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Jet quenching and effects of non-Gaussian transverse-momentum broadening on dijet observables
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We study, at a qualitative level, production of jet pairs in ultrarelativistic nuclear collisions. We propose a
new framework for combining kT factorization and a formalism for in-medium propagation of jet particles that
takes into account stochastic transverse forces as well as medium-induced radiation. This approach allows to
address dijet observables accounting for exact kinematics of the initial state. Using our framework, we provide a
description of RAA data and study azimuthal decorrelations of the produced dijets. In particular, we find that the
resulting dijet observables feature behavior deviating from that of jet pairs which undergo transverse-momentum
broadening following the Gaussian distribution. We interpret this behavior as a consequence of dynamics
encoded in the Blaizot–Dominguez–Mehtar-Tani–Iancu equation.
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I. INTRODUCTION

A prominent feature of high-energy hadronic collisions is
the abundant jet production which is a manifestation of the
underlying quantum chromodynamics (QCD). Jets are loosely
defined as collimated sprays of particles that act as proxies for
the properties of highly virtual partons, quarks and gluons,
that participate in the hard scattering. Events where two jets
approximately balance their momenta give an additional han-
dle on probing how initial-state processes and their associated
parton distribution functions affect the properties of the final-
state jets. It is important to point out that such vacuum effects
lead to an appreciable azimuthal decorrelation as well as an
imbalance of the transverse momentum of the leading and
subleading, recoiling, jets.

Jet production in ultrarelativistic nucleus-nucleus colli-
sions has a prominent role in probing the properties of the hot
and dense nuclear matter formed in these events [1–3]. This
leads to the suppression, or quenching, of high-pT hadron and
inclusive jet spectra observed both at

√
sNN = 200 GeV colli-

sions at RHIC and
√

sNN = 5 TeV collisions at LHC [4,5] (for
a review see Ref. [6]). It was early established experimentally
that the modifications arose due to final-state interactions.
This led to the theoretical development by Baier, Dokshitzer,
Mueller, Peigne, Schiff, and Zakharov for the in-medium
stimulated (bremsstrahlung) emissions that typically are
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referred to as the BDMPS-Z formalism [7–10].1 Such emis-
sions are responsible for transporting energy rapidly away
from the jet axis to large angles [12,13]. For high-pT jets, the
total energy loss depends on the fragmentation properties of
the jet [14,15] (for the Monte Carlo implementation of these
results see Ref. [16]).

In the BDMPS-Z formalism, the medium affects the
jet propagation and radiation via transverse momentum ex-
changes. Typical interactions are described by a diffusion
constant q̂. In a hot quark-gluon plasma (QGP) it is sensitive to
its collective energy density. However, transverse momentum
exchange between the jet and the medium is also expected.
These are manifestations of the quasiparticles of the hot and
dense matter and affect both the spectrum of radiated gluons
[17–23] as well as the distribution of particles in transverse
momentum space [24,25]. An important question is whether
jet observables are sensitive to such interactions, especially
those that are sensitive to recoils. For example, the final-state
interactions would lead to the gradual decorrelation of jets that
originally were created from a vacuum 2 → 2 matrix element
[26] (see also Refs. [27–29]). In addition, one needs to account
for the initial state, i.e., the evolution of the system that leads
to hard scattering. It is therefore pertinent to further investi-
gate how the details of the initial state affect the properties
of the final state, particularly how the transverse-momentum
dependence of the partons initiating the hard collision affect
the azimuthal-angle decorrelations of the final-state jets, or the
dependence of RAA on the final-state transverse momentum.
In approaches that account also for jet quenching, the early
stage of heavy-ion (HI) collisions is usually described by
the collinear factorization where parton densities obey the

1For an equivalent treatment within the thermal field theory see
Ref. [11].
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Dokshitzer-Gribow-Lipatow-Altarelli-Parisi (DGLAP) evolu-
tion equation and the initial-state partons are on mass shell.
Consequently, the final-state partons are essentially produced
back to back. To account for a nonvanishing transverse-
momentum imbalance of the final-state partons, one often
uses, on top of medium effects, initial-state parton show-
ers via application of Monte Carlo generators (see, e.g.,
Refs. [30–34]).

In this paper we propose an approach based on the combi-
nation of kT factorization [35], accounting for the longitudinal
and transverse-momentum dependence of matrix elements
and parton densities of the initial-state partons,2 with the
evolution in terms of the rate equation based on the final-state
jet-plasma interaction. Such an approach allows already at
the lowest order, and without application of the initial-state
shower (at least up to moderate values of transverse mo-
menta), for a detailed study of the influence of kinematics
of the initial state on the properties of the final-state system.
We limit ourselves to study observables produced in the mid-
forward-rapidity region and, for now, do not account for the
initial-state saturation effects [39–41]. Our focus here is to
see to what extent the non-Gaussian spectrum of minijets as
obtained in Ref. [42] is visible in the final-state observables.
The study is rather of a theoretical nature since we only ac-
count for gluonic jets. The equations for quarks have not been
formulated yet. However, we believe that in the appropriate
rapidity range, i.e., the mid-forward region, the observables
we are studying are mostly sensitive to gluons but still not
to the extent to account for saturation effects [39–41,43]. In
order to describe the propagation of partons produced in hard
collisions inside a hot quark-gluon plasma, we have applied
the recently developed Monte Carlo generator MINCAS [42]
that solves the rate equation describing the rescattering and
radiation of a hard parton in a dense QCD medium [44] (for a
similar approach see Refs. [18,19]).

The paper is organized as follows. In Sec. II we present
the theoretical framework of our study. In Sec. III numer-
ical results of our Monte Carlo simulations are presented
and discussed. Section concludes this work. Finally, in the
Appendix we briefly describe the algorithm used in the nu-
merical simulations.

II. THEORETICAL FRAMEWORK

We factorize the production of a pair of gluon jets in nu-
clear collisions into the production of a pair of gluons and their
subsequent in-medium evolution into gluon jets. The first step
is described as the production of two gluons G1 and G2 via the
hard collision of two gluons GA and GB which stem from two
nuclei NA and NB. We propose to describe this part of the pro-
cess using the kT factorization [35,45]. The advantage of this
approach is that it allows us to have access to the full phase
space already at the leading order (LO) accuracy. The second
step is given by the processes of scattering and medium-
induced radiation that lead to the fragmentation of G1 (G2)

2For recent phenomenological applications see Refs. [36–38] and
references therein.
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FIG. 1. Gluon-jet production via two scattering gluons in hard
nuclear collisions: colliding nuclei (horizontal ellipse) with the mo-
menta P1 and P2 yield incoming gluons (with the momenta k1 and k2)
which interact in a hard-scattering process (vertical ellipse) and yield
two gluons (with the momenta q1 and q2), which are subject to in-
medium scattering (gluon interaction with •), while simultaneously
fragmenting into jets denoted in purple.

into a jet j1 ( j2). Thus, the total process can be summarized as

NA + NB → GA + GB + X → G1 + G2 + X → j1 + j2 + X,

(1)

where X is the production of additional particles which are not
used in our descriptions of (di)jet observables. The entire pro-
cess is depicted schematically in Fig. 1. This section proceeds
by first detailing the hard process N1 + N2 → G1 + G2 + X ,
then the in-medium propagation Gi → ji (i = 1, 2), followed
by a short description of the modeling of the medium.

Jet production at mid-rapidity in proton-proton and heavy-
ion collisions is typically computed within collinear factor-
ization. In contrast to most of the existing literature on jets,
with the exception of Ref. [26], in this work we consider
(relatively) forward jet production within high-energy, or kT ,
factorization. This allows to introduce transverse-momentum-
dependent (also called unintegrated) parton distributions that
resum effects of initial-state showering and the elementary
partonic cross section between off-shell partons.

In this approach, the hard coefficient functions are calcu-
lated with spacelike initial-state partons. The gauge invariance
is guaranteed by adding the so-called induced terms [46,47],
which equivalently can be viewed as embedding an off-shell
amplitude in an on-shell one of higher order and taking the
eikonal limit to decouple auxiliary on-shell lines while pre-
serving terms which guarantee the gauge invariance [48,49].

This factorization is therefore well suited to separate
contributions to dijet momentum imbalance and angular
decorrelation from the initial state and from final-state radi-
ation and interactions. This is the main motivation for our
current exploratory study. We would like to mention that this
type of factorization allows to be consistently augmented with
a realistic parton shower [37].
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A. kT factorization of hard processes

In the kT factorization the initial-state process reads

NA(P1) + NB(P2) → GA(k1) + GB(k2) + X → G1(q1) + G2(q2) + X, (2)

where the momenta k1 and k2 have components transverse to that of the incoming nuclei, an essential property for the description
of the dijet observables presented below:

k1 = x1 P1 + k1T , k2 = x2 P2 + k2T . (3)

The momentum fractions xi and transverse momenta kiT follow the transverse-momentum distributions for gluons in both of the
colliding nuclei given at a certain factorization scale μF .

Thus, the kT -factorization formula for the parton-level differential cross section σpp at the tree level for the gg pair production
reads

dσpp

dy1dy2d2q1T d2q2T
=

∫
d2k1T

π

d2k2T

π

1

16π2(x1x2s)2

∣∣Moff-shell
g∗g∗→gg

∣∣2

× δ2(�k1T + �k2T − �q1T − �q2T ) Fg
(
x1, k2

1T , μ2
F

)Fg
(
x2, k2

2T , μ2
F

)
, (4)

where Moff-shell
g∗g∗→gḡ is the off-shell matrix element for the hard subprocess and F (xi, k2

iT , μ2
F ) is the unintegrated gluon density (later

on called the transverse-momentum-dependent gluon density (TMD)) which, depending on an approximation used, obeys the
Balitsky-Fadin-Kuraev-Lipatov [50,51], Catani-Ciafaloni-Fiorani-Marchesini [45], or Balitsky-Kovchegov [52,53] equation or
is given by some model, like that of Golec-Biernat and Wusthoff [54] or Kimber, Martin, Ryskin, and Watt [55]. For the purpose
of this work where we address rather moderate values of longitudinal momenta fractions x of partons in incoming hadrons,
we use the Martin-Ryskin-Watt gluon densities obtained from the parton distribution functions (PDFs) at next to leading order
from [56] (CT10NLO) via the application of the Sudakov form factor.3 The momentum fractions xi, the rapidities yi, and the
transverse momenta qiT of the outgoing particles are related to one another as

x1 = q1T√
s

exp(y1) + q2T√
s

exp(y2), x2 = q1T√
s

exp(−y1) + q2T√
s

exp(−y2).

For the numerical calculation of the hard-process cross sections we rely on the KATIE framework [58], which allows for evaluation
of matrix elements and cross sections with off-shell initial-state partons [48,49].

B. In-medium evolution

In this section we describe the processes of the jet evolution in the medium,

Gi(qi ) → ji(pi ), i = 1, 2 . (5)

The momentum of the jet is modified by its interactions with the medium. We have p = l + q, where the l is the change of
the jet transverse momentum and p+ = x̃q+ is the change of its longitudinal momentum due to momentum exchange with the
medium and from the medium-induced branchings.4 To account for quenching, the cross section σpp for the production of the
vacuum jets should be convoluted with the fragmentation function D(x̃, l, τ ) for the jets in the medium. Thus, for the inclusive
production of the individual jets, the cross section dσAA/d�p for emission of jets into the phase-space element d�p = d p+d p
can be proposed:

dσAA

d�p
=

∫
d�q

∫
d2l

∫ 1

0

dx̃

x̃
δ(p+ − x̃q+)δ(2)(p − l − q)D(x̃, l, τ (q+))

dσpp

d�q

=
∫

d2q
∫ 1

0

dx̃

x̃2
D(x̃, p − q, τ (p+/x̃))

dσpp

dq+d2q

∣∣∣∣
q+=p+/x̃

, (6)

where d�q = dq+d2q, τ (q+) = ᾱ
√

q̂/q+L, and

D(x̃, l, τ ) ≡ x̃
dN

dx̃ d2l
(7)

3In the current study, to have a clear picture of broadening due to the non-Gaussian effects, we use just proton TMDs both for the proton-
proton and nucleus-nucleus (A-A) collisions, but in the future we plan to use nuclear TMDs (nTMD) for the A-A case [57].

4Throughout this article, we use the following notation: The index “T” denotes the momentum components transverse to the beam axis of
nuclear collisions, while symbols in boldface represent the momentum components transverse to the jet axis of one of the produced jets. The
exception to this convention is the broadening of momenta transverse to the jet axis, which we call the “kT broadening” in order to be in
agreement with many papers written on this subject.
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is the distribution of gluons with momentum fraction x̃ and transverse momentum l (relative to the jet axis) after passing through
a medium with length L+ (as encoded in the rescaled evolution variable τ ). Similarly for the production of dijets, the differential
cross section for the emission of two jets into the phase-space elements d�p1 and d�p2 can be written as

dσAA

d�p1�p2

=
∫

d�q1 d�q2

∫
d2l1

∫
d2l2

∫ 1

0

dx̃1

x̃1
δ(p+

1 − x̃1q+
1 )

∫ 1

0

dx̃2

x̃2
δ(p+

2 − x̃2q+
2 )

× δ(2)(p1 − l1 − q1) δ(2)(p2 − l2 − q2) D(x̃1, l1, τ (q+
1 ))D(x̃2, l2, τ (q+

2 ))
dσpp

d�q1 d�q2

=
∫

d2q1

∫
d2q2

∫ 1

0

dx̃1

x̃2
1

∫ 1

0

dx̃2

x̃2
2

D(x̃1, p1 − q1, τ (p+
1 /x̃1))D(x̃2, p2 − q2, τ (p+

2 /x̃2))

× dσpp

dq+
1 dq+

2 d2q1d2q2

∣∣∣∣
q+

1 =p+
1 /x̃1, q+

2 =p+
2 /x̃2

, (8)

where it is assumed implicitly that the fragmentation processes of jet 1 and jet 2 factorize from the hard-scattering process as
well as from each other.

The evolution equation for the gluon transverse-momentum-dependent distribution D(x̃, l, t ) in the dense medium, obtained
under the assumption that the momentum transfer in the kernel is small, reads [44]

∂

∂t
D(x̃, l, t ) = 1

t∗

∫ 1

0
dzK(z)

[
1

z2

√
z

x̃
D

( x̃

z
,

l
z
, t

)
θ (z − x̃) − z√

x̃
D(x̃, l, t )

]
+

∫
d2q

(2π )2
C(q) D(x̃, l − q, t ), (9)

where

K(z) = [ f (z)]5/2

[z(1 − z)]3/2 , f (z) = 1 − z + z2, 0 � z � 1, (10)

is the z-kernel function, and

1

t∗ = ᾱ

τbr (E )
= ᾱ

√
q̂

E
, ᾱ = αsNc

π
, (11)

where t∗ is the stopping time, i.e., the time at which the energy of an incoming parton has been radiated off in the form of soft
gluons, E is the energy of the incoming parton, z is its longitudinal momentum fraction, q̂ is the quenching parameter, αs is the
QCD coupling constant, and Nc is the number of colors. The kernel K(z) accounts for soft gluon emissions that are the dominant
contribution to jet energy loss. However, the collision kernel C(q) is given by

C(q) = w(q) − δ(q)
∫

d2q′ w(q′) (12)

and includes perturbative, i.e., ∼1/q4, rescattering with the medium. Here we consider a situation where the quark-gluon plasma
equilibrates and the transverse-momentum distribution of medium particles assumes the form [59]

w(q) = 16π2α2
s Ncn

q2
(
q2 + m2

D

) , (13)

where mD is the Debye mass of the medium quasiparticles. In the following we consider the expression of Eq. (13) inside the
collision kernel C(q).

The above integral equations can be formally solved by iteration. Denoting τ = t/t∗, we get [42]

D(x̃, l, τ ) =
∫ 1

0
dx̃0

∫
d2l0 D(x̃0, l0, τ0)

{
e−
(x̃0 )(τ−τ0 )δ(x̃ − x̃0) δ(l − l0)

+
∞∑

n=1

n∏
i=1

[∫ τ

τi−1

dτi

∫ 1

0
dzi

∫
d2qi G(zi, qi ) e−
(x̃i−1 )(τi−τi−1 )

]
e−
(x̃n )(τ−τn ) δ(x̃ − x̃n) δ(l − ln)

}
, (14)

where


(x̃) = �(x̃) + W, (15)

�(x̃) = 1√
x̃

∫ 1−ε

0
dz zK(z), (16)

W = t∗
∫

|q|>qmin

d2q
w(q)

(2π )2
, (17)
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G(z, q) =
√

z

x̃
zK(z) θ (1 − ε − z) δ(q) + t∗ w(q)

(2π )2
θ (|q| − qmin)δ(1 − z), (18)

and

x̃n = znx̃n−1, ln = znln−1 + qn, (19)

with x̃0 and l0 being some initial values of x̃ and l at the initial evolution time τ0, given by the distribution D(x̃0, l0, τ0).
Furthermore, after integration of Eq. (9) over the transverse momentum l one obtains the evolution equation for the gluon

energy density [44]:

∂

∂t
D(x̃, t ) = 1

t∗

∫ 1

0
dz K(z)

[√
z

x̃
D

( x̃

z
, t

)
θ (z − x̃) − z√

x̃
D(x̃, t )

]
, (20)

where D(x̃, t ) ≡ ∫
d2l D(x̃, l, t ). The iterative solution of this equation reads [42]

D(x̃, τ ) =
∫ 1

0
dx̃0 D(x̃0, τ0)

{
e−�(x̃0 )(τ−τ0 ) δ(x̃ − x̃0)

+
∞∑

n=1

n∏
i=1

[∫ τ

τi−1

dτi

∫ 1

0
dzi

√
zi

x̃i
ziK(zi) θ (1 − ε − zi) e−�(x̃i−1 )(τi−τi−1 )

]
e−�(x̃n )(τ−τn ) δ(x̃ − x̃n)

}
. (21)

Both Eqs. (9) and (20) are solved numerically within the MINCAS framework with the use of dedicated Markov chain Monte Carlo
(MCMC) algorithms [42]. In this article, we generally evolve the gluon dijets following the kT -dependent evolution equation (9)
and compare the results to the dijet evolution using Eq. (20) combined with the Gaussian kT broadening, in order to study the
effects of the non-Gaussian kT broadening.

In both cases, the initial condition for the evolution is a single particle, i.e., D(x̃, l, τ = 0) = δ(1 − x)δ(l ) [or D(x̃, τ = 0) =
δ(1 − x)]. After the passage through the medium, medium-induced branching and broadening will generate a collection of
particles described by the final distribution D(x̃, l, τ ). The notion of the leading particle, which dominates the contribution to the
inclusive cross sections, Eqs. (6) and (8), can be recovered in the limit x̃ ≈ 1.

C. Medium model

Numerous approaches already exist that describe the evo-
lution of the QGP medium with time (cf. Refs. [60,61] and
references therein). However, rather than a detailed quanti-
tative description of phenomenology, our current study aims
at qualitative understanding of the effects of kT broadening
on dijet evolution. For an isolated study of kT -broadening
effects and for simplicity, we assume that the medium ex-
ists for some time tL with the constant temperature T and
is absent at later times. Thus, the medium depends only
on two free parameters, while the temperature dependencies
of the medium properties that are necessary to describe the
jet evolution following Eqs. (9) and (20) can be obtained
by phenomenological considerations. The JET Collaboration
[62] has obtained the temperature dependence of the transport
parameter q̂ as

q̂(T ) = cqT 3. (22)

The number of scattering centers can be estimated by assum-
ing a medium consisting of fermions and bosons at the thermal
equilibrium, i.e., by assuming the Fermi-Dirac/Bose-Einstein
distributions for the densities of quarks, antiquarks, and glu-
ons, nq, nq̄, and ng, respectively. As can be shown (cf., e.g.,
Eq. (3.14) in Ref. [63]), the Taylor expansion in T yields the
number densities as the cubic power of T at the lowest orders
in T , so that one can write

n(T ) = nq + nq̄ + ng = cnT 3. (23)

For the Debye mass mD we assume that mD ∝ gT , which is
consistent with findings of the hard thermal loop (HTL) ap-
proach. In particular, following Ref. [64], we use the relation

m2
D =

(NC

3
+ NF

6

)
g2T 2. (24)

In our setup, we have not yet included realistic geometry
from the Glauber model for nucleus-nucleus collisions or the
effect of the expansion of the medium. This would add more
fluctuations to both the path-length distributions as well as the
temperature profile probed by the jets. Hence, all partons tra-
verse the same length in the medium, tL = const, and the same
temperature profile. However, while a more realistic geometry
certainly is needed to precisely extract medium parameters,
these effects were found to be of secondary importance to
understand dijet acoplanarity in realistic Monte Carlo studies
[65], and will therefore be revisited in the future.

III. NUMERICAL RESULTS

A. Jet-quenching and medium parameters

As outlined in Sec. II C, the effective model for the medium
and the jet-medium interactions depends on four parameters,
which additionally yield three values that are currently used
as parameters within MINCAS. These parameters need to be
tuned by comparison to experimental data. Of the afore-
mentioned five parameters, cq is fixed by phenomenological
considerations described in Ref. [62]. Also cn is fixed, as
it is the first coefficient in the Taylor-series expansion of
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n(T ). Thus, there remain only the two free parameters tL
and T . Assuming that a medium of a diameter of the or-
der of 10 fm is created and that most jets are created in
the center of the colliding particles and pass the medium
with a velocity close to the speed of light (i.e., ultrarel-
ativistic jet particles), we set the parameter tL to 5 fm/c.
The temperature T is then varied in order to reproduce ex-
perimental data on the jet quenching.

With regard to the jets, we have made two essential approx-
imations in order to be able to produce qualitative results for
the observables:

(1) Only gluon jets have been considered, since currently
evolution equations for quarks analogous to Eq. (9)
are not known. To minimize possible errors due to
the negligence of quark jets, we consider only observ-
ables in a mid-forward-rapidity region where gluon
jets dominate.

(2) We identify the momentum of the gluon jet with that
of its leading particle. To minimize the possible result-
ing errors, we consider only leading particles with pT

above a certain threshold.

One of the most inclusive widely studied observables is the
nuclear modification ratio RAA as a function of pT ,

RAA(pT ) = 1

〈TAA〉
dNAA/d pT

dσpp/d pT
, (25)

where 〈TAA〉 is the average nuclear overlap function. For the
qualitative considerations of this work, nuclear effects of
suppression or enhancement other than jet quenching in the
medium have been neglected and the nuclear modification
factor is thus approximated as

RAA(pT ) ≈ dσAA/d pT

dσpp/d pT
, (26)

where dσAA/d pT is normalized to the number of binary colli-
sions of nucleons in the A-A collision.

In Fig. 2 we show the experimental data from ATLAS on
RAA for jets in the Pb-Pb collisions at

√
sNN = 2.76 TeV [66]

in comparison with the results from jet simulations with our
combination of the KATIE and MINCAS Monte Carlo genera-
tors. In order to reproduce the data, the value of T is tuned
to 250 MeV. The results for RAA relying on the gluon TMDs
and the gluon PDFs both exhibit a considerable suppression,
corresponding to values of RAA between 0.4 and 0.6, and, in
general, show a similar behavior. However, it can be noted
that at the same temperature scales, the results based on the
gluon PDFs are at high pT scales slightly more suppressed
than that for the case where gluon distributions depend on
transverse momentum. As can be seen, with the chosen value
of the temperature our Monte Carlo predictions fit well the
data points.

With tuning the temperature scales to the experimental
results for RAA, we have fixed all model parameters; they are
summarized in Table I.

50 100 150 200 2500

0.2
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1

AAR

 [GeV]
T

p

=2.76 TeVNNs
ATLAS-data, 0-10% centrality
PDF: CT14NLO, T=250 MeV
TMD: CT14NLO-DER, T=250 MeV

1.2<|y|<2.1

FIG. 2. The nuclear modification factor RAA as a function
of the jet transverse momentum pT for the Pb-Pb collisions at√

sNN = 2.76 TeV in the mid-forward 1.2 < |y| < 2.1 region, ob-
tained with the initial-state collinear gluon density (PDFs) and
transverse-momentum-dependent (TMD) gluon density as indicated
in comparison to the LHC data taken from Ref. [66].

B. Dijet results

As has been already mentioned, the use of the kT factoriza-
tion allows to study, already at the LO level, dijet observables
in the full phase space, i.e., to have access to regions away
from the back-to-back configuration in the transverse plane.
In our results, we compare the production of jet pairs in
hard collisions without and with further in-medium evolution.
The former case, labeled the “vacuum” case, corresponds to,
e.g., the dijet production in the proton-proton collisions and
was obtained numerically by the use of KATIE alone. Thus,
it already contains an asymmetry in the transverse momenta
kT of the jets due to the use of the transverse-momentum-
dependent gluon density instead of the gluon PDF. The latter
case, labeled the “medium” case, may contain additional kT -
broadening effects of the jet axes due to the jet-medium
interactions. We have obtained the results for the medium case
by propagating within MINCAS the gluons produced in the hard
collisions by KATIE, where the gluon-fragmentation functions
follow Eqs. (9) and (20). To further investigate the in-medium
kT broadening we have simulated two different cases:

TABLE I. Parameters for the medium model: the parameters
from theoretical and phenomenological considerations (left), the
freely adjustable parameters (middle), and the resulting medium
parameters used for MINCAS (right).

Fixed Free Resulting

cq 3.7 tL 5 fm/c q̂ 0.29 GeV2/fm
cn 5.228 T 0.25 GeV n 0.08 GeV3

mD 0.61 GeV
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FIG. 3. Azimuthal dijet decorrelations for collisions at
√

sNN =
2.76 TeV between two jets, each with rapidity 1.2 < |y| < 2.1, as
indicated. The results are obtained for the proton-proton collisions
(dashed blue line, vacuum) as well as for the Pb-Pb collisions with
the kT broadening as in MINCAS (solid red line, non-Gaussian) and
the Gaussian kT broadening (dotted black line).

(1) In the first case the jet in-medium fragmentation fol-
lows Eq. (9). Inside Eq. (9), C(q) yields the broadening
of momenta transverse to the jet axis. We call this case
the “non-Gaussian kT broadening.”

(2) In the second case the loss of jet-momentum compo-
nents along the jet axis, �qi (i = 1, 2), follows Eq. (20).
Subsequently, the transverse momentum component
l i ⊥ �qi is selected (for each jet momentum individ-
ually) from the Gaussian distribution. As it can be
argued that the absolute value of the total transverse-
momentum transfer is of the order of

√
q̂tL, ||l i|| is

selected from the Gaussian distribution

P(||l i||) = 1√
2π q̂tL

exp

(
− l2

i

2q̂tL

)
. (27)

The azimuthal angle of the outgoing momenta pi with
regard to qi is selected randomly from a uniform dis-
tribution in the range from zero to 2π . We label the
resulting set of jets as “Gaussian kT broadening.”

We study the azimuthal decorrelation dN/d
� given as
the number of jet pairs, where 
� is the difference in az-
imuthal angles of the jet axes. The results are shown in Fig. 3
for the dijets where both jets are emitted with transverse mo-
menta pT above a threshold of 50 GeV and rapidities y in the
region 1.2 < |y| < 2.1. It can be seen that the production of
the jet pairs is clearly suppressed in the medium as compared
to the production of the jets without the subsequent in-medium
propagation. While, compared to the vacuum, the dN/d
�

values in the medium are similarly suppressed, whether we
assume the Gaussian or non-Gaussian kT broadening, differ-
ences in the behavior of both curves occur, which can be made
more visible by normalizing the curves for dN/d
� to the
values at their respective maximums (dN/d
�)max. These
results are shown in Fig. 4. The case with the non-Gaussian

2.5 2.6 2.7 2.8 2.9 3 3.1

2−10

1−10

1

vacuum
 broadening, T=250 MeV Tmedium: Gaussian k

 broadening, T=250 MeV Tmedium: Non-Gaussian k

=2.76 TeVNNs
>50 GeV

T
p
1.2<|y|<2.1

 [nb] ϕΔd
dN

 [rad]ϕΔ

FIG. 4. Same as in Fig. 3, but now normalized to the maximum
of the distribution.

kT broadening exhibits a clear broadening in 
� as compared
to the vacuum case, while the case with the Gaussian kT

broadening mostly follows the behavior of the vacuum case.

IV. CONCLUSIONS AND OUTLOOK

We have proposed a factorization formula combining the
kT factorization and medium-jet interactions. Using this for-
mula and its implementation in Monte Carlo generators,
we have studied combined effects of transverse momenta
of initial-state partons with transverse momenta in the fi-
nal state generated due to medium-jet interactions. The
latter features non-Gaussian behavior due to interplay of
radiation and in-medium scattering. The study has been per-
formed using Monte Carlo programs which combine both the
hard-scattering process depending on transverse momenta of
partons within nucleons and the in-medium evolution for jet
particles. To allow for a reasonable jet in-medium evolution,
we describe the medium with a simplified effective model
that relies merely on two parameters: the time of in-medium
jet evolution, tL, and a constant medium temperature T . This
algorithm combines the previously developed frameworks of
KATIE [58] and MINCAS [42], and so far is restricted to the
production of gluons only.

With the corresponding tuning of T , it has been possi-
ble to reproduce the experimental results for the jet nuclear
modification factor RAA for the Pb-Pb collisions at

√
sNN =

2.76 TeV. Using the algorithm in this calibration, we have
been able to calculate (at a qualitative level, since quarks
are missing in our study) the azimuthal dijet decorrelations
dN/d
� in Pb-Pb collisions, where we have compared the
results for the Gaussian kT broadening in the medium with
that of the non-Gaussian kT broadening which follows from
Eq. (9). Our framework is still too simplistic to really address
the full quantitative description of experimental data, since
we do not the include vacuumlike emissions in the medium
or the parton shower outside the medium [15,16]. However,
the effect of the vacuum final-state parton shower on 
φ was
studied in Ref. [67] and it was demonstrated that the 
φ

distributions obtained using the kT factorization and PYTHIA
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[68] with the final-state parton shower (FSR) agree in shape,
while they differ slightly in normalization. When the FSR was
neglected the two curves were almost on top of each other.
Therefore, we expect that this effect is universal for the vac-
uum and the medium, and does not influence the comparison
of the shapes of both the results. We think that our main result
for the azimuthal decorrelations, i.e., the non-Gaussian kT

broadening, is universal and leads to the considerable broad-
ening of the shape of the dN/d
φ distribution as compared
to the Gaussian kT broadening, as well as to the case of the
proton-proton collisions alone.

In the future, we plan to extend our framework to account
for quarks which have been neglected in the current study.
This will allow us to apply it to phenomenology focused on
testing the pattern of jet quenching in jet-jet, jet-hadron
[69,70], and jet–electroweak-boson [71,72] final-state
systems.

Furthermore, we plan to investigate the broadening due
to multiple scatterings in a more forward rapidity region,
which is advocated in Ref. [28]. However, this may require
accounting for saturation effects [73] which together with the
Sudakov effects act to generate considerable broadening in the
final-state observables of the p-p and p-Pb collisions [74]. It
will be interesting to see the combined effect of the two kinds
of broadening.
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APPENDIX: ALGORITHM

Here we outline the algorithm that simulates a hard-
scattering process that yields two hard gluons which prop-
agate as leading jet particles through a medium. From a
technical point of view, this algorithm merges two Monte
Carlo programs: KATIE and MINCAS.

First, KATIE is executed. The center-of-mass energy per
nucleon of the hard collision,

√
sNN , needs to be set (2.76 TeV

for this work) as well as constraints for the minimum val-
ues of the pT of outgoing particles after the hard collisions.
In general, the phase-space boundaries for the hard process,
simulated by KATIE, are set larger than those of the finally
obtained set of particles (which involves MINCAS as well).
Also the factorization scale is set and the sets of TMDs and
PDFs are specified. As a scale we use the average of transverse
momenta of dijets for this work.

Then, the following steps are repeated for each of the
events stored in the output files of KATIE:

(1) From the KATIE output files every event is read
in individually. Essential for the algorithm are the
outgoing-particle energy Ei and three-momenta �qi

(with i = 1, 2) as well as the weight w of the event.
(2) Polar coordinates for the outgoing-parton

three-momenta �qi ≡ (qix, qiy, qiz ) (i = 1, 2) are

calculated as

qi =
√

q2
ix + q2

iy + q2
iz, (A1)

θi = arccos qiz/qi, (A2)

φi = arctan qiy/qix. (A3)

The outgoing particles in KATIE are on the mass shell,
i.e., Ei = qi.

(3) The following steps are performed for each of the two
outgoing particles i = 1, 2 individually:
(a) Initialize MINCAS for the particle i. There, as a

single parameter from KATIE, the particle energy
Ei (before propagation through the medium) is
passed in order to calculate t∗ via Eq. (11).

(b) A MINCAS event is generated: the function
MINCAS_GenEve is executed.

(c) MINCAS_GenEve yields the fraction x̃i with regard
to the light-cone energy in the jet frame5 q+

i = Ei

as well as the momentum components lix and liy
in the directions transverse to �qi. Furthermore, to
each jet the Monte Carlo weight ωi is associated.

(d) The energy Epi and the momentum component piz

after the in-medium propagation are obtained in
the jet frame as

Epi = x̃iq
+
i + l2

i

4x̃iq
+
i

,

piz = x̃iq
+
i − l2

i

4x̃iq
+
i

, (A4)

while the transverse components of �pi are given as
l i = (lix, liy).

(e) The new momentum �pi is rotated back into the
laboratory frame:(pix

piy

piz

)
lab

=
(cos φi − sin φi 0

sin φi cos φi 0
0 0 1

)

×
( cos θi 0 sin θi

0 1 0
− sin θi 0 cos θi

)( lix
liy
piz

)
jet

. (A5)

(f) Then, piT and yi in the laboratory frame are ob-
tained as

piT =
√

p2
ix + p2

iy, (A6)

yi = 1

2
log

Epi + piz

Epi − piz
. (A7)

(4) Finally, the event is written as the following three lines
into the output file:

E1, q1x, q1y, q1z, (A8)

E2, q2x, q2y, q2z, (A9)

p1T , y1, φ1, x̃1, p2T , y2, φ2, x̃2, ω1, ω2, w. (A10)

5For this purpose, we define the jet frame as the one obtained after
the rotation of the coordinate system in the laboratory frame, such
that �qi is parallel to the z axis of the new coordinate system.
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