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Abstract

The manual detection of seismic events is a labor intensive task, requiring highly skilled

workers continuously analyzing recorded waveforms. Previous work has shown the potential

of machine learning methods for aiding in this task, and that deep neural networks are able

to learn important patterns in seismic recordings. This study aims to develop a deep neural

network to classify earthquake-, explosion and noise events using long beamformed waveform

snippets from NORSAR’s ARCES array.

The final model was evaluated using an unseen test set and on recordings of the North

Korean nuclear weapons tests. I developed custom augmentation methods in order to combat

the uneven class distribution, and several preprocessing techniques were deployed in pursuit

of performance. Models developed for similar data, state-of-the-art multivariate time series

models, as well as self-developed models were experimented with and evaluated.

Analysis of the results demonstrated that the final model can classify noise and explosion

events with a high degree of accuracy, while earthquake classifications were less reliable. I

conclude that deep neural networks can learn distinguishing features and detect events of

interest on long beamformed three-component waveforms.
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Chapter 1

Introduction

Earthquakes are an unpreventable and inevitable danger for life on Earth. The violent

shaking of the ground has claimed an average of 27,000 lives a year since 1990 [30], and

the cause of considerable financial loss. The study of this phenomenon help scientists and

engineers take measures to reduce the harm and simultaneously gain insight to the inner

workings of the planet.

Over time, the technology used for studying this natural occurrence has evolved in tandem

with the technological revolution. There are now thousands of stations across the globe

constantly recording the movement of earths mantle. Historically, these recordings have been

manually analyzed by scientists. This labor-intensive task may be able to utilize classification

algorithms in order to reduce the workload, allowing resources to focus on research rather

than detection.

Unfortunately, automatic detection and labeling of interesting events is challenging. Seis-

mological recordings are littered with non-tectonic earthquake events such as blasts related

to mining activity and mining induced earthquakes all camouflaged by ambient noise. Low

magnitude earthquakes are very difficult to detect among the noise and make up the majority

of tectonic earthquakes. Regardless, the resilient scientists have been able to detect millions

of earthquakes throughout time, and have produced large databases with labeled record-

ings.For every earthquake detected, hours, if not days, of uninteresting noise recordings are

accumulated.
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The noise is made up by a mix of human and natural sources, discussed later in the

thesis, whose presence complicate the automatic detection of events. The growing collection

of dormant and underutilized data has fueled the developments in automatic analytical model

building. These models are a branch of artificial intelligence based on the idea that systems

can learn and identify patterns in data. Referred to as Machine Learning (ML), this field

has developed algorithms which excel at classification with noisy data. The application of

these tools may realize value in otherwise discounted data.

The goal of this project will be to implement an ML-based method for distinguishing

noise, explosion and earthquake events, ideally operating on minimally processed data (i.e.

directly on multivariate time series), which can run in real-time. It should be optimized,

but not limited, for events up to 1000 km distance from the seismic station. To test how

well it generalizes to events at longer distances, we can also employ it on the six known

nuclear weapons tests performed by North Korea between 2006-2017. The project will use

150 second beamformed waveform snippets processed by the ARCES array. The project

will experiment with the Deep Learning models utilized in the previous works, experimental

architectures, as well as state-of-the-art models such as InceptionTime, by Fawaz et al. [8]

Several machine learning techniques will be employed in order to aid the task. Multiple

baseline models will be developed in order to validate the results of attempted improvements.

One model will train specifically to distinguish noise events from non-noise events. The non-

noise events will then be fed into another model, which will classify between earthquake

and explosion events. A description of the data sets will be found in section 4.1. The

heavily unbalanced dataset will require the development of augmentation techniques to allow

for upsampling. This will ideally prevent complications of overfitting and help the model

generalize to new data.

The best performing model in each subtask will be selected, combined into a single

pipeline and evaluated using a dataset of events previously unseen by any of the models.

The evaluation of the final model will function as a test of generalization, and will simulate

how the model would perform during deployement. Finally, recordings from nuclear explosion

tests will be input into the model to evaluate its sensitivity to very distant events.
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1.1 Related work

The utilization of machine learning methods has increased tremendously in many areas of

research, including seismology. Meier et al. in their article Reliable Real-Time Seismic

Signal/Noise Discrimination With Machine Learning [7], successfully show how machine

learning can make Earthquake Early Warning systems more reliable and faster. Their deep

learning classifiers can reliably discriminate between earthquakes and noise signals in real

time with an accuracy of 99.5%. The dataset used for training consisted of 375k three-

component quake records from 8432 different earthquakes, as well as 946k three-component

noise records.

Tibi et al. [33] did a comparative study, comparing the performance of amplitude ra-

tio(AR) methods and trained Convolutional Neural Network(CNN) models in order to clas-

sify events, distinguishing between Tectonic Earthquakes, Mining Induced Earthquakes and

Mining Blasts. Using a subset of high signal quality spectrogram samples, their AR models

had success rates ranging from 80% to 90%. The CNN reported accuracies ranging from

91% to 98% on the same subset. On the entire event catalog the CNN achieved accuracies

ranging from 94% to 100%. The team used a dataset containing 1040 Tectonic Earthquakes,

6286 Mining Induced Earthquakes, 51 Mining Blasts from four different quarries. Their

CNN model had 4 Convolutional Layers with 2x2 filters (with filter counts: 18, 36, 54, 54)

followed by a three-node SoftMax activated output layer.

In the article by Meier et al., they used 3 second waveform snippets, on earthquakes

of magnitudes ranging from 3 to 9.1. Their data is limited to events that occur with an

epicenter within 1000 km, and uses an outlier filtration process which discards records with

peak ground velocities outside of 6 standard deviations from their predicted value. Tibi et

al.s article, limited their events to those within an epicenter 25-150 km from the recording

station. For their CNN model, they used 90 second spectrograms, from three-component

and single-component stations. In recordings from single-component stations, they filled the

horizontal channels with zero values.

Several different ML techniques have been applied to detect seismic signals [22, 3, 7],

but classification of the source mechanism has received less attention. Further, most recent

work on ML in seismology (also including [23]) has focused on data from single stations, or

from regional networks of single stations. Seismic arrays, such as ARCES, adds important
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information about the incoming wave, but how to include this in an ML context, has so far

not been comprehensively studied. This project will attempt to classify considerably longer

three-component waveform snippets, with less restriction on distance and filtering of data.

Two models, specialized to their individual task, will be developed, joined to produce the

final classifier. The models will be trained on waveforms collected by the ARCES array.

1.2 Background

In the Nordics, where NORSAR (Norwegian Seismic Array) operates several seismometer

installations, the vast majority of detected events originate from mining explosions. Large

mines like the ones in Kiruna and Malmberget typically blasts multiple times each day,

while naturally triggered earthquakes typically occur once a day or less, in the entire Nordic

region. Monitoring seismic data is a highly skilled and labor-intensive task. The detection

of interesting seismological events, such as earthquakes, is challenging due to anthropogenic

activity.

When NORSAR prepares its public earthquake bulletin, all detected events are manually

analyzed, and the events of suspected non-natural origin are removed. Given the significant

mining activity, much of the analysist’s time is spent reviewing instrument data for uninter-

esting events. Traditional approaches for identifying explosion events are based on waveform

template matching, i.e. computing the correlation between an incoming signal and a pre-

defined template event [11]. This method is generally very sensitive, but has two major

drawbacks: 1) Due to the specificity of the template it does not generalize to other mines

(or even parts of the same mine) other than it was constructed for, and 2) It cannot detect

new mines or even events for which no template already exist. Therefore, NORSAR would

like to deploy an automated system to flag explosion events, as a fast and precise analysis

support tool.

The best situated station for monitoring northern Fennoscandia is named ARCES, and is

located just outside of Karasjok, Finnmark. It consists of a total of 25 seismometers, placed

in concentric rings. This seismic array allows for measuring both the angle and velocity of

the incoming waves. The input data are ground-motion time series recorded at 80 Hz, at

multiple stations. Using data from ARCES, NORSAR wishes to develop a machine learning
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method to effectively identify explosion events regardless of source location. By nature,

earthquakes produce a different seismic wave compared to explosions since explosions are

pure compression events. Earthquakes, meanwhile, are typically caused by fault slips that

create both compressional and tensional pressure. At the seismometer, two main distinct

wave phases are typically observed; the primary (P) wave, which propagates longitudinally,

and the secondary (S) wave, which propagates transversely. The main characteristic between

explosions and earthquakes lies in the ratio of the power of the two waves – earthquakes

generally have stronger S-wave than P-wave, which tends not to be the case for explosion

events. This fact was used to train an SVM, which identified explosions based on P- and S-

wave average power as input [23].
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Chapter 2

Seismology

2.1 Wave Propagation

Wave propagation is any of the ways in which waves travel through a medium. The propa-

gation can be distinguished with respect to the direction of oscillation by longitudinal waves

and transverse waves. Non-electromagnetic waves can only propagate through a transmis-

sion medium. Seismic waves are waves of energy that travel through Earth’s layers, as a

consequence of seismic activity. These activities include earthquakes, volcanic eruptions,

magma movements, landslides etc.

There are two main types of seismic waves: body waves and surface waves. There are

two types of body waves: P-wave and S-wave, and two types of surface waves: Love-wave

and Rayleigh waves. P-wave (primary/pressure/compression wave) propagates through the

interior of the earth at the greatest velocity of the three body waves. P-waves travel through

air at the speed of sound, which is significantly slower than when propagating through the

earth. The velocity of any wave depends on the medium, and its properties, in which it

propagates through. Due to the P-wave having the highest velocity, this is the wave that

is first recorded by a seismograph. The wave is caused by alternating compression and

rarefaction (the opposite of compression), creating P-waves in the axis of the direction in

which the ground moves. When felt, the P-wave is experienced as a small jolt.
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S-waves, also called secondary waves, are transverse waves oscillating perpendicular to the

direction of wave propagation. S-waves are the second wave to be recorded by a seismograph,

after P-waves. This wave is experienced as strong shaking, relative to the P-wave, and causes

significant displacement in the stacked counts axis in the recordings.

Love and Rayleigh waves are surface waves, and travel much slower than both P and

S waves. Surface waves are limited to traveling through solid media. Love waves have

a horizontal motion oscillating in the direction perpendicular to the direction of travel.

Rayleigh waves cause the ground to shake in an elliptical pattern, reminiscent of ocean

waves. Rayleigh waves are the most destructive wave resulting from a seismic event, but

also the slower traveling of the two surface waves.

2.2 Array Processing

Using an array rather than individual stations provide significant benefits to the detection

and analysis of seismic events. An array can provide estimates for the epicenter of an event

and the apparent velocity of a signal. Epicenter is the term used to describe the location of

a seismic event at ground level, directly above the hypocenter (referring to the initial point

of the event). Apparent velocity in this context refers to the velocity of the wave in the

horizontal plane, and can be used to derive the true velocity of the wave using the angle of

incidence. The slowness of a wave , given by 1
velocity

, can be extrapolated with the medium

density of the travel path to calculate the total travel time of the wave. The array can use

the azimuth of the event combined with the derived travel time to provide a good estimates

of the location of the epicenter. A network of arrays and stations improve the accuracy of

the estimates, and may provide a more holistic view of earthquakes due to their directional

effects.

Arrays also combat the local noise of individual stations. Through a process called beam

forming, the array can improve signal to noise ratio of a seismic signal by summing the signals

of each station in the array using the delay for a given slowness vector. Utilizing the effects of

wave interference, the chaotic noise will cancel out, and the structured seismic event will be

enhanced [16]. Theoretically able reduce the noise by a factor of
√

Number of stations, this

signal clarifying technique allow detection of earthquakes otherwise undetectable by a single

station. Every event in the NORSAR dataset has been preprocessed using beam forming,

prior to the use in this project.
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2.3 ARCES Array

The ARCES array in Karasjok consists of 25 seismometres placed in concentric rings with

a diameter of 3 km. The 3-component broadband seismometres are sensitive instruments

which excel at detecting and localizing events up to 300 km. However, the station is also used

to record teleseismic events, earthquakes at distances greater than 1000 km. These devices

are used to detect earthquakes, but also to monitor nuclear weapon testing by detecting the

infrasound signature of nuclear explosions which can propagate for very long distances. The

individual stations are connected to a central facility which supplies power and fiberoptic

cables. The central station uses 4 GPS clocks, controlling an atomic clock which ensures the

timestamps of each station are accurate up to a millisecond.

Figure 2.1: Image of a recording station at ARCES. Photo credit: NORSAR/ Jan Petter
Hansen

Each station, as seen in 2.1, independently record ground motion and transmits to NOR-

SARs headquarters through the central station. By using an array rather than individual

stations, NORSAR is able to collect information such as the slowness of the beams, better lo-

calization estimates through triangulation, and improve the signal to noise ratio by utilizing

wave interference [12].
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2.4 Seismic Sensors

Seismic sensors measure motion in the ground and translates it into a useful output. Tradi-

tionally, these instruments consisted of a mass suspended by a spring translating the motion

of the mass using a stylus onto a rotating drum. These days, there are two types of sensors:

passive and active. Passive seismometers record the motion of the ground by suspending a

magnetic mass surrounded by coil outputting a voltage linearly proportional to the ground

velocity at frequencies above its natural frequency. These passive sensors are limited to

record frequencies above 0.03 Hz. Active sensors, which are most widely used, also consist of

a swinging system, but can record a wider range of frequencies: typically 0.01-100 Hz [15].

The output of the sensors is called counts and is the raw number read off the instrument.

This project will use the term ”stacked counts” which is the resulting output after the beam

forming process combines the counts of the individual stations in the ARCES array.

2.5 Waveforms

The dataset from NORSAR comes in the form of several labeled three-component waveform

snippets and information about the recording. These snippets are 4 minutes long in their

raw state, and their information varies by the event type. For non-noise events, the infor-

mation includes the coordinates of the epicenter of the event, the distance to the event from

ARCES, the magnitude of the event and more. An epicenter is defined by the point on the

earth’s surface vertically above the focus of an earthquake. A focus is the point at which an

earthquake rupture starts. For the explosion events, this focus is where the explosion takes

place.
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Figure 2.2: An earthquake waveform from the NORSAR dataset. The recording is from 2nd
of January 2009, and is a 4 minute recording starting at 16:53:45. The earthquake has an
epicenter 867 km from ARCES and has a magnitude ML 3.27.

The three-components which make up the waveforms, an example of which can be seen

in 2.2, are distinguishable by the directional axis in which they record movement of the

earth. Three components are necessary because each individual component cannot capture

a complete picture of wave motions from other directions. In the waveform, two of these

components are horizontal, radial and transverse, and one is vertical. The radial component

is oriented along the source-receiver azimuth, the transverse component is oriented in the

direction perpendicular to the direction of the radial. The positive radial direction is the

direction to the receiver from the source, and the transverse component is positive in the di-

rection 90 degrees clockwise from the positive radial direction. Combined, these components

provide a more comprehensive image of the waves and their directional displacements than

any single component does by itself. At ARCES the original direction of the seismometers

are north/south, east/west and vertical. After a recorded event, the epicenter estimate is

used to translate the channels to the radial, transverse and vertical directions followed by

beam forming the waveforms.
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2.6 Current Solution

Accurate detection and distinction of seismic events is a fundamental and challenging task in

seismology. NORSAR operate 5 seismic arrays of different sizes, 3 infrasound arrays, and 3

single stations in the Fennoscandia region. These arrays and stations are constantly recording

and transmitting data to NORSAR. All of the data is manually analyzed, using a variety

of techniques, instruments and variables. The weaker the event is the more challenging it

is to classify as the waveforms are so similar. For such weak events, information such as

time of the event, its location and its depth can be significant in determining what is going

on. For example, seismic events recorded at night are more likely to be earthquakes. Events

located near a known quarry or at a very shallow depth are more likely to be explosions.

Characteristics, such as explosions typically having higher P-wave energy content and the

frequency content of the wave, are explored using several types of digital filters with different

parameters on different bands of the wave. In addition to the seismic arrays, infrasound

instruments are used in conjunction with the seismometers by the analysts.

Continuous analysis of the data produces thousands of manually classified events each

year. The classification of these events are uncertain, and events may be incorrectly labeled.

Events of low magnitude (less than ∼1.3 magnitude) are more likely to be misclassified than

stronger events, but external effects could increase the chance of misclassification of higher

magnitude events as well.

2.7 Earthquakes

An earthquake is the shaking of the surface of the Earth as a result of movements within

Earth’s crust, volcanic activity, landslides, mine blasts, nuclear blasts and glacial activity.

The term earthquake is a general term to describe any seismic event that generate seismic

waves.

The most common type of earthquake is tectonic earthquakes. These earthquakes occur

anywhere in the earth where stored elastic strain energy drives fracture propagation along

a fault plane. Faults are described as a fracture or zone of fractures between two blocks of

rocks. Faults are zones where blocks of rock move relative to each other. These movements

12



vary from a few millimeters to thousands of kilometers. In the case of earthquakes, these

movements may occur rapidly, causing significant seismic waves, or slowly which is referred

to as a creep. There are different types of faults, which may be further explored by the

reader’s interest elsewhere. A fault plane is the plane that represents the fracture surface of

a fault. This plane describes the plane in which there is a slip along a fault.

Figure 2.3: An earthquake waveform from the NORSAR dataset. The recording from 7th
of March 2008, is a 4 minute recording starting at 18:18:26, and contains an earthquake of
magnitude ML 2.2 with an epicenter 342 km from ARCES.

Using the waveforms recorded by the seismometres, such as the one in 2.3, analysts can

extract information about the events. Common metrics of earthquakes include its magnitude

and its intensity. Magnitude is a measure of the size of the earthquake source, and is

independent of what the earthquake feels like. There are different types of magnitude metrics,
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and the information below is from Routine Data Processing in Earthquake Seismology, by

J. Haskov and L. Ottemöller [16]. The book provides detailed explanation about each type.

More magnitude types exist, but the variations of type as well as their use is not considered

important for this project.

• ML: Local magnitude, for events with magnitude less than 6-7 and distances less than

1500 km. Frequency band 1-20 Hz.

• Mc: Coda magnitude, for events with magnitude less than 5 and distances less than

1500 km.

• Mb: Body wave magnitude, for teleseismic events of magnitudes less than 7 and dis-

tances 20°- 100°. Frequency around 1 Hz and >0.3 Hz.

• Ms: Surface wave magnitude, for teleseismic events of magnitude up to 9 and distances

20°- 160 °. Period 18-22s.

• MW : Moment magnitude, for any earthquake at any distance.

The local magnitude of the event is used when making reference to magnitudes of events in

this project. Earthquakes differ in how they visually appear on the seismograph, depending

on their magnitude and distance from the array. The P and S wave radiation patterns are

strongly dependent on rupture directivity. The signals received to two stations at equal

epicentral distance but at different azimuths may differ. Their energy is evenly distributed

over the whole recorded frequency band and have a wide frequency content [23]. In fractions,

the energy released by an earthquake is more prominent in S waves than in P waves.

2.8 Explosions

The explosion events in the ARCES data are generally explosions related to quarry and

mining activity. Explosions are compression point events, and does not display the direc-

tional effects experienced by earthquakes. Ripple-firing is a common practice for economic

blasts, and constitutes the majorty of explosion events. This practice uses spaced out small

explosives detonated individually with a time delay. This technique enhances some frequen-

cies while dampening others [23]. The resulting waveform is affected by these time-invariant

variation of energy minima and maximas. In comparison to earthquakes, explosions have
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lower energy. An earthquake event of the same magnitude will have a waveform with a high

energy in a broader band of frequencies.

Figure 2.4: An explosion waveform with ML 2.2 with epicenter 629 km from ARCES.

Figure 2.4 portrays a waveform of an event labeled explosion. Comparing explosion

waveform to earthquakes such as the ones in 2.3 and 2.2, their raw, unprocessed, form does

not display any immediate distinguishing features from each other.

2.9 Noise

The ARCES array is constantly recording and transmitting to the headquarters at Kjeller,

outside of Oslo. As a result, there is a tremendous amount of data containing data of little to

no interest. The instrumentation required to record seismic events at teleseismic distances,

and detect nuclear explosions is very sensitive, so microscopic disturbances will be picked

up. Potential sources for the noise captured in the waveforms include:
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• Various human activities: car and plane traffic, digging and maintenance work near

the array.

• Resonance from seismic activity

• Effects of frost and ice

• Earth slides and avalanches

• Ocean waves crashing into the coastline

• Strong wind and other weather phenomena

These sources differ in their affect on the waveforms, but the most general way to differ-

entiate them is by their duration. Particularly long lasting noisy conditions poses additional

challenge to correctly discriminating important events. Strong winds and rough seas can

cloak distant and or weak earthquakes, leaving them undetected. In general, earthquakes of

magnitudes less than 1.3 are difficult to detect, worsened by the camouflaging noise.

(a) A waveform labeled noise. Note that the
stacked counts axis is scaled to fit each wave-
form.

(b) A waveform labeled noise with a period
of stronger stacked count displacement.

Figure 2.5

The noise waveform in 2.5a is a random waveform labeled noise in the NORSAR dataset.

The chaotic waveform from 2002 does not display any clearly distinguishable features. Some

noise waveforms do contain short sections of stronger displacement in the stacked count axis,

such as in 2.5b, which upon immediate inspection can be mistaken for an seismic event.
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Chapter 3

Machine Learning

3.1 Supervised Learning

Supervised learning is a type of learning task which involves mapping an input to an output

and comparing the inferred output to the true output. This task requires a labeled dataset

to be used for training, in which the model creates an inferred function, which can be used to

infer new data. The performance of such a model is measured by its ability to infer correctly

on unseen data.

3.1.1 Generalization

The goal of a supervised machine learning model is to perform well on unseen data, that

is, the models’ ability to generalize. Unseen data is data which the model has not been

exposed to during the training phase. This is important because a model could report

metrics indicating great performance on the data which it has used to train, while being

completely useless when exposed to unseen data. This phenomena is called overfitting,

and occurs when a model learns the noise and random fluctuations in the training data as

important features used during inference. Learning these features is detrimental to its ability

to infer on new data. Many machine learning models have parameters the developer can

adjust and there are techniques available to reduce the risk of this occurring. Conversely,
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the term underfitting is used to describe a model which reports poor performance even on

the training set.

In order to gauge a models’ ability to generalize, it is common to split the dataset into

segments. There are different ways to split the dataset, but the technique used in this

project is a standard train-validation-test split. This involves segmenting the dataset into

three unique sets, each serving a different purpose. The training set is used for training the

models. The validation set is a partition of the dataset which is indicative of the models

ability to generalize, and is used to select models. The one model which performs the best on

validation data is finally evaluated on the test data. The test data is a segment of the data

which is only used once. This evaluation simulates how the model performs when deployed.

It is important to have both a validation set and a test set as the validation set is used for

selection. This selection introduces bias, as the developer selects the model which performs

the best on this set. The test set has not been selected for and is therefore unbiased.

3.2 Neural Networks

Neural Networks (abbreviated NN) are biologically inspired learning models, which tries to

”learn” underlying structures and relationships in data, in order to perform a task. The

design of the neural network is based loosely on how biological brains function. This type

of model had a boom in the 1980s, with the rediscovery of backpropagation, but due to

limited data sets and computing power, they were soon outperformed by other machine

learning models. With the enormous continuous growth of information and technological

development, NNs have made a comback in the 2010s. The growing computational power

allowed for the development of ”deep” neural networks. The improvement in hardware

combined with more efficient methods for training deep neural networks with non-linear

hidden-units and a very large output layer [6].

A ”deep” neural network means that it contains multiple layers between the input and

output layers. Deeper networks have significantly more weights than a ”shallow” network,

and allow for a combination of differing layers. A deeper network improves the networks

ability to learn non-linear features. With this explosion in combinations of layers possible,

so too does the number of hyperparameters increase. Hyperparameters is a parameter the
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creator can use to control the learning process. Hyperparameters can be visualized as a

switchboard of nobs and levers that can be tuned resulting in different results of the model.

Finding the best possible combination of these hyperparameters is key to optimizing the

performance of the neural network, the exhaustion of which is impossible.

3.2.1 Feed-forward Neural Networks

There are several types of neural networks. The feed-forward neural network is the typical

example of a neural network. This type of neural network attempts to approximate some

function. In essence a feed-forward neural network attempts to map input to its output

based on parameters. The network attempts to learn these parameters in order to produce

the most accurate approximation of the output. The feed-forward term is used as the model

takes some input and feeds it forward throughout intermediate layers before finally to the

output.

Feed-forward Neural Networks consists of a set of layers disposed linearly. The layers are

often categorized by three labels: input layer, hidden layer and output layer. The input layer

consists of a number of input neurons corresponding to the shape of input data. Each input

Figure 3.1: Illustration of a basic Artificial Neural Network. Shows the input layer, a single
hidden layer, output layer and direction of information flow indicated by the arrows.
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is multiplied by a weight corresponding to the ”importance” of the input fed forward to the

hidden layer(s). One can think of a hidden layer as a collection of neurons. The hidden

layer(s) computes the weighted input of the previous layer based on its activation function.

This output is then used as input in the subsequent layer. The final layer is called the output

layer. This layer will make the final approximation of the network using the weighted inputs

of the previous layer and its activation function. Each layer is made up by artificial neurons.

Each neuron in a layer is independent of all other neurons in that layer.

Figure 3.2: Illustration of an artificial neuron, including its inputs, sum or transfer function,
activation function and output.

As seen in 3.2, an artificial neuron is made up by inputs, a weighted sum of the inputs,

an activation function and a single output. The inputs of a neuron are made up by each

output of the all the neurons in the previous layer, multiplied by a weight corresponding to

the ”importance” of that input. These weighted inputs are then added together with a bias

in the transfer function, before arriving in the activation function. The activation function

produces the output, which will be input to all the neurons in the subsequent layer. The

bias is a constant introduced in the transfer function and is similar to the intercept added

to a linear equation.

3.2.2 Convolutional Neural Networks

Convolutional Neural Network (abbreviated CNN) is an implementation of a neural network

which processes array data, such as images. These types of networks were developed for

computer vision, but excel at other tasks like natural language processing as well. As Neural

Networks become deeper, the number of parameters to calculate grows quickly, which in turn
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increases the training time. CNNs utilize dimensionality reduction to reduce the number of

parameters to tune, which diminishes the increased training time as a result of depth.

For a computer, an image is an array of pixel values. Depending on the size and resolution

of the image, the shape of an array of an image can be expressed by this its dimensions:

Number of pixels wide ∗ Number of pixels high ∗ Number of channels(e.g. RBG),

where each element in the array contain an integer between 0 and 255. Even for small images,

this quickly becomes a large input, and thus parameters to learn by the network. In order

to handle this type of data, convolutional layers are employed, giving the network its name.

Convolutional Layer

The convolutional layer is one of the main building blocks used in CNNs. This layer performs

the convolution which involves a dot product of a set of weights with the input. This set of

weights, called a filter or a kernel, is smaller than the input data. Since the operation is a dot

product, the operation results in a single value. Due to the filter being smaller than the input

data, this allows for it to be applied multiple times to different parts of the input image. In

the convolution step, this filter is systematically applied left to right, top to bottom, of the

image. How much the filter is moved for each operation is specified by the developer, by an

integer or tuple, called a stride. The filter moves left to right, moving right at each operation

by the specified stride value and after computing the rightmost multiplication, the filter the

moves down by the specified stride value until the entire image has been traversed.

The ideal outcome of the training process is that the network is able to learn high level

features from the data. In order to do this, several layers are likely necessary. The first

convolutional layer extracts low level features such as edges, gradient orientation etc. Later

layers use the previously extracted lower level features to extract higher level features. In

order to accomplish this, the convolutional process may either reduce, retain or increase the

dimensionality of the output, as compared to the input. One of the hyperparameters used

to control this is how the convolutional step uses padding.

If the image is convolved with no padding (called ”valid” padding), the resulting con-

volved feature is of smaller dimension than the original image. The resulting output height

and output width can be calculated using:
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• W : Input size

• P : Padding size

• F : Filter size

• S: Stride

• O: Output size

in the expressions:

O = ((W − F + 2P )/S) + 1 (3.1)

Figure 3.3: Example of the convolution process. The top image shows the resulting convolved
feature from a 3x3 filter convolved over a 5x5 image, with stride = (1,1) and padding =
”valid”. The bottom picture shows the resulting convolved feature from a 3x3 filter convolved
over the same 5x5 image, with stride = (1,1) and padding = ”same”.

If padding is applied in order to retain the same width and height in both the input and

output, this padding is called ”same”. As seen in figure 3.3, when using valid padding, the

resulting convolved feature is smaller than the input image. This is a consequence of the

interaction of the filter with the borders of the image. In order to apply the filter so that
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the border pixels can be in the center of the filter, ”same” padding is used. Same padding

creates a padding around the border of the image containing zeros.

The set of weights of each filter is learned through the training process and determines

what kind of features it will detect. As a result, in order to capture several features, multiple

filters are necessary. The user, therefore, also needs to determine how many filter is to be

used by the convolutional layer. Finally, the resulting convolutional features are the output

of the convolutional layer, which summarize the presence of features in an input image.

Pooling Layer

The summarized presence of features which convolutional layers output are sensitive to the

location and rotation of the features in the input. In addition, depending on the padding and

stride used, the size of the convolved features may be the same or greater than the input. On

top of this, when using multiple filters, the spatial scale of the image may also be increased.

In order to reduce this location and rotation sensitivity and to reduce the spatial size, pooling

layers are often employed. Two common types of pooling layers, Average Pooling and Max

Pooling summarize the average presence of a feature and the most activated presence of a

feature respectively. In both methods, the user defines the stride, padding and pool size.

The stride and padding behave the same as in the convolutional layer, but the pool size acts

a little differently. The pool size defines a segment which will iteratively move, defined by

the stride, from left to right, top to bottom, like the convolutional filter of the input image.

The difference is that this segment will not calculate the dot product. For Max Pooling, this

segment will return the highest value in each segment. The Average Pooling segment returns

the average value of each segment. This operation is performed on every feature map from

the Convolutional Layer.

The pool size is smaller than the size of the feature map, and is typically set to 2x2 pixels

applied with a stride of 2 pixels on image data. In effect this means that it will half the size

of each dimension of each feature map by a factor of 2, reducing the number of pixels of all

feature maps to a quarter. This downsizing of the feature maps means that a feature that

appears in a slightly different location in the feature map, will still have the same location

in the pooled feature map, making it less sensitive to variance rotation and location of the

detected features. In the case of Max Pooling, the pooling process will select for the most
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prominent feature, acting like a denoiser of the feature map as less important features will

be ignored. In either case the pooling operation is specified by the user, this process does

not need to be learned, and thus does not add to the number of parameters the model needs

to learn.

Global pooling layers are global operations used to reduce the dimensionality of the

feature maps. These are often used to replace the flattening operation and sometimes fully

connected layers, reducing the number of trainable parameters significantly. Common global

pooling operations include Global Max Pooling and Global Average Pooling. In the context

of CNNs, these reduce each input feature map to a single value. The Global Max Pooling

layer reduces the feature map to its highest value. The Global Average Pooling layer reduces

the feature map to its average value.

Fully Connected Layer

Finally, when the input has been processed and a final pooled feature map has been created, it

is common to use a Fully Connected (FC) layer. A FC layer is a global operation, where each

neuron is connected to every element in the previous layer and following layer. Prior to the

use of such a layer in a CNN, the feature maps are flattened, that is the output is converted

to a long vector in order to facilitate this transition. It is common to use one or several

FC layers near the end of CNNs, as these layers learn a (possibly non-linear) function from

the high level feature map extracted by the convolution layers. This is important as feature

maps from convolution layers (typically) depend only on a subset of the input dimensions.

In other words these feature maps are generated by a sequence of local operations. If one

were to build a classifier consisting entirely of stacked convolutions, so that one ends up with

the correct number of output neurons, each output neuron would depend only on a subset

of the input. Global operations such as FC facilitate the flow of information such that the

prediction depends on the entire input.

3.2.3 Recurrent Neural Networks

Recurrent Neural Networks(RNN) is a class of Artificial Neural Networks. This type of

network attempts to allow neural networks to reason with contextual information. That is,
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the output of the network is informed by previous (and future) input. While Feed-forward

Neural Networks(FNNs) allow only information to travel one way: input to output, RNNs

can have information traveling in both directions. Unlike standard Feed-forward neural

networks, RNNs uses a single input, such as a word, or slice of a temporal series to produce

an output. ”Recurrent networks . . . have an internal state that can represent context

information. . . . [they] keep information about past inputs for an amount of time that is

not fixed a priori, but rather depends on its weights and on the input data... A recurrent

network whose inputs are not fixed but rather constitute an input sequence can be used to

transform an input sequence into an output sequence while taking into account contextual

information in a flexible way.”[2]. This ability to store context information allows the network

to ”remember” previous computations.

Due to this ”memory”, RNNs excel at modeling series data as it exhibits temporal dy-

namic behavior. Applications vary, but RNNs are often used for Natural Language Pro-

cessing, Speech Recognition, Machine Translation, Image Recognition and many more. For

example, in this project, an input into an RNN is a single timestep slice consisting of the

3 channels. RNNs is used with serial data, where the order of data is important. In series

data, a single input will likely have an impact on other elements of the series. For example,

the incomplete sentence ”The people of Norway speak ...”, the word ”Norway” and the word

”speak” affects the likelihood of the next word.

The network’s ability to ”remember” long term dependencies in sequences is, however,

limited. When utilizing back-propagation, the network class suffers from vanishing and ex-

ploding gradients. This phenomena is particularly prominent in Recurrent Neural Networks,

as a result of their undefined input shape. Vanishing/exploding gradients is an issue in deep

neural networks, where the gradients are propagated through several layers. The depth of a

Recurrent Neural Networks is dependent on its input as a result of its cyclic behavior, and

thus, the vanishing/exploding gradient phenomena is dependent particularly on the length

of the sequences.

Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of RNN architecture, whose development

reignited hope in the RNNs ability to handle context in data. Prior to the development
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of the LSTM, the standard RNNs ability to handle long term dependencies were particularly

limited by exploding and vanishing gradients. Unable to learn with time lags greater than

5-10, LSTMs can learn to bridge time intervals in excess of 1000 discrete time steps. This

feat is achieved by the LSTM ”cell” constant error flow through internal states special units

[10]. This constant error flow prevents gradients exploding or vanishing, and is today widely

used in a variety of RNN applications.

The key idea behind LSTMs is the cell state. It is very easy for information to ”flow”

through the node unchanged. LSTM nodes contain three ”forget gates”, which dictates

how much information the node lets through. Gates are made up by a sigmoid activation

functions each outputting a number between 0 and 1. If the value is zero, the LSTM will let

nothing through, while a value of one will let everything through unchanged.

3.2.4 Objective function

An objective function is a numerical expression for the objective that is to be achieved by the

model. For example, a goal is to descend from a mountain to sea-level, an objective function

may be expressed by how the spatial coordinates translates to height above sea-level. This

objective is often what one wants to either maximize or minimize. For example, the goal

of most companies is to maximize profit. The objective function describes how the given

inputs translates realization of ones goals numerically. When running machine learning or

optimization algorithms, the objective function is used to evaluate the performance of the

model. The maximization or minimization of this function is the goal of the algorithms.

Neural Networks attempt to minimize the error of the model. The objective function

capturing the error is broadly referred to as the loss function. The form of the loss function

differs depending on the task. The loss function captures all the computations of an input

of the model down to a single number. A decrease in the loss function of a model is a sign

of a better performing model. The cost function is the average of the loss function for all

the training samples. Intuitively, the cost function calculates the error between the ground

truths and the predictions made by the model. There are several types of objective functions,

the choice of which significantly impacts the behavior of the model.
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3.2.5 Activation functions

Activation functions are a crucial component of neural networks. These functions take values

from the single neuron summing block, and determines to what extent the neuron should be

activated. The activation of a neuron is expressed as a single number, with a range depending

on the function in use. Without activation functions, the output of a layer can be anywhere

in the range [−∞,∞]. Restricting the output of a layer, to a range of values is important

to maintain numerical stability, particularly in deeper networks. These functions takes the

weighted sum of the output of the previous layer as input, adding bias, which will introduce

non-linearity to the outputs, and produces a new output [9]. The ability to add non-linearity

to a network is one of the most important characteristic of an activation function. The choice

of the activation function has a significant impact on the performance of the neuron, and

even the network in general. There are several different activation functions, some of which

will be discussed below:

• Binary step:

y(x) =

1 if x ≥ 0

0 otherwise
(3.2)

Figure 3.4: Binary step activation function.
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This very simple activation function, is problematic due to only two possible values as

output and can activate different labels to 1. This problem is solved by using smoother

activation functions that can output a range of values.

• The sigmoid activation function σ:

σ(x) =
1

1 + e−x
(3.3)

Figure 3.5: Sigmoid activation function.

This activation function is much smoother than the binary step function. The function

has an range of (0,1), where x ∈ R. The continuous nature of the function allows the

network to learn non-binary classification tasks. Values of x near 0 are very steep,

meaning that small changes in x will have a big impact on σ(x). This tends to produce

values of σ(x) to either end of the curve. This is a good property for classification as

it makes clear distinctions among predictions. The problem of this activation function

is what happens when x is either very large or very small. Here, a small change of

x will have a near zero impact on σ(x), leading to very slow or no learning. This is

what is called a vanishing gradient, which will be discussed in greater detail in the next

section.

28



• ReLU activation function:

ReLU(x) = max(0, x) (3.4)

Figure 3.6: ReLU activation function.

The ReLU (Rectified Linear Unit) is a simple and effective activation function. It

is a combination of an identity activation function and a threshold function. This

activation function in its linear component does not suffer from the vanishing gradient

problem that other activation functions, such as sigmoid, does, as ReLU does not

have a maximum value. However, the unbounded maximum may cause an exploding

activation. Another problem arise when the network has a substantial amount of 0-

activations. When there a 0-activation, there is no gradient, and this neuron does not

learn. This can lead to a large part of the network not learning, and only using a few

”active” neruons. Variations of the ReLU attempt to mitigate the downsides of this

activation function to varying degrees of success.
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• TanH activation function:

TanH(x) =
ex − e−x

ex + e−x
(3.5)

Figure 3.7: TanH activation function.

TanH (Hyperbolic tangent Activation Function) is a similar activation function to the

sigmoid. TanH is monotonic has range (-1,1), has an S-shape and is differentiable.

This activation function has a more pronounced gradient than sigmoid, but still suffers

from the same vanishing gradient problem. This activation function is commonly used

in binary classification.

• Softmax activation function:

σ(z)i =
ezi∑K
j=1 e

zj
fori = 1, ..., K andz = (z1, ..., zk) ∈ Rk (3.6)

This activation function is the generalization of the sigmoid function for multi-class

classification. This function takes a given vector z of K ∈ R, and normalizes it into

a probability distribution so that the sum of the probability distribution adds up to

1. This activation function is often used in the output layer of a neural network to

normalize the output into a probability distribution. This allows the model to utilize

argmax to pick the most likely class in the distribution.

There are many other activation functions available for neural networks. The choice of
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which has a major impact on the network’s ability to learn. It is common for all hidden

layers to utilize the same kind of activation function, and for the output layer to have an

activation function appropriate for the task. It is important to note that if one uses linear

activation functions, the entire network will be linear. A linear activation function outputs

a linear transformation of the input. This would be propagated throughout the network

until the output layer. The output layer would simply become a linear transformation of the

input in the first layer.

3.2.6 Gradient Descent

Gradient descent is an optimization algorithm used to optimize numerous parameters of a

neural network. The algorithm uses the first-order derivative of a differentiable objective

function iteratively optimizing the parameters to find a local minimum. This is achieved

by taking small ”steps” in the direction of the steepest descent. The size of these steps

are defined by the non negative constant called ”learning rate”, denoted in 2.2 by α. In

other words, gradient descent attempts to tune the weights, Θ, of the model, so that loss

decreases. Let the parameters of a model Θ = {θ0, ...θj} and let the loss function be defined

by L(y, ŷ(Θ)), where y is a vector of ground truth of the training data x, and ŷ(Θ) is the

output of the model given the parameters Θ. The goal of gradient descent is to get

min
Θ
L(y, ŷ(Θ)) (3.7)

In order to accomplish this goal, one needs to compute for each θj ∈ Θ

θtj = θt−1
j − α ∂

∂θt−1
j

L(y, ŷ(Θt−1)) (3.8)

repeatedly until convergence. It is important to compute these parameters simultaneously,

that is, not let the updated value of θtl affect the computation of θtj, l 6= j.

One can interpret this algorithm by imagining a mountain (cost function). With the goal

of descending this mountain, one can use gradient descent to take steps each of which in the

direction that leads to the greatest decrease in height (loss). Depending on length of the step

one takes and where on the mountain one starts their journey, one may find themselves stuck

in a valley unable to get out as each step will increase height. Conversely, if the length of
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ones step is too large, one may find oneself on a whole different mountain. Admittedly, here

the cracks in the metaphor starts to show, but this is a possible outcome in a neural network

context. This restriction to local extremes, means that the starting values of the parameters,

as well as the learning rate, may cause the algorithm to converge to a sub-optimal extreme,

or may ”step” over optimal values of the parameters. Therefore, gradient descent only finds

the global extreme if the loss function C is strictly convex, and thus does not guarantee to

find the global minimum.

The choice of the learning rate will significantly impact the efficiency and capabilities of

the model. A learning rate too large may prevent the convergence of the algorithm or step

over the global extreme. A learning rate too small will be very time consuming as well as

could cause convergence to an undesirable local extreme. The decision of this learning rate

is an iterative process searching over multiple values of the learning rate.

Types Of Gradient Descent

There are two main types of Gradient Descent: Batch Gradient Descent and Stochastic

Gradient Descent. Each of these have their own advantages and disadvantages, but none of

them are guaranteed to find a global minimum.

Batch Gradient Descent

Batch Gradient Descent updates the parameters of the model once every epoch. An epoch is

defined by a cycle through the training set. It calculates the error for each training sample,

and updates the parameters once all of the samples have been evaluated. Let the size of the

training set be represented by N , an epoch by s ∈ S and the learning rate be a user defined

constant α. An update of the parameter θj ∈ Θ is calculated by the following expression:

θsj = θs−1
j − α

N

N∑
i=1

∇L(yi, ŷi(Θs−1)) (3.9)

Using all of the training set has the benefit of calculating its true error, and ensures the

update is in the direction of steepest descent. The few updates to the model makes it quite
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efficient, but since large datasets cannot always be held in RAM, vectorization is much less

efficient. The stable error gradient may cause a premature convergence to a suboptimal local

minima which the model is unable to get out of. In addition, in cases where the training

set is very large, training speed may become an issue due to the slow model updates. Batch

Gradient Descent is often believed to be excellent with smooth and convex error manifolds,

but be less useful when the manifold contains several local extremes.

Stochastic Gradient Descent

Stochastic Gradient Descent (abbreviated SGD) is an optimization algorithm, very com-

monly used in neural network applications, regarded as a stochastic approximation of gra-

dient descent. The key difference from Batch Gradient Descent is how frequently it updates

the parameters, Θ, of the model. Unlike Batch Gradient Descent, SGD updates the param-

eters several times each epoch using batches. A batch is a subsample of the full training set,

the size of which is defined by the user. The number of updates, or steps, K, performed each

epoch for a batch size b, and a number of training points N is given by this equation: b
N

.

The process starts with a random initialization of the parameters and then each parameter

Θj ∈ Θ are updated once every step k ∈ K for each epoch, using the following formula:

Θk
j = Θk−1

j − α

b

i+n∑
i=k

∇L(yi, ŷi(Θk−1)) (3.10)

When the batch size is small enough to fit in RAM, the expression to the right of α in

3.10 can be vectorized which allows for paralellization of the gradient computation. Small

batch sizes are often noisy, and is not necessarily representative of the true error gradient.

Using such a noisy representation, the frequent updates may cause the model error to jump

around. If the batch size is very large, the better the approximation is to the true gradient.

As the batch size grows, the limitations expressed in Batch Gradient Descent become more

prominent. The upside of this approach is that the model immediately provides insight into

its performance and rate of improvement. The noisy samples may also help the model avoid

local minima, but conversely may also prevent the model from converging to an optimum

minimum. The frequent updates are computationally expensive, and may lead to long train-

ing times for large datasets. Experimentation is required to find the best possible batch size,

in order to balance the tradeoff. Note: Some authors make the distinction between SGD and
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Mini-Batch Gradient Descent, but according to Deep Learning by Goodfellow et al. [13],

these are now commonly referred to simply as SGD.

Adam and RMSprop

Adam and RMSprop are two variations on gradient descent used in this project. These

adaptive optimizers use ideas such as momentum and adaptive learning rate to overcome

pathological error manifolds or to speed up training. Momentum is a technique which uses

the gradients of past updates to inform the current. This helps build speed, moving faster

towards a minimum, and dampens oscillations. RMSprop uses per-parameter learning rates,

dividing the appropriate learning rate by an exponentially weighted average of squared gra-

dients. This has the effect of automatically adjusting the parameter updates so they match

the scale of the gradients. This decreases the scale of updates to parameters with large gra-

dients, and increases the scale of updates to parameters with small gradients. Normalizing

the parameter updates based on their magnitude prevents gradients from exploding as well

as vanishing. The Adam (Adaptive Moment Estimation) algorithm uses momentum as well

as an adaptive learning rate.

3.2.7 Backpropagation

In order to calculate the gradients of the weights of a feed forward neural network the

backpropagation algorithm is used. Generalizations of the algorithm exist for other types

of ANNs as well. This algorithm computes the gradient of the loss function with respect

to the weights and biases of the network. These are the gradients used by gradient descent

to update the model. In simple terms, the algorithm uses the chain rule to compute the

gradient one layer at a time, iterating backward from the last layer to the first. Due to

algorithm iterating backwards, the subsequent layer can use the previously calculated partial

derivatives which is efficient in comparison to the naive approach of calculating the gradient

of each layer separately. Knowing the gradient of each weight and bias of the model is the

same as knowing how sensitive the loss function is to these variables. As a result, one also

knows which variables to adjust to have the most impact.
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Training a neural network from scratch is started by a random initialization of the weights

and biases of the network. Each training sample processed by the network returns an out-

put which is the weighted accumulation of activations in the network. The network will at

first perform poorly, returning undesirable outputs. Knowing what the desired output to

be, using backpropagation the network will be able to determine which weights and biases

which contributed to the poor performance. Backpropagation lets the network calculate the

gradient of these variables, and using gradient descent, adjust them so that their detrimental

effect on the output is diminished. Popularized by Rumelhart et al., this algorithm is central

to the fundamentals of neural networks and its introduction revolutionized how neural net-

works learn because ”the ability to create useful new features distinguishes back-propagation

from eariler, simpler methods...” [29].

3.2.8 Overfitting And How To Prevent It

With the development of deeper and wider neural networks, the chance of overfitting to the

training data becomes more likely. When a network is trained for too long or the model is

too complex, the model can start to learn unimportant features of the training data. These

leared features prevent the model from generalizing on new data. In order to mitigate the

chance of overfitting, several techniques are at disposal. The techniques deployed in this

project are explained below:

Early Stopping

As models can overfit from training for too long, this is a technique which terminates training

after the model has ”peaked” in performance. This technique works by the user defining

parameters such as the metric to monitor, how many epochs after the best recorded metric

the model should wait before stopping and often whether or not the parameters of the model

should be returned to the state in which they produced the best metrics.

Data Augmentation

This involves inflating the dataset with artificial samples, injected with noise or changed in

some minor way. Although this should be used sparingly, can be a powerful substitute to

additional authentic data.
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L1 and L2 regularization

Regularizing the layers of a model with L1 and L2 regularization are widely used in supervised

learning models. These techniques alter the objective function so that the model attempts

to not only minimize loss, but also the complexity of the model. Two of the main reasons

that cause a model to be too complex are the total number of features and the weights of

the features. L1 regularization attempts to shrink the coefficients of unimportant features

to zero, by adding the sum of absolute values of the parameters, multiplied by a user defined

scaler term, λ, to the original loss function:

L(y, ŷ(Θ))new = L(y, ŷ(Θ)) + λ
∑
|Θ| (3.11)

As this technique forces weights of uninformative features to be zero, it doubles as built-in

feature reduction tool, reducing the total number of features of a model. As this technique

utilizes absolute sum of weights, it is robust to outliers.

L2 regularization penalizes large weights more harshly than small weights. This has the

effect of encouraging the use of small but non-sparse weights. The technique removes a

small percentage of weights at each iteration, making them smaller, but never equal to zero.

This decreases the complexity of the model by reducing the weights, but does not have the

feature reduction effect of L1. L2 regularization is controlled by a user defined λ term, which

functions as a scaler for the sum of squared weights term:

L(y, ŷ(Θ))new = L(y, ŷ(Θ)) + λ
∑

Θ2 (3.12)

The squared term does not make this regularization technique robust to outliers, but

does help the model be able to learn complex data patterns.

Dropout

Whereas L1 and L2 modify the loss function in order to regularize, dropout changes the

network by randomly dropping neurons each iteration of training. Dropping neurons means

that the network will not use the weights and activation of the dropped neurons during

training, essentially training a different (thinned) neural network for each iteration. This
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technique can be interpreted as adding noise to the networks’ hidden units. ”Backpropa-

gation learning builds up brittle co-adaptations that work for the training data but do not

generalize to unseen data. Random dropout breaks up these co-adaptions by making the

presence of any particular hidden unit unreliable.” [31].

3.2.9 Vanishing And Exploding Gradients

The back propagation algorithm, although effective, has drawbacks which become more

prominent depending on the depth (number of hidden layers) of the network. The error

gradient of a networks is computed using the chain rule, and thus in a network of n layers,

n derivatives are multiplied together. If these derivatives are either small or large, the

continuous multiplication will cause the gradients to exponentially become smaller or larger

causing the gradients to either vanish or explode.

In cases of exploding gradients, this causes the model to be unstable and unable to

effectively learn. Symptoms of this problem are seen through continuous and large increases

in the loss of the model, eventually resulting in NaN (Not a Number) values, as a consequence

of very large weights. When the weights/loss contain NaN values, they can no longer be

updated, and the network fails.

In cases of vanishing gradients, this causes the model to be incapable to learn significant

features from the data. When the gradients of the weights and biases of the model are near

zero, they will not be updated meaningfully, and the network will no longer learn.

The phenomena of vanishing and exploding gradients is widespread, and several tech-

niques have been developed in order to mitigate the problem. Common remedies include:

reducing the depth of the network, gradient clipping (limiting the magnitude of the gradients,

to prevent exploding gradients), carefully initializing the weights and batch normalization.

Explaining these remedies in further detail are beyond the scope of this project.
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Chapter 4

Data And Methods

4.1 Description Of The Dataset

The NORSAR dataset is collected by the ARCES array outside of Karasjok, Finland. These

events are manually analyzed using all of NORSARs’ stations and arrays, but the waveforms

used in this project were recorded at ARCES. In addition, these events are suplemented with

Institute of Seismology of the University of Helisinki’s bulletin. NORSARs’ own bulletin is

publicly available [27], although this information is less complete than what is available

for this project. Throughout the development of this project, the data set was updated to

contain the most recent events, the chronological order of which is referred to by batches. The

data set is made up of several samples of waveform data, as well as information about each

event. The information contained in the information section of each sample differs between

each class of event, and some of the type of information differs between the ”batches”. The

earliest recordings in the dataset are from January, 1991, while the most recent is from

November, 2020.

4.1.1 First Batch

The first batch of the dataset contains 206k three-component events. The class distribution of

the dataset is 6852 earthquake events, 107786 mining explosion events, 606 mining induced
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earthquake events, 91612 recorded noise events. Each waveform contain 6001 timesteps

from a three-component recording of 150 seconds. Every recording has been beamformed

(see seismology section) prior to use in this project, which reduces some of the noise in the

data. The data has been manually labeled by NORSAR analysts, and regardless of the

label, the majority of the timesteps for each sample consists of noise. For the earthquake

and explosion events, the timesteps of interest are not labeled, and may start at any point

within the interval. An earthquake/explosion event may occur in the last few timesteps,

while still being labeled an earthquake/explosion. The beginning of the events may also not

be included in the recording whilst still being labeled an earthquake or explosion.

(a) PDF and CDF of magnitudes of earth-
quakes in the first batch.

(b) PDF and CDF of magnitudes of explosions
in the first batch.

Figure 4.1: Magnitude distribution of earthquakes and explosions in the first batch of the
ARCES dataset. Both graphs are created with a bin size of 40.

This first batch of data was smaller than the second batch, due to several events in the

first batch containing NaN values. The plots in 4.1 show the pdf and cdf of earthquake and

explosion events of this dataset. As seen in 4.1a, the magnitudes of the earthquakes in the

data set are normally distributed with a positive skew. This skew is less prominent in the

second batch, as this first data set contained many NaN values, all of which were excluded

from these plots. This first batch of data was not used as much for modeling, but rather to

develop a large portion of the pipeline in preparation for the second, and more intact batch

of data.
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4.1.2 Second batch

The second batch of the data set contains 235k three-component events. These events are

distributed by 9464 earthquake events, 111173 mining explosion events and 124048 recorded

noise events. Similarly to the previous batch, all events are beamformed prior to the use

in this project. Unlike the first batch of data, the waveforms in this batch contained 9460

timesteps rather than 6001. With a sample rate of 40 Hz, these samples are 240 seconds long.

The increase of 2612 earthquakes in the second batch is due to several samples containing

NaN values in the first batch being omitted as well as recently recorded earthquakes being

included.

The graphs in 4.2 show the distribution of magnitudes and Magnitude Square Root Dis-

tance Ratio (MSRDR) of earthquakes and explosions in the second batch of data. Explosions

events are more likely to be of a lower magnitude event than earthquakes, but still contain

events measured at a magnitude of 5.8. The smallest explosion is recorded to have a man-

gitude of 0.6 . For the earthquakes, the event of highest magnitude is measured at 6.4,

while the lowest is at 0.5. The earthquake events appear to have a distribution similar to

the normal distribution, although with longer tails. The explosion events appear more as a

beta distribution, where events with magnitude less than 2 make up the vast majority of the

dataset. The MSRDR is a metric can be interpreted as an indicator for the signal to noise

ratio. This ratio gives an indication of the level of the desired signal to the level of back-

ground noise. A high value of MSRDR indicates that the event is more distinct, while a low

value indicates that the interesting signal is less prominent. This property is important as

waves transfer energy in the form of heat to the environment as it travels. A distant and low

magnitude event is harder to detect, than a high magnitude near event. The distributions

show that the vast majority of the samples are on the lower end of the MSRDR spectrum.

The explosion events are more evenly distributed in the lower end of this scale, while the

earthquake events follow a distribution similar to the beta distribution, but with a higher

range of MSRDR than explosions. Looking at the magnitude distribution of earthquakes

in figure 4.2a, and table 4.1, the mode of earthquakes is higher than explosions, and the

epicentral distances are more evenly distributed. Explosions tend to be of lower magnitudes

as well as nearer to ARCES.

Since all recordings in the dataset contain noise, low magnitude earthquakes and low

MSRDR earthquakes will be more challenging to classify. In addition, there is significantly
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(a) PDF and CDF of magnitudes of earth-
quakes in the second batch.

(b) PDF and CDF of magnitudes of explosions
in the second batch.

(c) PDF of MSRDR of earthquakes in the sec-
ond batch.

(d) PDF of MSRDR of earthquakes in the sec-
ond batch.

Figure 4.2: Magnitude and MSRDR distributions of earthquakes and explosions in the
ACRES dataset. Both magnitude graphs are created with a bin size of 40, MSRDR graphs
uses a bin size of 80. Note that the scales are different in the MSRDR graphs.



fewer earthquake samples than noise or explosion events, which requires up/down sampling

combined with augmentation methods to overcome. The process of artificially inflating the

data set and other methodology employed in this project will be outlined in detail in section

4.2.

Epicentral distance
interval (km)

Number of
explosion events

Number of
earthquake events

Total number
of events

[0, 200) 4972 432 5404
[200, 400) 84521 2238 86759
[400, 600) 11251 1266 12517
[600, 800) 3628 809 4437
[800, 1000) 2607 1804 4411
[1000, 1200) 3721 1467 5188
[1200, 1400) 252 820 1072
[1400, 1600) 102 359 461
[1600, 1800) 65 183 248
[1800, 2000) 24 58 82
[2000, 2200) 21 17 38
[2200, 2400) 8 8 16
[2400, 2600 0 2 2
[2600, 2800) 1 1 2

Table 4.1: Distribution of the distance to the epicenters of non-noise events

The events in the second batch range from 10 km to 2700 km, where the vast majority

of recorded events occur in the range 200 to 400 km from ARCES. Relatively few events

have an epicenter further away than 1200 km, as seen in table 4.1. The decision was made

to include teleseismic events, as removing them would reduce the number of earthquakes

disproportionately. In addition, these events are not completely dominated by noise, provid-

ing value to the learning process. In addition these events mimic the signatures of weaker,

but nearer earthquakes, helping the network classify weaker events. The distribution of the

distance of explosion events at shorter intervals can be seen clustering around their quar-

ry/mine as expected. As the networks are not using this information, this does not directly

affect the classification of the models in this project. The location of the epicenter combined

with the time of day plays an important role when classifying these events manually, but

this information is unavailable to the models in this project.

This batch of data contained more detailed information about the events. Included in

this information, but not in the first batch, is a combination of manually and automatically
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labeled timesteps of interest. These timesteps inform where the event starts to occur. These

timesteps are always after at least 60 seconds of information (presumed to be) irrelevant

to the event of interest. With this labeled timestep, a time uncertainty is included which

in combination provides an interval in where the start of the event occurs. These longer

recordings, combined with labeled time of interest with a lower limit, allow for augmentation

of the recordings to a greater degree than the first batch. That is, the training set may be

artificially inflated with unique samples, which maintains the important relationships of the

waveforms where interesting events occur. Simultaneously, this allows for a reduction in the

amount of noise which previously made up a large amount of the 4 minute recordings. This

is a key tool used for offsetting the limitations of the relatively few earthquake samples in

the NORSAR dataset. Unfortunately, like the first batch, the recordings do not necessarily

include the entirety of the event. Certain recordings may only contain a few seconds of the

interesting event labeled while still being considered an earthquake/explosion, however the

onset of the event is always included.

4.1.3 Outliers And Problematic Data

The majority of the recordings received from NORSAR were varied, but reasonable data-

points. These events, although nearly impossible to distinguish visually, appeared as record-

ings of natural events. However, a not insignificant number of events did not appear to

contain natural recordings. These outliers expressed themselves in different ways, but likely

had a notable negative effect on the performance of the models in this project. Some out-

liers had, perceived, large random spike(s) greatly trumping the otherwise normal looking

recording in scale, see 4.3a and 4.3b. Others contained very strong expression in one, 4.3d, or

several channels, 4.3e. Two outliers, occuring in 1993,4.3c, and 1994, 4.3f, look very similar,

although one with twice the expression in the y-axis.

The examples shown in figure 4.3 illustrate the presence of outliers in the dataset, but

is by no means a complete list. Due to the size of the dataset, it is infeasible to manually

inspect every single event, and thus an accurate number of how prevalent these outliers are

is hard to quantify. However, a noteworthy quantity was found while inspecting a subset of

the data to consider the outliers’ presence significant.

The problem of incorrectly labeled events poses further difficulty to the classification

task. Distinguishing between explosions and earthquakes is challenging, and within the
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(a) Outlier waveform, labled earthquake of
magnitude 3.3 epicenter 1561 km from ARCES,
with large spike in both S-beams. The P-beam
behaves similar to the normal waveforms.

(b) Outlier waveform, labled earthquake of mag-
nitude 2.8 epicenter 583 km from ARCES, with
large spikes in the P-Beam. Both S-beams ap-
pear normal.

(c) Outlier waveform, labled earthquake of mag-
nitude 2.8 epicenter 1358 km from ARCES.
Constant and severe expression in the P-beam.

(d) Outlier waveform, labled explosion of mag-
nitude 1.3 epicenter 282 km from ARCES. Un-
characteristically strong expression in the P-
beam. Difficult to visually detect any event of
interest in the P-beam as it looks similar to the
noise recordings, although much stronger dis-
placement. The transverse S-beam, however,
appears to behave as expected.



(e) Outlier waveform, labled explosion of mag-
nitude 1.9 epicenter 718 km from ARCES.
Uncharacteristically strong expression in all
beams, considering the distance and magnitude.
Indistinguishable from noise in all channels,
were it not for the extreme expression.

(f) Outlier waveform, labled explosion of mag-
nitude 2.3 epicenter 792 km from ARCES.
Constant and severe expression in the P-beam.

Figure 4.3

information section of each event is the label preceded with words such as ”probably” and

”likely”, leaving room for error. According to NORSAR, classifying events of magnitudes

less than 1.3 is particularly difficult, and there is a higher likelihood of misclassified events

in this range. Incorrectly labeled events are detrimental to the learning process of a neural

network. Yet, there are techniques available to mitigate their effects. Label smoothing is

one of these techniques [26], but were not implemented in this project. This decision was

made in order to focus optimization on other hyperparameters, as the number of incorrectly

labeled events is unknown.

Another issue, although more general to this type of data, is that more than one inter-

esting event may occur on a single recording, while only one type being labeled. A recording

labeled earthquake may contain several earthquakes and/or explosions in the same wave-

form. The labeled event may be insignificant in its expression compared to other events.

This does not appear to be a significant issue in the events labeled noise, but is problematic

when training a model to distinguish between explosions and earthquakes. Outliers can also

be found in the noise recordings, distinguished by atypical displacement in stacked counts or
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features clearly deviating from the norm. As these events are not labeled differently by the

analysts, these are perceived as neither earthquakes nor explosions thus considered noise.

When attempting to augment events of interest using the time augmentor, described

in section 4.2, the presence of several, irrelevant, and potentially more expressive events,

becomes a considerable drawback to the augmentation effort. The cutting and moving

around different segments of recording containing several interesting events is likely often

detrimental to the structural integrity of the waveform.

4.2 Preprocessing

Preprocessing is an important aspect to the machine learning process. Preprocessing refers

to all the transformations of the raw data prior to being fed to the machine learning algo-

rithm. Raw data often contains non-relevant information detrimental to the algorithms, the

inclusion of means the model needs to learn their irrelevance. Including irrelevant data un-

necessarily increases the dimension, which is problematic due to the curse of dimensionality.

High dimensional data means that the volume of the space is very large, and a significant

amount of data is necessary to have a representative sample. A model which struggles to

fit on data with many input features is generally known as the curse of dimensionality.

Preprocessing consists of reducing the data to its most useful form, removing unnecessary

information and transforming the data to help maintain numerical stability.

The decision of how to transform the data into its most valuable form to the models is a

key element in this project. The ARCES dataset in its raw form is not suitable for Neural

Networks. The dataset is significantly unbalanced, with the number of earthquake events

making up a fraction of the number of noise/explosion events. The length of the recordings

results in the majority of the events consisting of pure noise, further complicating the clas-

sification task. In addition, analysts use a variety of filters during signal processing in order

to enhance the intervals of interest, simplifying the manual classification task. Throughout

the development of this project, these factors became important to account for in order to

improve performance of the models.

In this chapter, the various methods used to handle these challenges is described in each

subsection. In subsection 4.2.6 the entire preprocessing pipeline is outlined, describing the

order of operations necessary to handle dependency issues resulting from the transformations.
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4.2.1 Balancing the dataset

The class distribution of the dataset is crucial to consider while doing machine learning.

Depending on the task, this statistic has far-reaching downstream effects in the performance

of the model, as well as how to interpret the resulting metrics. For example, a two-class

dataset, with a 95% population of class 0, will yield a binary accuracy of 95% for a model

which always guesses class 0. This deceiving performance metric, depending on the objective

function, may stump the learning process, and result in a useless model. During the devel-

opment of this project, the distribution of the data during the training phase has played a

central role in the preprocessing pipeline.

There are several ways to handle an unbalanced dataset, two of which being used in this

project were upsampling and downsampling. Downsampling consists of randomly selecting

samples from the dataset such that the resulting dataset contains less events than the original.

Similarly, upsampling which consists of randomly selecting (with replacement) from the

original dataset such that the resulting dataset contains more events than the original.

The vast majority of the events in the NORSAR dataset is noise and explosion events,

124k and 111k respectively. Earthquake events make up 3.89% of the events in the second

batch of data. Each recording contains thousands of datapoints, meaning that downsampling

the other two classes will lead to a very sparse dataset. On the other hand, upsampling,

especially utilized to such an extent in this project, leads to a lot of redundancy with little

variance in the data, meaning that the risk of overfitting is increased. Further preprocessing

was therefore necessary to counteract these effects, which are described in the later subsec-

tions.

The upsampling and downsampling methods have been used in several different ways

in this project, depending on which type of model is being trained, and how many classes

were to be included. The initial balancing consist of downsampling the number of the

most numerous class to match the second most numerous class, and to upsample the least

numerous class to match the second most numerous class. This way each of the 3 classes

have the same amount of events. Following this balancing, during the model selection and

optimization stage of this project, a subsample of the balanced dataset is selected in order to

reduce: computational demand, effect of redundant upsampled events, and reduce training

time.
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In addition, for the two-in-one model described in subsection 4.3.1, downsampling

was also used in order to get even distribution between the noise and the non noise

events. The general distribution of the data looks after balancing follows this formula:

ni = Total number of events
Number of classes

where ni is the number of events of class i. For the first model, explo-

sions and earthquakes were treated as having the same label: not noise. The explosions and

earthquakes making up the non-noise class is populated with equal number of earthquakes

to explosions.

4.2.2 Time Augmentation

The disproportionate amount of earthquake events in the dataset, and the necessitated

upsampling produces a significant amount of redundant samples in the dataset. Individual

earthquake events may be duplicated several times, which leads to overfitting issues. In order

to combat these effects, two augmentation methods were developed: ”Time Augmentation”

and ”Noise Augmentation”. Noise Augmentation will be described later in this chapter.

Data augmentation are techniques used to artificially inflate the amount of data by adding

modified copies of existing data. These methods are often used as a regularizer to reduce

the effects of overfitting, in this case as a result of upsampling an underrepresented class.

In the second batch of data received from NORSAR, the start time of the event of

interest were included for each of the non-noise events. Ahead of the event of interest in

these recordings were at least 60 seconds of information not relevant to the event. For a

large portion of the data, this buffer consisted of pure noise which could be shifted without

affecting the structural integrity of the event of interest. The buffer also meant that the

recordings were longer than those of the previous batch. In addition this meant that each

recording contained at least the onset of the event, although still were not guaranteed to

include the entire event. The increased length, of the events meant that the proportion of

noise to actual event were increased, and contained the information necessary to reduce the

length of the recording, while maintaining the important elements. The combination of the

60 second buffer and labeled start time of the event allowed for an augmentor to be written

that takes advantage of this information. This augmentor, referred to as Time Augmentor,

became a powerful tool to allow for upsampling, and mitigated the strain of the limited

dataset.
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The augmentor reduces the length of the recording to match the same 2 minute 30 second

duration of the first batch, but shifts the event of interest around and fills the surrounding

space with information, in most cases, not relevant to the event of interest. The first step of

the augmentor is to map a redundancy index to each of the events in the dataset. This index

is used to distinguish between redundant events, allowing for each event to be augmented

the same way every time it is used.

After this index has been mapped and each event has a unique identifier, the augmentor

is fitted. The fitting process iterates through every event in the dataset, shifting the part

of the waveform containing the event of interest. This shift is limited to start between 0

seconds and 50 seconds, in order to preserve the integrity of the area of interest. The space

surrounding the shifted event of interest is filled with noise from areas with a high probability

of containing noise.

The empty space prior to the onset, is filled with the information from the buffer, and

if necessary, with a slice, with duration equal to the space required, from the end of the

original waveform. In the manually inspected waveforms, all events of interest were labeled

to start near the 60 second mark, but the augmentor is able to handle cases where the event

of interest occurs near the end of the original waveform. These recordings contain a long

stretch of irrelevant information preceding the event of interest. If events such as these are

shifted so that they occur early in the augmented event, the end of the augmentation is left

empty. In these cases where the span of the event of interest is short of the period needed

to fill the augmented waveform, the end is filled with a slice of the recording preceding the

onset of the labeled event.

Figure 4.4: Illustration of how the time augmentor shifts the event of interest, and fills the
gaps with presumed noise.

50



This augmentor has shown to be very effective in its goal to reduce overfitting, but has

certain downsides which is detrimental to the learning process, and poses a challenge to its

ability to infer onto unseen data. There is no guarantee that a recording contains a single

isolated event. Manual inspection of the waveforms show that some recordings contain the

end of a previous event in its 60 second buffer. The augmentor operates with the assumption

that the buffer can be shifted without affecting the integrity of the labeled event. For cases

were this assumption is violated, the structural integrity of the waveform is compromised,

and is a shortcoming of the augmentation process.

Other events, where the earthquake or explosion is far away, the labeled start time show

when the initial wave arrives, but the visually clear event arrives several minutes later.

Reducing the length of the recording risks cutting out information of significance. If the

event is shifted so that it occurs very early, this reduces the chance of this problem, but does

not eliminate it. An argument could be made that this is a shortcoming of the dataset in

general as a result of its fixed length, but worsened by additional shortening.

A few recordings contain its labeled event, but also include subsequent unlabeled earth-

quakes and explosions. The augmentation process will generally leave the labeled event

intact, but the unlabeled event may be cut and shifted, creating irregular and unnatural

structures in the waveform. Some events may contain both earthquakes and explosions, but

has only single event labeled. This is a problem with or without the augmentation, however,

the impact of multiple events on a single waveform may be worsened by the augmentor.

Despite these shortcomings, the problem of duplicate recordings is serious, stemming

from upsampling necessitated by the unbalanced dataset, whose effects need mitigation.

Overall, the dataset contain recordings suited for such a solution, and shows promise in

deployment. As with anything in machine learning, there are advantages and disadvantages

to any solution, and the advantages of this tool appears to outweigh its disadvantages.

4.2.3 Filters

The raw data from NORSAR is noisy. The waveforms contain significant amounts of unin-

teresting and unimportant information which analysts typically apply a variety of techniques

to reduce and overcome. Filtering is a commonly used tool utilized in order to enhance the
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signal of interest in the data. Filtering is the practice of modifying a signal in order to

remove undesirable aspects of the signal prior to its use in calculation or classification.

The success found from filters in the manual approach in seismic classification, indicated

that it could yield positive results when applied to the preprocessing pipeline of this machine

learning application. A few filters, such as highpass and bandpass, were experimented on at

different frequencies, with varying success in the two classification tasks depending on the

model. Further experimentation on filters could be very impactful on further research, but

considering the momentous search space, its discouraging performance and time limitations,

more fine-grained experimentation were considered out of scope.

In general, the use of filters yielded varying results depending on the classification task.

When classifying noise and not noise, the use of filters had a positive impact, often improving

the performance during model selection. In contrast, when classifying between earthquakes

and explosions, the use of a filter had detrimental effects, significantly stumping the model

selection process, largely producing useless models.

There are two main drawbacks to using filters in this project. The first and most impor-

tant is that distinguishing features appear to be less prominent when applying filters. This is

seen with the general low performance during the model selection phase of the earthquake/-

explosion classifiers. The second drawback is that some recordings become indistinguishable

from noise when filters are applied. On the other hand, other recordings are indistinguishable

from noise when no filters are applied. These two drawbacks may, at least in part, explain

the general low performance using filters in the earthquake/explosion classifiers. Further, it

is important to note that when performing manual classification of these events, analysts use

different filters depending on the distance to the event as well as the magnitude. Through a

process of trial and error the use of filters is a very important tool for enhancing the signal

of interest, and improving the signal to noise ratio. However, since one specific filter is not

applicable to all events, it is not surprising that filters do not yield good results for this

project.

4.2.4 Scaling

Scaling or normalization are techniques used in many machine learning applications. For

models which use Gradient Descent based algorithms, having scaled data aids the descent
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to converge the the local minimum faster, and aids numerical stability. This is a result of

the gradient descent formula, where the scale of the feature has an impact on the step size

of the gradient descent. In effect, features with a larger range, will have a larger effect on

the step, while features with a smaller range will be less important.

In practice, the range of input values in data can vary widely from one dimension to

another. If one is to calculate the euclidean distance between a set multidimensional points,

with one dimension with a much wider range of possible values, this one dimension will

govern the final distance. Different scaling techniques attempt to transform the data, such

that each feature contributes proportionally to the final distance. The choice of scaler can

have a significant impact on a neural networks ability to learn from data, and picking one

that transforms the data in a productive way can be key to developing useful models.

(a) (b)

Figure 4.5: Two outlier waveforms labeled earthquake (4.5a) and explosion (4.5b), both with
strong continuous expression in the vertical component

The various scaling techniques experimented upon in this project has largely been chosen

based on how they handle outliers in the data, and how their transformation impacts the

model performance. There is a small (but not insignificant) amount of faulty recordings

in the dataset, as discussed in the dataset subsection of the first chapter. These outliers

often distinguished themselves by unnaturally strong expression in the stacked counts of the
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waveform. In some cases this strong displacement were continuous, see 4.5 for examples of

this. Other outliers have short, but strong, regular expressions in the displacement axis,

which negatively impact the scaling process.

Fitting is a term used to describe the initialization phase of scalers who depend on

information about more than a single waveform. This phase looks at all of the data in the

training set and stores information necessary for the transformation. For all of the scalers

used and discussed, there are a few ways in which one can fit and transform a scaler to this

type of data. For example, one can fit a scaler so that it scales each component independently,

one can transpose the data so that each timestep acts as a feature, or one can fit a scaler

such that all of the features are scaled the same. Only the first two were experimented on

for this project. Transposing the data so that each timestep acts as a feature did yield some

positive results, particularly in the noise-not-noise model, but had unintended effects with

scalers such as standard scaler and minmax. Transforming each component independently

seemingly yielded the best results. Further experimentation on scalers could potentially be

very impactful in future research.

Min-Max Scaling

Min-Max scaling is a normalization technique which transforms each component/feature so

that the value at each time step is in the range [0,1]. Let x represent a waveform and X

represent all waveforms in the set in which the scaler was fitted, then the formulation of the

MinMax scalers transformation is this:

xscaled =
x−min(X)

max(X)−minX
(4.1)

The Min-Max scaler, prior to transformation, is fit to the entire training set. From

the training set, it finds the maximum and minimum value for each feature. As a result,

this technique is very sensitive to outliers in the data. In particular in cases where there

are features with absolute values that far exceed what is normally present in the data. In

addition, there is a great range of values in the stacked counts for all of the channels in the

data, and so waveforms tend to be overly squished. This scaler is therefore deemed to not

be useful for this project.
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Standard Scaling

Standard scaling transforms each feature to be centered around the mean of the fitting set,

with a unit standard deviation. This helps each feature to have a proportional impact on the

gradient descent, but does not bound the range of values and so the standardization process

is not as affected by outliers in the data. Again, let x represent a waveform and µ and σ

represent the mean and standard deviation respectively of all waveforms in the set in which

the scaler was fitted. The formulation for the transformation done by the standard scaler is

this:

xscaled =
x− µ
σ

(4.2)

As with the Min-Max scaler, this technique fits to the training set prior to transformation.

The issue with this scaler is that the magnitude of the displacement in the stacked count

axis is not the only distinguishing factor among the three classes. However, the network will

quickly learn that a strong displacement in stacked count typically means that there is an

interesting event occuring, and will overfit to this concept. As this displacement in stacked

counts is a function of distance and magnitude, some events of interest will be squished to

look like what the network interprets as noise. What is more important is to maintain the

structural integrity of the waveform. For this data, the standard scaler tends to overly squish

events with a weak magnitude and/or with a distant epicenter, which may explain the less

than optimal performance when used in certain models. So despite its robustness to outliers,

the difference in magnitude in the stacked count axis among the waveforms makes the use

of this scaler problematic. However, with a more selective filtering process of the dataset,

the downsides of this scaler may be mitigated.

Normalize Scaling

Normalize scaling is used to scale each component to its unit norm. There are three different

norms which can be used, where L2 norm is the one used in this project. Further experi-

mentation with different norms may yield positive results, but were deemed out of scope for

this project. The transformation of this scaler on a waveform x is given by the formula:

xscaled =
x

‖x‖2

(4.3)
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Unlike the previous scalers, this one does not have a fitting phase. Each sample is in-

dependently transformed from other events which causes them to have a similar range of

amplitudes. As a result, the outliers do not have a spillover effect on the other transforma-

tions. Each channel in the waveform is transformed independently from the others, which

removes the relative difference among the channels. In addition, the effect of distance and

magnitude is lessened, and the network cannot learn the concept of strong stacked count

displacement means that something interesting is going on. On the contrary, events with a

strong displacement in the stacked count axis, have their noise scaled down relative to the

signal of interest. The network could learn that in transformed waveforms with areas of little

displacement, are likely to not be pure noise waveforms. Despite this drawback, this scaler

has consistently performed well.

Robust Scaling

Robust scaling transforms the waveform by removing its median and scales the data ac-

cording to the user defined quantile range. This quantile range is by often 75%-25%, which

is what was used in this project. This scaler does not have a limit on the range of values

for each channel, and transforms all waveforms to have similar magnitudes in terms of the

stacked count axis. The transformation applied to a waveform x by the robust scaler can be

calculated using this formula, where Q1(X) and Q3(X) represents the first and third quantile

respectively of the waveforms in the fitting set X:

xscaled =
x−Median(X)(X)

Q3(X)−Q1(X)
(4.4)

Like with Standard and MinMax scaling, this scaler is fitted to the training set where it

calculates the component-wise quantiles necessary for the transformation. As outliers can

often influence the mean and variance in a negative way, the median and interquartile range

can often give better results. This proved to be the case for this project, and had performance

comparable to the Normalized scaling technique. The two differ in that the Normalized scaler

transforms waveforms to be much more similar in magnitude than the Robust scaler, but

the Robust scaler does appears to maintain the magnitude of displacement in the stacked

counts axis of noise.
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4.2.5 Noise Augmentation

As an additional measure to limit the risk of overfitting as a result of the redundancy caused

by upsampling earthquake events, another augmentation method was developed for this

project. This augmentation technique applies a small amount of gaussian noise to each

batch of data in the generator. Unlike the other preprocessing methods, this noise is not

applied prior to the training process, but rather applied batch wise. This means that the

same event is slightly different every time it is fed to the network, and thus, making it more

difficult for the network ”memorize” the training set.

This augmentor is initialized differently dependent on which classification task the net-

work is to perform. If the network is to classify between noise and non-noise events, the

augmentor uses the noise samples in the training set during initialization. If the classifica-

tion task is to distinguish between earthquake and explosion events, a subsample of noise

events in the dataset is used.

The initialization process consists of iterating through all the preprocessed noise events,

calculating the average standard deviation. The augmentation occurs batch wise, through

the generator, adding Gaussian noise with zero mean and a standard deviation equal to 1/15

of the average standard deviation of the sampled noise events. When using normalize scalar,

the fraction of average standard deviation is 1/20. This is because the noise samples when

transformed with normalize scaler have a similar magnitude to the events of interest, and so

the augmentation has more of an impact. Further experimentation of these fractions could

yield positive results.

This augmentation process has minor impact on the structural integrity of the recording,

but still has a downside. For events of either low magnitude and or events that occur very far

away from ARCES applying even a minor amount of noise even further obscure the labeled

event.

This augmentation technique, developed during the early stages of the project, had im-

mediate impact on the current overfitting issue, and continued to prove a valuable tool in

all future model development. This augmentation tool were also useful as it allowed for a

reduction in ”time augmentation” shift interval (0 to 50 seconds) in order to reduce potential

impact on structural integrity.
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4.2.6 Preprocessing dependency outline

The development of this preprocessing pipeline required careful consideration of order of

operations. The key goal for the preprocessing stage is to retain the structural integrity of

the events of interest, while squeezing out as much value as possible from the limited and

unbalanced dataset without compromising the data or models. Performing the various steps

in the correct order is critical in the pursuit of this mission.

The augmentation of noise, for example, depends on every other preprocessing step in

order to produce the desired outcome. In order to get an accurate mean standard deviation,

each event needs to be transformed to its otherwise final form, or the added noise will

obfuscate the events of interest.

Similarly, the scaling of the data depends on largely on the use of filters as well as the time

augmentation. The filtering process impacts the range of values in the features, smoothing

out the signal. The time augmentation shifts the different segments of the recording, affecting

the range of possible values of each time step. If these steps are not considered during the

scaling of the data, the scaling technique will compromise the structural integrity of the

data, and stagger the models’ ability to learn patterns in the data.

The chart in figure 4.6 provides insight into the order of operations of the preprocessing

steps. The exact process differs depending on whether or not the data is to be loaded

directly to RAM or if the generator used by the model loads the data batch-wise, but the

preprocessing is the same for either. The splitting of the dataset into training, validation

and test occurs prior to this flowchart, and the treatment differs among each. The scaler,

if required to be fit to the data, is only fitted to the training set. This scaler is used to

transform all the data in every dataset. The noise augmentor is only fitted with events in

the traning set, or what would be if in the training set if noise samples were to be used.

4.3 Model Selection

Central to the machine learning process is trial and error. The No Free Lunch Theorem has

exhaustively proven itself throughout this project. There is no model that works as is for any
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Figure 4.6: Flowchart describing the general preprocessing outline.



problem, and extensive experimentation is required in order to determine its usefulness. For

most problems in deep learning one could spend lifetimes attempting to find the best models

and their optimal combination of hyperparameters for a single problem and still never find

it. It is an end which only exists in the abstract, one that can never be achieved. Yet, some

models are better than others, and less than perfect models can still be extremely valuable.

Finding useful model is the name of the game, and several tools are at disposal to this end.

Every type of model required a model selection phase for each classification task. The

model selection comprised of two main steps: random grid search and a local search of

significantly reduced search space, referred to as a local search. In order to reduce the

computational strain of training thousands of models, a subsample of the dataset was used

in this process. The number of events in this subsample were sufficient to prevent issues from

overfitting, and allowed for a greater number of models evaluated. All models were trained

with the same events in each of the datasets (training and validation), depending on the

classification task, so that the performance metrics of each could be compared objectively.

4.3.1 Two Models In One

Early in the development, the models tended to be better at classifying noise correctly,

but struggled to differentiate between earthquakes and explosions. Upon inspection of the

waveforms, it quickly became clear that the difference between the noise events and the

earthquakes and explosions were greater than the difference between the earthquakes and

explosions. As a result, models performing well at distinguishing noise from the other classes

reported better metrics, and were thus selected for.

It became evident that a separation of the classification tasks were in order. This separa-

tion allowed for one model to be optimized for differentiating between pure noise events and

non-noise events, and another were to be optimized for distinguishing between explosion and

earthquake events. The flexibility allowed the two tasks to have their own tailored solution,

without compromising each other. On the other hand, the two models would potentially re-

quire different preprocessing steps, which complicates the pipeline and expanded the search

space tremendously.
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Figure 4.7: Simple flowchart describing the structure of the two-in-one approach.

A high level flow chart of the pipeline can be seen in 4.7. The noise not-noise model

works as a filter, reducing the presence of noise samples, allowing the earthquake/explosion

model to be optimized separately. This flowchart is a simplified, but accurate description of

the process.

4.3.2 Random Grid Search

The random grid search works by selecting a number of combinations of hyperparameters

defined prior to training, and then iteratively training the model with these hyperparameters,

and finally saving their performance metrics. The search space of hyperparameters is massive

and could not reasonably be exhausted. A random sampling of this search space would still

yield some insight into the potential of the model. Combinations of hyperparameters which

showed particular promise, would then be further optimized in a local search. The models in

this project were trained and evaluated on a small subset of their hyperparameter space and

their performance metrics were stored and compared in order to find the better performing

models.

4.3.3 Local Search

The local search holds all but one hyperparameter constant during optimization. This hy-

perparameter is changed slightly for a few iterations in order to give an indication of whether

altering this hyperparameter had a positive impact on performance. After the nearby space of
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the one hyperparameter has been sampled, the algorithm explore a different hyperparameter,

restoring the previously explored parameter to its original value. Finally, when the nearby

space of all hyperparameters were explored, if a new best hyperparameter combination is

found, the process restarts with these hyperparameters. If not, the process terminates.

This local search optimization algorithm yielded positive results but had notable draw-

backs. The algorithm makes minor adjustments to a particular hyperparameter, and holds

every other hyperparameter constant. This means that if a combination of hyperparameters

is near a minimum of the loss function, the algorithm will be useful to reach the bottom

of this minimum. However, the algorithm will be stuck in this here, and will fail to make

adjustments sufficient to reach a different, hypothetically better, minimum. In addition, the

algorithm is oblivious to the performance impact of each hyperparameter, which hyperparam-

eter optimization algorithms such as Bayesian Optimization is not. Bayesian optimization

was deemed out of scope for this project.
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Chapter 5

Results

The goal of machine learning models is to perform well on unseen data. As explained in

the Machine Learning chapter, this is evaluated using a train-validation-test split approach.

For this project, a pseudo-test set is also used. A portion of the data was removed from

the rest, which has not been used until the final model. This true test set makes 7.5% of

the entire dataset. The remaining 92.5% of the data is then further split into 80%-12%-8%

(train-validation-pseudo test) segments. The pseudo test set is then available to evaluate

generalization without introducing bias to the true test set.

Several models were created and experimented on throughout this project. From one lay-

ered networks to multi-layered networks to state of the art modular networks were attempted

to achieve the highest performance possible. A broad selection of models were experimented

upon, and were selected for primarily based on their precision on validation data. The mod-

els used evenly balanced data during training, as correctly identifying earthquakes is more

important than mistaking an explosion for an earthquake.

The majority of the time spent developing this project has been done on a laptop without

a GPU. In the last few months the models were trained on an NVIDIA RTX 3090. Access

to a GPU had tremendous impact on training time, but its late arrival was a limiting factor

to experimentation. The reported models in this section were all trained on the GPU.

In the pursuit of quickly eliminating poorly performing models, searching as many combi-

nations of hyperparameters as possible without excessive training time, and reduce potential
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overfitting of excessive training [28], Early Stopping has been used. Early Stopping moni-

tors a user defined performance metric, and ends the training process early if the learning

of the model stagnates. What constitutes a stagnant model is controlled by the user, and at

termination the parameters of the model producing the best performance may be restored.

The learning rate during the training process is also gradually decreased to help convergence

to the local extreme. Similarly to Early Stopping, the user defines some patience interval

after which the learning rate is reduced by a given fraction, and is referred to as Reduce

Learning Rate On Plateau(RLROP). Both of these tools serve obvious benefits, but their use

may prematurely terminate the training of models who could otherwise perform very well.

In this project Early Stop was set to monitor the relevant performance metric, restore the

best weights upon termination set to occur if no improvement is made in 7 epochs. RLROP

is set to monitor the same metric as Early Stop, and reduce the learning rate by half if no

improvement is made in 3 epochs, to a minimum learning rate of 5e-5.

The limited access to a GPU combined with the general time constraints of this thesis

meant that the experiments and model optimization performed were restricted. The hyper-

parameter combinations attempted were a tiny fraction of the search space, the time spent

training was short in terms of epochs and Early Stopping and RLROP were likely too im-

patient and aggressive. The potential for improvement by further experimentation on these

models (and others) is clear, but this is hardly unique to this thesis.

5.1 Metrics

Predicted
No Yes

Actual
No True Negative (NP) False Positive (FP)
Yes False Negative (FN) True Positive (TP)

Table 5.1: Confusion Matrix for binary classification.

A confusion matrix, such as the one seen in table 5.1, display the complete output of the

model. In practice, the cells are replaced by a number representing the number of times

a prediction of that type is made in place of the explanatory labels which make up the

sample table above. That is, for example, where it says True Positive, would be a number
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representing how many predictions were both predicted true and were actually true. This

table is very useful for insight into how the model performs, and several other metrics can

be derived from it.

5.1.1 Accuracy

Selecting the right performance metric for the task and distribution of the data is a key

aspect of model selection. A widely used and simple to understand metric is accuracy:

Accuracy =
Number of correct predictions

Total number of predictions
(5.1)

In the confusion matrix, one can derive accuracy by the summation of the diagonal divided

by the summation of all the cells in the table. This metric is useful when the classes in the

dataset are evenly distributed, but can be misleading otherwise. For example, the validation

set of the earthquake/explosion model consists of 92.38% explosions. If accuracy is used to

evaluate this model, the model could exclusively predict explosion and report an accuracy

of 92.38%. The metric appears to indicate a fairly decent performance, but the model is in

reality completely useless.

5.1.2 Recall

As classifying all events in the earthquake/explosion dataset as explosions might lead to

great accuracy, it is not a useful measurement of performance. Instead it is more indicative

of performance to gauge how many of the earthquakes(for example) were actually predicted

as earthquakes. This metric is called recall and is given by this formula:

Recall =
TP

TP + FN
(5.2)

However, similarly to accuracy, the model could exclusively predict earthquakes (positive

class) and report a recall of 1. Recall is, therefore, a step in the right direction, but is not

by itself a good metric to optimize.
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5.1.3 Precision

It is important that a model when classifying an event as an earthquake, is correct. Precision

is a metric which measures the models ability to only identify the relevant points. Precision

is the number of true positive predictions divided by the number of times the model predicted

the positive class:

Precision =
TP

TP + FN
(5.3)

Intuitively, the precision of the earthquake/explosion model, where earthquake is the

positive class, is the number of times the model correctly classified earthquakes divided by

correctly classified earthquakes and explosions incorrectly classified as an earthquake. As

explosions appear to be much more common than earthquakes, and a good model would

be able to correctly predict earthquakes it makes sense to use precision as a metric of the

model. As precision does not account for incorrectly labeling an earthquake as an explosion,

but rather is a measurement of how good a model is at correctly classifying when predicting

earthquakes, a combination of recall and precision is often good to maximize.

5.1.4 F1 score

F1 score is the harmonic mean of precision and recall.

F1 score = 2 ∗ Precision ∗ Recall

Precision + Recall
(5.4)

Using a harmonic mean is better than using their average as it punishes extreme values.

For example, if the model exclusively predicts earthquakes, the average of recall and precision

would be 0.5. In contrast, the F1 score would be 2 ∗ 0.0762∗1.0
0.0762+1.0

≈ 0.14. The F1 metric allow

for optimization where the balance of recall and precision is the goal.
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5.1.5 Fβ score

In cases of unbalanced data where the cost of a False Negative is higher than a False Positive,

it may be advantageous to assign more weight to the recall metric. While maximizing recall

by itself may lead to only predicting the positive class, a weighted version of the F score may

be used. The user defines some non-negative β in which to weight the F score. The higher

the β above 1, the more Recall will impact the resulting F score. The smaller the β is below

1, the more weight precision has. F β is calculated using this formula:

Fβ =
(1 + β2)Precision ∗ Recall

β2Precision + Recall
(5.5)

When classifying earthquakes and explosions it is more important to correctly identify all

the earthquakes than it is to mistake an explosion for an earthquake. In other words, recall

is more important than precision (where earthquakes is the positive class). In situations

such as this the Fβ score metric may be useful.

5.1.6 Precision-recall curve and Average Precision

The output of a binary classifier is a single value ranging from 0 to 1. The user then

defines some cutoff threshold which determines which class the output value belongs to.

This threshold is for binary classifiers commonly set to 0.5, but may be changed in situations

where it is more important to correctly identify samples belonging to particular class, usually

at the cost of precision. For example if a classifier is made to predict whether or not a patient

has some terminal disease, it is more important to identify all the real cases, even though this

means an increase in false positives. In order to visualize the tradeoff of different thresholds

on precision and recall a precision-recall curve is commonly used. Further, this graph can

be reduced to a single value by calculating the area under the precision recall curve (AUC-

PR). The way used in this project to get this value is using Average Precision (AP) which

summarizes the curve as a weighted mean of precision, P , achieved at each threshold,t ∈ T ,

weighted by the increase in recall, R, from the previous threshold, t− 1:

AP =
T∑
t

(Rt −Rt−1)Pt (5.6)
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The AP metric gives insight into the performance of the model with the consideration

of several thresholds. This curve gives insight into the performance of a model, and can

help select the best threshold for a specific problem. A perfect classifier will hug the upper

right corner of the graph, and a random classifier will be near baseline. The baseline used

in this project is the curve created if the model exclusively predicted the positive class with

certainty (meaning integer output).

5.2 Models

Noise-not-Noise vs Earthquake-Explosion

The decision to initially discriminate between noise and not-noise(earthquakes and explo-

sions) was made to allow for individual optimization of two models, rather than a single

optimized model. For the noise-not-noise(3N) models, both the training and validation sets

were distributed evenly. During model selection a 25% subsample of the dataset (excluding

the true test set) was used splitted into training-validation-pseudo sets. The training set

were evenly distributed with the not-noise class consisting of ∼51% earthquake events and

∼49% explosion events. The validation set consisted of evenly represented classes, but the

not-noise class was made up by 7.19% earthquakes and 92.81% explosions. The Earthquake-

Explosion(EE) models were trained on an evenly balanced training set, but not a balanced

validation set. The validation set consisted of 7.62% earthquakes and 92.38% explosions.

Due to the evenly balanced 3N validation set, accuracy was chosen as the performance

metric for optimization and selection. This makes the selection process simpler and is justi-

fied by the distribution, however, in a deployed version, it may be more beneficial to select

for a model with the least amount of false negatives (not-noise being the positive class).

In the EE problem, the explosion class is overly represented in the validation set. For this

problem it is more important to correctly identify as many of the earthquakes as possible,

so a high recall is important. As discussed in the metric section, optimizing for recall alone

is problematic, so a trade-off between precision and recall is necessary, where recall is more

important. Consulting NORSAR, a standard for a model to incorrectly classify 5 explosions

as earthquakes per correctly labeled earthquake was deemed acceptable. Fβ was thus se-

lected as the optimization metric, with a β of 2 where earthquake is the positive class. This
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β selection is somewhat arbitrary, but strikes a reasonable balance between the two metrics,

although with some drawbacks.

Figure 5.1: Graph showing the resulting Fβ as a function of β with the precision and recall
from a classifier exclusively predicting earthquakes. The chosen β of 2 is labeled in blue. The
horizontal axis shows the β value, while the vertical axis portrays the resulting Fβ score.

When performing grid search, the vast majority of the models perform poorly, and end

up exclusively predicting a single class. Those which only predict the positive class will

have a high recall, but a poor precision. If the beta is too high, the performance measure

will deceptively indicate that these perform better much better than those who exclusively

predict the negative class. In figure 5.1, the resulting F score for some given β is shown,

portraying the possible values of Fβ when exclusively predicting earthquakes. Models which

start off predicting only the positive class but over time start predicting the negative class,

this will indicate a drop in performance as this is often correlated with a drop in recall.

Admittedly, this is not exclusive to a high value of β, but a higher value worsens this. This

affects techniques such as Early Stopping and RLROP, because their application depends

on improvements in performance. With less constraints on available experimentation time,

not using these could mitigate the drawbacks of a higher β, but not would not remove the

deceptive element of the metric. An argument could be made that a β of 3 would be better

for evaluating these models. As explosions outnumber earthquakes by a magnitude of 12, a
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model with a high recall in explosions as well as earthquakes would still have a significant

impact on the precision of earthquakes. As a result, it is to be expected that there will be

a high number of false positives (where earthquakes is the positive class) relative to true

positives. In performance terms: there will be big difference between recall and precision. A

change in either metric will have a notable impact on the Fβ score. Experimentation during

this project has shown that an increase in precision often comes at the cost of recall, and

vice versa, and so a higher β will select for models which can improve in precision with less

of a cost to recall.

All the models created and evaluated in this project uses the Tensorflow library

(tf-nightly-gpu version 2.5.0.dev20210126). The architectures given by the tables

in their respective section will only contain parameters and their values which differ from

the default setting in this version of Tensorflow.

5.2.1 Fully Connected Neural Network (FCNN)

Multi Layer Perceptron, or FCNNs, are commonly used in classification tasks. These types

of networks are made up of one of the simplest and traditional layers for Deep Learning

models. These types of models treat elements as independent from each other. As a result

the temporal information in the timesteps are lost, leading to poor performance where these

relationships are significant. As a result, these were suspected to perform worse on EE than

3N. This model was included in this project as a sanity check of the importance of temporal

relationships while classifying this type of data.

Baseline

Baseline FCNN architecture was created in order to have points of comparison when evaluat-

ing the effects of different preprocessing as well as experimenting with more complex FCNNs.

The baseline model for FCNN, decribed in table 5.2, is a very simple network with only a

single hidden layer with 50 units and a ReLU activation. The Flattening layer in Layer 1

”flattens” the input into a single array, disregarding temporal information, but necessary

for subsequent Dense layers. Time augmentation has been used to shorten the waveform

snippets to 150 seconds. Standard scaling has also been used in order to enable to network
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to learn. Using no scaling on this dataset causes immediate numerical stability issues, and

so a scalar is necessary. Standard scaling was chosen because simply due to being very com-

monly used, and often recommended when scaling data without domain knowledge. During

training the baseline model neither Early Stopping nor RLROP was used.

Optimizer: SGD
Loss: Binary cross-entropy

Learning rate: 0.01
Epochs: 50

Batch size: 128
Layer 1 Layer 2 Output Layer

Flattening layer
Dense

Neurons: 50
Activation: ReLU

Dense
Neurons: 1

Activation: Sigmoid

Table 5.2: Architecture of the FCNN baseline model.

(a) Confusion matrix of 3N baseline (b) Confusion matrix of EE baseline

Figure 5.2: The two figures show the outputs of each baseline model. Each model use the
same hyperparameters and preprocessing steps.

As seen in figure 5.2a the model almost exclusively predicts noise, leaving it with an

validation accuracy of ∼49%. The training accuracy matches the validation, meaning the

model is severely underfitting. This result is as expected functioning as a benchmark in which

to compare more advanced models in while doing model selection. Figure 5.2b shows that

the EE baseline typically predicts explosions, but not exclusively. The resulting performance

shows a recall of ∼23%, and a precision of ∼12%, resulting in a F2 score of ∼0.2.
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Model Selection

In an attempt to improve the performance of the model on both tasks, random grid searches

were performed. The searches experimented with different combinations of hyperparameters:

• Batch-size: 64, 128, 256

• Learning rate: 0.1, 0.01, 0.001, 0.0001

• Type of optimizer: Adam, SGD, RMSprop

• Number of hidden layers, L: 1-5

• Number of neurons in each layer, defined by a sequence of integers F = [f1...fL] and

some integer n. The number of neurons in some layer i ∈ L is given by fi ∗ n.

• L2 regularization rate: 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001, 0

• L1 regularization rate: 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001, 0

• Activation function used in the hidden layer(s): ReLU, TanH, Softmax, Sigmoid

• Whether or not to use batch normalization, dropout, or neither between each hidden

layer.

It is important to note that the list above contains the potential hyperparameters that

a model could be trained with during model selection, but does not mean that each of the

hyperparameters were attempted. The generally poor performance of FCNN on this dataset

also lead to less time invested in exploring the grid. The results from this experimentation

is likely not representative of FCNN performance on this type of data.

Several of these searches were completed with different preprocessing steps used, partic-

ularly different scaling techniques. Again, the number of possible combinations of hyper-

parameters is very large, so the results only show a small fraction of the possible models.

During training both Early Stopping and RLROP was also used, with fairly aggressive and

impatient settings, necessitated by resource constraints. All models were trained for a max-

imum of 50 epochs, but the vast majority ended training prior to reaching this point due to

Early Stopping. 50 epochs were selected to reduce the amount of time spent on each model,

but could result in models being severely undertrained. Generally, on either classification

problems, the models relatively quickly converged within 25 epochs. This does not mean that

nothing could be gained by training them further, resulting in selecting for models which

learn quickly.
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Noise vs not-Noise

Optimizer: RMSprop
Loss: Binary cross-entropy

Learning rate: 0.001
Epochs: 50

Batch size: 64
Layer 1 Layer 2 Output Layer

Flattening layer
Dense

Neurons: 200
Activation: ReLU

Dense
Neurons: 1

Activation: Sigmoid

Table 5.3: Architecture of the best performing FCNN 3N model.

Figure 5.3: Confusion matrix showing the predictions made by best performing FCNN 3N
model on the validation set.

The model described in table 5.3 was the best performing FCNN model on the 3N task.

The model was trained with time augmentation, noise augmentation and standard scaling.

The model also utilized RLROP with a patience of 3 epochs with a factor of 0.5, and Early

Stopping with a patience of 7 epochs. The FCNN model had a validation accuracy of 86.6%,

but despite its simple architecture struggled with overfitting, reporting a training accuracy of

96%. The model identified 82% of the non-noise events with a precision of 91%. It identified

91% of the noise events, with a precision of 83%. Of the few FCNNs able to learn, they were

prone to overfit even with a simple network. Unsurprisingly, adding complexity through

additional layers and or a high amount of neurons did not necessarily improve the networks’

ability to learn. Regularization techniques such as dropout, batch L1 and L2 also appeared
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to have detrimental impact on the model. The best performing model was found using grid

search and was improved by several iterations of local search by a 3% gain in validation

accuracy.

(a) Raw outlier noise waveform. (b) Input transformed waveform.

Figure 5.4: The two figures show the raw and preprocessed outlier noise waveform incorrectly
predicted to be not noise.

The model predicts with certainty most events with distinct differences from noise rea-

sonably well. That is, events which can easily be visually identified as an event of interests.

The event in 5.4 is an outlier noise event with significant continuous displacement in the

stacked counts axis, falsely predicted to be a non-noise event with certainty. Other wave-

forms of similar features were also predicted to be non-noise events incorrectly. Exactly

breaking down the reasoning used by a neural network during inference is a futile process.

Regardless, some speculation into high level trends may provide insight into shortcomings

of particular models. This network appears to have learned periods of strong displacement

in stacked counts is an feature of non-noise events. At the same time, there is a significant

portion of non-noise events with short periods of displacement in stacked counts incorrectly

labeled to be noise events. The shorter these events are, the more certain the classifier is

that the event is noise. Distinguishing the events based on this feature is effective to a point,

but very limited. This hypothesis would also explain why FCNNs struggle with waveforms
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transformed by the normalized scaler. This type of transformation is independent of other

events, and so relative differences among waveforms are lost. Still, with the normalized

scaled data, the network could learn that if there are portions of the waveform with very

little displacement in the stacked count, this would be an indicator of a not-noise event.

However, as channels differ in their average displacement for each waveform and the model

initially flattens the data, learning such a pattern by a FCNN is unlikely.

Earthquakes vs Explosions

This model, even when shallow in depth and width was very sensitive to the activation func-

tion in the hidden layers while distinguishing between earthquakes and explosions. Simply

using a ReLU activation in the baseline architecture instead of Softmax gave immediate im-

provements in performance (precision = 0.16, recall = 0.23, F2 = 0.21), while using standard

scaling. Improvements beyond this proved to be challenging, indicating the hypothesis made

in the start of this section to be true. After several grid searches with different scalers and

digital filters, a few models reported F2 scores higher than exclusively predicting earthquakes

(F2 = 0.292).

Optimizer: SGD
Loss: Binary cross-entropy

Learning rate: 0.01
Epochs: 50

Batch size: 256
Layer 1 Layer 2 Layer 3

Flattening layer

Dense
Neurons: 320

Activation: ReLU
K/A regularizer: L2 = 0.001

Batch Normalization

Layer 4 Layer 5 Layer 6
Dense

Neurons: 640
Activation: ReLU

K/A regularizer: L2 = 0.001

Batch Normalization
Dense

Neurons: 1
Activation: Sigmoid

Table 5.4: Architecture of the best performing FCNN EE model. K/A is short for Kernel
and Activity.
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(a) Confusion matrix
(b) PRC and AP

Figure 5.5: The two figures display the performance of the final FCNN EE model. 5.5a shows
the predictions made by the model. 5.5b shows the PRC curve of the classifier.

The best FCNN model on the EE dataset is shown in table 5.4, and its performance on

validation in figure 5.5. As with the 3N FCNN model, this was trained with standard scaled

data, noise augmentation, time augmentaion, RLROP and Early stopping, with the same

patience settings as 3N. Expectantly, this model did not perform well (5.5), with an F2 of

0.354. A default threshold of 0.5 has been used for predictions by all models. It identifies

67% of the earthquake events with a precision of 12%. It identifies 60% of the explosion

events with a precision of 96%. If a model exclusively predicted earthquakes it would report

an F2 score of 0.292, meaning this result is only a minor improvement from random. The

increased complexity in this model compared to 3N, contributes mostly to its ability to

overfit with a training accuracy of 88% on less distinguishable classes. As expected FCNN

performs better on 3N than on EE, and the results appear to confirm the importance of

capturing the temporal dimension. Looking at figure 5.5b, the model performs close to what

would be expected from a classifier predicting randomly. With the poor F2 performance

combined with the PRC indicating close to random predictions, further investigation into

the type of prediction errors appears fruitless. Unlike the 3N problem, these waveforms

do not have differentiable differences by their average expression in the stacked count axis.

It is reasonable to speculate that the correct predictions made on the validation set have

counterparts of very similar expression in the training set. More general distinguishing

features are not learned, and so the model struggles on unseen data.
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5.2.2 LSTM

LSTMs have shown promising results in time series classification tasks [19, 21]. Although

generally used for comparatively shorter snippets, LSTMs ”... learns to extract features

from sequences of observations and how to map the internal features to different activity

types. The benefit of using LSTMs for sequence classification is that they can learn from

the time series directly, and in turn do not require domain expertise to manually engi-

neer input features.” [4]. A downside of LSTMs is that they are notoriously slow to train,

and their performance is worse on long sequences [1]. Due to promising results in other

domains and performance independent from domain expertise, LSTMs were experimented

with in this project. The waveforms from NORSAR, even when reduced in duration by

augmentation, are very long (6000+ timesteps) which is problematic with ”pure” LSTM

networks. Consequently, the experimentation with self-developed LSTM architectures was

limited in comparison to models such as CNN. Rather, proven State-Of-The-Art models such

as MLSTM-FCN were considered a more viable candidate.

Baseline

A very simple LSTM model was created in order to create a point of comparison to the

effect of preprocessing as well as experimentation with the hyperparameters and different

architectures of LSTMs. This baseline model consists of an input layer, a single LSTM TanH

activated layer with 1 unit and a sigmoid activated classification layer.

Optimizer: SGD
Loss: Binary cross-entropy

Learning rate: 0.01
Epochs: 50

Batch size: 128
Layer 1 Output Layer
LSTM

Units: 1
Activation: TanH

Dense
Neurons: 1

Activation: Sigmoid

Table 5.5: Architecture of the LSTM baseline model.
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(a) Confusion matrix of 3N baseline (b) Confusion matrix of EE baseline

Figure 5.6: The two figures show the outputs of each baseline model. Each model use the
same hyperparameters and preprocessing steps.

As expected this bare bones architecture fails to fit to the data, and proved to be trend

with pure LSTM models on this dataset. Experimentation on variations of this type of model

yielded few models performing better than completely random. The only model which stood

out from the rest was a 3N model achieving validation accuracy of 67%. As LSTMs struggle

with long sequences, pure LSTM models are not suitable for this type of data. The results

from experimentation with this model are uninteresting, and do not provide valuable insight

beyond its incompatibility worth reporting in this project.

Noise vs not-noise

MLSTM-FCN LSTM-FCN is an architecture developed by Karim et al. and has per-

formed well on the University of California Riverside (UCR) Benchmark datasets [5, 19], as

well as on real life data classifying animal sounds [21]. These results were on univariate time

series, but the architecture was further developed to handle multivariate time series, with a

similar architecture with a new name: MLSTM-FCN (Multivariate LSTM-FCN) [20]. In the

LSTM-FCN paper by Karim et al. they propose a model which utilizes attention [19] in the

first layer to counteract the effects of longer sequences called ALSTM-FCN. An architecture

was also developed to handle multivariate data, MALSTM-FCN. Attention could potentially

improve the performance of this model, and likely other architectures, on the ARCES dataset,

but is left for future research. Evaluating both the MLSTM-FCN and MALSTM-FCN was
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deemed out of scope, as these are very expensive to train. The MLSTM-FCN architecture

was chosen over the attention version due to its shorter training time, while producing simi-

lar performance. The significant training time of this model limited the architectural search

space evaluated in this project to focus primarily on the number of units in the LSTM layer.

Different types of scalers, filters and noise augmentation parameters were still included in

the search.

The MLSTM-FCN architecture, as shown in figure 5.7, consists of two main design

features. The first feature is the use of a squeeze-and-excite block, proposed by Hu et

al. [18]. This block is designed to ”... improve the representational power of a network by

enabling it to perform dynamic channel-wise feature recalibration” [18], which is considered

by Karim et al. as a form of learned self-attention on the output feature maps of prior layers.

Exploration of attention is out of scope for this project, but papers such as Attention Is All

You Need [34] explore this topic in depth. In short, attention enhances the important parts of

the input data and fades out the rest, focusing the computational resources on the influencial

elements of the input. The squeeze-and-excite block in the MLSTM-FCN model allows the

network to use self-attention to incorporate inter-correlations between the variables at each

timestep [20].

The second feature of one LSTM block and one FCN block is shared with its univariate

version. The LSTM block in the multivariate model starts with a dimension shuffle, trans-

posing the input waveform. The waveform is converted from the original waveform of 6000

timesteps, each with 3 features, into a waveform of 3 timesteps, each with 6000 features.

This dimensionality shuffle provides the downstream LSTM layer with the global temporal

information of each channel at once. The process reduces training and inference time, with-

out losing accuracy [20]. The dimensionality shuffle is followed by a masking layer, with

default mask value. This masks the input waveform such that timesteps which contain the

mask value are skipped in the downstream layers. The default mask value of 0 means that

any timestep containing all zeros are skipped in the subsequent layers. A masking layer is

typically used to handle sequences of varying length and so this layer does not have any

effect on this particular dataset. The block is completed by an LSTM layer and a dropout

layer with a rate of 0.8 by default.
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Figure 5.7: Figure showing the architecture of the default MLSTM-FCN published on Ma-
jumdar’s github: https: // github .com/ titu1994/ MLSTM-FCN . Note that the number of
units in their LSTM layer differs, depending on the application.
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The FCN block consists of three stacked convolutional layers, separated by batch normal-

ization prior to activation for each convolutional layer. In between the activation of the first

and second activation layers, are the squeeze-and-excite blocks. The stacked convolutional

layers are identical to the convolution block in the CNN architecture by Wang et al., and ”...

has shown compelling quality and efficiency for semantic segmentation on images [25]”[35].

The FCN block is completed by a global average pooling layer before being concatenated

with the output of the LSTM block. For the purposes of this project, the output layer is a

Dense layer of one unit and a sigmoid activation function.

A limited grid search was applied to this model, evaluating different scalers, units in the

LSTM layer, type of optimizers, learning rates, and batch sizes. The best performing model

has an identical architecture to figure 5.7, using a batch size of 128, the Adam optimizer

and a learning rate of 0.001. Normalize scaler yielded the best results, together with time

augmentation, noise augmentation, early stopping and RLROP.

Figure 5.8: Confusion matrix showing the predictions made by the MLSTM-FCN classifier.

The model reports an accuracy on validation of 95.6%. It identifies 96.6 % of the not-noise

events correctly, with a precision of 94.9 %. It identifies 94.5% of the noise events correctly

with a precision of 96.3%. A selection of prediction errors made by this model can be found

in the appendix A.1. Like many of the other models in this project, this model too struggles

with incorrectly labeled events and mislabeled start times. This model does appear to have

greater difficulty distinguishing noise-like not-noise events, than many of the CNN models.

Given the performance of the pure LSTM models, it would be interesting to see how much

each of the different blocks contribute to the final output of the classifier. This was deemed

out of scope, but could yield interesting insight into the decision process of this model. Due
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to the dimensionality shuffle in the LSTM block, it would be reasonable to speculate that

this model assigns relative importance on particular channels for prediction. In theory, the

model could learn that, for example, the radial channel is less important than the other

channels when classifying noise vs not-noise. Investigating the LSTM block combined with

domain expertise of the waveforms could provide insight into why this particular model has

a greater difficulty than pure CNN models on less clear events.

Earthquakes vs Explosions

MLSTM-FCN Another version of the MLSTM-FCN model was experimented with, opti-

mized to distinguish between explosion and earthquake events. This model had an identical

architecture to the one seen in figure5.7 except for 64 units in the LSTM layer, rather than 8.

The model was trained with an RMSprop optimizer with a learning rate of 1e-4, with a batch

size of 256 for 50 epochs. Early stopping, RLROP, noise augmentation, time augmentation

and normalize scaler was also used. The grid search of the MLSTM-FCN architecture for

EE was also limited, due to general poor performance on this dataset. The LSTM block

is speculated to contribute little to the output, and the CNN block has very small filter

sizes. Experimentation on the CNN architectures indicate that a larger filter size is needed

to adequately capture relevant features of for classification. The speculation of little con-

tribution of the LSTM block combined with the belief of larger filter sizes required, lead to

more experimentation on CNNs than on this type of architecture. Still, the grid search lead

to the selection of a best performer, whose results are illustrated in figure 5.9.

As seen in figure 5.9b, the model performs much better than random, but still does not

produce an F2 score higher than 0.49. The classifier identifies 74.4% of the earthquake events

with a precision of 20.7%. It performs better on explosions, identifying 77% with a precision

of 97%. Selected predictions can be found in the appendix A.2. This model has a lot of

uncertainty in its correct classifications as well as its errors. The model underfit in both

validation and training, with a training accuracy of 80%. Gaining insight into the errors of

this model is particularly difficult due to this, but in general the model struggles much more

with events that other models classify with ease. Unlike the better performing models in this

project, the errors of this model is populated by events with high signal to noise ratio. Even

clear, relatively strong events occurring within a short distance are a challenge to classify for

this model. Still, with further experimentation into the individual blocks of this model, the
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(a) Confusion matrix
(b) PRC

Figure 5.9: The two figures illustrate the performance of the model in terms of its confusion
matrix and Precision-Recall curve.

author believes this model may yield significantly better results with a more comprehensive

hyperparameter search.

5.2.3 CNN

The selection of which models to experiment with was based on previous work with multi-

variate time series. CNN models have already been applied to similar data by works such as

Meier et al. and Tibi et al. as discussed in the introduction. State-of-the-art architectures

such as InceptionTime [8], reports highly competitive performance on benchmark univariate

time series datasets. Although InceptionTime is made for univariate data, it is still possible

to apply to this dataset with good results, albeit with drawbacks relating to training time.

CNN architectures have shown to work well with data where spatial relationships are rele-

vant to the analysis of the data as seen by their application to image data [14]. The success

of this type of model on data where spatial relationships are important combined with its

success on similar makes this type of model a highly viable candidate.

CNN Baseline

In order to be able to compare the performance of the preprocessing techniques as well as the

usefulness of more complicated models, a very simple model was trained used as a baseline.
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The input for the baseline on either problem is standard scaled and utilizes standard scaling.

Neither Early Stopping nor RLROP is used for this model.

Optimizer: SGD
Loss: Binary cross-entropy

Learning rate: 0.01
Epochs: 50

Batch size: 128
Layer 1 Layer 2 Layer 3
Conv1D

Nr filters: 16
Filter size: 8

Padding: Same
Activation: ReLU

GlobalAveragePooling1D
Dense

Neurons: 1
Activation: Sigmoid

Table 5.6: Architecture of the CNN baseline model.

(a) Confusion matrix of 3N baseline (b) Confusion matrix of EE baseline

Figure 5.10: The two figures show the outputs of each baseline model. Each model use the
same hyperparameters and preprocessing steps.

Model Selection

This project spent considerable time experimenting with various self-developed CNN archi-

tectures as well as state-of-the-art models and models used on similar data. The convolution

aspect of the network worked very well capturing what is interpreted as the unique signature

of events. Stacked convolutional layers initially capture low level features and layer-wise
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translate this to higher level features. Initially, this was mistakenly believed to mean that

the stacked convolution layers should decrease in the number of filters for each layer, but the

performance of the models improved drastically with the inverse of this relationship. The

subsequent layer(s) to the convolutional block, was also experimented with. Models such

as InceptionTime, MLSTM-FCN and MALSTM-FCN [8][20] use a Global Average Pooling

layer prior to the output layer instead of a fully connected layer in order to reduce the pa-

rameters of the models. This drastically reduces training time, but the simpler architectures

created for this project did not benefit from this. The models which performed the best on

this dataset, was inspired by the CNN used by Meier et al. A single or several stacked con-

volutional layers, with increasing number of filters in each, followed by two fully connected

layers prior to the output layer. The grid used to search the different architectures differ

among each model, but a general outline of hyperparameters tried is listed below:

• Batch size

• Optimizer

• Learning rate

• Activation in the convolutional layer(s)

• Number of convolutional layers

• Number of filters in each convolutional layer: given by a sequence of numbers multiplied

by the number of filters used in the first layer

• Filter size

• L1 and L2 regularization rates.

• Activation in the fully connected layers

• Units in each dense layer.

• Whether to use dropout, batch normalization or neither between each convolutional

layer. Batch normalization would be placed prior to the activation.

• Dropout rate, if appropriate.

This list captures the hyperparameters experimented with for the self developed mod-

els. The CNN models frequently performed well with randomly selected hyperparameters,

and as a consequence were experimented with more than the other models in this project.

Depending on the hyperparameters used, the training time differed significantly, and some

optimization were limited by this as well as models exceeding 24 GB which was the capacity
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of the GPU. Results from optimization of the EE models indicated that the network size

should be increased, but the excessive training time, network size and time constraints pre-

vented this. Note that hyperparameters related to preprocessing are not included in this

list.

Noise vs not-noise

Meier et al.’s model The model used for signal/noise discrimination in the paper by

Meier et al. was evaluated for use in this project. Their model performed very well distin-

guishing noise/signal short waveform snippets of 4 seconds, which is significantly shorter than

the 150 second snippets used in this project. As seismic stations record a variety of nuisance

signals, some of which may initially look very similar to earthquake signals, earthquake early

warning algorithms sometimes send out false alerts. Their model excels at classifying short

4 second snippets of these waveforms. This differs from the goals and shape of the data for

this project, but distinguishing between noise and not noise is a part of this project as well.

Their CNN model architecture, described in the table below, is what has been evaluated in

this project. However, their exact architecture is not discussed in full detail in their article.

”After each convolution layer, the filter outputs are downsampled and activated” [7] does not

describe how the output is downsampled. Both MaxPooling and Average Pooling between

the convolution layers have been explored. How each convolution layer is padded is also

not described. A several grid searches were completed trying out different combinations of

pooling and batch normalization, with different preprocessing techniques. The architecture

which produced the best results on 3N is described in table 5.7.

As their data and the data used in this project is of such significant different duration,

the result of this model on this dataset is not comparable to their own. The duration of

the waveforms, the inferred architecture and the necessary preprocessing steps produces a

different model than the original. The evaluated model is inspired by, but not the same as

the one by Meier et al. The final model included both average pooling as well as batch nor-

malization prior to the activation of the feature map. The pooling layer does indeed reduce

the dimensionality of the output, but still the model has 7.8 million trainable parameters.

This particular model is trained with normalized data, but produced nearly as good results

with the robust scaler. Using a filter such as in their paper had a negative impact on this
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Optimizer: Adam
Loss: Categorical cross-entropy

Learning rate: 1e-3
Batch size: 48

Epochs: 40
Layer 1 Layer 2 Layer 3 Layer 4
Conv1D

Nr filters: 32
Filter size: 16
Padding: same

AveragePool1D Batch Normalization
Activation

Type: ReLU

Layer 5 Layer 6 Layer 7 Layer 8
Conv1D

Nr filters: 64
Filter size: 16

Padding: Same

AveragePool1D Batch Normalization
Activation

Type: ReLU

Layer 9 Layer 10 Layer 11 Layer 12
Conv1D

Nr filters: 128
Filter size: 16

Padding: Same

AveragePool1D Batch Normalization
Activation

Type: ReLU

Layer 13 Layer 14 Layer 15 Layer 16

Flatten
Dense

Units: 80
Activation: ReLU

Dense
Units: 80

Activation: ReLU

Dense
Units: 2

Activation: Softmax

Table 5.7: Architecture of the best performing CNN 3N inferred from Meier et al.



dataset, and so the final model used unfiltered data. Time augmentation, noise augmenta-

tion, early stopping and RLROP were used during training. The grid search results using

normalized scaler showed that any combination of the hyperparameters performed similarly.

As neural networks are sensitive to the initialization of the parameters, the selected best

model is not dissimilar enough in performance to rule out any of the other combinations as

viable candidates.

Figure 5.11: Confusion matrix showing the predictions made by the best performing Meier
inspired 3N model on validation.

The confusion matrix in 5.11 shows the predictions made by the best performing model.

The model performs surprisingly good, classifying 97.6% of the events correctly. It correctly

identifies 97.2% of the non-noise events with a precision of 98%. In terms of noise events

it correctly identifies 97.9%, with a precision of 97.1%. Looking at the errors of the model,

this model, like the others, struggle with outlier events, especially those related to hardware

errors. Events with mislabeled start times or teleseismic events where the secondary arrives

very late in the waveform, are problematic due to the time augmentation. The waveforms

affected by these conditions are difficult for the model to label correctly. A few of the false

positive errors are caused by the waveform starting during the end of an ongoing event, where

the event is labeled noise. A selection of prediction errors can be found in the appendix A.3.

Speculation into the errors of the model, is that it struggles with events where there is a

short but significant displacement in stacked counts. These errors are highly represented in

the false positives and false negatives. This could be prominent in this model due to the

short filter size, where not enough context is contained in the feature maps.
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Best Performing Self-Developed Model The best performing CNN model on the 3N

dataset performed surprisingly well, despite the long waveforms in its dataset. This model

used the sequence of convolutional layers with increasing number of filters inspired by Meier

et al. The number of filters as well as the filter size is large compared to most State-of-the-

Art models, although these are typically not developed for such long waveforms. The model

uses two fully connected hidden layers after the convolutional layers, which introduces a lot

of parameters to the model. The model has ∼57 M trainable parameters, 54.4 M in the

first fully connected layer. This model is inspired by the model inferred from the article by

Meier et al., but the large difference in width, filter size and intermediate layers is significant

enough to warrant independent evaluation.

Optimizer: Adam
Loss: Binary cross-entropy

Learning rate: 1e-4
Batch size: 256

Epochs: 50
Layer 1 Layer 2 Layer 3 Layer 4
Conv1D

Activation: ReLU
Nr filters: 72
Filter size: 56
Padding: same
L1 reg: 0.0001
L2 reg: 0.01

MaxPool1D

Conv1D
Activation: ReLU

Nr filters: 144
Filter size: 56
Padding: same
L1 reg: 0.0001
L2 reg: 0.01

MaxPool1D

Layer 5 Layer 6 Layer 7 Layer 8
Conv1D

Activation: ReLU
Nr filters: 288
Filter size: 56
Padding: same
L1 reg: 0.0001
L2 reg: 0.01

MaxPool1D Flatten
Dense

Activation: ReLU
Units: 252

Layer 9 Layer 10
Dense

Activation: ReLU
Units: 214

Dense
Activation: Sigmoid

Units: 1

Table 5.8: Architecture of the self-developed CNN 3N model

The model is trained with normalized scaled data and is using time augmentor as well as
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Figure 5.12: Confusion matrix showing the predictions made by the best performing self-
developed 3N model on validation.

noise augmentation. During training Early stopping and RLROP is used, although the model

does not converge by the end of the 50 epochs. Some of the mistakes the model makes could

be a mitigated by further training. The model performs very well, with a validation accuracy

of 97.8%. The model performs equally well on both classes, reporting precision and recall of

∼98% for both classes. A selection of false positives and false positives can be found in the

appendix A.5. The reader should note that the noise augmentation is applied randomly by

the generator, and does affect how an individual waveform appears to the model every time

it is seen. This also applies to predictions. Looking at the false positive predictions made by

the classifier, these are largely made up of outlier events, likely mislabeled events, and noise

events with segments which could be mistaken for an event of interest. The term outlier is

used here as events with moments of very strong displacement, likely as a result of hardware

error, of a very rare event. It should be noted that the false positives, which arent mislabeled

data, the model makes this prediction with uncertainty. In other words, a different threshold

would filter out these false positives. The scaler used transforms the outlier noise events of

continuous strong displacement, so that they appear as any other noise event. Still, a few

mistakes are made on these events.

InceptionTime The current best state-of-the-art model for timeseries classification is

called InceptionTime, by Fawaz et al. [8]. This model outperforms its predecessor HIVE-

COTE [24] on the UCR benchmark datasets [5], in both results and speed. This architecture

was inspired by recent success of Inception-based networks in computer vision tasks. The
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Figure 5.13: Illustration of the Inception module used in the InceptionTime architecture,
with default hyperparameters.

model consists of Inception modules, which allow the network to use multiple convolution

and pooling layers of different parameters in parallel. The network can then learn which

layer (or combination) is most valuable to the output, without the engineer needing to deal

with the trade-off of the different parameters and layer types. ”By stacking multiple In-

ception modules and training the weights (filters’ values) via backpropegation, the network

is able to extract latent hierarchical features of multiple resolutions thanks to the use of

filters with various lengths.” [8]. An obstacle to this approach is the increased number of

learn-able parameters in the network. To deal with this, it is common to use a bottleneck

layer at the start of the Inception module in order to reduce the dimensionality of the input,

the complexity of the model and reduces its chance of overfitting on small datasets. An

illustration of the Inception module used in Inception time can be seen in figure 5.13. The

use of Inception modules in neural network architectures is growing, initially proposed by

Szegedy et al. in their GoogLeNet architecture [32].
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Figure 5.14: Illustration of the residual connection in the residual block used in the Incep-
tionTime architecture.

As deeper networks can learn more complex features more easily, it has become a trend to

keep adding layers to neural networks to make them better. The issue with this approach is

that the input and the output is too spaced away and the network may suffer from vanishing

gradient problem. The network will be unable to learn important features at the deeper

layers. The use of stacked Inception modules increases the depth of the network of thus the

risk of vanishing gradients as well as the Degradation problem. The degradation problem

is a phenomena which occurs when adding more layers to a suitably deep model leads to

higher training error [17]. In order to combat this, Fawaz et al. uses residual connections

every third Inception module to maintain access to the original input of the model.

This residual connection can be seen in figure 5.14, and is an architectural design pop-

ularized by the ResNet architecture [17]. The combination of Inception modules, residual

connections and larger filter sizes than previously proposed TSC models, aided Inception-

Time to reach state-of-the-art performance. However, the NORSAR waveforms contain

considerably more timesteps, than the waveforms in the UCR dataset. The longest wave-

form in the UCR dataset is 1882 timesteps, compared to the 6000 timesteps of the NORSAR

waveforms. The InceptionTime reports significantly lower training times than its predeces-

sor, but the training time still became an issue optimizing this model for the project as it

depends on the shape of the input. Increasing the depth of the model by adding Inception

modules had significant impact on the training time as well, so depth was a restrictive factor

during optimization.

Random grid search was used for this model, evaluating different combinations of:
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• Number of Inception modules

• Whether or not to use bottleneck layers

• Whether or not to use residual connections

• Number and size of filters in the inception modules.

• L1 and L2 regularization inside and or outside Inception modules.

• Inception module output activation type.

• Batch size, optimizer and learning rate.

Performing a search of such a large space lead to widely differing performance between each

model, and this search space was over time reduced to values near the default InceptionTime

hyperparameters. Due to the ambitious search space and the long training times, the results

of this project does not reflect a representative evaluation of this model on this dataset in a

broad sense. Yet, the model performs quite well, despite the limited search.

Figure 5.15: Illustration of the best performing InceptionTime variation on the 3N task.
Note that this model does not use residual connections, and that each Inception module is
identical.
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Figure 5.16: Confusion matrix showing the predictions made by the selected InceptionTime
model

The final InceptionTime model was trained with normalized scaled data, time augmenta-

tion, noise augmentation, Early Stop and RLROP. Despite its many layers, the model only

has 1 million trainable parameters, largely due to using Global Average Pooling instead of

Dense layer(s) at the end of the Inception modules. Still, the model has a very long train-

ing time, worsened by the enlarged filter sizes. The model reports a validation accuracy of

96.8%, with precision and recall for both classes at ∼97%. Examples of prediction errors

can be found in the appendix A.7. The model has similar predictions error as the other

CNN models, many due to problems stemming from incorrectly labeled start times used by

time augmentor. This model also struggles with outlier events of short intervals of strong

displacement, including those not due to hardware problems. Figure A.44 shows a waveform

which has been labeled noise, although the recording appears to start during an ongoing

seismic event. It should be noted that this portion is likely caused by transient noise. The

model predicts not-noise, which is reasonable, although technically incorrect with the given

label. This shows that the model is able to handle waveforms where the event is not centered.

The model does make at least one obvious mistake, seen in figure A.43. Although the event

is negatively impacted by the mislabeled start time, enough of the waveform is present to

clearly display a not-noise event. Still, there is a lot of potential for optimizing this model

in future research.
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Earthquakes vs Explosions

Meier’s Model The original model by Meier et al. was designed to distinguish short

waveforms between signal and noise. However, the element of a sequence of convolution

layers each with a higher filter count than the previous, proved to be a powerful architectural

feature for this type of data. As figure 5.2.3 show, a similar design yielded good results, and

so Meier’s model was experimented on for the earthquake vs explosion section as well. The

EE version differs from the 3N by using Max Pooling rather than Average Pooling prior

to the Batch Normalization layer. These selection of these intermediate layers were made

through grid searches and were not specified in the paper [7].

Optimizer: Adam
Loss: Categorical cross-entropy

Learning rate: 1e-3
Batch size: 48

Epochs: 40
Layer 1 Layer 2 Layer 3 Layer 4
Conv1D

Nr filters: 32
Filter size: 16
Padding: same

MaxPool1D Batch Normalization
Activation

Type: ReLU

Layer 5 Layer 6 Layer 7 Layer 8
Conv1D

Nr filters: 64
Filter size: 16

Padding: Same

MaxPool1D Batch Normalization
Activation

Type: ReLU

Layer 9 Layer 10 Layer 11 Layer 12
Conv1D

Nr filters: 128
Filter size: 16

Padding: Same

MaxPool1D Batch Normalization
Activation

Type: ReLU

Layer 13 Layer 14 Layer 15 Layer 16

Flatten
Dense

Units: 80
Activation: ReLU

Dense
Units: 80

Activation: ReLU

Dense
Units: 2

Activation: Softmax

Table 5.9: Architecture of the best performing CNN 3N inspired by Meier et al. Note that
this architecture is inferred from the paper, and futher optimized by experimenting with inter-
mediate layers, and does not necessarily reflect the architecture used to achieve their results.
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(a) Confusion matrix
(b) PRC

Figure 5.17: The two figures illustrate the performance of the model in terms of its confusion
matrix and Precision-Recall curve.

Similarily to its 3N counterpart, this model was trained with data preprocessed with

normalized scaler, time augmentation and noise augmentation. The training sequence was

influenced by Early Stopping and RLROP. The model achieves an F2 score of 0.68, which

is significantly better than ∼0.29 (exclusively predicting earthquakes). The model correctly

identifies 84% of the earthquakes with a precision of 39%. The more numerous earthquake

class is correctly identified with a recall of 89% and a precision of 99%. The success of this

model is surprising considering its small filter size. It appears that a useful feature maps of

the waveforms may be possible with small filters. Analysis of the errors of the model should

be left to domain experts, and so this paper will not attempt to speculate on errors unrelated

to preprocessing for the EE models. Several of the mistakes made stem from inaccurately

labeled start times, causing the time augmentor to cut out the start of events. In addition,

some events have significantly less noise at the start of a waveform than the end, which

is problematic for this augmentation technique. This will obfuscate the start of the event

with disproportionate amounts of noise, which may be interpreted as related to the event

by the model. Experimenting with a user defined buffer could be successful at mitigating

this problem, although this would not be an issue on real data. A selection of prediction

errors of this model can be found in the appendix A.4. The improved performance of Max

Pooling layer over Average Pooling layer is speculated to be due to Max Pooling extracting

the most prominent features. While classifying such similar classes focusing the model on

the extremes of the feature map may help extrapolate the features key to distinguishing

them.
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Best Performing Self-Developed Model The architecture of the self developed model

for the EE problem, initially looks very similar to the 3N version. They both share a the

element of growing width between each convolutional layer, as well as Max Pooling between

each of these layers. However, this model has a noticeably more and larger filters. This

also uses dropout layers in between the convolutional layers, although at a very small rate.

While performing optimization of this model, the results indicated that the model should be

wider and deeper. The model already contains ∼135 M trainable parameters, so due to the

increased training time and the larger size of the network, this was not done.

Optimizer: Adam
Loss: Binary cross-entropy

Learning rate: 1e-4
Batch size: 256

Epochs: 50
Layer 1 Layer 2 Layer 3 Layer 4
Conv1D

Activation: ReLU
Nr filters: 78
Filter size: 72
Padding: same

L1 reg: 0
L2 reg: 0.001

Dropout
Rate: 0.001

MaxPool1D

Conv1D
Activation: ReLU

Nr filters: 312
Filter size: 72
Padding: same

L1 reg: 0
L2 reg: 0.001

Layer 5 Layer 6 Layer 7 Layer 8

Dropout
Rate: 0.001

MaxPool1D

Conv1D
Activation: ReLU

Nr filters: 624
Filter size: 72
Padding: same

L1 reg: 0
L2 reg: 0.001

Dropout
Rate: 0.001

Layer 9 Layer 10 Layer 11 Layer 12

MaxPool1D Flatten
Dense

Activation: ReLU
Units: 254

Dense
Activation: ReLU

Units: 234
Layer 13

Dense
Activation: Sigmoid

Units: 1

Table 5.10: Architecture of the best performing self-developed CNN EE model
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(a) Confusion matrix
(b) PRC

Figure 5.18: The two figures illustrate the performance of the model in terms of its confusion
matrix and Precision-Recall curve.

The model is trained using normalized scaler, time augmentation, noise augmentation,

Early Stop and RLROP. This model is more flexible to other types of scalers, but the best

results were obtained using normalize scaler. This model reports an F2 score of 0.72, which

is significantly better than the baseline model. The validation set consist mostly of explosion

events, 91% of which were correctly identified with a precision of 99%. Since the explosion

events are so numerous, the relatively few misidentified explosions has a significant effect

on the precision of earthquakes. The model correctly identifies 87% of the earthquakes,

with a precision of 43%. Looking at 5.18b, one can see that the model performs reasonably

well, although there seems to be a fairly consistent trade off in precision and recall at any

threshold. Earthquake and explosion waveforms are visually nearly indistinguishable, and

insights into the type of errors made by the model should be left to the domain experts. Yet,

some errors can be inferred by visual inspection. Some of the false positives are due to time

augmentation issues. A few of the waveforms have inaccurately labeled start times, which

when processed by the time augmentor, causes the structural integrity of the waveform to

be compromised. In addition, some of the waveforms contain very little noise prior to an

event, compared to what is presumed to be noise, by the time augmentor, at the end of the

waveform. When reorganizing slices of the waveform, the noisy end of the raw waveform is

shifted to be between the event of interest and the relatively little noise at the start of the

waveform. The model struggles on events where this is the case. Label smoothing could

mitigate the effect of this during training, but it is not likely a problem if deployed on raw
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data. Adjusting the uncertainty of the start time during augmentation could help mitigiate

this as well, but seeing as how the model appears to struggle disproportionately on these

errors, it would appear the majority of the data is structurally intact. Further investigation

into the errors of intact waveforms is beyond the capabilities of the author. A selection

predictions made by the model are displayed in the appendix A.6.

InceptionTime An EE version of InceptionTime was also created. This model differs from

its 3N counterpart by being 2 Inception modules deeper, using residual connections and not

using bottleneck layer in the modules. This model, although not as memory intensive as

some of the other candidates, is notoriously slow to train, completing a step of size 64 events

in 560 ms. Performing a grid search using a single GPU is expensive, being a limiting

factor in the optimization of this model. The final model was trained with a batch size of

64, RMSprop optimizer with learning rate 1e-3 for 50 epochs. Time augmentation, noise

augmentation, early stop and RLROP was used.

Figure 5.19: Illustration of the best performing InceptionTime variation on the EE task.
Note that this model does not use bottleneck layers in the Inception modules.
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(a) Confusion matrix
(b) PRC

Figure 5.20: The two figures illustrate the performance of the model in terms of its confusion
matrix and Precision-Recall curve.

The model performs quite well on EE, achieving an F2 score of 0.64. The model indentifies

78.3% of the earthquake events, with a precision of 37.2%. For explosions, the model identifies

89% of them, with a precision of 98%. As seen on the PRC 5.20b, the model performs much

better than random, although far from perfect. The model does overfit significantly, with a

training accuracy of ∼100%. Regularization techniques such as L1 and L2 were attempted

both inside the Inception modules and the residual connection, to no avail. As with the 3N

version, this model too started off with too wide of a search space initially, only to show

that hyperparameters near the default were more likely to yield better models. Examples

of prediction errors can be found in the appendix, A.8. Speculation into the errors of EE

models is difficult without domain expertise, but some mistakes are clearly due to issues

stemming from preprocessing. As with many of the other models in this project, this too is

negatively affected by mislabled start times, causing time augmentation to cut out the start

of the event of interest. This model too struggles with waveforms which stem from hardware

issues. This model does appear to make some notable mistakes, where events of high signal

to noise ratio, not too distant and relatively high magnitude, are incorrectly labeled. All in

all this model performs well, despite being negatively impacted by time augmentation. It is

unclear to what extent the waveforms in this dataset contain incorrectly labeled start times,

but this clearly negatively impacts the inference of the models, and likely also the kinds of

features it learns during training.
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5.2.4 Final Model

The final model is made up by the best performing model on 3N and the best performing

model on EE. The table 5.11 below summarizes the performance of the best model in each

category for each task.

Model
Noise vs Not-Noise
Validation accuracy

Earthquake vs Explosion
F2 score

FCNN 86.6% 0.35
MLSTM-FCN 95.6% 0.49

Meier et al. 97.6% 0.68
Self-developed 97.9% 0.72
InceptionTime 96.8% 0.64

Table 5.11: Summary of the performance of all of the models on both tasks. Note that the
hyperparameters for the models differ between the two tasks. A randomly guessing 3N model
would produce validation accuracy of ∼50%, and the EE equivalent would produce an F2
score of 0.292.

As table 5.11 shows, the self-developed models outperformed the other models in both

tasks. This architecture uses features from Meier et al.’s model, such as three stacked

convolutional layers with the increasing number of filters in each layer. The growth sequence

of the filters is also identical, where the second layer has twice as many filters as the first, and

third with 4 times the filters of the first. The differences come in the form of significantly

larger filters, and significantly more units in the dense layers. The dense layers also use

different number of units. As stated previously, the exact architecture of Meier et al.’s

model is not described, but has been inferred and subsequently optimized.

Finally, now that the self-developed models have been selected as the best performers,

they are combined into what effectively becomes the final model. The pipeline illustrating

this merger is described in the Two Models In One 4.3.1 subsection. In order to gauge

the final model’s performance on new data, the previously untouched test set is used. The

test set consists of 17642 events: 698 (∼3.96%) earthquakes, 8365(∼47.42%) explosions and

8579(∼48.63%) noise events. This test set is used only once for this final evaluation. These

events in the test set are in their raw state, 9460 timesteps, which is incompatible with

the input shape in which the two models were trained. Consequently, time augmentation is
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needed in order to produce reshape the waveform. This means that any incorrectly labeled

start times or other features in which makes this augmentation technique problematic, are

also applied to the test set. Thus, the resulting evaluation does not reflect exactly how

the model performs when deployed. Additionally, the waveforms in the NORSAR dataset

have start times centered around the 1 minute mark. Through augmentation this temporal

invariance is mitigated, but could be adversely affected by efforts to maintain the entirety

of the event of interest in the augmented waveform. In short, the time augmentor has strict

limits in which it can shift the event of interest. The downstream effects of the specifics of

this cutoff are not studied, but is speculated to possibly create regions of the waveform the

model has learned to ignore. For example: the very beginning and the end of the waveform.

If this model is to be deployed, there are considerations, such as this, is necessitated by the

design choices made for this project.

The selected model is made up the self-developed 3N model and the self-developed EE

model. These models have not been retrained since producing the results described in this

section. The choice to not train the models on the entire dataset, nor a larger subsample

was made because of the use of upsampling. Since the non-earthquakes event make up the

vast majority of the data, the earthquake events would need to be upsampled several times

in order to balance the training set. The test data also needed to be preprocessed, in order

to reflect the features in which the models were trained upon. As both of these models use

normalize scaler, the scaler did not require fitting. The noise augmentor did, however, and

depends on all previous preprocessing steps. The preprocessing used on the test set was

fitted using the combined training, validation and psuedo-test set used for model selection.

The test set was then transformed using the fitted preprocessing steps prior to being input

into the model.

Class Precision Recall F2 score
Noise 97.291% 97.995% 0.97854

Explosions 98.001% 89.085% 0.90736
Earthquakes 39.585% 79.226% 0.66006

Average 78.292% 88.769% 0.84865
Weighted average 95.352% 93.036% 0.93490

Table 5.12: Performance metrics of the final classifier on the test set.

Figure 5.21 shows the predictions made by the final model on the test set. The model

performs as expected from the performance of its individual parts on validation. Each
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Figure 5.21: Confusion matrix showing the predictions made by the final model on the test
set.

submodel makes one classification per millisecond (± 0.2 ms), meaning that the maximum

inference time is ∼ 2 ms on an RTX 3090. The model identifies 97.99% of the noise events,

with a precision of 97.3%. As the 3N component of this model works as a filter for the noise

events, being able to removing the noise effectively is key. In real life, the vast majority

of the recordings at NORSAR are made up by noise events. Being able to remove them

effectively with minor misclassifications may be very useful. The final model has an F2

score of ∼0.98, where noise is the positive class. The model identifies 89.1% of the explosion

events, with a precision of 98%. The majority of these unidentified explosions are classified

to be earthquakes. This result is reasonable, as earthquakes and explosions are much more

difficult to distinguish than explosions and noise. A similar result can be found the other

way around, where most of the misclassified earthquakes are classified as explosions. The

earthquake class performs the worst, where the model identifies ∼79%. This is done with a

precision of ∼40% which is quite good considering how infrequent earthquake samples are in

comparison to the two other classes. The F2 score of earthquakes is 0.66, a relatively small

drop from the individual models’ 0.74. All in all, the final model correctly classifies 16412 of

the events, making 1230 mistakes. The accuracy of the classifier is 93%, although the reader

should note the severe class imbalance. 8.4% of earthquake events are incorrectly labeled

as noise, compared to 2.1% of explosion events. This suggests the 3N component is more

effective at detecting explosion events rather than earthquake events.
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(a)

(b)

Figure 5.22: The two graphs show the distribution of distances from ARCES for explosions
5.22a and earthquakes 5.22b, overlayed by the distribution of the correctly identified class
with respect to distance. Note the broken y-axis of 5.22a.
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(a)

(b)

Figure 5.23: The two graphs show the distribution of magnitudes for explosions 5.23a and
earthquakes 5.23b, overlayed by the distribution of the correctly identified class with respect
to magnitude. Note the broken y-axis of 5.23a.
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(a)

(b)

Figure 5.24: The two graphs show the distribution of MSRDR for explosions 5.24a and
earthquakes 5.24b, overlayed by the distribution of the correctly identified class with respect
to MSRDR. Note the broken y-axis of both figures.
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The two graphs in figure 5.22 show the true epicentral distance distribution of the explo-

sion and earthquake events. This graph illustrates how prediction errors relate the events

distance from ARCES. It is immediately clear that the model is better at identifying explo-

sions, but there is no significant direct relationship between the distance of an event alone

and the models’ ability to predict correctly. Looking at the teleseismic events in the explo-

sion category, the model appears to struggle more with events occuring at distances greater

than 1250 km, although there are not enough events above this threshold to make this claim

with certainty. For earthquakes, all of them are predicted correctly for the first two bins,

but the errors do not appear to display any significant relationship for earthquakes either.

The lack of relationship to distance could be due to distance playing a more distinct role in

the 3N submodel than the EE submodel.

Figure 5.23 show the distribution of magnitudes for the explosion events and the earth-

quake events in the test set, and how magnitude relates to the errors of the model. It appears

that the model is better at classifying low magnitude explosions rather than high magnitude

ones. This is likely due to the explosions in the ARCES dataset are typically of lower mag-

nitudes. For earthquakes, the model makes less mistakes with high magnitude events rather

than low. It appears the model has learned that features representative of a low magnitude

event are more likely to be explosions and vice versa. It is interesting to see that the highest

magnitude explosion event is not identified.

The graphs in figure 5.24 show how the model performs relative to MSRDR. The explo-

sion graph indicates that the explosion events of low MSRDR are correctly identified at a

rate higher than high MSRDR events. Considering this relationship with the distance and

magnitude graphs, this relationship is attributed to the sensitivity to magnitudes rather than

distance. The MSRDR is used analogously to signal-to-noise ratio, meaning that a higher

MSRDR means high signal quality and vice versa. One would expect that both of these

classes would display some relationship to the effect of: higher MSRDR, less errors. This

appears to only be the case for earthquakes.

The figures (5.22, 5.23, 5.24) suggests that the model is more sensitive to the magnitude of

the event rather than its distance, when distinguishing between earthquakes and explosions.

The median explosion magnitude is much lower than the median earthquake magnitude

in the ARCES dataset. If a model uses this feature as its sole distinction criteria, the

model would perform better than random, but would not produce dependable classifications.
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However, due to the data being scaled in each channel independently by normalize scaler,

the information necessary to derive magnitude is lost, and so the model cannot depend on

this feature alone.

As noise events do not have epicentral distance, magnitude nor MSRDR, no plots were

made for these events. However, looking at these statistics when the model incorrectly

predicts noise may provide insight. For the following graphs, for both explosions and earth-

quakes, the earthquake/explosion predicted in err to be noise, is put under the microscope.

Figure 5.25: Shows the distribution of the explosions in the test set, and the explosions incor-
rectly labeled noise, with respect to distance. The right graph shows these errors adjusted by
the bin frequency. Finally, a linear regression line has been plotted to display the relationship
of distance to the models’ error.

The graphs in figure 5.25 shows how the distance of the event affects the prediction

of noise for explosion events. The model does appear to predict noise more frequently as
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distance increases, although this relationship is not statistically significant. It is clear that

the model rarely makes noise predictions for the near explosions, but with the given sample,

no significant relationship can be found. It should be noted that explosion with an epicentral

distance shorter than 500 km make up the vast majority of the test set.

Figure 5.26: Shows the distribution of the earthquakes in the test set, and the earthquakes
incorrectly labeled noise, with respect to distance. The right graph shows these errors ad-
justed by the bin frequency. Finally, a linear regression line has been plotted to display the
relationship of distance to the models’ error.

Figure 5.26 shows the same relationship as 5.25, but for earthquake events. Here, there

is a steeper positive correlation between distance and predicting noise, although statistically

insignificant with a p-value of 0.07. The model only predicts noise for a few events less than

750km. Looking at the confusion matrix 5.21, figure 5.25 as well as this, one can see that the

model is more likely to predict noise for earthquake events than explosion events. This plot
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illustrates that the models’ errors on earthquakes related to distance is more or less confined

to the 3N submodel. This is likely the case for explosions as well but the insufficient number

of distant explosions makes this relationship harder to justify.

Figure 5.27: Shows the distribution of the explosions in the test set, and the explosions
incorrectly labeled noise, with respect to magnitude. The right graph shows these errors
adjusted by the bin frequency. Finally, a linear regression line has been plotted to display the
relationship of magnitudes to the models’ error.

In figure 5.27 one can see the distribution of the magnitudes of explosions in the test

set, and the distribution of the magnitudes of explosions classified as noise. There is a,

statistically insignificant, small positive relationship between magnitude and the models’

prediction of noise. Looking at this relationship without considering the distance of these

events yields limited insight, but it is still interesting to see that the model is able to identify

low magnitude events at a high rate.
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Figure 5.28: Shows the distribution of the earthquakes in the test set, and the earthquakes
incorrectly labeled noise, with respect to magnitude. The right graph shows these errors
adjusted by the bin frequency. Finally, a linear regression line has been plotted to display the
relationship of magnitudes to the models’ error.

Looking at figure 5.28, there is no relationship between magnitude and the models pre-

diction of noise. The distribution of earthquakes predicted to be noise appears to follow the

distribution of magnitudes fairly evenly, suggesting that the magnitude of the event matters

little when distinguishing between noise and earthquakes. In fact, at both extremes of mag-

nitude, no noise prediction is made. The insight gained from this graph is also limited given

the lack of consideration of distance.
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Figure 5.29: Shows the distribution of the explosions in the test set, and the explosions incor-
rectly labeled noise, with respect to MSRDR. The right graph shows these errors adjusted by
the bin frequency. Finally, a linear regression line has been plotted to display the relationship
of MSRDR to the models’ error.

The figure in 5.29 shows the relationship between MSRDR and the models prediciton

of noise for explosion events. Here one can see a significant negative relationship between

MSRDR and the prediction of noise, confirming that MSRDR functions as an indicator of

signal-to-noise ratio. All of the incorrect noise predictions for explosion events are found when

the MSRDR is low. There is a significant relationship indicating that the greater MSRDR

is, the less likely the explosion is to incorrectly be labeled as noise. This relationship is not

surprising, given that this model is trained to detect not-noise like activity in the waveforms,

but rather confirms that the model is sensitive to these factors.
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Figure 5.30: Shows the distribution of the earthquakes in the test set, and the earthquakes
incorrectly labeled noise, with respect to MSRDR. The right graph shows these errors ad-
justed by the bin frequency. Finally, a linear regression line has been plotted to display the
relationship of MSRDR to the models’ error.

Similarily to its explosion equivalent, the figure 5.30 also finds a significant relationship

between MSRDR and the incorrect classification of noise. This relationship shows that there

is a negative correlation between an earthquake being classified as noise and its MSRDR.

Unlike explosions, the model does make a noise classification of an earthquake event with

MSRDR higher than 0.2, but in general the significant majority of the incorrect noise lables

are found in the lower values of MSRDR. The insight gained from these plots are the same as

its explosion equivalent, but also highlights that the 3N model is less sensitive to earthquake

waveforms than explosions. This is speculated to be due to the earthquake waveforms in the

training set being upsampled, unlike the explosion events. The upsampled events vary in
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the temporal location of the earthquake due to time augmentation, but does not introduce

new features of earthquakes to be learned.

The model performs quite well on the test set, comparable to what it achieved on valida-

tion. The results of the model show imprecision when identifying earthquakes, but can fairly

reliably classify noise and explosion events. The noise-not-noise filter functions well, identi-

fying all but 2% of the events. The harder task of distinguishing earthquakes from explosions

does not achieve the same performance, but correctly classifies enough of the explosions and

identifies a reasonable amount of the earthquakes to be considered useful. Looking at the

models’ earthquake predictions, whose true label is noise, one can find several waveforms

which do not conform to the typical noise structure. The majority of these events are likely

a result of transient noise whose expression mimics that of explosion or earthquakes. Still,

it is not impossible for the model to identify previously undetected events in the test data.

Examples of these events can be found in the appendix A.9.1. Statistically, it is unlikely that

these events are infact earthquakes, but their interesting features are noted by the model.

Nuclear Explosions

NORSAR is the designated Norwegian National Data Center for the Comprehensive Nuclear

Test Ban Treaty (CTBT). This international effort monitoring nuclear explosions, means that

several stations and arrays across the globe have recorded the 6 nuclear weapons tests in

North Korea. It would be interesting to see how the final model handles these waveforms,

which clearly contain seismic events, although the type of which it has not been exposed to

yet:

• ”NK1”: 2006-10-09T01:35:27

• ”NK2”: 2009-05-25T00:54:43

• ”NK3”: 2013-02-12T02:57:51

• ”NK4”: 2016-01-06T01:30:01

• ”NK5”: 2016-09-09T00:30:01

• ”NK6”: 2017-09-03T03:30:02
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The list above contain the name of the event followed by the UTC date and time. The

nuclear explosion dataset is made up of 23 waveforms, from 4 different arrays. USRK in

south-east Russia (built in 2008, so the first event is not recorded), 400 km from the explo-

sions. USRK only has vertical seismometers, and so the other two channels are filled with

zeros. MJAR in Japan, 950 km away, but the waves need to travel through the seabed/sea

prior to arriving at the array. KSRS in South Korea, 450 km distance from the epicenter.

Both MJAR and KSRS both contain only one non-vertical seisometer. The recordings from

these two arrays are not beamformed, but do contain three non-zero components. The last

array is ARCES, 6250 km away. As this project has previously only worked with beamformed

waveforms from the ARCES array, applying the model to data from several different arrays

with and without beamforming, with and without three non-zero channels, may provide

insight into the behavior of the model, and how it handles different types of data.

The nuclear explosion seismograms are originally 5 minutes long, centered to start at

around the 1 minute mark. With a sample rate of 40 Hz, this makes the events 12 thousand

timesteps. These events do not have labeled start times, so a manual cutting of the waveform

was performed to make the shape compatible with the model. Normalized scaler and noise

augmentation was used to transform the data prior to being input into the model. The

model is the same as what was used for evaluating the final model, and is not retrained for

this evaluation.

Figure 5.31: Confusion matrix of the models’ classification when given nuclear explosion
waveforms as input

Figure 5.31 shows the confusion matrix of the nuclear explosions recorded by all the

stations. The nuclear explosion waveforms are marked with explosion as the true label. The

model nearly exclusively predicts earthquakes for this data, except for one noise prediction.
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The model predicts, with a high degree of certainty, that the events are at least not noise

events. Further, for all of the waveforms, but two, the model outputs values higher than

0.99, by the EE model. The two waveforms of lower certainty have outputs 0.54 and 0.55.

The 0.55 output is the recording of NK1 and the 0.54 is of NK2, both from the MJAR array.

From the 3N submodel the NK1 MJAR reording has an output of 0.63, while the NK2 has

output 0.69.

The nuclear explosions are labeled by the author to be considered explosions. It would

appear that nuclear explosions either share few features with the explosions in the training

set or many with the earthquakes in the training set.

(a) (b)

Figure 5.32: The two waveforms are of the first North Korean nuclear test, NK1. This
recording by ARCES is 6250 km away from the detonation. The 3N submodel outputs 0.01,
while it the correct output is 1. The raw waveform can be seen in 5.32a and the trans-
formed waveform is seen in 5.32b. The transformation consists of normalize scaling, noise
augmentation and a manual shortening of the event.

The noise classification is ARCES recording of NK1. NK1 is thought to be a ”fizzle”,

which means the nuclear explosion grossly fails to meet its expected yield. The model outputs

uncertainty with the same recording, but from 950 km away, and so it is not surprising

that a fizzle event 6250km away is indistinguishable from noise by the model. The model
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consistently detects that the recorded event is at least not noise, indicating that it is sensitive

to events occurring at a greater distance than the data in its training data.

(a) (b)

Figure 5.33: The two waveforms contain the NK6 nulear explosion, where 5.33a shows the
ARCES recording (6250 km) and 5.33b shows the MJAR recording (950 km).

The two raw waveforms in figure 5.33 are of the most recent nuclear explosion in the

nuclear explosion dataset. These examples are included to illustrate how nuclear explosions

appear on seismographs, and show how the waveform is impacted by distance as well as the

propagation medium. The ARCES recording has significantly less displacement in stacked

counts compared to the Japanese recording, however both were correctly identified to not be

noise by the model. It should be noted that the model is not trained to classify these types

of events, but still identifies them to be of interest, despite their very distant origin.
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Chapter 6

Summary

The goal of this project was to see if deep neural networks could classify beamformed seismic

data from an array into three distinct categories. When evaluating the success of this goal

at a binary level, one would only need to see if the models perform better than random. The

results of the final model clearly show that it performs significantly better than random.

The more relevant question to answer is to what degree did the final model accomplish its

goal. This is harder to answer, and should arguably be answered by relevant stakeholders. I

interpret the results of the final model like this: when the model makes a noise or explosion

prediction, it is very likely correct. It still makes mistakes, so in practice any classification of

these classes should be manually confirmed by analysts, especially when the model output

indicates uncertainty. The events in which the model outputs earthquake should definitely be

manually checked. The model will be correct ∼40% of the time when predicting earthquake,

so blindly relying on the model will produce a lot of false positives.

An important reason for developing models which automate the classification process is to

reduce the workload of analysts. In practice, I think the model can help highlight interesting

segments of the continuous recording, which warrant further investigation. Further, the

model can make an initial classification, which may speedup the analysis process. A useful

feature of neural networks is that the output can be interpreted as the probability of the

input belonging to that particular class. An analyst can use the probability output to have

an idea of how certain the model is about the classification. Thus, I think the value of

this model comes as a first-glance analysis of any given waveform. It is correct more often
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than its not, but it still makes mistakes. How much this reduces the workload of analysts is

beyond what I can answer, but I think the model can be a useful tool if used appropriately.

The labeled start times have been key to mitigating the effects of the unbalanced dataset.

The time augmentor allowed for significant upsampling, while offsetting the negative conse-

quences. Unfortunately, this type of augmentor does not introduce new earthquake features

for the model to learn, but makes it so the model is more flexible to where in the waveform

the event occurs. Shifting the event of interest also means shifting the noise, helping the

model learn to ignore these uninteresting segments. Combining this with the noise augmen-

tation and this sensitivity to noise is further mitigated. The automatically labeled start

times did turn out to be somtimes imprecise and sometimes completely off, leading to the

time augmentor compromising the structural integrity of some waveforms. Tuning the buffer

between the labeled start time and the cut off time would reduce the impact of this short-

coming. It is futile to manually oversee this tuning holistically, so doing this through an

additional hyperparameter during model selection is likely a good way to do this.

Themes for this project include complicated models with long training times, a practically

infinite potential search space for each model, limited access to adequate computational

resources, and a restrictive deadline. Therefore, the results reported in this project are far

from the ”best” possible for each model. I speculate that with a more fine grained filtration

of ”bad” recordings, optimally tuned time and noise augmentors, label smoothing, long

sequences of iterative improvements on models found during continuous grid searches will

have significant impact on the results on this dataset. It could also be interesting to convert

the waveforms input of the EE submodel to spectrograms instead, such as in the work by

Tibi et al. [33]. Manual analysis of seismograms include looking at individual frequency

bands; training the EE submodel on spectrograms could yield more reliable results.

It is difficult to gauge the success of using two individually optimized models instead of

one. The decision to split the classification task in two immediately improved the results, but

without comparison to a representative model I cannot make a claim one way or the other.

Having one model strictly filtering out non-interesting events is very useful, and reduces

the workload of the subsequent model tremendously. Fewer nodes in the output layer also

reduces the complexity of each model. Optimizing them individually is very useful when

dealing with classes which are very similar in features. The downside of this design choice is

that it doubles the amount of models which need to be optimized, which, in effect, halves the
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attention each model receives in this project. This lead to aggressive strategies in Early Stop

and RLROP, which more than likely discarded models which otherwise would yield promising

results. A relatively low number of epochs were used in order to cover a larger section of the

search space. The overly aggressive training techniques and likely under-training of models

leaves a lot of potential just from their reduction.

The final (combined) model makes a classification every ∼2 ms, which allows an imple-

mentation of the model to make ∼12 classifications per sample, as the sample rate is 40 per

second. There is some variance in the output of a single waveform (due to noise augmenta-

tion), in which a voting system could be developed to reduce the impact of this variability. A

sliding window could prove useful to offset the effects of short strong displacement in stacked

counts on the normalized scaler. In general, I think the model would perform better on live

(but beamformed) data, as a lot of the errors made by the model is due to either a poorly

tuned time augmentor or inaccurately labeled start times, depending on your perspective.

There is a lot of potential in improving the results on this dataset. Manual classification

of low magnitude events is difficult, and is prone to errors when the signal is noisy. As a result

there are likely several incorrectly labeled low magnitude events, which are counterproductive

to the training process. In addition, there are some seemingly incorrect labels (at least to

someone who is not a domain expert), such as A.30 in the appendix. Manually relabeling

all of the events is clearly infeasible, so other techniques such as label smoothing could be

useful in future research. The dataset also contains quite a lot of outlier events stemming

from hardware issues. How much these events impact the training process is unclear, but

it certainly limits the types of scalers that can be used productively. The performance of

the any supervised model, is limited by the integrity of the data. For this project, the

best possible model would achieve performance equal to that of analysts. As with most

real datasets, this integrity is less than optimal and should be considered when interpreting

the results of the final model. The 3N component achieves high accuracy despite these

discrepancies, producing results comparable to NORSAR existing event detection method.

However, neither model is perfect, leaving potential improvement for future research and

development.
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Appendix A

Selected Predictions

In the following figures the raw waveform is in the left column, and will have labeled (a).

The transformed waveform will be captioned (b). Each of the transformed waveforms in the

appendix has been normalize scaled, time augmented and noise augmented.

A.1 MLSTM-FCN 3N

A.1.1 Selected False Positives

(a) (b)

Figure A.1: Predicted output: 0.59, correct output: 0. Noise. Outlier waveform, likely
hardware error.
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(a) (b)

Figure A.2: Predicted output: 0.82, correct output: 0. Noise. Difficult to distinguish without
domain expertise, but a notable mistake made with relatively high certainty.

(a) (b)

Figure A.3: Predicted output: 0.62, correct output: 0. Noise. Appears to be a typical noise
waveform, although with a short minor period of particular displacement. Speculated to be
the cause for the classification error.
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(a) (b)

Figure A.4: Predicted output: 0.13, correct output: 1. Type: Explosion, magnitude: 2.2,
distance: 1106 km. Likely mislabeled start time causes time augmentor to compromise the
event of interest.

A.1.2 Selected False Negatives

(a) (b)

Figure A.5: Predicted output: 0.06, correct output: 1. Type: Explosion, magnitude: 0.9,
distance: 119 km. Near but very low magnitude explosion event.
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(a) (b)

Figure A.6: Predicted output: 0.06, correct output: 1. Type: Explosion, magnitude: 2.3,
distance: 1148 km. Outlier event, hardware error. Good example of how the normalized
scaler transforms the input waveform.

A.2 MLSTM-FCN EE

A.2.1 Selected False Positives

(a) (b)

Figure A.7: Predicted output: 0.88, correct output: 0. Type: Explosion, magnitude: 2.1,
distance: 297 km. This event is also speculated to be of ripple-fired explosions.
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(a) (b)

Figure A.8: Predicted output: 0.71, correct output: 0. Type: Explosion, magnitude: 2.0,
distance: 312 km. Speculated to be recording of ripple-fired explosions, which should be
relatively distinct from earthquakes. Neither weak nor distant. Notable mistake.

Selected False Negatives

(a) (b)

Figure A.9: Predicted output: 0.45, correct output: 1. Type: Earthquake, magnitude: 1.75,
distance: 134 km. This event is of a near earthquake with good signal to noise ratio. Notable
mistake.
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(a) (b)

Figure A.10: Predicted output: 0.33, correct output: 1. Type: Earthquake, magnitude: 1.85,
distance: 163 km. This event is of another near earthquake with good signal to noise ratio.

A.3 Meier inspired CNN 3N

A.3.1 Selected False Negatives

(a) (b)

Figure A.11: Predicted output: 0, correct output: 1. Type: Explosion, magnitude: 1.5,
distance: 293 km. Hardware error. Unprecedented regular displacement in stacked counts.
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(a) (b)

Figure A.12: Predicted output: 0, correct output: 1. Type: Explosion, magnitude: 2.3,
distance: 1129 km. Sudden spike, likely unrelated to the event, obfuscating the event of
interest.

(a) (b)

Figure A.13: Predicted output: 0.35, correct output: 1. Type: Explosion, magnitude: 2.4,
distance: 1137 km. Either mislabeled, or slow traveling waves, causing time augmentor to
cut out the event of interest.
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A.3.2 Selected False Positives

(a) (b)

Figure A.14: Predicted output: 1, correct output: 0. Noise. Labeled noise, although appears
that the recording starts during an ongoing event.

(a) (b)

Figure A.15: Predicted output: 0.99, correct output: 0. Noise. Atypical expression in stacked
counts.
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(a) (b)

Figure A.16: Predicted output: 0.99, correct output: 0. Noise. Irregular noise waveform.

A.4 Meier inspired CNN EE

A.4.1 Selected False Negatives

(a) (b)

Figure A.17: Predicted output: 0, correct output: 1. Type: Earthquake, magnitude: 1.2,
distance: 310 km. Event is eclipsed by noise, except short burst in the transverse channel.
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(a) (b)

Figure A.18: Predicted output: 0, correct output: 1. Type: Earthquake, magnitude: 2.0,
distance: 382 km. Inaccurately labeled start time, causing time augmentor to cut out the
onset of the event.

A.4.2 Selected False Positives

(a) (b)

Figure A.19: Predicted output: 0.89, correct output: 0. Type: Explosion, magnitude: 2.0,
distance: 340 km. Recording starts during the end of another event.
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(a)
(b) Transformed waveform using nor-
malize scaler, time augmentor and
noise augmentor

Figure A.20: Predicted output: 0.99, correct output: 0. Type: Explosion, magnitude: 1.7,
distance: 343 km. Striking resemblance to the waveform in A.34.

(a) (b)

Figure A.21: Predicted output: 1, correct output: 0. Type: Explosion, magnitude: 1.7,
distance: 343 km. Inaccurate start time causing time augmentation to cut out the start of
the event.
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A.5 Self-developed CNN 3N

A.5.1 Selected False Negatives

(a) (b)

Figure A.22: Predicted output: 0.49, correct output: 1. Distance to ARCES: 1142 km.
Magnitude: 2.31. Earthquake.

(a) (b)

Figure A.23: Predicted output: 0.17, correct output: 1. Distance to ARCES: 765 km. Mag-
nitude: 1.7. Explosion
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(a) (b)

Figure A.24: Predicted output: 0.03, correct output: 1. Distance to ARCES: 723 km. Mag-
nitude: 1.8. Explosion. Hardware error.

(a) (b)

Figure A.25: Predicted output: 0.43, correct output: 1. Distance to ARCES: 1139 km.
Magnitude: 2.2. Explosion. Hardware error.
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(a) (b)

Figure A.26: Predicted output: 0.17, correct output: 1. Distance to ARCES: 205 km. Mag-
nitude: 1.6. Explosion. Notable mistake.

A.5.2 Selected False Positives

(a) (b)

Figure A.27: Predicted output: 0.96, correct output: 0. Noise. Irregular noise waveform.
Same error made in A.16, although here with more uncertainty.
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(a) (b)

Figure A.28: Predicted output: 0.62, correct output: 0. Noise. Hardware error.

(a) (b)

Figure A.29: Predicted output: 0.63, correct output: 0. Noise. Seems to contain seismic
event. Likely error stemming from the way the noise data is sampled. Seems to disregard
everything prior to the labeled event start.
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(a) (b)

Figure A.30: Predicted output: 0.93, correct output: 0. Noise. This waveform contains a
seismic event, but is mislabeled. Contains the classic P and S wave structure.

(a) (b)

Figure A.31: Predicted output: 0.51, correct output: 0. Noise. Outlier noise waveform with
very strong displacement in all channels’ stacked counts. Not a problem due to normalize
scaler, but incorrect prediction nonetheless.
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A.6 Self-developed CNN EE

A.6.1 Selected False Positives

(a) (b)

Figure A.32: Predicted output: 0.87, correct output: 0. Type: Explosion, magnitude: 2.1,
distance: 570 km. Outlier waveform, likely due to hardware error.

(a) (b)

Figure A.33: Predicted output: 0.60, correct output: 0. Type: Explosion, magnitude: 2.2,
distance: 921 km. Incorrectly labeled start time causes time augmentor to cut out significant
portions of the event of interest
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(a) (b)

Figure A.34: Predicted output: 0.93, correct output: 0. Type: Explosion, magnitude: 3.0,
distance: 392 km. Noisy waveform near the end of the raw waveform has been inserted right
before the actual event. Additionally, the labeled time is inaccurate, causing time augmentor
to cut out the start of the event.

A.6.2 Selected False Negatives

(a) (b)

Figure A.35: Predicted output: 0.18, correct output: 1. Type: Earthquake, magnitude: 2.1,
distance: 404 km. The labeled start time is incorrect, causing time augmentor to cut out the
start of the waveform.
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(a) (b)

Figure A.36: Predicted output: 0.32, correct output: 1. Type: Earthquake, magnitude: 2.6,
distance: 426 km. The labeled start time is incorrect, causing time augmentor to cut out the
start of the waveform.

(a) (b)

Figure A.37: Predicted output: 0.33, correct output: 1. Type: Earthquake, magnitude: 2.2,
distance: 393 km. The labeled start time is incorrect, causing time augmentor to cut out the
start of the waveform.
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A.7 InceptionTime 3N

A.7.1 Selected False Positives

(a) (b)

Figure A.38: Predicted output: 0.95, correct output: 0. Type: Noise. The recording starts
during an ongoing (presumably) seismic event, confusing the classifier. Shows insensitivity
to location of event.

(a) (b)

Figure A.39: Predicted output: 0.99, correct output: 0. Type: Noise. Mislabled event. Same
as A.30.
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(a) (b)

Figure A.40: Predicted output: 0.99, correct output: 0. Type: Noise. Short, but significant
amplitude spike.

A.7.2 Selected False Negatives

(a) (b)

Figure A.41: Predicted output: 0.34, correct output: 1. Type: Explosion, magnitude: 1.7,
distance: 759 km. Very short but significant displacement in stacked counts in the vertical
channel.
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(a) (b)

Figure A.42: Predicted output: 0.22, correct output: 1. Type: Explosion, magnitude: 2.2,
distance: 1106 km. Appears that the event of interest occur prior to the labeled start time,
causing time augmentor to cut the event out of the input waveform.

(a) (b)

Figure A.43: Predicted output: 0.44, correct output: 1. Type: Explosion, magnitude: 1.6,
distance: 383 km. Incorrectly labeled start time. Still, the event is, at least visually, clearly
a seismic event. Notable mistake.
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A.8 InceptionTime EE

A.8.1 Selected False Positives

(a) (b)

Figure A.44: Predicted output: 0.67, correct output: 0. Type: Explosion, magnitude: 2.4,
distance: 1140 km. Hardware error.

(a) (b)

Figure A.45: Predicted output: 0.99, correct output: 0. Type: Explosion, magnitude: 1.6,
distance: 409 km. The start time of this event is mislabeled, causing time augmentor to cut
out the start of the event.
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A.8.2 Selected False Negatives

(a) (b)

Figure A.46: Predicted output: 3e-8, correct output: 1. Type: Earthquake, magnitude: 2.4,
distance: 404 km. The start time of this event is mislabeled, causing time augmentor to cut
out the start of the event.

(a) (b)

Figure A.47: Predicted output: 2.7e-5, correct output: 1. Type: Earthquake, magnitude:
2.5, distance: 432 km. Relatively clear event, with high signal to noise ratio, not negatively
affected by augmentation. Notable mistake.
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A.9 Final Model

A.9.1 Noise Events Incorrectly Classified As Earthquakes

(a) (b)

Figure A.48: 3N prediction: 0.97, EE prediction: 0.99. Waveform label: Noise. Resulting
prediction: Earthquake. The waveform deviates from the typical noise recording.

(a) (b)

Figure A.49: 3N prediction: 0.97, EE prediction: 0.99. Waveform label: Noise. Resulting
prediction: Earthquake. The waveform deviates from the typical noise recording.
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(a) (b)

Figure A.50: 3N prediction: 0.99, EE prediction: 0.99. Waveform label: Noise. Resulting
prediction: Earthquake. This event has much stronger displacement in stacked counts than
typical noise recordings. It also appears to contain a clear P and S wave.

(a) (b)

Figure A.51: 3N prediction: 0.97, EE prediction: 0.99. Waveform label: Noise. Resulting
prediction: Earthquake. Short, but distinct segment deviating from the norm.
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(a) (b)

Figure A.52: 3N prediction: 0.99, EE prediction: 0.99. Waveform label: Noise. Resulting
prediction: Earthquake. Another event predicted to not be noise with very high certainty and
an earthquake event with very high certainty.
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