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ABSTRACT: The water following characteristics of six different drifter types are investigated using two different oper-

ational marine environmental prediction systems: one produced by Environment and Climate Change Canada (ECCC) and

the other produced by MET Norway (METNO). These marine prediction systems include ocean circulation models, at-

mospheric models, and surface wave models. Two leeway models are tested for use in drift object prediction: an implicit

leewaymodel where the Stokes drift is implicit in the leeway coefficient, and an explicit leewaymodel where the Stokes drift

is provided by the wave model. Both leeway coefficients are allowed to vary in direction and time in order to perfectly

reproduce the observed drifter trajectory. This creates a time series of the leeway coefficients that exactly reproduce the

observed drifter trajectories. Mean values for the leeway coefficients are consistent with previous studies that utilized direct

observations of the leeway. For all drifters and models, the largest source of variance in the leeway coefficient occurs at the

inertial frequency and the evidence suggests it is related to uncertainties in the ocean inertial currents.

KEYWORDS: Atmosphere-ocean interaction; Lagrangian circulation/transport; Trajectories; Buoy observations; Operational

forecasting

1. Introduction
Accurate knowledge of surface currents are important for

predicting the transport of buoyant material in the ocean

(Christensen et al. 2018). Examples of typical material in the

ocean are oil spills (Spaulding 2017), marine debris (van Sebille

et al. 2015; Jansen et al. 2016), and natural occurring material

related to biology such as fish eggs and larvae (Sundby 1983).

In general, the modeling of material transport assumes that the

only dynamic physical property of the material is its buoyancy,

and the horizontal motion is that of a passive tracer. However,

for objects at the surface it is common to add direct wind

forcing on the object, commonly referred to as ‘‘leeway,’’ but

also the terms ‘‘windage’’ or ‘‘wind slip’’ are sometimes used

(Niiler et al. 1995), in addition to the ocean currents. The

windage can be derived from the ratio of air-side drag to the

ocean-side drag (Kirwan et al. 1975), but in practice it also

compensates for effects due to finite vertical resolution in the

ocean model (Isern-Fontanet et al. 2017; Tamtare et al. 2019),

missing physics such as the Stokes drift (van den Bremer and

Breivik 2018), or uncertainties in the operational prediction

system (Dagestad and Röhrs 2019). The horizontal motion will

also vary with depth due to the rapid decay of the Stokes drift

with increasing depth (Breivik et al. 2014) and unresolved

shear near the ocean surface (Laxague et al. 2018).

In general, the leeway is often parameterized as a linear

function of the wind speed (Breivik et al. 2011). While the

leeway coefficient has been shown to be equivalent to the ratio

of the air-side drag to the water-side drag (Kirwan et al. 1975),

it is far from trivial on how to estimate the drag ratio for an

object bobbing at the ocean surface. This is especially true for

more exotic objects than spherical drifters (Breivik et al. 2012).

Therefore, it was suggested by Allen and Plourde (1999) and

Breivik et al. (2011) that the leeway coefficient should be es-

timated using a direct method where detailed observations

of the relative velocity between the drifter and the ocean

current are compared with the wind velocity. Experiments

exist for estimating the leeway coefficient using the direct

method for some ocean drifters (Niiler et al. 1995; Poulain and

Gerin 2019), as well as a wide range of objects encountered in

search and rescue (Allen 2005; Breivik et al. 2011). However,

these experiments are relatively rare, expensive and rely on

the universality of the calculated leeway, i.e., a drift object
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taxonomy (Allen and Plourde 1999; Allen 2005; Breivik

and Allen 2008), which is applicable to a class of drifting

objects (Breivik et al. 2011). In addition, the direct method

does not directly assess the ability to predict the drift tra-

jectory using operational marine prediction systems, which

will include effects due to finite resolution and parame-

terized physics.

So what is the best method for determining an optimal

leeway coefficient to use in an operational prediction sys-

tem? The leading method used to date is to calculate a skill

score based on the observed and modeled trajectories

using a range of values for the leeway coefficients (Toner

et al. 2001; Molcard et al. 2009; Liu and Weisberg 2011;

Röhrs et al. 2012; Dagestad and Röhrs 2019). However, the

skill scores in these studies are all based on the separation

distance, or by the time-averaged separation distance as in

the score by Liu and Weisberg (2011), between the two

trajectories, which implies that they are sensitive to the

timing of the errors as large errors early in the trajectory will

have a tendency to accumulate over time, especially in re-

gions with appreciable horizontal shear. In addition, most of

these studies restrict the leeway coefficient to a scalar

(Röhrs et al. 2012; Dagestad and Röhrs 2019) and may

struggle in regions with large uncertainties in oscillating

currents, e.g., inertial oscillations, which can have a signifi-

cant impact on drift prediction at time scales on the order of

the inertial period (Christensen et al. 2018).

In this paper we take a new approach to estimating the

leeway coefficient. In this approach, the leeway coefficient is

allowed to vary in magnitude, direction, and time in order to

reproduce an exact trajectory given a particular input of ocean,

wind, and wave fields from two operational prediction systems.

The model velocities are interpolated to the drifter positions in

time and the leeway coefficient can be estimated directly. This

has two large advantages to using forecast skill scores: 1) that

all the velocity values are equally weighted in time, and 2) that

the maximum of the leeway probability distribution function

will provide the best estimate assuming the forcing models are

unbiased. As this method allows the leeway coefficients to vary

in time in order to give a perfect trajectory, it also provides

statistics that can be associated with uncertainties in the pre-

diction systems. The results are presented using six different

types of drifters and two operational prediction systems for the

ocean current, wind, and Stokes drift; one from Environment

and Climate Change Canada (ECCC) and the other from

MET Norway (METNO).

The outline is as follows. Section 2 presents the leeway

models used in this study. Details about the drifters and the two

operational prediction systems are found in section 3. Results

are presented in section 4 followed by a discussion in section 5

and a summary of the results in section 6.

2. Leeway model
The standard leeway model (Allen and Plourde 1999; Allen

2005) as implemented by Breivik and Allen (2008) and more

recently by Dagestad et al. (2018) has all the effects due to

finite resolution and missing physics, including the Stokes drift,

implicit in the leeway coefficient and is given by the equation

u
d
5 u

o
1aU

10
, (1)

where ud is the drift velocity vector, uo is the ocean velocity

vector at the effective depth of the drifter,U10 is the 10m wind

speed vector, and a is the leeway coefficient. Henceforth, (1)

will be referred to as the implicit leeway model and a is the

implicit leeway coefficient. The coefficient a is commonly a

scalar, implying the drag is only in the along-wind direction,

but it can also be a vector as some objects at sea have implicit

leeway coefficients with both downwind and crosswind com-

ponents (Allen 2005). The implicit leeway coefficient is used to

parameterize a broad range of processes from a direct wind

drag on the drifter (Niiler et al. 1995), to compensate for

missing physics due to feedback on the forcing fields or com-

pensate for inadequate resolution, and most prominently the

Stokes drift, which is the Lagrangian drift due to the surface

waves. For a fully developed sea, the Stokes drift at the surface

is typically about 1.0% to 1.5% ofU10 and decays rapidly with

depth (Breivik et al. 2014, 2016).

As the Stokes drift is increasingly available from operational

wave prediction systems, it can be included explicitly in the

trajectory model. We will define an explicit leeway model,

which explicitly includes the contribution from the Stokes

drift, as

u
d
5 u

o
1u

s
1bU

10
, (2)

where us is the Stokes drift at the effective depth of the drifter

and b is the leeway coefficient when the Stokes drift is ex-

plicitly included. We will refer to this model as the explicit

leeway model. As mentioned in the previous paragraph, the

Stokes drift is reasonably estimated by using a percentage of

the wind velocity and is often not explicitly included in leeway

modeling (Breivik et al. 2011). In general, the depth-dependent

Stokes drift is not a standard output variable of ocean wave

prediction systems, but can be estimated from the more com-

mon surface Stokes drift (us0) and assuming the exponential

decay can be estimated by a single wavenumber k; i.e. (Breivik

et al. 2014),

u
s
5 u

s0
e2kz , (3)

where z is the depth (negative from surface) and k is the ver-

tical wavenumber, which can be estimated from the surface

Stokes drift and the Stokes transport (Tst)

k5
ju

s0
j

2jT
st
j , (4)

where the Stokes transport is defined as the vertical integral of

the Stokes drift

T
st
5

ð0
2‘

u
s
dz , (5)

and is a common output of ocean wave prediction systems.

Estimates of us0 and ust can also bemade from the significant

wave height (HS: the mean height of the highest 1/3 waves) and

the mean zero-upcrossing period (Tz0: the mean period be-

tween successive times when the water elevation crosses from
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below to above the mean elevation) if only these estimates of

the wave field are present. Themagnitude of the surface Stokes

drift and the Stokes transport can be estimated to be

u
s0
5
p3H2

S

gT3
z0

(6)

and

T
st
5
2pH2

S

16T
z0

(7)

respectively. The direction is either given by a mean wave di-

rection given by the wave model or assumed to be in the di-

rection of the wind. It is important to note that (6) and (7) are

simplifications based on a deep-water dispersion relation of

k5 4p2/(gT2
z0) and assuming the waves are predominantly

unidirectional. The validity of using (6) and (7) will depend on

the frequency and directional distribution of the surface waves

as well as the local depth and surface current, which can impact

the dispersion relation for surface gravity waves (Kirby and

Chen 1989).

3. Data and methods

a. Drifters
Six different types of drifters were deployed in this experi-

ment, each representing a different effective depth with some

having drogues to increase the ocean drag. These drifters are

classified into three groups: surface, near-surface, and drogued.

This classification is predominantly a function of the wind re-

sponse, with surface drifters having the largest wind effect,

drogued having the least, and near-surface being somewhat

intermediate. Therefore, these classifications are only loosely

based on their effective depth and are more strongly related to

the ratio of ocean-side drag to wind-side drag. An image of

each drifter is shown in Fig. 1.

We use two types of surface drifter, the disc shaped Osker

drifter (Xeos Technologies Inc., Canada) and the spherical

iSPHERE drifter (MetOcean, Canada). The Osker drifter is

12.7 cm in diameter and 5.1 cm height and is encased in a

spherical foam ring of diameter 20.3 cm and height of 2 cm. The

iSPHERE drifter is a slightly flattened sphere with a horizontal

diameter of 39 cm and a vertical diameter of 31 cm. The

iSPHERE drifters have been shown to follow the surface

currents plus the surface Stokes drift (Röhrs et al. 2012)

and are often used to represent the drift trajectories of oil

(Beloire et al. 2011). Therefore, we will also assume that both

of the surface drifters have an effective depth of 0 cm (Tables 1

and 2).

In addition, there are two cylindrical drifters, which we will

refer to as near-surface drifters, equipped with foam rings

for flotation. These are the Roby drifter (Xeos Technologies

Inc.) and the Surface Circulation Tracker (SCT) (Oceanetic

Measurement Ltd., Canada). The Roby drifter is 5.7 cm in di-

ameter and 21 cm in length with a 20.3 cm diameter foam collar

on the top for extra buoyancy. The SCT drifter is 50 cm in

height with an expected draft of 33 cm and has a foam collar

that is 23 cm in diameter and 7.5 cm thick. The effective depth

of the Roby and SCT drifter is estimated to be 10 and 20 cm,

respectively.

The final two drifters use drogues and are the Surface

Velocity Program (SVP) drifter (Niiler et al. 1995) and the

Coastal Ocean Dynamics Experiment (CODE) drifter (Davis

1985). The CODE drifter has a sail drogue with four sails with

each sail being 0.70m tall and 0.50m wide and centered at

FIG. 1. Drifters used in the experiment.
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0.6m depth. The SVP drifter has a 6.1-m-long holey-sock

drogue with radius of 0.6m and centered at 15m depth. These

mean depths of the drogues are taken to be the effective drift

depth. While the CODE drifter drogue is in the upper meter,

which for all intents and purposes is generally assumed to be the

surface, due to its design the wind slippage has been found to be

about 0.1%of the wind speed (Poulain andGerin 2019), which is

the same as the measured wind slippage for the SVP drifters

(Lumpkin et al. 2017). Therefore, the direct wind forcing on the

CODE and SVP drifters are expected to be similar and differ-

ences will be due to vertical shear and the Stokes drift.

The six drifter types were deployed on 6 June 2018 and all

were operational until 18 June 2018.After this time some of the

drifters stopped sending their positions. Therefore, the analysis

will focus on these 12 days when all the drifters were opera-

tional. An overview of the six drifter tracks is shown in Fig. 2.

The sampling rate for the drifters varied between 5min and 1 h.

The velocity is calculated via forward difference of successive

locations and the velocities are interpolated to hourly output

by taking hourly means.

b. Marine environmental prediction systems
The ECCC operational prediction system consists of the

Regional Ice-Ocean Prediction System (RIOPS) for the ocean

currents, the Canadian Arctic Prediction System (CAPS) for

the atmospheric winds, and the Global Deterministic Wave

Prediction System (GDWPS) for the wave model provid-

ing the Stokes drift. RIOPS is a regional model based on

Nucleus for European Modelling of the Ocean (NEMO;

http://www.nemo-ocean.eu) with a horizontal resolution of

1/128 (Dupont et al. 2015). Surface currents are output every

3 h and the surface layer depth is 1 m. GDWPS is a global

wave model based on Wavewatch III with a 1/48 horizontal
resolution and is run twice a day (Bernier et al. 2016) 1/48.
GDWPS resolves the wave spectrum with 36 logarithmically

spaced frequencies between 0.035 and 1 Hz and 36 direc-

tions. Atmospheric model is the CAPS which is a 3-km-

resolution model that covers the entire Arctic and some

northern regions such as Norway. The dynamical core of

CAPS is Global Environmental Multiscale (GEM), a non-

hydrostatic model that solves the fully compressible Euler

equations (Côté et al. 1998a,b; Girard et al. 2014), and is run

operationally at ECCC. Both GEM and GDWPS output

data at hourly resolution.

The METNO operational prediction system used in this

study consists of the data-assimilative ocean model NorShelf

(Röhrs et al. 2018), the spectral wave model WAM4 (WAMDI

Group 1988; Gusdal and Carrasco 2012) and the control run

TABLE 1. Mean and 95% confidence interval along with the standard deviation of a for each drifter and choice of forcing. Mean and

standard deviation are calculated from hourly values between 6 and 18 Jun 2018 for a total of 283 measured values.

Drifter Effective depth (m) Forcing Mean (real) Mean (imaginary) Std dev (real) Std dev (imaginary)

Osker 0.0 ECCC 0.027 6 0.003 20.002 6 0.004 0.023 0.026

Osker 0.0 METNO 0.027 6 0.003 20.002 6 0.003 0.019 0.022

iSPHERE 0.0 ECCC 0.029 6 0.003 20.001 6 0.004 0.025 0.028

iSPHERE 0.0 METNO 0.028 6 0.003 20.002 6 0.003 0.020 0.023

Roby 0.1 ECCC 0.023 6 0.003 20.002 6 0.03 0.024 0.019

Roby 0.1 METNO 0.019 6 0.002 20.005 6 0.002 0.015 0.017

SCT 0.2 ECCC 0.016 6 0.003 20.001 6 0.002 0.019 0.018

SCT 0.2 METNO 0.015 6 0.003 20.003 6 0.003 0.022 0.024

CODE 0.6 ECCC 0.009 6 0.003 20.008 6 0.004 0.025 0.026

CODE 0.6 METNO 0.009 6 0.003 20.008 6 0.003 0.022 0.021

SVP 15 ECCC 0.004 6 0.002 20.002 6 0.002 0.018 0.015

SVP 15 METNO 20.001 6 0.002 0.010 6 0.003 0.015 0.019

TABLE 2.Mean and 95% confidence intervals along with standard deviation ofb for each drifter and choice of forcing.Mean and standard

deviation are calculated from hourly values between 6 and 18 Jun 2018 for a total of 283 measured values.

Drifter Effective depth (m) Forcing Mean (real) Mean (imaginary) Std dev (real) Std dev (imaginary)

Osker 0.0 ECCC 0.016 6 0.003 20.001 6 0.003 0.023 0.025

Osker 0.0 METNO 0.014 6 0.003 20.002 6 0.003 0.019 0.022

iSPHERE 0.0 ECCC 0.018 6 0.003 20.001 6 0.004 0.026 0.028

iSPHERE 0.0 METNO 0.015 6 0.003 20.001 6 0.003 0.020 0.023

Roby 0.1 ECCC 0.012 6 0.003 20.001 6 0.003 0.025 0.019

Roby 0.1 METNO 0.007 6 0.002 20.005 6 0.002 0.016 0.017

SCT 0.2 ECCC 0.006 6 0.003 0.000 6 0.002 0.020 0.018

SCT 0.2 METNO 0.004 6 0.003 20.003 6 0.002 0.023 0.024

CODE 0.6 ECCC 0.001 6 0.003 20.007 6 0.004 0.025 0.026

CODE 0.6 METNO 0.001 6 0.003 20.008 6 0.003 0.023 0.022

SVP 15 ECCC 0.003 6 0.002 20.002 6 0.002 0.018 0.015

SVP 15 METNO 20.001 6 0.002 0.010 6 0.003 0.015 0.019
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from the MetCoOp Ensemble Prediction System (MEPS)

(Müller et al. 2017; Bengtsson et al. 2017; Frogner et al. 2019).

NorShelf is based on the Regional Ocean Modeling System

(Shchepetkin and McWilliams 2005) and nested into Topaz

(Xie et al. 2017), providing ocean currents with a hori-

zontal resolution of 2.4 km and a vertical resolution at the

surface of about 0.5–1 m. The wave model is a version

of the MyWaveWAM model set up at a 4 km resolution

with boundary conditions in the form of two-dimensional

spectra from the operational ECMWF wave forecasts. The

model resolves the wave spectrum with 36 logarithmically

spaced frequencies from 0.0345 to 0.9702 Hz and 36 di-

rections. The wind forcing for both the ocean and wave

models are taken from the control member of MEPS,

which has a native horizontal resolution of 2.5 km. These

regional systems are forced or nested into the ECMWF

global forecast system and hourly data are available from

the Norwegian Meteorological Institute’s thredds server

(http://thredds.met.no). Wind, waves, and ocean surface

values are available at hourly resolution.

The velocities produced by each the two prediction systems

are linearly interpolated in space and time to each drifter track.

An example for the Osker drifter track can be found in Fig. 3.

There is little difference between the ECCC winds and

METNO winds with both showing a peak wind speed of

18m s21 on 14 June 2018. The largest discrepancies between

the ECCC and METNO prediction systems occurs be-

tween the ocean velocities. Figure 4 shows snapshots of the

surface currents and 10 m winds on 13 June 2018 showing

the higher variability in the higher resolution METNO

ocean velocities (Fig. 4c) compared to the ECCC ocean

velocities (Fig. 4a). However, there do exist similarities in

large-scale features between the two ocean velocities as

well as similarities in the 10 m wind field (Figs. 4b and 4d

for ECCC and METNO winds, respectively). The surface

Stokes drift (Fig. 3a) is also very similar between the

ECCC and METNO models with the direction predomi-

nantly following the wind. Mean values for us0/U10 for the

ECCC and METNO prediction systems are 1.2% and

1.4%, respectively.

c. Calculating a and b
The implicit leeway coefficient a can be calculated directly

from Eq. (1) using the time series for each drifter of the

modeled wind and ocean currents; i.e.,

a5
u
d
2u

o

U
10

. (8)

The ocean velocity uo and 10m wind velocity U10 are inter-

polated in space and time to the location of the drifter. The in-

terpolation is bilinear in space from the four adjacent grid points

and linearly in time. The vectora is the leeway coefficient, which

FIG. 2. Trajectories for the various drifters over the period 6–18

Jun 2018. Thin solid lines are surface drifters, dashed lines are near-

surface drifters, and thick solid lines are the drogued drifters.

FIG. 3. Forcing time series interpolated to the Osker drift track. (a) The magnitude of the

ocean current (uo), surface Stokes drift (us0), and wind speed at 10m (U10) for the ECCC

prediction system (solid lines) and the METNO prediction system (dashed lines). (b) The

heading for the velocities in (a) in degrees clockwise from north.
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produces an exact prediction at each time step. Therefore, the

distribution of a will encompass all of the uncertainties in the

model ocean and wind velocities as well as any uncertainties in

the observed drift velocity. The velocity vectors are written in

complex form so the real part is positive in the eastward direc-

tion and the imaginary part is positive in the northward direc-

tion. Therefore, the real part of a will be in the along-wind

direction and the imaginary part in the crosswind direction

(negative to the right of the wind direction).

The same analysis can be applied to the explicit leeway

model (2) to calculate b where now the Stokes drift us is ex-

plicitly included; i.e.,

b5
u
d
2u

s
2u

o

U
10

. (9)

Both Eqs. (8) and (9) are calculated for each recorded drifter

position. This provides a time series of the complex value for a

(or b), which can be used to estimate the mean and variance of

the along-wind and crosswind components.

4. Results
The 2D histogram of a for the surface drifters (Osker and

iSPHERE) shows the mean and variance over the experiment

period for both choices of environmental forcing (Fig. 5).

Results for a are presented in Table 1. Both the ECCC and

METNO forcing yield a peak in the PDF at a of about 0.03 in

the along-wind direction and negligible in the crosswind di-

rection. The standard deviation of the along-wind and cross-

wind components are between 0.02 and 0.03. For each 2D

histogram there is also the associated 1D histogram of the

along-wind component (above each 2D histogram) and of the

crosswind component (to the right of each 2D histogram).

The mean value is shown in red, and the standard deviation of

each component is shown in orange. The orange box encloses

FIG. 4. Snapshots of forcing fields at 0000 UTC 13 Jun 2018. (left) Surface velocities and (right) 10m wind speeds

are shown for (a),(b) the ECCC prediction system and (c),(d) the METNO prediction system. Drifter locations at

0000 UTC 13 Jun 2018 are denoted by colored dots and the drifter color is shown in Fig. 2.
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values that are within one standard deviation of the mean. The

standard deviation is slightly higher using the ECCC forcing

compared to the METNO forcing and both forcings give a

standard deviation slightly greater in the crosswind compared

to the along-wind direction.

The 2D histogram for when the Stokes drift is explicitly in-

cluded, as in (9), is shown in Fig. 6 and the results are shown in

Table 2. The along-wind component for b is less when the

Stokes drift is included, with a reduction of 0.011 and 0.013

compared to a for the ECCC and METNO forcing, respec-

tively. In addition, the standard deviation for b is identical to

that of a suggesting that including the Stokes drift has no ap-

preciable effect on the accuracy of the prediction over the

duration of the observations.

The same analysis is performed for the near-surface drifters

(Roby and SCT) and the drogued drifters (CODE and SVP).

The mean, along with 95% confidence intervals, and standard

deviation for the implicit and explicit Stokes drift are shown in

Tables 1 and 2, respectively. The 2D histograms are not in-

cluded here, but are available in the online supplementary

material.

For the near-surface drifters the along-wind component of

a and b are both slightly less than for the surface drifters, es-

pecially for the SCT drifters. This is to be expected as the SCT

drifters have a greater mean depth than the Roby drifters so

the Stokes drift and the direct wind forcing on the drifter

should be less than the surface drifters. In addition, the SCT

drifters have three cylindrical rings attached to the base

(Fig. 1), which will act to increase the water-side drag.

The drogued drifters have even smaller mean leeway coef-

ficients than the other two types of drifters, with less variation

between the implicit and explicit Stokes drift variation of lee-

way coefficient. However, explicitly including the Stokes drift

for the shallower CODE drifter does reduce the required

windage to a negligible value.

The error in themean and standard deviation, as can be seen

from Tables 1 and 2, does not vary greatly with drifter, choice

of forcing or whether the Stokes drift is explicitly included or is

implicit in the leeway coefficient. These facts suggest that the

variability is most likely due to the ocean currents that are

relatively uniform in the upper 15m such as the barotropic tide

and/or inertial currents.

Another way to look at this ideal leeway coefficient is to

investigate the time series to see if there is any observed pe-

riodicity. The time series for a of the Osker drifter calculated

from (8) where the real and imaginary part of a are shown in

Figs. 7a and 7b, respectively. Variability in both the real and

imaginary part are consistent with inertial oscillations, which

suggests that the leeway coefficient is compensating for errors

in the amplitude and/or phase of the modeled inertial currents

FIG. 5. Two-dimensional histograms of a (implicit Stokes drift) for two of the surface drifters and two different

model forcing: (a),(b) ECCC forcing and (c),(d) METNO forcing.
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in order to reproduce the observed trajectory. The rotary FFT,

which is the FFT of the complex-valued a, is shown in Fig. 7c.

The hourly sampling frequency over 12 days provides 283

samples providing a frequency resolution of 0.085 cpd. This is

about 2.3 to 2.5 times the frequency difference between theM2

tide and the inertial frequency over the observed latitudes.

The spectrum in Fig. 7c is dominated by the large mean re-

sponse, which is similar in magnitude to the mean from the

time series in Fig. 5, and by peaks at the inertial frequency for

both choices of forcing. This inertial peak in a is nearly iden-

tical for all six drifters and both operational models (see sup-

plementarymaterial). For example, Fig. 8 shows the time series

and FFT for the SVP drifter and the inertial peak is similar

while the values at subinertial frequencies are generally less.

This peak at the inertial frequency implies that the leading

source of error for predictions are inertial currents. In both

Figs. 7 and 8 there is a second peak near theM2 tidal frequency

for the ECCC forcing, suggesting inaccuracies in the tidal

component are also contributing to the velocity mismatch.

5. Discussion
It is inherently difficult to disentangle uncertainties associ-

ated with the marine environmental prediction systems and

those associated with the leeway model in (1) and/or (2). Using

two operational prediction systems allows for the partial as-

sessment of the forcing fields, especially when the two opera-

tional systems differ. However, the errors represent the sum of

all the velocity errors, normalized by the wind speed, making

determination of the largest source of error difficult. For the

operational systems used in this study, ECCC and METNO,

the statistics of the leeway coefficient, whether it be a or b,

were very similar for the two models with differences being the

least for the surface drifters and greatest for the drogued

drifters. This result is consistent with Dagestad and Röhrs
(2019), who found that the surface drifter, specifically the

iSPHERE, trajectories were strongly correlated with wind

forcing and not strongly correlated with oceanic variability. As

our two predictive systems provide similar wind forcing it ap-

pears that differences between the two systems are predomi-

nantly due to the oceanic component.

While our results are similar to those of Dagestad and Röhrs
(2019) in that the surface drifters are much more sensitive to

wind forcing than oceanic variability, the magnitude of the

leeway coefficient are found to be smaller. The leeway coeffi-

cient is found to be about 3% when the Stokes drift is not in-

cluded, and about 1.5%when the Stokes drift is included, while

Dagestad and Röhrs (2019) found a value closer to 4% when

the Stokes drift was not included and 3%when the Stokes drift

FIG. 6. Two-dimensional histograms of b (explicit Stokes drift) for two of the surface drifters and two different

model forcing: (a),(b) ECCC forcing and (c),(d) METNO forcing.
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is included. While it is not immediately obvious for the dis-

crepancy, some of the reasonmay lie in themethodology, as we

determine a (or b) from the entire trajectory while Dagestad

and Röhrs (2019) calculate a (or b) from several short fore-

casts of 48 h duration. One hypothesis is that the use of shorter

forecast lead times could limit the total accumulated un-

certainty in the trajectory model. Also, allowing for the

leeway coefficients a (or b) to be vectors provides a means

(at least a posteriori) to correct for uncertainties in the

ocean prediction system, such as errors due to the tides and

inertial oscillations.

While the method has been presented here for drifting

buoys, it could easily be used for any drifting object in the

ocean. For example, the leeway coefficient for a ship adrift

could be estimated with available data from the operational

prediction system in order to improve future predictions.

Such a method could also be dynamic as the leeway coeffi-

cient could be updated as more data become available.

Uncertainty in high-frequency motions in the ocean model,

most notably from inertial currents, will undoubtedly in-

fluence estimates of the leeway coefficient over a short du-

ration, but as long as data from a minimum of one inertial

period are used to estimate the leeway coefficient then this

uncertainty should have a minimal effect on the mean lee-

way coefficient.

The explicit inclusion of the Stokes drift, as calculated by a

wave model, does not change the variability of the leeway

coefficient and the magnitude of the Stokes drift, at least for

surface objects, and can be approximated by a fraction of the

wind speed. While it appears that a typical value of 1.3%

(Rascle et al. 2008) is appropriate for this case, there still

exists variability in the literature on the range of 0.5%–3%

depending on the sea state (Rascle and Ardhuin 2013).

Therefore, it is preferable to calculate the Stokes drift using

available wave spectra, either from a numerical model or

from observations, rather than a direct wind-based param-

eterization. Furthermore, for drifters in the upper meter but

not right at the surface, it is important to calculate the e-

folding depth and this is simplified by the use of an opera-

tional wave model.

6. Conclusions
Presented is an analysis of the leeway coefficient calculated

for several drifter types using two different operational pre-

diction systems. The leeway coefficient is calculated at each

location for each drifter such that the prediction system exactly

reproduces the observed trajectory. This method provides a

time series of the leeway coefficient from which appropriate

statistics can be calculated. In addition, calculating the

leeway coefficient using this method provides the linear best

estimate provided the forcing (currents, waves, and winds)

are unbiased.

For the surface drifters, iSPHERE and the Osker, a mean

wind induced drag of about 2.8% 6 0.1% and 1.6% 6 0.2%

of the wind speed was found to reproduce the observed

trajectories for the implicit and explicit leeway models,

FIG. 7. Time series of (a) real part of a, (b) imaginary part of a, and (c) the magnitude of the rotary FFT of a for

theOsker drifter. Horizontal dashed lines in (a) and (b) show the temporalmean values. The vertical dashed lines in

(c) shows the inertial frequency (dark) and the M2 tidal frequency (light).
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respectively, and did not depend on the choice of opera-

tional model. The standard deviation did not vary with the

choice of leeway model and ranged between 2% and 3%

for each of the along-wind and crosswind components, with

the crosswind standard deviation being consistently larger

than the along-wind standard deviation. This 3% value for

the wind drag is similar to previous reported values for

the iSPHERE (Röhrs and Christensen 2015) and is the first

study to look at the water following attributes for the Osker

drifter. As the iSPHERE drifters are commonly used to

track oil spills (Beloire et al. 2011), our study suggests

that Osker drifters should be equally well suited for this

purpose.

The two near-surface drifters, the Roby and SCT drifters,

which are both undrogued but with slightly deeper profiles in

the water, had slightly reduced values for the leeway coefficient

relative to the surface drifters. The Roby drifter had a similar

value for a (b) of 2.3% (1.2%) for the ECCC forcing and 1.9%

(0.7%) for the METNO forcing. The standard deviation be-

tween the two operational models is also slightly different with

the ECCC values being 2.4% to 2.5% in the along-wind and

1.9% in the crosswind directions and theMETNO values being

1.6% in the along-wind and 1.7% in the crosswind directions.

For the two drogued drifters, CODE and SVP, the leeway

coefficient was found to be less than 1%, which is consistent

with results from previous studies (Niiler et al. 1995; Poulain

and Gerin 2019). The windage on the SVP should be negligible

(Niiler et al. 1995) so these results most likely represent mean

biases in the ocean model over these drifter tracks. By ex-

plicitly including the Stokes drift, the CODE drifters, with a

mean depth of 0.6m, have their along-wind leeway coefficient

reduced from 0.9% to 0.1%.

Analysis of the time-dependent leeway coefficient clearly

shows a peak at the inertial frequency and that this peak is

consistent between the choice of forcing (i.e., for both

ECCC and METNO) and drifter (i.e., surface and drogued

drifters). In addition, the ECCC forcing shows a second peak

at the M2 tidal frequency. These peaks do not appear to be

physical, but rather compensating for errors in the ocean

model at these frequencies. This suggests that ocean models

can be used to accurately estimate the mean leeway coeffi-

cient for drifting objects provided the time series is long

enough to minimize these high-frequency uncertainties.

However, for shorter time periods (hours to a couple days) it

is imperative that these high-frequency motions, especially

the transient response to the wind, are accurately repro-

duced by ocean models in order to accurately reproduce the

drift (Christensen et al. 2018).
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