymal cell
condensation’ (MCC) – a critical event during embryonic
skeletal development via endochondral ossification, which can
be recapitulated ex vivo (Hall and Miyake, 2000; Kale et al., 2000;
Facer et al., 2005; Kim and Adachi, 2019).

While a majority of the literature is focused on BMSCs,
3D cultures have also been reported to enhance the survival,
stemness, paracrine/immunomodulatory activity, and multi-
lineage differentiation of oral tissue-derived MSCs (Zhang et al.,
2012; Lee et al., 2017; Moritani et al., 2018; Subbarayan et al.,
2018). However, few studies have characterized MSC spheroids in
xeno-free cultures to facilitate clinical translation (Ylostalo et al.,
2017; Dong et al., 2019). Therefore, the objectives of the present
study were to establish xeno-free monolayer (2D) cultures of
human GPCs in HPL, and subsequently, to test their osteogenic
potential in 3D spheroid cultures in comparison to BMSCs.

MATERIALS AND METHODS

Monolayer (2D) Cell Culture
GPCs were isolated as previously described (Fournier et al.,
2010). Briefly, human gingival biopsies were collected after
ethical approval (Regional Ethical Committee-North, Norway,
2016-1266) and informed consent from systemically healthy
patients aged 18–31 years (n = 5) undergoing surgery at the
Department of Clinical Dentistry, University of Bergen, Bergen,
Norway. From each donor, primary connective tissue-explant
cultures of GPCs were established in 5% HPL (Bergenlys R©,
Bergen, Norway) and 10% FBS (GE Healthcare, South Logan,
UT, United States) supplemented growth media [Dulbecco’s
Modified Eagle’s medium (DMEM, Invitrogen, Carlsbad, CA,
United States) with 1% antibiotics (penicillin/streptomycin; GE
Healthcare)]. BMSCs (from different patients) were isolated and
cultured in HPL media as previously described (Mohamed-
Ahmed et al., 2018). Details of HPL production are provided in
the Supplementary data. Cells were sub-cultured and expanded
in their respective growth media in humidified 5% CO2 at 37◦C;
passage 2–4 cells from at least three different donors were used in
experiments. Proliferation of GPCs in HPL and FBS over 7 days
was determined via an alamar blue assay (Invitrogen); at each
time point, 10% vol. dye was added to the cells, incubated for 4 h
and fluorescence was measured (540 Ex/590 Em).

Immunophenotype of 2D GPCs
The immunophenotype of HPL- and FBS-cultured GPCs was
assessed by flow cytometry based on expression of specific surface
antigens according to the “minimal criteria” for defining MSCs
(Dominici et al., 2006). Briefly, cells in HPL and FBS were
incubated with conjugated antibodies against selected ‘negative’
(CD34, CD45, HLA-DR) and ‘positive’ (CD73, CD90, CD105)
MSC markers, and additionally CD271 (all from BD Biosciences,
San Jose, CA, United States), following the manufacturers’
recommendations. Quantification was performed with a BD LSR
Fortessa analyzer and fluorescence activated cell sorting (FACS)
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of CD271+ GPCs with a BD FACS Aria sorter (both from BD
Biosciences). Data were analyzed using flow cytometry software
(Flowjo v10, Flowjo, LLC, Ashland, OR, United States).

Gene Expression in 2D GPCs
The expression of adipogenesis- and osteogenesis-related genes
(Supplementary Table 1) in HPL- and FBS-cultured GPCs after
7 days in the appropriate induction media (see below), was
assessed via quantitative real-time polymerase chain reaction
(qPCR) using TaqMan R© real-time PCR assays (Thermo Fisher
Scientific, Carlsbad, CA, United States). RNA extraction and
cDNA synthesis were performed as previously described
(Mohamed-Ahmed et al., 2018). The expressions of the genes of
interest were normalized to that of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). Data were analyzed by the 11Ct
method and results are presented as fold changes in HPL groups
relative to FBS groups.

Adipogenic Differentiation of 2D GPCs
The ability of GPCs to differentiate into multiple stromal
lineages was tested as previously described (Mohamed-Ahmed
et al., 2018). Briefly, for adipogenic differentiation, cells in HPL
and FBS were cultured in StemPro R© adipogenic differentiation
medium (Invitrogen) or standard growth medium (control).
After 21 days, cells were fixed with 4% paraformaldehyde (PFA)
for 10 min at RT and intracellular lipid formation was assessed via
Oil red O staining (Sigma-Aldrich, St. Louis, MO, United States).

Osteogenic Differentiation of 2D GPCs
For osteogenic differentiation, cells in HPL and FBS were
cultured in osteogenic differentiation medium prepared
by adding final concentrations of 0.05 mM L-ascorbic
acid 2-phosphate, 10 nM dexamethasone and 10 mM β

glycerophosphate (all from Sigma-Aldrich) to the respective
growth media. After 21 days, cells were fixed and extracellular
calcium deposition was evaluated via Alizarin red S staining
(Sigma-Aldrich). The osteogenic potential of HPL-cultured
GPCs was also tested on previously validated poly(L-lactide-
co-ε-caprolactone) [poly(LLA-co-CL)] copolymer scaffolds
(Yassin et al., 2017) (106 cells/scaffold); HPL-cultured BMSCs
were used as a reference. Cell attachment and spreading on
the scaffolds after 24 h was observed via scanning electron
microscopy (SEM; Jeol JSM 7400F, Tokyo, Japan), as previously
described (Yassin et al., 2017). After 14 days of induction,
Alizarin red S staining was performed as described above. In all
differentiation experiments, corresponding non-induced HPL-
and/or FBS-cultured cells served as controls.

Neurogenic Differentiation and Immunofluorescence
(IF) Staining of 2D GPCs
Since FACS isolated CD271+ GPCs showed a neuronal-like
morphology, the expression of neuronal [βIII-tubulin (TUJ1)]
and glial markers [glial fibrillary acidic protein (GFAP)] was
assessed via IF staining. Briefly, cells were fixed with PFA,
permeabilized with 0.1% Triton X-100 and blocked with 10%
goat serum in phosphate-buffered saline (PBS; Invitrogen). Cells
were incubated with primary antibodies; mouse monoclonal anti-
TUJ1 (Abcam, Cambridge, United Kingdom, dilution 1:100)

and chicken monoclonal anti-GFAP (Abcam, dilution 1:100)
overnight at 4◦C. Corresponding secondary antibodies were
incubated for 1 h at RT (Thermo Fisher Scientific, dilution
1:200). After washing with PBS, the nuclei were stained
with 4′,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich,
dilution 1:2000). Imaging was performed using a confocal
microscope (Andor Dragonfly, Oxford Instruments, Abingdon,
United Kingdom).

3D Spheroid Culture
Formation of GPC and BMSC spheroids was assessed via
two methods: mesenspheres (Isern et al., 2013) and aggregates
(Baraniak and McDevitt, 2012). Briefly, dissociated passage
1–2 monolayer GPCs and BMSCs in HPL media were seeded
(1000 cells/cm2) in low-attachment dishes (Corning R©, Corning,
NY, United States) for 7 days to obtain mesenspheres, or in
microwell-patterned 24-well plates (Sphericalplate R©, Kugelmeiers
Ltd, Erlenbach, CH) for 24 h to obtain spheroid aggregates
of 1000–2000 cells. The novel design of these microwell plates
was optimized for embryoid body formation (Silin, 2012).
Since aggregate spheroids could be formed more predictably
than mesenspheres, only the former were used in subsequent
experiments. Cell viability in spheroids was assessed after 7 days
via a live/dead assay (Thermo Fisher Scientific). Hereafter, the
terms 2D or monolayer culture and 3D or spheroid culture are
used interchangeably throughout the manuscript.

Gene Expression and Osteogenic Differentiation in
3D Spheroids
The expression of pluripotency/stemness-related genes
(Supplementary Table 1) was assessed in 3D and 2D GPCs
and BMSCs after 7 days of suspension and adherent culture,
respectively, via qPCR. Similarly, the expression of osteogenesis-
related genes (Supplementary Table 1) was assessed after
7 days in standard (non-induced) and osteogenically induced
cultures (as described above). Gene expression experiments were
performed using spheroids and monolayers generated from both
independent and pooled donor-cells and data are presented
as fold changes in 3D groups relative to 2D groups. Protein
expression of osteogenic markers was determined after 14 days
via IF (see below). Alizarin red S staining was performed after
21 days to detect mineralization in induced and non-induced
spheroids and monolayers; spheroids were stained in suspension,
and following paraffin embedding and histological sectioning
(3–5 µm).

IF Staining in 3D Spheroids
The protein expression of stemness [sex determining region
Y-box 2 (SOX2)] and osteogenic markers [bone morphogenetic
protein 2 (BMP2), osteocalcin (OCN)] was assessed in GPC and
BMSC spheroids after 10 or 14 days of suspension culture via
IF staining. The primary antibodies rabbit polyclonal anti-SOX2
(Abcam, dilution 1:1000), mouse monoclonal anti-BMP2 (Bio-
Techne, Abingdon, United Kingdom, dilution 1:100), and rabbit
polyclonal anti-OCN (Abcam, dilution 1:100) were incubated
ON at 4◦C. Corresponding secondary antibodies were incubated
for 1 h at RT (Thermo Fisher Scientific; dilution 1:200), and
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nuclei were stained with DAPI (Sigma-Aldrich; dilution 1:2000)
before imaging with a confocal microscope (Andor Dragonfly).
Cell autofluorescence and non-specific staining was confirmed
in control samples incubated with neither or only secondary
antibodies, respectively (data not shown).

Multiplex Cytokine Assay
Conditioned media (CM) from 2D and 3D GPCs and BMSCs
were collected after 48 h culture in HPL-free medium and the
concentrations of several cytokines (Supplementary Table 2)
were measured using a custom multiplex assay and a Bio-Plex R©

200 System (both from Bio-Rad Laboratories, CA, United States),
according to the manufacturer’s instructions. Although the initial
number of cells seeded in 2D and 3D cultures was the same,
to account for differences in the rates of cell proliferation
between the conditions, cytokine concentrations (pg/mL) were
normalized to the corresponding total DNA (ng/mL). DNA
quantification was performed using the Quant-IT R© PicoGreen
dsDNA Assay Kit (Thermo Fisher Scientific) according to the
manufacturer’s instructions.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism v 8.0
(GraphPad Software, San Diego, CA, United States). Data are
presented as means (± SD), unless specified. Analyses of gene
expression data are based on delta-CT values and results are
presented as relative (log/non-linear) fold changes using scatter
plots. Multiplex proteomic data are presented on a logarithmic
(log10) scale. All other linear data are presented as bar graphs.
Normality testing was performed via the Shapiro–Wilk test. The
student t-test, Mann–Whitney U-test or one-way analysis of
variance (ANOVA followed by a post hoc Tukey’s test for multiple
comparisons), were applied as appropriate, and p < 0.05 was
considered statistically significant.

RESULTS

Characterization of 2D GPCs
GPCs demonstrating characteristic plastic adherence and
fibroblastic morphology were isolated from gingiva explants in
both HPL- and FBS-media. GPCs in HPL appeared smaller and
more spindle-shaped, especially in early passages (Figure 1A),
and demonstrated a higher proliferation rate (p < 0.05)
(Figure 1B). Both HPL- and FBS-expanded GPCs demonstrated
a characteristic MSC phenotype, i.e., > 95% of the cells were
positive for CD73, CD90 and CD105, and < 5% of the cells
expressed the hematopoietic markers CD34 and CD45; HLA-DR
expression was < 8% (Figure 1C). Expression of CD271 was
observed in < 5% of GPCs in both conditions.

Adipogenic Differentiation of 2D GPCs
GPCs in both HPL and FBS demonstrated the capacity to
differentiate into adipocytes. The expression of genes associated
with adipogenic differentiation, peroxisome proliferator-
activated receptor-gamma (PPARG) and lipoprotein lipase
(LPL), was significantly upregulated in HPL- vs. FBS-cultured

GPCs after 7 days of adipogenic induction; LPL was also
upregulated in non-induced HPL-cultured GPCs (p < 0.05;
Figure 1D). Accumulation of intracellular lipid vesicles after
21 days was confirmed via Oil red O staining of GPCs in both
conditions (Figure 1E). No differentiation of control cells was
observed in the standard growth media.

Osteogenic Differentiation of 2D GPCs
GPCs in both HPL and FBS demonstrated the capacity
to differentiate into osteoblasts. Genes associated with both
early [runt-related transcription factor 2 (RUNX2), alkaline
phosphatase (ALP)] and late osteogenic differentiation [collagen
I (COL1), osteocalcin (OCN/BGLAP)] were upregulated in HPL-
vs. FBS-cultured GPCs after 7 days; these genes were also
upregulated in non-induced HPL-cultured GPCs (p < 0.05;
Figure 1D). Extracellular calcium deposition was confirmed via
Alizarin red S staining after 21 days; greater calcium deposition
was observed in HPL-cultured GPCs (Figure 1E). Next, the
osteogenic differentiation of HPL-cultured GPCs was tested
on copolymer scaffolds in comparison to that of BMSCs. Cell
attachment and spreading on the scaffold surface was confirmed
after 24 h via SEM. After 14 days of osteogenic induction the
entire scaffold surface was covered with mineralized matrix as
revealed by Alizarin red S staining; staining was comparable
between GPCs and BMSCs (Supplementary Figure 1).

Neurogenic Differentiation of 2D GPCs
To investigate whether CD271 represents a marker to enrich
osteogenic cells, CD271+ GPCs in HPL and FBS media were
isolated via FACS. Interestingly, these cells acquired a neuronal
morphology, which was more evident in HPL- than FBS-cultures
(Figure 2A). Subsequently, IF staining revealed an abundant
expression of neuronal (TUJ1) and glial markers (GFAP) in HPL-
cultured CD271+ GPCs, while only a few FBS-cultured cells
appeared to express these markers (Figure 2B).

Formation and Viability of 3D Spheroids
3D spheroids of GPCs and BMSCs were formed as mesenspheres
or aggregates in HPL media (Figure 3A). Since the former
method relies on the self-renewal capacity of individual cells, the
size and shape of mesenspheres varied considerably (φ < 100
µm) and the frequency of sphere formation was low; sphere
formation in GPCs was considerably lower than in BMSCs.
In contrast to mesenspheres, highly consistent spheroids of
GPCs and BMSCs were obtained via spontaneous aggregation in
microwells (∼1000 cells/spheroid, φ 100–300 µm; Figure 3B).
Viability of a majority of cells within the aggregate spheroids was
confirmed via live/dead staining (Figure 3C).

Gene Expression and Osteogenic Differentiation in
3D Spheroids
The expression of stemness- and osteogenesis-related genes was
assessed in 3D and 2D GPCs and BMSCs after 7 days of
suspension culture. SOX2 and octamer-binding transcription
factor 4 (OCT4) were significantly upregulated in GPC/BMSC
spheroids vs. monolayers (p < 0.05); nanog homeobox factor
(NANOG) was upregulated only in GPC spheroids (Figure 4A).
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FIGURE 1 | Characterization of monolayer GPCs in HPL and FBS. (A) Morphology of passage 1 GPCs from one representative donor; scale bars 100 µm.
(B) Proliferation of GPCs based on metabolic activity over 7 days; data represent means ± SD (n = 3 donors); **p < 0.001. (C) Percentage expression of positive
and negative surface markers based on flow cytometry; data represent means ± SD (n = 3 donors). (D) Relative expression (fold changes) of adipogenesis- and
osteogenesis-related genes in GPCs after 7 days culture in growth or induction media (+). Data represent means; each symbol represents a single donor (n = 3
donors) based on the average of ≥ 2 experimental replicates; statistical analyses are based on delta-Ct values; *p < 0.05; **p < 0.001. (E) Representative images of
Oil red O (adipogenic: scale bars 50 µm), Alizarin Red S (osteogenic) and control (non-induced) stained GPCs after 21 days; scale bars 100 µm.

A relatively higher degree of gene upregulation was observed in
spheroids of GPCs as compared to BMSCs. SOX2 and OCT4
were also upregulated in independent donor GPC and BMSC
spheroids (Supplementary Figure 2A). Expression of SOX2 in
3D GPCs and BMSCs was confirmed via IF staining (Figure 4B).

With regards to osteogenesis, genes associated with both
early (BMP2) and late stages [OCN/BGLAP, osteopontin
(OPN/SPP1)] of osteogenic differentiation were upregulated in
3D GPCs and BMSCs (p < 0.05) (Figure 5A); RUNX2 was
upregulated in independent donor, but not pooled, spheroids
(Supplementary Figure 2B). In contrast to stemness-related
genes, a relatively higher degree of upregulation of osteogenesis-
related genes was observed in 3D BMSCs as compared to GPCs.
With regards to the effects of osteogenic induction, although
BMP2, OPN and OCN were also significantly upregulated in
3D GPCs and BMSCs vs. monolayers after 7 days of osteogenic
induction, upregulation of these genes was relatively higher in

non-induced spheroids (Figure 5A). Protein expression of BMP2
and OCN after 14 days was confirmed via IF staining (Figure 5B,
Supplementary Figure 3); expression of BMP2 was further
confirmed via western blotting (Supplementary Figure 4).

After 21 days of osteogenic induction, 3D and 2D GPCs
and BMSCs were positively stained for mineral deposition with
Alizarin red (Figure 6A). In 2D cultures, the staining appeared
to be marginally more intense in BMSCs, while in 3D cultures,
the staining appeared comparable between GPC and BMSC
spheroids. Mineral staining within the core of the spheroids was
confirmed via histology, revealing a mature and organized ECM
(Figure 6B).

Cytokine Profile of 3D Spheroids
The concentrations of various growth factors, chemokines
and inflammatory cytokines (Supplementary Table 2) were
measured in the 48 h CM of spheroid and monolayer
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FIGURE 2 | Characterization of CD271+ GPCs. (A) Selection of CD271+ GPCs via FACS revealed a neuronal morphology in HPL-, but not FBS-cultured cells;
unsorted cells represent the total plastic adherent gingival cell population; CD90 was used as a ‘reference’ marker (some cells with neuronal morphology are visible –
arrow); scale bars 100 µm. (B) IF staining for βIII-tubulin (TUJ1) and GFAP in CD271+ GPCs; scale bars 100 µm (50 µm for 20× images).

GPCs and BMSCs. Several growth factors (FGF2, PDGF-
BB, TGF-β1, HGF, SCF, GCSF) were elevated in spheroid
cultures; VEGF was elevated in GPC, but not BMSC spheroids
(Figure 6). Notably, both spheroid and monolayer GPCs and
BMSCs produced high concentrations of SCGF-β. A number
of chemokines (CCL2, CCL3, CCL4, CCL5/RANTES, LIF,

MIF) were also elevated in the CM of spheroid GPCs, while
others (CCL11, CXCL10, CXCL12) were higher in monolayers;
CXCL1 was markedly elevated in the CM of BMSC spheroids.
Interestingly, several pro-inflammatory cytokines (IL-1α, 1IL-
1β, IL-2, TNF-α, IFN-γ) were downregulated in the CM
of GPC and BMSC spheroids, while IL-8 was markedly
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FIGURE 3 | Formation of xeno-free 3D spheroids. (A) Representative images of GPC and BMSC mesenspheres (scale bars 50 µm) and aggregate spheroids (scale
bars 100 µm). (B) Quantification of spheroid size in mesenspheres (MS), and aggregate spheroids of 1000 (AS 1K) and 2000 cells (AS 2K); data represent means ±
SD (n = ≥ 10 spheres); **p < 0.001. (C) Viability of GPC and BMSC aggregate spheroids represented by live (green) and dead (red) cells: scale bars 100 µm.

FIGURE 4 | Expression of stemness markers in xeno-free 3D spheroids. (A) Relative expression (fold changes) of stemness-related genes after 7 days in 2D and 3D
GPCs and BMSCs. Data represent means (n = ≥ 3 experimental replicates); statistical analyses are based on delta-Ct values; *p < 0.05; **p < 0.001. (B) IF staining
of SOX2 in 3D spheroids after 10 days of suspension culture; cell nuclei are stained in DAPI: scale bars 50 µm.
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FIGURE 5 | Expression of osteogenesis markers in xeno-free 3D spheroids. (A) Relative expression (fold changes) of osteogenesis-related genes after 7 days in 2D
and 3D GPCs and BMSCs under non-induced (–) and osteogenically induced conditions (+). Data represent means (n = ≥ 3 experimental replicates); statistical
analyses are based on delta-Ct values; *p < 0.05; **p < 0.001. (B) IF staining of BMP2 and OCN in 3D spheroids after 14 days of suspension culture; cell nuclei are
stained in DAPI: scale bars 100 µm.

elevated, especially in BMSCs. The anti-inflammatory IL-10
was upregulated in monolayers in both GPCs and BMSCs
(Figure 7).

DISCUSSION

Gingiva represents a minimally invasive source of multipotent
progenitor cells (GPCs) with promising potential for BTE (Wang
et al., 2011). To facilitate the clinical translation of GPCs, it is
important to characterize their properties in xeno-free cultures
compliant with current Good Manufacturing Practices (cGMP).
Although previous studies have reported xeno-free culture of
cells from other oral tissues using HPL (Naveau et al., 2011;
Chen et al., 2012; Wu et al., 2017), to our knowledge, no
studies have yet reported on HPL-cultured GPCs. In the present

study, GPCs from matched donors were cultured in HPL- or
FBS-supplemented media, thus allowing true and standardized
comparisons between xeno-free and xenogeneic cultured cells.
Overall, the GPCs herein demonstrated superior proliferation
and osteogenic differentiation in HPL-supplemented media.

Monolayer GPCs demonstrated a ‘classical’ MSC-
immunophenotype (Dominici et al., 2006) with no remarkable
differences between HPL- and FBS-cultured cells. However, the
specificity of the ‘classical’ surface markers to identify true MSC
fractions in heterogeneous cell populations, especially those
not derived from bone marrow, has been questioned (Halfon
et al., 2011; Lv et al., 2014). CD271 or low-affinity nerve growth
factor receptor (LNGFR) is reportedly a more specific marker for
isolating a primitive subset of BMSCs with high clonogenicity
and multi-lineage, specifically osteogenic, differentiation
potential (Cuthbert et al., 2015). Osteogenic enrichment has also
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FIGURE 6 | Osteogenic differentiation of xeno-free 3D spheroids. (A) Alizarin
red staining of 2D and 3D GPCs and BMSCs after 21 days of osteogenic
induction; * indicates pronounced mineralization in an area of cellular
condensation. (B) Histological sections of differentiated 3D GPCs showing
internal mineralization (left) and ECM organization following removal of the
stain (right); scale bars 100 µm.

been reported in CD271+ subsets (< 5%) of dental pulp (DPCs)
(Alvarez et al., 2015a) and PDL cells (PDLCs) (Alvarez et al.,
2015b). Indeed, a small fraction (1–3%) of CD271+ cells was
identified in HPL- and FBS-cultured GPCs herein. Interestingly,
these cells acquired a neuronal-like morphology; cells in HPL
appeared more differentiated with limited proliferation capacity
and more homogenous expression of neuronal/glial markers
vs. FBS-cultured cells. Indeed, CD271 is reported to be a
marker of neural stem/progenitor cells (van Strien et al., 2014).
Moreover, craniofacial tissues, including gingiva, have a neural
crest origin and therefore contain a subpopulation of cells with
the capacity for neurogenic differentiation (Xu et al., 2013).
Previous studies have reported the neuronal differentiation of
unsorted GPCs when stimulated with neurogenic supplements
(Subbarayan et al., 2017; Gugliandolo et al., 2019), although
which fraction of the total GPC population actually differentiated,
and to what extent, is unclear. Based on the findings herein,
the CD271+ GPCs may represent a subpopulation with a
propensity for neurogenic differentiation, which is further
enhanced in HPL culture. In context, a recent study reported
enhanced survival and differentiation of neuronal precursor
cells in HPL (Nebie et al., 2020). However, further research is
needed to confirm the phenotype and neurogenic potential of
CD271+ GPCs.

Concerning multi-lineage differentiation, both HPL- and FBS-
cultured monolayer GPCs could be differentiated into adipocytes
and osteoblasts in vitro. The osteogenic differentiation of GPCs
was significantly enhanced in HPL vs. FBS cultures at early
and terminal stages, as revealed by gene expression and calcium
deposition, respectively. Similar findings have been reported
in relation to HPL-cultured DPCs (Chen et al., 2012) and
PDLCs (Abuarqoub et al., 2015). Interestingly, the expression
of osteogenic genes was also upregulated in non-induced HPL-
cultured GPCs after 7 days. It may be hypothesized that this
upregulation is related to the presence of several cytokines
in HPL, which may influence MSCs’ osteogenic differentiation
(Shanbhag et al., 2017). HPL-cultured GPCs also demonstrated
attachment and mineralization on copolymer scaffolds, in a
comparable manner to BMSCs, highlighting their relevance
for BTE applications. Regarding their in vivo mineralization
capacity, previous studies have reported variable results using
FBS-cultured GPCs, ranging from well- to poorly-mineralized
tissues (Fournier et al., 2010; Tomar et al., 2010; Wang et al.,
2011; Ge et al., 2012; Yang et al., 2013; Moshaverinia et al., 2014).
Whether HPL culture enhances the in vivo mineralization of
monolayer GPCs, remains to be determined.

To overcome the limitations of traditional 2D/monolayer
cultures, several studies have demonstrated the benefits of
3D spheroid cultures in terms of promoting the self-renewal,
differentiation and paracrine/immunomodulatory activity of
MSCs (Murphy et al., 2014; Sart et al., 2014; Follin et al., 2016).
Various methods for spheroid culture have been reported (Sart
et al., 2014), and can broadly be categorized as mesenspheres
or aggregates. In the mesenspheres approach, sphere formation
occurs via self-renewal of primary non-expanded (Isern et al.,
2013) or early-passage expanded MSCs (Kuroda et al., 2010)
seeded in low-density non-adherent cultures. These sphere-
forming cells represent ‘true’ stem cells with a capacity for
self-renewal and differentiation both in vitro and in vivo
(Basu-Roy et al., 2010; Isern et al., 2013). A small fraction
of passage one GPCs herein demonstrated the capacity to
form mesenspheres in HPL media. However, the frequency of
sphere-forming GPCs was low and of a heterogeneous nature
compared to that of BMSCs under similar conditions. One
explanation for the low frequency of mesenspheres could be
the media composition; mesenspheres have previously only
been generated in complex media formulations (Isern et al.,
2013) in comparison to the standard HPL media used herein.
Nevertheless, obtaining clinically relevant MSC numbers may be
challenging with this approach, especially from tissues other than
bone marrow.

In contrast to mesenspheres, the more common aggregates
approach utilizes monolayer expanded cells to form 3D
spheroids, either via self-assembly (Baraniak and McDevitt,
2012; Bartosh and Ylostalo, 2014) or forced aggregation
(Iwasaki et al., 2019). In the present study, aggregate spheroids
were generated via ‘guided’ self-assembly in novel microwell-
patterned tissue culture plates – no studies have yet reported
this particular micro-well design to generate MSC spheroids.
Spheroids with controlled size and morphology were formed
after 24 h and showed favorable cell viability with few dead
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FIGURE 7 | Cytokine profile of xeno-free 3D spheroids. Cytokine concentrations (pg/mL) were measured in the 48 h CM of 2D and 3D GPCs and BMSCs and
normalized to their DNA contents (ng/mL). Data are presented as the logarithm (log10) of the ratio between the normalized means of 3D-CM and 2D-CM.

cells after 7 days in HPL-supplemented media. Self-assembly
of cells has been linked to events during organogenesis, e.g.,
MCC during skeletal development (Hall and Miyake, 2000).
MCC is known to be a critical event during endochondral
ossification and these condensations represent “the earliest sign
of the initiation of a skeletal element or elements” (Hall and
Miyake, 2000). Indeed, aggregate cultures are routinely used
to induce chondrogenic differentiation of MSCs in vitro, and
often show signs of ‘hypertrophy’ suggestive of endochondral
ossification. Even in osteogenically differentiated monolayer
MSCs, mineral deposition is observed most prominently in
regions of high cellular ‘confluence’ or condensation (Figure 6),
after prolonged (2–4 weeks) in vitro culture (Kaul et al., 2015).
Aggregates of MSCs/osteoprogenitors are reported to mimic
such condensations in vitro, thereby recapitulating embryonic
events during endochondral ossification (Kale et al., 2000;
Kim and Adachi, 2019). Moreover, the cytoskeletal changes
induced by self-assembly of MSCs into 3D structures, as
reviewed elsewhere (Sart et al., 2014), induce “epigenetic” changes
which enhance their self-renewal and differentiation potential
(Guo et al., 2014).

In pluripotent embryonic stem cells (ESCs), self-renewal
and maintenance of pluripotency are regulated by three

main transcription factors – SOX2, OCT4 and NANOG
(He et al., 2009). In multipotent cells, such as MSCs, these factors
are associated with self-renewal (or ‘stemness’) and maintenance
of an undifferentiated cellular state, even in 2D/monolayer
cultures (Kolf et al., 2007). In more differentiated 2D cells,
e.g., fibroblasts, ectopic (over)expression of pluripotency factors
triggers cellular reprogramming back to a pluripotent state,
as in induced pluripotent stem cells (iPSCs) (He et al.,
2009). However, simply changing the microenvironment from
2D to 3D/spheroid culture is known to cause an intrinsic
upregulation of pluripotency factors in MSCs/osteoprogenitors,
suggesting enhanced self-renewal and differentiation potential
(Basu-Roy et al., 2010; Guo et al., 2014). Consistently, a
significant upregulation of pluripotency factors was observed
in 3D vs. 2D GPCs and BMSCs herein. Interestingly, similar
observations were recently reported in PDLCs (Moritani et al.,
2018) and dermal fibroblasts (Lo et al., 2019). In the latter
study, transcriptome analyses revealed differential regulation
of 3304 genes in 3D vs. 2D cultures, and the authors
concluded that even in naturally heterogeneous populations,
such as fibroblasts, the mere shift from a 2D to 3D
microenvironment induces gene expression patterns suggestive
of “dedifferentiation” or “reprogramming” towards pluripotency
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(Lo et al., 2019). Both PDL and gingiva are connective tissues
with large fibroblast populations. Indeed, fibroblasts from various
tissues, including gingiva, are reportedly indistinguishable from
MSCs in vitro, based on the current “minimal criteria”
(Mostafa et al., 2011; Denu et al., 2016). This identical
pattern of pluripotency gene-upregulation further supports the
evidence for a certain plasticity between ‘MSCs’ and more
differentiated cells (Ichim et al., 2018). However, whether
upregulation of pluripotency factors in 3D spheroids of GPCs
directly translates to enhanced in vivo survival, requires
further investigation.

In addition to pluripotency markers, an upregulation of early
(RUNX2, BMP2) and late osteogenesis-related genes (OPN,
OCN) was observed in GPC/BMSC spheroids, even in the
absence of osteogenic supplements. As already discussed, a
similar upregulation of osteogenic genes was observed in non-
induced HPL-cultured 2D GPCs. However, post hoc analyses
of FBS-cultured GPC spheroids revealed a similar pattern
of osteogenic gene upregulation (Supplementary Figure 5),
suggesting that this was primarily an effect of 3D culture. In
context, a recent study reported upregulation of osteogenesis-
related genes in FBS-cultured spheroids of murine pre-
osteoblastic (MC3T3-E1) cells, where a stronger effect of
“cell condensation” than osteogenic induction was highlighted,
and attributed to recapitulation of ‘MCC-like’ events (Kim
and Adachi, 2019). BMPs, including BMP2, are known to
mediate MCC during skeletal development in vivo (Hall and
Miyake, 2000), and are also well-established regulators of
MSC osteogenic differentiation in vitro, via both extrinsic and
autocrine signaling (Phimphilai et al., 2006). BMP2 is also
reported to be among the most strongly upregulated genes
in 3D spheroids of MSCs (Potapova et al., 2007; Cesarz
et al., 2016) and other cells, e.g., fibroblasts (Lo et al., 2019).
A previous study reported the ‘early’ intrinsic upregulation
of BMP2 in FBS-cultured BMSC spheroids, independent of
osteogenic induction, which translated to superior in vitro
ECM production and mineralization vs. 2D BMSCs (Kabiri
et al., 2012). The spontaneous upregulation of other bone-
related markers (OPN, OCN), along with BMP2, as observed
in the GPC/BMSC spheroids herein, further compliments
these reports. OPN and OCN are important bone ECM
proteins which subsequently undergo mineralization, and their
expression is typically associated with later stages of osteogenic
differentiation (Liu and Lee, 2013). However, positive staining
(Alizarin red) for mineral deposits was only observed in
osteogenically induced GPC/BMSC spheroids herein. Indeed,
previous studies have reported superior in vivo bone regeneration
by osteogenically induced spheroids of human BMSCs (Suenaga
et al., 2015), DPCs (Lee et al., 2017) and PDLCs (Moritani
et al., 2018), vs. monolayers. Thus, it may be hypothesized that
MCC-like assemblies induced by spheroid culture intrinsically
‘prime’ MSCs towards osteoblastic commitment, although
extrinsic signals/supplements may be necessary for terminal
differentiation and/or matrix mineralization (Kale et al., 2000;
Facer et al., 2005).

It is of relevance to discuss the simultaneous upregulation
of pluripotency and osteogenesis-related genes in in vitro

3D spheroids, in the context of other literature. A similar
observation was reported in a previous study comparing the
transcriptome of 2D and 3D BMSCs – genes related to
pluripotency (SOX2, OCT4, NANOG) and osteogenesis (BMP2,
RUNX2, OPN) were upregulated in 3D BMSCs after 3 days
of in vitro culture (Potapova et al., 2007). The pluripotency
factors SOX2, OCT4 and NANOG are known to meditate
somatic cell-reprogramming, and intrinsic BMP-signaling is
also involved in the early stages this process (Samavarchi-
Tehrani et al., 2010). With regard to 2D MSCs, SOX2 and
BMP2 were found to be upregulated in subsets of BMSCs
with high self-renewal and differentiation potential (Mareddy
et al., 2010). Moreover, in ‘reprogrammed’ BMSCs (via forced
expression of SOX2 or NANOG), osteogenic differentiation
is enhanced, reportedly via BMP-signaling (Go et al., 2008;
Ogasawara et al., 2013). In 3D MSCs, the switch to spheroid
culture (without extrinsic supplements) leads to an epigenetic
upregulation of not only the pluripotency factors, but also
BMP2. BMPs, including BMP2, are known to mediate MCC
in vivo, and MSC spheroids are considered to be the in vitro
counterparts of ‘MCC-like’ condensations. In the MSC osteogenic
differentiation cascade, BMP2 is a potent autocrine regulator
of RUNX2, which in turn regulates the downstream expression
of osteoblast-specific markers, e.g., OPN and OCN (Liu and
Lee, 2013). Indeed, RUNX2, OPN and OCN were found
to be upregulated in 3D GPCs and BMSCs herein. Thus,
based on the literature, it may be hypothesized that BMP-
signaling may act as a ‘link’ between these two distinct
processes, i.e., self-renewal and (osteogenic) lineage commitment
(Supplementary Figure 6). The co-existence of self-renewing
stem cells and more-committed progenitor cells is a characteristic
feature of the stem cell-niche (Kolf et al., 2007; He et al.,
2009), which appears to be recapitulated in 3D spheroids.
However, the role of BMP2 as hypothesized above was
not experimentally confirmed herein, and demands further
investigation.

Another advantage of 3D culture is the reported enhancement
of MSCs’ paracrine and immunomodulatory activity (Follin
et al., 2016). Emerging concepts in BTE highlight paracrine- and
immune-modulation as primary mechanisms for MSC-mediated
bone regeneration (Pittenger et al., 2019). Consistent with
previous reports (Zhang et al., 2012; Miranda et al., 2019), the
secretome of GPC/BMSC spheroids was enriched in terms of
upregulation of several growth factors and chemokines/immune-
modulatory cytokines, and downregulation of several
pro-inflammatory cytokines. This could, at least partly,
explain the observed in vivo benefits of spheroid MSCs in
regeneration and inflammation models (Zhang et al., 2012;
Miranda et al., 2019). Moreover, the enrichment of several
cytokines implicated in MSC recruitment and osteogenic
differentiation, suggests that transplantation of HPL-cultured
3D GPCs, or their CM, may induce a favorable in vivo
host-response. Indeed, the CM of 2D GPCs expanded
in FBS (Qiu et al., 2020) or defined serum-free medium
(Diomede et al., 2018) has recently been shown to promote
in vivo bone regeneration. Interestingly, both 2D and 3D
GPCs (and BMSCs) herein, secreted high concentrations of
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stem cell growth factor (SCGF) – a protein encoded by the
CLEC11A gene, which has been shown to promote osteogenic
differentiation and in vivo fracture healing in murine MSC-
models (Yue et al., 2016). Since high concentrations of SCGF
were also detected in HPL (data not shown), this could be
another benefit of HPL supplementation for BTE applications.
Finally, whether the combination of HPL supplementation and
3D culture enhances the in vivo bone regeneration capacity of
GPCs, should be investigated in future studies.

CONCLUSION

Monolayer GPCs expanded in HPL vs. FBS demonstrate
enhanced in vitro osteogenic differentiation, comparable to
that of BMSCs. When cultured as 3D spheroids in HPL,
both GPCs and BMSCs express significantly higher levels of
pluripotency genes as compared to monolayers, suggesting a
higher potential for self-renewal. Simultaneously, the expression
of osteogenesis-related genes is also significantly increased in
GPC and BMSC spheroids, independent of osteogenic induction;
in vitro mineralization was comparable between GPCs and
BMSCs Finally, the secretome of GPC and BMSC spheroids
is enriched, in terms of several growth factors, chemokines
and immune-modulatory cytokines, in comparison to that of
monolayers. In summary, while xeno-free cultured spheroids
of GPCs are comparable to BMSCs in vitro, GPCs offer
the advantage of less-invasive tissue harvesting and are thus
promising candidates for BTE applications.
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