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Abstract

The number of people connected to the internet is swiftly growing, and technology is
increasingly integrated into our daily lives. With this increase, there is a surge of attacks
towards the digital infrastructure. It is of great importance to understand how we can

analyze and mitigate attacks to ensure the availability of the services we depend on. The
purpose of this study is two-sided. The first is to evaluate different machine learning
models in intrusion detection systems. We measured their performance on distributed
denial of service(DDoS) attacks and explained them using SHAP values. Secondly, by
using the SHAP values, we found the most important features and generated multiple
variations of the same attacks to see how the different models reacted. Ultimately, we

found that SHAP values have great potential as a base for generating more sophisticated
attacks. In turn, the modified attacks were able to bypass intrusion detection systems.
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Chapter 1

Introduction

1.1 Motivation

In the age of digitalization, technology is more available than ever. Most people would
never leave their smartphones at home, and people are dependent on digital services ev-
ery day. The number of people connected to the Internet increases rapidly. Almost every
major company delivers some form of service through the web. Cisco estimates that over
70 percent of the global population will have mobile connectivity by 2023[1]. Following
the large influx of new users, there is a proportional increase of competitive services and
controversial information on the web.

Governments or corporations may choose an unethical way of dealing with competitors
or censoring information they do not acknowledge. Hence, the potential for gain and
influence is immense for the attackers. From Ciscos’s report, there was a 776 percent
increase in Distributed Denial of Service(DDoS, discussed in section 3.1.2) attacks with
throughput between 100Gbps and 400Gbps from 2018 to 2019. They also expect that the
total number of DDoS attacks going to double from 2018 to 2023[1]. As attacks advance
and become more powerful and sophisticated, we need to find new ways of mitigating
them efficiently.

1.2 Goal

This thesis aims to develop and evaluate different neural network architectures’ perfor-
mance and robustness on various Distributed Denial of Service attacks. While this is
a well-researched area, there have not been enough reports on whether or not neural
networks perform on variations of the same attacks. This thesis will use the Shapley
Additive Explanations(SHAP) framework to describe the proposed models and generate
SHAP values. Utilizing the SHAP values from the SHAP framework, we design variations
of attacks attempting to fool the models. The primary goal is to determine if it is possible
to generate attacks based on the output from the SHAP framework. A secondary goal
is to evaluate the viability of different machine learning models in intrusion detection
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systems.

1.3 Overview

We structured this thesis in chapters, where the next chapter discusses the field of intrusion
detection systems(IDS), relevant related work, and contributions of this thesis. In the
third chapter, background, we discuss necessary background knowledge. Namely, what
a DDoS attack is and specific attacks. We also discuss machine learning and neural
networks, model explanation with LIME, Shapley values, and the SHAP framework. In
the end, we propose a lite version IDS based on the acquired knowledge. Chapter 4
discusses the proposed machine learning models, the experiments carried out, and their
results. Chapter 5 discusses the viability of SHAP values as a base for generating attacks,
the performance of the machine learning models, how the model reacted to the modified
attacks, and future work.
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Chapter 2

Related work

Much time and effort are devoted to researching how to utilize machine learning in intru-
sion detection systems(IDS).

Jiyeon Kim et al. [2] proposed a supervised convolutional neural network(CNN) for net-
work intrusion detection against denial of service attacks. They prove that CNN can
perform well at detecting Denial of Service(DoS) attacks. However, the results on Dis-
tributed Denial of Service (DDoS) attacks were not as good. In their discussion, they
mention that the DDoS-HOIC attack resulted in a lot of false positives. The amount of
false positives highlights that detecting a DDoS attack is complicated.

Farahnakian et al. [3] implemented a semi-supervised neural network consisting of a latent
autoencoder(discussed in section 3.2.10) which then connects to a supervised layer. They
show that an autoencoder can learn the latent features on the KDD-CUP’99 dataset and
perform well at detecting attacks. KDD-CUP’99 does not contain a DDoS attack, which
is the primary attack in this thesis. Also, the KDD-CUP’99 has received criticism and
encouragement not to use the dataset as a benchmark[4].

Sharafaldin et al. [5] developed a realistic DDoS attack dataset, which is the primary
dataset used in this thesis. They have enumerated shortcomings and weaknesses in other
datasets(for example, in KDD’99) and tried to address them. They also showcased a few
machine learning models and their performances, namely the ID3 algorithm, Naive Bayes,
Random Forest and Logistic Regression.

Khraisat et al. [6] did an interesting study to highlighting the current challenges of intru-
sion detection systems and datasets that are available. They also showed that anomaly-
based intrusion detection systems suffer from a high false-positive rate. Minimizing the
number of false positives in intrusion detection systems is an important area of research.
Although a lot has happened since 2019, the paper was an excellent starting point for
this thesis.

Wang et al. [7] was the first to combine the SHAP framework to yield explanations for
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intrusion detection systems. The paper highlights the theoretical foundation SHAP has
and that SHAP applies to any model. They show that one can gain a good insight into
why a model makes a specific prediction. Historically, explaining the output from neural
networks in intrusion detection systems has been a difficult task.

Papers [2, 3] do not emphasize the performance of the respective models with respect to
DDoS attacks. In this thesis, we are going to propose four models based on [2] and [3].
We are going to utilize the dataset from [5] which eventually are going to confirm the
results and viability of the models in [2] and [3]. Using the method from [7] we are going
to explain the proposed models and find the essential features. Using these features, we
are going to make modifications to the data from [5] and try to bypass our IDS. We will
discuss the viability of using SHAP for generating new attacks when attacking an IDS
and the robustness of the proposed models.
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Chapter 3

Background

3.1 Introduction to Distributed Denial of Service

3.1.1 Denial of Service

On the web, there exist many servers hosting a variety of services. A Denial of Service
(DoS) attack aims to delay or deny legitimate users access to some service. To delay
or prevent users from accessing the service, the attacker disables the machine’s ability
to reply to the users’ requests. Hampering the server’s ability to respond is typically
done by resource exhaustion. When exhausting the resources of some server, one takes
up bandwidth, disk space, or memory capacity. To execute an attack, the attacker needs
to find and exploit some weakness in the server or service. For example, in a TCP 3-
way handshake, assume that some user wants to access a web page and send an ACK
signaling that he/she wants to establish a connection. The server replies with an SYN-
ACK accepting the connection. When the user receives the SYN-ACK, he/she replies with
an ACK confirming and establishing the TCP connection. When the server is waiting
for the final ACK, the connection is half open and stored in a table with limited space.
An attacker can exploit the vulnerability and fill the table with half-open connections,
making the server unable to open any new connection. In turn, this makes the server
unavailable, and the attack is successful.

3.1.2 Distributed Denial of Service

Distributed Denial of Service (DDoS) is a subcategory of DoS attacks, where the attacker
uses multiple units to exhaust a target service. Often in a DDoS attack, one wants to
maximize the throughput sent to a destination. The definition of throughput (in the
context of DoS attacks) is the volume of packets arriving successfully at a destination.
We measure throughput in bits per second (bps). Typically a DDoS attack starts with an
attacker that has control over multiple master nodes. These master nodes, in turn, have
control over slave nodes. The slave nodes can be anything from a smart fridge to a PC.
At the attacker’s command, the slave nodes will flood traffic and exhaust the victim.
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Figure 3.1: DDoS Attack
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3.1.3 Reflection attacks

Reflection attacks, also known as amplification attacks, are a type of DDoS attack. An
attacker needs four components to execute a reflection attacks[8].

• A server that can IP spoof

• A protocol that’s vulnerable to reflection attacks, which often is UDP-based.

• A list of servers that supports the vulnerable protocol. This type of server is called
a reflector.

• IP address of the victim

To perform a reflection attack, the attacker needs to spoof the IP of the requests. He/she
spoofs the IP address of the victim. When the attacker sends traffic to a reflector with
the spoofed IP address, the reflector replies with possibly amplified network traffic to the
victim. The attacker will distribute packets randomly to his/her chosen reflectors which
then, in turn, will bombard packets to the victim. Eventually, the victim’s network gets
congested, or the system’s resources become depleted, and the targeted service gets taken
down.

Figure 3.2: Reflection attack[8]

In reflection attacks, one often talks about the amplification factor. Imagine an attacker
sending 1000 bytes to a reflector, and it replies to a victim with 30000 bytes. The ratio
between the response and request from the reflector corresponds to the amplification
factor. Hence the amplification factor of a 1000 bytes request versus a 30000 bytes response
equals 30. Different attacks have a variety of amplification factors. A higher amplification
factor means that the capacity of an attack is even more prominent. Below is a list of
potential reflectors and some information about them.

12



Domain Name Server(DNS) Attackers send small spoofed requests to DNS resolvers,
which then, in turn, send traffic to the target’s IP address. To the victim, the traffic will
seem to be benign. It has an amplification factor from 28-54[9].

Lightweight Directory Access Protocol(LDAP) Microsoft Windows Active Direc-
tory utilizes this protocol to verify user credentials. By sending tiny requests to vulnerable
LDAP servers, they will reply to a victim’s IP address with amplified network traffic. It
has an amplification factor from 46-55[9].

Microsoft SQL(MSSQL) MSSQL is a database software provided by Microsoft. To
perform an MSSQL reflection attack, the attacker sends a spoofed database query to
an MSSQL server. The server will respond to the victim with vast amounts of traffic
containing the query payload. It could potentially be a greatly amplified attack.

NetBIOS The NetBIOS Name Services’ purpose is to facilitate programs on separate
computers to communicate and create sessions to access shared resources and find each
other over a local network. The NetBIOS attack works by sending spoofed queries which
replies to the victim with potentially amplified traffic. NetBIOS attacks are typically
performed over a local area network (LAN). This reflector has an amplification factor
between 2.56 and 3.85 [10].

Network Time Protocol(NTP) The NTP protocol was designed to synchronize ma-
chines’ clocks over a network. Vulnerable NTP servers have the ”monlist” command
enabled. An attacker would send spoofed NTP requests in an NTP attack that execute
the ”monlist” command. The server responds to the victim with an amplification factor
between 20 - 200[11].

Portmap RPC portmap, also known as a port mapper, tells a client how to call a
particular version of an Open Network Computing Remote Procedure Call (ONC RPC)
service. This reflector has an amplification factor between 9.65 and 50.53 [10].

Simple Network Management Protocol(SNMP) This reflector is a very common
network management protocol used for configuring and collecting information from net-
work devices like servers, hubs, switches, routers, and printers. This reflector’s amplifica-
tion factor lies between 600 and 1700[12].

Trivial File Transfer Protocol(TFTP) TFTP is used to read, write or transfer files
using a remote machine. When the attacker performs a TFTP attack, he/she sends a
request to a vulnerable server asking for a file. The server, in turn, responds to the victim
with the file. The TFTP reflector has an amplification of about 60[13].
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3.1.4 Exploitation attacks

In an exploitation attack, the attacker utilizes weaknesses in a protocol to execute an
attack, to take down a server/service.

SYN Flood

In a syn-flood attack, the attacker would send spoofed syn-packets to a vulnerable server
and create half-open connections. The server will try to reply to the IP address with
syn/ack packets. When the server does not get any replies, it will try to send multiple
syn/ack packets to the spoofed IP address, leaving the connection half-open. Eventu-
ally, the server will not accept any more incoming connections, thus making the service
unavailable [5].

UDP Flood

UDP-flood is a very simple attack where you flood a host with a large traffic flow to
random ports. When the traffic volume gets large enough, the system would potentially
crash or the performance could be severely degraded [5].

UDP-Lag

In a UDP-Lag attack, the goal is to harm a connection between clients and a server.
Ultimately, the attacker intends to hog the bandwidth of other users such that the
server/service becomes unavailable/unusable for them. The attack is carried out by either
using a lag switch or a software that runs on a network that hogs the bandwidth of other
users [5].

3.2 Machine Learning and Deep learning

The subfield of AI, machine learning, is a rapidly moving field. We have seen a surge
of high-performing techniques that manages to outperform human accuracy on certain
tasks, for example, the well-known AlphaGo Zero project[14]. The possibilities of ma-
chine learning are many.

In machine learning, we aim to find information about a data distribution by running
a machine learning (ML) algorithm which outputs a model. The main idea of a ma-
chine learning model is that it can generalize to different inputs compared to the initially
learned data. There are various algorithms with different complexity, and selecting an
ML algorithm depends on the task to solve and the data available.

3.2.1 Data for learning

We separate data into four categories: numerical, categorical, time series, and textual
data. Numerical data includes discrete and continuous numbers. Categorical data is
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non-numerical data that can be divided into groups and is usually denoted with a fixed
number. Gender, animal, or native language are examples of categorical data. Time series
is temporally ordered data, for instance, stock prices or bank transactions. Textual data
is any text meaningful to learn from, where the textual data is converted into numerical
vectors. Typically, the data used for training is called training data, while the data used
to test the model’s performance is called validation or test data. To solve ML tasks, we
need an adequate amount of data for training and validation. Equally important is that
the training data used for learning represents the target distribution we aim to learn.
However, in real life, there is possibly noise and outliers skewing the distribution. Noisy
data is data that has been rendered distorted or possibly even corrupt. Outliers are defined
as an observation that lies an abnormal distance from other values from a population [15].
There exist multiple techniques to cope with poor data quality and reduce the impact of
noise and outliers.

3.2.2 Machine learning methods

In machine learning, one typically separate different algorithms into two categories, su-
pervised and unsupervised learning. The category represents how we provide feedback to
the algorithm to facilitate learning.

Supervised learning

If we were to look at a supervised model as a black box, it takes an input Xi and outputs
a predicted label yi. The way a supervised ML algorithm generates models is by learning
from target labels corresponding to each input. It learns by comparing its predicted value
with the true target label and then applying modifications to minimize the error. If the
label is categorical, we call it a classification problem. An example of a classification
problem could be to distinguish photos of dogs, cats, and rabbits. In this setting, the
picture is the data point, and the animal is the label. Problems with continuous labels are
called regressions, for instance, estimating a numerical function. A significant challenge
with supervised learning is that acquiring data is expensive, as the data often needs to
be labeled manually [16].

Unsupervised learning

In contrast to supervised learning, we do not have labels associated with the data. An
unsupervised learning algorithm aims to learn features from the data itself and potentially
discover hidden factors and patterns. Since an unsupervised algorithm often excels at
learning hidden patterns, it is often utilized for anomaly detection. A typical example of
an unsupervised problem is credit card fraud detection. [17]

Types of tasks we may want to solve using machine learning

• Classification - Supervised. Example: Classify what’s in a picture
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• Anomaly detection - Unsupervised. Example: Finding fraudulent bank transactions

• Density estimation - Unsupervised. Example: Finding out where and how your data
is clustering

• Synthesis and sampling. Unsupervised. Example: Generating pictures

• Imputation - Both. Example: Finding missing values in data.

• De-noising - Unsupervised. Example: Given a damaged picture, try to recover the
original picture.

3.2.3 Loss functions

When training a machine learning model, we need some loss function denoted as L. The
loss is used to get some intermediate differentiable result that we use to optimize the model
further. Thus, the loss defines what is considered a good output and what is considered
bad. Different loss functions exist, and selecting one depends on the data at hand and
the task to solve. Some standard loss functions are listed below.

Definition 3.2.1 (Mean Squared Error (MSE)). Given n number of data points, the true
value Xi and corresponding predicted value from a model X ′i.

MSE =
1

n

n∑
i=1

(Xi −X ′i)2

The mean squared error rewards errors in the range (-1, 1) and punishes errors less than
-1 and greater than 1. When evaluating a prediction, we observe that a smaller MSE
means a better prediction. It is possible to use MSE for classification problems, but it is
usually utilized for regression.

Definition 3.2.2 (Categorical cross-entropy). Given n number of data points, target
label yi and corresponding predicted label y′i

CE = −
n∑

i=1

yi · log y′i

Categorical cross-entropy is used for classification problems and rewards predicted prob-
abilities that are closer to the target probabilities.

3.2.4 Performance measures

After training a model, we need to measure the performance of the model. In this thesis,
we will solely use binary classifications. We denote 0 as false and 1 as true. When
evaluating a binary classification, we put it into one of four different categories. Namely
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true positives(TP), false positives(FP), false negatives(FN) and true negatives(TN). Given
a true value yi and predicted value y′i we define

(yi = 1) ∧ (y′i = 1) =⇒ TP (3.1)

(yi = 0) ∧ (y′i = 1) =⇒ FP (3.2)

(yi = 1) ∧ (y′i = 0) =⇒ FN (3.3)

(yi = 0) ∧ (y′i = 0) =⇒ TN (3.4)

After classifying every predicted output into the four categories and summing the total
number of members of each category, we use it as input to the performance measurements.
Selecting a performance measurement depends on whether or not the data is balanced
and the task to solve.

Definition 3.2.3 (Accuracy). The accuracy is defined as

accuracy =
TP + TN

TP + FP + FN + TN

Accuracy is a performance measure that function best when the dataset is balanced. A
balanced data set means that each class in the data set has about the same amount of
samples.

Definition 3.2.4 (Precision). The precision is defined as

precision =
TP

TP + FN

Precision measures the number of correctly predicted positive samples versus the total
number of positive samples. The precision is often used when it is critical to find positive
samples.

Definition 3.2.5 (Recall). Recall is defined as

recall =
TN

TN + FP

Recall measures the ratio of correctly predicted negative cases versus all negatives in the
dataset. Precision and recall are often used in some combination.

Definition 3.2.6 (F1-Score). The F1-score is defined as

f1 =
2 · TP

2 · TP + FP + FN

F1 score is utilized when we need to consider both the number of false positives and false
negatives. The F1 score will also be a good choice even when there is a class imbalance.
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3.2.5 Anatomy of a learning system

Overfitting and underfitting

Machine learning algorithms aim to utilize training data to generate a model that gener-
alizes well. However, many factors can influence the training process. Hence, it is possible
to end up with a model that cannot correctly predict and generalize to unseen data. In
section 3.2.1 we mentioned that data could have outliers and noise that skew the dis-
tribution. These impacting factors can render it challenging to learn from the dataset.
Two major problems that arise when training a model is overfitting and underfitting.
Overfitting is when the trained model has a low training error and high test error. Con-
trary, when the model has a high training error, we call it underfitting. Overfitting and
underfitting are tightly coupled with bias and variance.

Figure 3.3: Underfitting and overfitting, source: See appendix D

Bias and variance

Ideally, we would want to know an exact function describing the data we have. However,
that is rarely possible. We can use a machine-learning algorithm to train a model to
estimate the function. When training a model with some training data, we want to
capture true relationships in the data. The concept of a machine learning algorithm not
being able to model relationships in the data is called bias. Bias is something we define as
modeling error. The difference between how the model fits the training and validation set
is called variance. Variance is a way to see how much the computed estimate varies when
we use different training and validation samples. Higher variance means a more sensitive
model, and is often associated with overfitting, while a high bias indicates underfitting.

Capacity

Capacity refers to the ability to model/fit some range of functions. A low capacity indi-
cates that you will underfit, while with high capacity you are more likely to overfit.
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Figure 3.4: Bias-variance trade-off

3.2.6 K-Fold Cross-Validation

When trying to train an optimal machine learning model, we need to utilize our data to the
best extent. The solution is to first split the data into a training set and a test set. The test
set is put aside to evaluate the final model performance. The training set is subsequently
split into K number of folds, depending on how many parameter combinations to try
out. The folds are structured so that each data point is used k − 1 times in training and
precisely one time for validation, significantly reducing our bias. Each fold is split into its
own fold-training set and fold-validation set for a specific hyper-parameter combination.
The model with some hyperparameter set is trained on a fold-training set and gets a
performance score based on the fold-validation set. After iterating through the k folds,
the model with the best performance score gets selected and is retrained with all available
data except the test set we set aside earlier. After training, the final model performance
is evaluated using the test set. After determining the performance score, the model is
retrained using all data, and we save its weights for later use.

3.2.7 Linear models

One of the most simple models is the linear model. Linear models assume there is a linear
relationship in the data. The model function is in the form [18]

y′i = β0 + β1xi1 + εi

where y′i is the predicted value for xi, the hyperparameters of the model are the slopes
β, and εi is the ith unpredictable random disturbance. Using mean squared error as a
loss function, we can fit a line to minimize the loss. An advantage of the linear model
is that it is straightforward to understand why it makes a certain prediction. The main
disadvantage is that linear models cannot fit most data distributions since they can only
fit straight lines.
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Figure 3.5: Example of linear regression, source: Appendix D

Until now, we have discussed simple regression, but it is possible to generalize the model
into higher dimensions, which is called multiple regression. If we were to increase the
dimension to n dimensions, the model function would look like

y′i = β0 + β1xi1 + β2xi2 + · · ·+ βnxin + εi

The advantage and disadvantage of simple regression also applies to multiple regression.

3.2.8 Deep Learning

Deep neural networks consist of multiple layers in between the input and output layer.
The layers consist of neurons that take multiple weights as input and then output an
activation value that is passed to the next layer.
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Figure 3.6: A deep neural network (autoencoder)
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Neurons

A neuron has multiple weights as inputs and outputs some value based on its input weights
and bias. f denotes the activation function. A neural network consists of many neurons.

a...

w0

w1

wn

a = f(z)

Figure 3.7: A single neuron

Activation functions

An activation function defines how a neuron will calculate an input from the previous
layer to the next layer. Below is a list of activation functions and how they work [19].

Rectified Linear Unit(ReLU) is defined as

f(z) = max(0, z)

ReLU is one of the most simple activation functions to use and is computationally in-
expensive. It will avoid the vanishing gradient problem. However, there is a catch, and
that is it has a zero-gradient when x is below zero. If the weight ends up being less than
zero, its gradient will never make it go above zero again and thus will not recover, which
is considered a ”dead” neuron. The derivative of the ReLU function is

∂f(z)

∂z
=


1 z > 0

0 z < 0

undefined otherwise

When the gradient of ReLU is undefined, one can select to either set the value to zero or
one.

LeakyReLU is defined as

f(z) =

{
z z > 0

αz z ≤ 0

While similar to ReLU, it has the advantage of solving the dying neuron problem. The
derivative is defined as

∂f(z)

∂z
=

{
1 z > 0

α z < 0
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Like ReLU the derivative is undefined when x is zero. You can either choose to set it
equal to 1 or α

Sigmoid is defined as

σ(z) = f(z) =
1

1 + e−z

The main advantage of the Sigmoid activation function is that it is mathematically efficient
to work with. However, it is computationally inefficient due to the negative exponenti-
ation, which is costly, and often makes ReLU superior. The derivative of the Sigmoid
function is

∂f(z)

∂x
= f(z)(1 − f(z))

Once again, the derivative is smooth to work with mathematically but fails computation-
ally due to negative exponentiation. While Sigmoid is less used in hidden layers, it excels
when used in the output layer, especially for autoencoders.

Neural network layers

The first layer of any neural network is the input layer, and the last layer is the output
layer. In between the input and output layer, there are the hidden layers. The layer type
determines how the weights connect to the neurons from the previous layer to the current
one. In this thesis, we use the Dense, Convolutional, MaxPooling, and Unpooling layers.

Dense layer is simply a fully connected layer, which means each neuron is connected to
every neuron in the previous layer. The example neural network above(figure 3.6) consists
of fully connected layers.

Convolutional Layer When discussing the convolutional layer, it makes sense first
to define a kernel. Let’s imagine that we have an image with three channels. A kernel
is a small k x d grid containing k x d weights that we put on top of an image channel.
Each channel of an image has its own kernel. The kernel will connect all local values
and calculate a new real value and slide over the entire image and calculate a new value
for each unique position. The stride parameter defines the step size when sliding over
a channel. After calculating a value for each unique kernel position, it generates a new
channel with less than or equal dimension to the channel in the previous layer. Each
channel is added together, forming the output from a filter. In a convolutional layer, we
also have to specify how many filters we want. A filter is a collection of all the kernels.
In a 2D convolution, the filter and kernel are interchangeable because there is only one
channel in the image. Hence each filter has one kernel. The idea of a convolution is that
each filter behaves a little bit differently than the others. Consequently, each filter is
catching some new patterns in the data.[20].
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Figure 3.8: 2D convolution, source: see appendix D

Pooling Much like the convolutional layer, we have something similar to the kernel,
namely a pool. The pool is also a small grid put on top of an image and can have any k x d
dimension. However, in contrast to the convolutional layer, there are no trainable weights
in the pooling layer. In the pooling layer, we assign a value from the pool using different
techniques like MaxPooling, where we use the max value from the pool. AveragePooling
is another pooling layer, where we take the average of all values in the pool and use that
as the output value. Strides work precisely the same in pooling as for convolutional layers
[20].

Figure 3.9: Max pooling and average pooling, source: see appendix D

Transposed convolution In a convolutional layer, we specified that the output dimen-
sion is less than or equal to the input dimension. Transposed convolutions aim to output
a dimension that is higher than the input. In a transposed convolution, a kernel is used
almost the same way as in a convolutional layer. The kernel gets slid over each position
of the image and outputs a matrix. If we apply a 2x2 kernel on top of a 2x2 image, we
end up with a 3x3 output. The process is further showcased in the figure below.
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Figure 3.10: The complete transposed convolution operation

Forward pass and back propagation

This section is based on the work from [21]. Neural networks are trained using a forward
pass to get some output from the neural network. Using the output from the forward
pass in the backpropagation step, it then calculates the gradient of the loss function
with respect to the weights. Using the gradients and some learning rate α, the network
updates its weights by going in the opposite direction of the gradient with step size α.
Let us consider a simple neural network with one input layer, two hidden layers, and one
output. It takes an input x with 3 features. The output value is denoted y′. The weights
in the network are initiated with random values. Each neuron in the network has its own
activation value. When referring to the activation value of h

(1)
1 we denote it a

(1)
1 . a(1) is

a vector for all the activations in the first layer. We denote b(1) for the bias of the first
hidden layer. Biases are commonly initialized to 0. We also use the Sigmoid activation
function since it is easy to use mathematically.
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Figure 3.11: A simple deep neural network

When the neural network updates its weights, it first does a forward pass to get some
output from the model. To do a forward pass, we go through the following calculation to
get the output y′
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Forward pass: The first layer

a(1) = σ(z(1))

z(1) = w1Tx+ b(1)

=

w(1)
11 w

(1)
21 w

(1)
31

w
(1)
12 w

(1)
22 w

(1)
32

x1x2
x3

+ b(1)

=

∑3
i=1w

(1)
i 1 xi + b(1)∑3

i=1w
(1)
i 2 xi + b(1)


a(1) =

σ(
∑3

i=1w
(1)
i 1 xi + b(1))

σ(
∑3

i=1w
(1)
i 2 xi + b(1))


Forward pass: The second layer

a(2) = σ(z(2))

z(2) = w2Ta(1) + b(2)

=

w(2)
1 1 w

(2)
2 1

w
(2)
1 2 w

(2)
2 2

a(1)1

a
(1)
2

+ b(2)

=

∑2
i=1w

(2)
i 1 a

(1)
i + b(2)∑2

i=1w
(2)
i 2 a

(1)
i + b(2)


a(2) =

σ(
∑2

i=1w
(2)
i 1 a

(1)
i + b(2))

σ(
∑2

i=1w
(2)
i 2 a

(1)
i + b(2))


Forward pass: The third layer

y′ = a(3) = σ(z(3))

z(3) = w3Ta(2) + b(3)

=
[
w

(3)
1 w

(3)
2

]a(2)1

a
(2)
2

+ b(3)

=
2∑

i=1

w
(3)
i a

(2)
i + b(3)

a(3) = σ(
2∑

i=1

w
(3)
i a

(2)
i + b(3))
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Back propagation Now that we have calculated the predicted output y′ = a(3), we
want to calculate the loss. Let us use MSE.

L =
1

1

1∑
i=1

(y − y′)2 = (y − y′)2

In backpropagation, we want to find how changing the weights and biases will affect the
loss. First, we want to find the rate of change of the loss in terms of the weights and
biases, the gradient. After calculating the gradient, we update the hyperparameters by
moving in the opposite direction with a step length of α, the learning rate. First, let us
define some derivatives that we will need when calculating the derivatives of both weights
and biases. Note that a signals any activation value.

∂L

∂a
= −2(y − a)

∂L

∂z
=
∂L

∂a
· ∂a
∂z

a =
1

1 + e−z

∂a

∂z
=

−1

(1 + e−z)2
e−z(−1) =

1

1 + e−z
− 1

(1 + e−z)2
= a(1 − a)

∂L

∂z
= −2(y − a)(1 − a)a

Using the derivatives, we can now derive a generic way of finding the derivative of the
loss in terms of weights for any given layer.

∂L

∂w
=
∂L

∂z

∂z

∂w
z = wx + b

∂z

∂w
= x

∂L

∂w
= −2(y − a)(1 − a)ax

In this equation, x denotes the input to the neuron, a means the output, and y is the true
value. Now, let’s do the same calculations in terms of bias.

∂L

∂b
=
∂L

∂z

∂z

∂b
∂z

∂b
= 1

∂L

∂b
= −2(y − a)(1 − a)a

26



Now, using the generic functions above, we end up with the following equations for each
set of weights.

∂L

∂w(3)
= −2(y − y′)(1 − y′)y′a(2)

∂L

∂w(2)
= −2(y′ − a(2))(1 − a(2))a(2)a(1)

∂L

∂w(1)
= −2(a(2) − a(1))(1 − a(1))a(1)x

Let us do the same for bias

∂L

∂b(3)
= −2(y − y′)(1 − y′)y′

∂L

∂b(2)
= −2(y′ − a(2))(1 − a(2))a(2)

∂L

∂b(1)
= −2(a(2) − a(1))(1 − a(1))a(1)

For each layer, update their respective weights and biases with the following equations.

w = w − α∂L(w, b)

∂w

b = b− α∂L(w, b)

∂b

It is called backpropagation because the weights are updated backward from the last layer
to the first layer.

3.2.9 Optimizers

An optimizer defines how a neural network learns. Assume we have weights and biases
w and b, a loss function L, and that L(w, b) denotes the loss using a subset of the data
defined by an optimizer. The aim for an optimizer is to update w and b such that L(w, b)
is minimized. The optimizer doesn’t know the terrain of the loss and has to find its way
to minima iteratively. An iteration is defined as an epoch. The optimizer may get stuck
at local minima, thus not finding its way to a global minimum. [22]

Gradient descent

In an epoch, t, gradient descent updates the weights w and biases b based on the loss of
the entire data with step size α using the following formulas

w(t+1) = w(t) − α∇w(t), where ∇w(t) =
∂L(w(t), b(t))

∂w(t)
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b(t+1) = b(t) − α∇b(t), where ∇b(t) =
∂L(w(t), b(t))

∂b(t)

Calculating the loss of the entire dataset will yield a high value, making each step size
huge. Hence, naively using stepping size α could lead to the model stepping past a
minimum [22].

Stochastic gradient descent

Section 3.2.8 showed the process of how a neural network can update its weights, which
is called stochastic gradient descent (SGD). SGD works precisely like gradient descent.
However, instead of calculating the entire dataset’s loss and updating w and b, SGD
calculates the loss of each data point to update w and b. In contrast to gradient descent,
SGD will often take small steps, leading to the model being unable to reach a minimum.
The reason why the models often fail to reach a minimum is that noisy samples can make
the model update the parameters wrongfully[22].

Mini-batch gradient descent

Mini-batch SGD was proposed to combat how the SGD optimizer is affected by noisy
samples. Mini-batch SGD works by updating parameters for every set of N samples
instead of for each sample in the data [22]. The collection of N samples is the mini-batch.

SGD with momentum

SGD with momentum, also called momentum, aims to solve regular SGD’s problem with
noisy samples by accelerating SGD in the relevant direction. To achieve said acceleration,
momentum adds the past update vector multiplied with friction constant γ to the current
update vector[22]

v(t)w = γ v(t−1)w + (1− γ)∇w(t)

v
(t)
b = γ v

(t−1)
b + (1− γ)∇b(t)

Note that the default value of is often set to γ = 0.9. Updating the weights and biases
in momentum looks like

w(t+1) = w(t) − α v(t)w

b(t+1) = b(t) − α v
(t)
b

RMSProp

RMSProp is an adaptive learning rate method that also solves SGD’s problem with noisy
samples by accelerating learning in the relevant direction. To achieve the acceleration, we
define the following parameters [22]

s(t)w = γ s(t−1)w + (1− γ)∇(w(t))2

s
(t)
b = γ s

(t−1)
b + (1− γ)∇(b(t))2
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Like with momentum, γ = 0.9 is the default value. Note that (w(t))2 and (b(t))2 uses
the element-wise squaring operation. RMSProp updates the bias and weights with the
following equations

w(t+1) = w(t) − α
∇w(t)√
s
(t)
w + ε

b(t+1) = b(t) − α
∇b(t)√
s
(t)
b + ε

ε denotes a small number, which is typically set to 10−8 to prevent 0-division.

Adaptive Moment Estimation

Adaptive Moment Estimation(Adam) is the optimizer used by all the proposed models
in this thesis and is an adaptive learning rate method that combines momentum and
RMSProp. Adam works by computing an adaptive learning rate for each parameter in
the model. The Adam optimizer begins by initalizing s

(0)
w = 0, v

(0)
w = 0, s

(0)
b = 0, and

v
(0)
b = 0. Then, on iteration t, Adam first calculates the momentum part [22]

v(t)w = γ1 v
(t−1)
w + (1− γ1)∇w(t)

v
(t)
b = γ1 v

(t−1)
b + (1− γ1)∇b(t)

where γ1 is the momentum friction. Subsequently, Adam needs to calculate the RMSProp
part

s(t)w = γ2 s
(t−1)
w + (1− γ2)∇(w(t))2

s
(t)
b = γ2 s

(t−1)
b + (1− γ2)∇(b(t))2

where γ2 is the friction constant from RMSProp. After calculating the momentum part
and RMSProp part, it bias corrects them by using the following equations

v(t)w,c =
v
(t)
w

1− γt
, v

(t)
b,c =

v
(t)
b

1− γt

s(t)w,c =
s
(t)
w

1− γt
, s

(t)
b,c =

s
(t)
b

1− γt

Lastly, Adam performs the parameter updates using the following equations

w(t+1) = w(t) − α
v
(t)
w,c√

s
(t)
w,c + ε

b(t+1) = b(t) − α
v
(t)
b,c√

s
(t)
b,c + ε
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The default values in the Adam optimizer are γ1 = 0.9, γ2 = 0.999, and ε = 10−8. The
learning rate α needs to be fine-tuned in the cross-validation process.

3.2.10 Autoencoders

An example of an autoencoder can be seen in 3.6. There are two main types of autoen-
coders, latent and sparse. Generally, an autoencoder consists of an encoder part and a
decoder part. The encoder transforms the input to a latent or sparse space. The decoder
tries to decode the output from the encoder to the original input[3]. Given an input x,
encoder e, decoder d, want to find two functions that estimates d(e(x)) = x. In a dense
autoencoder, we want to impose a bottleneck in the model [23]. We hope that the dense
model manages to extract the important features and learns to reconstruct valid data
while being bad at reconstructing undesirable input.

3.3 Model interpretation

Model interpretability can be divided into two categories: global interpretability and local
interpretability[24]. Global interpretability means the users can understand the model
directly from its overall structure, while local interpretability exams an input and tries
to find out why the model makes a certain decision[7]. We will use the Shapley Additive
Explanations(SHAP)[25] framework to evaluate and explain our model outputs. The
SHAP framework combines LIME[26] and Shapley Values[27]. The three next sections
are based on [7].

3.3.1 Local Interpretable Model-Agnostic Explanations

Local Interpretable Model-Agnostic Explanations(LIME) was proposed in [26]. In deep
learning, assume some input and that the input is put into a black box. This black box
yields some output. The output could be what animal is in a picture. Alternatively,
in our case, whether or not there is an attack going on. In a neural network, we often
have high complexity and often high dimensional data. It would be beneficial both from
an attacking and defending standpoint to know why a model gives a certain prediction,
which LIME aims to solve.

What does Model-Agnostic mean? It simply means that it can be applied to any
model. The LIME framework treats every machine learning model as a black box.

What does local mean? When visualizing the global decision boundaries of a complex
machine learning model, it would look like a non-linear decision boundary that would not
make any sense. What LIME does is to ”zoom” in and look very locally around the
data point you want to explain, such that you can use a linear model to understand
the relationship. This local model is called a surrogate model and should yield good
approximations locally.
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How does LIME work? First, it permutes the original data and makes a data set solely
consisting of permutations. Then it calculates the distance between the permutations and
the original observations. After that, it makes predictions on new data using the complex
model to explain and selects m features best describing the complex model from the
permuted data. After that, it fits a surrogate model using the permuted data set with
the m features and similarity scores as weights. The feature weights from the surrogate
model will make up the explanations and describe the local behavior.

How is the surrogate model calculated? The local surrogate model can be calcu-
lated in the following way

ξ(x) = arg min
g ∈G

{L(m, g, wx) + Ω(g)}

where g represents the explanation model for the instance x, G is the family of possible
explanations, L is the loss function used to measure how close the predictions from the
explanation model are to the original model, m represents the original model, wx defines
the weight between the sampled data and the original data. If the sampled data is similar
to the original data, the weight is greater, and vice versa. Ω(g) represents the complexity
of model g.

3.3.2 Shapley Value

The Shapley Value was introduced by Shapley in [27] and is a technique used in game
theory. It is a way of determining the productive factor of each individual in a coalition.
The technique can also be applied in machine learning, where the coalition is the data
point, and an individual is the instance of some feature. In machine learning, the Shap-
ley value is the average contribution of a feature value to the prediction in all possible
coalitions[7]:

φi(m, x) =
∑

z′⊆{x′
1,..,x

′
n}{x′

i}

|z′|!(M − |z′| − 1)!

M !
· [m(z′ ∪ x′i) − m(z′)]

where z′ is a subset of the features used in the model, x is the vector of feature values
of the instance to be explained. M is the number of features, m(z′) is the prediction for
feature values in set z′. When calculating m(z′), the ith feature is masked out and then
simulated by drawing random instances or the random values of the ith feature from the
dataset. Calculating the Shapley value requires computation time and power since there
are 2k possible coalitions of the feature values.

3.3.3 Shapley Additive Explanations

SHAP is a framework by Lundberg and Lee[25]. As previously stated, SHAP combines
LIME and Shapley values. The innovation is that SHAP represents the Shapley value
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as a linear model. That particular way of looking at it connects Shapley values and
LIME. Each prediction has its SHAP values and thus its explanation. SHAP calculates
the explanation of an instance x in the following way

g(z′) = φ0 +
M∑

j=1

φj z
′
j

where g is the explanation model, z′ is the coalition vector. z′ ∈ {0, 1}M . 1 specifies that
the entry is the same as in the original, while 0 means it is different. M is the maximum
coalition size. φj ∈ R is the feature attribution for the feature j for instance x. A larger
φj means a bigger positive impact on the prediction made by the model.

A significant difference between LIME and SHAP is how they weigh the sampled in-
stances. LIME would weigh similar samples higher. In contrast to this SHAP weighs
small coalitions(few 1’s) and large coalitions(many 1’s) with large weights. Lundberg et
al. proposed the SHAP kernel in [25] as

πx(z′) =
(M − 1)(

M
|z′|

)
|z′|(M − |z′|)

Lundberg et al. showed that linear regression with the specified kernel would result in
Shapley values. Estimating SHAP values of some instance x is done by following the five
steps below[7]

• Sample coalitions z′k ∈ {0, 1}M , k ∈ {1, ... , K}

• Convert z′k to the original feature space: m(hx(z′k)). hx maps value to features where
the coalition vector is 0 from another data instance.

• Compute the weight for each z′k using πx(z′k)

• Fit weighted linear model using the following loss function L

L(m, g, πx) =
∑
z′ ∈Z

[m(hx(z′)) − g(z′)]2 πx(z′)

where Z is the training data.

• Get Shapley values φk, the coefficients from the linear model.

What makes the SHAP framework so useful is how fast it calculate the estimated Shapley
values. It does it in polynomial time rather than exponential time, which is the case for
regular Shapley values[25].
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3.4 Describing the data

3.4.1 Time series

Time series data is simply data that has a temporal ordering. When analyzing the data,
it is important to maintain the original order when learning.

Definition 3.4.1 (Univariate time series). A univariate time series X = {xt}t∈T is an
ordered set of real-valued observations, where each observation is recorded at a specific
time t ∈ T ⊆ Z+ [28].

Definition 3.4.2 (Multivariate time series). A multivariate time series X = {xt}t∈T is
defined as an ordered set of k-dimensional vectors, each of which is recorded at a specific
time t ∈ T ⊆ Z+ and consists of k real-valued observations xt = (x1t, ..., xkt)[28].

3.4.2 Capturing packets

When deciding to send some form of data from the application layer through the internet,
the data has to go through some layers. Primarily, the data will be split into segments and
transported through the transport layer. These segments, in turn, will be encapsulated
in an IP datagram(packet) in the network layer. Then they’re being sent down to the
link layer and being encapsulated in a frame. Then the frame will be sent through
the physical network layer. When receiving the frame, it will go the reverse way and
unpacking each encapsulation. We record every packet being encapsulated and those who
are un-encapsulated[5].

3.4.3 Packets vs Flows

Every packet contains some information in the header and some data(payload). When
generating flows, we measure how many packets flow through, the header size and payload
size measured against time, and create one unique flow per session. The flows are ordered
by the starting time of each flow. [5]

3.4.4 CicFlowMeter and the UNB DDoS Data set

CiCFlowMeter is an open-source software developed by the University of New Brunswick’s
cybersecurity department. CiCFlowMeter records network traffic and translates the traf-
fic into flows. The original paper states that it records 80 features, but this has been
updated and increased to 84[5]. Using the CiCFlowMeter software, the University of New
Brunswick researchers developed a realistic data set containing benign and DDoS traf-
fic. When simulating the attacks, the researchers had set up two separate networks—a
victim network with simulated benign traffic and an external attack network. As stated
by Sharafaldin et al. [5] the top priority when generating the data set was to generate
realistic benign traffic. They made a profiler that extracts behavior from 25 real users.
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The data was captured on two separate days. On each day, the researchers executed
attacks towards the victim network from the attack network.

Attacks Attack times
PortMap 09:43 - 09:51
NetBIOS 10:00 - 10:09
LDAP 10:21 - 10:30
MSSQL 10:33 - 10:42
UDP 10:53 - 11:03
UDPLag 11:14 - 11:24
SYN 11:28 - 17:35

Table 3.1: The first day / training set

Attacks Attack times
NTP 10:35 - 10:45
DNS 10:52 - 11:05
LDAP 11:22 - 11:32
MSSQL 11:36 - 11:45
NetBIOS 11:50 - 12:00
SNMP 12:12 - 12:23
SSDP 12:27 - 12:37
UDP 12:45 - 13:09
UDPLag 13:11 - 13:15
WebDDoS 13:18 - 13:29
SYN 13:29 - 13:34
TFTP 13:35 - 17:15

Table 3.2: The second day / test set

What makes this data set so useful is that it both contains malicious traffic and benign
traffic. And it’s also relatively updated compared to other data sets.

3.5 Processing the data

The data from UNB consists of network flow data. There are 84 columns where 77 of
which are parameters that can be used for training. The first step is to evaluate potential
obsolete columns. Then there are several steps we have to go through.

3.5.1 Correlation

Assuming two columns in a dataset X and Y , we could want to find out if there is a
linear association between them, which we call the correlation. The correlation value

34



ranges from negative 1 to plus 1 where -1 means perfect negative correlation and +1
means perfect positive correlation. If the number is close to zero it means that there is no
correlation[29]. Does some feature correlate? One could want to minimize the number of
features being used to reduce the model size and increase efficiency. Some correlation is
natural, but if some features correlate nearly perfectly, we can try to substitute one feature
for all the highly correlated ones. To find features that represent each other, we use the
Union Find algorithm. Substituting could lead to some degradation in performance and
increase both inference speed and training efficiency. To decide whether or not to remove
columns is done in the cross-validation process. Assuming normally distributed data, we
find the correlations between X and Y using the following formula[29]

pX,Y =
E[(X − µX)(Y − µY )]

σX σY

3.5.2 Null values

In the data there are null values or values that are defined as infinite. We have simply
decided to remove all rows containing either. This affects quite a lot of rows. However the
data set is large enough that makes it acceptable to do it. One could also use regression,
the mean or max value to impute the value of a row.

3.5.3 Normalization

There are many ways to normalize the data. The normalization function will be a tunable
parameter when finding the optimal model in our K-fold cross-validation process.

MinMax scaling

The goal of the MinMax scaler is to scale the data to a specific range. This range is often
[0, 1]. Since we only need values in the range [0, 1] we scale using the following formula:

Xsc =
X −Xmin

Xmax −Xmin

Standard scaling

When standard scaling, the idea is to normalize the data with some mean µ and standard
deviation σ. The formula is given as

z =
x− µ
σ

µ =
1

N
ΣN

i=1(xi)

σ =

√
1

N
ΣN

i=1(xi − µ)2
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Robust scaling

This type of scaling has some similarities to MinMax scaling. However, instead of using
the minimum and maximum values to scale, it uses the first and third quartiles. Because
it uses quartiles, it is less sensitive to outliers. The formula is as follows:

Xsc =
X −Q1(X)

Q3(X)−Q1(X)

3.5.4 Undersampling

Random undersampling is a simple technique used to balance a dataset with a given
ratio[30]. Assume a dataset with corresponding labels X and y, where y contains the
classes c1 and c2. If the number of datapoints in the c1 class is less than c2, we can sample
the difference by selecting a random sample from c1 without replacement until we have
an equal amount of data in each class.

3.6 Intrusion Detection System

An Intrusion Detect System(IDS) is a piece of software whose purpose is to detect ma-
licious activity on a network or a system. Thus, one often divides into network-based
IDS(NIDS) and host-based IDS(HIDS). An IDS mainly uses two detection methods,
signature-based and anomaly-based.

Figure 3.12: Network Intrusion Detection System

3.6.1 Signature-based IDS

A signature-based IDS is looking for patterns. An example of this could be a particular
byte sequence in network traffic. One would have a database containing a variety of
attack signatures. When evaluating network traffic, the system would try to match the
traffic/behavior against the signatures in the database. The upside is that it can easily
detect known attacks. However, it will not be able to generalize and detect unknown
attacks. Since it effortlessly detects known attacks, it generates a minimal amount of
false positives, given that attacks are clearly defined. Also, when the administrator gets
an alarm, he/she would quickly see what type of signature(s) that triggered the alert.
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3.6.2 Anomaly-based IDS

As previously stated, signature-based IDS are bad at detecting new kinds of attacks.
To combat unknown attacks, researchers proposed an anomaly-based IDS. To build an
anomaly-based IDS, one must first train a machine learning model that learns benign user
behavior. Anything that differs from normal behavior would be classified as an anomaly
and alert an administrator. While properly configured signature-based IDS have few false
positives, anomaly-based approaches often have many false positives.

3.7 Proposing an anomaly-based Intrusion Detection

System

3.7.1 Included and excluded functionality

Developing an IDS requires a lot of effort and features. This thesis focuses on develop-
ing and analyzing deep learning models and determining their robustness, upsides, and
shortcomings. The main goal is to simulate variations of attacks to see if we can improve
the throughput of an attack while concealing it from the IDS. Given the time available, it
would be way too ambitious to make a complete IDS. That is why this thesis will employ
a more basic implementation.

3.7.2 Focusing on one specific type of attack

Over the last decade, we have seen a surge of Distributed Denial of Service(DDoS) at-
tacks. According to Neustar, they reported a 154% increase in attacks from 2019-2020[31].
Because DDoS attacks are in itself pretty easy to perform and can have devastating con-
sequences, this thesis’s focus will be to mitigate DDoS attacks.

3.7.3 Defining an attack / anomaly

There are many ways to define an anomaly. An efficient method to do this is by using
the Mean Squared Error[Definition 3.2.1] reconstruction error threshold. Where n is the
number of features, Xi is the actual value and X ′i is the reconstructed Xi from the machine
learning model. Now we want to define some maximum allowed reconstruction error on
our data. That is going to be the threshold that separates what is defined as an attack
and what is not. An efficient definition of this threshold is simply taking the largest
reconstruction error in the training set or test set

threshold = max
∀Xi∈X train

(MSE(Xi, X
′
i))
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A second way is to use the interquartile range(IQR) as a baseline for a threshold selection,
where we would set the threshold to 1.5 times the IQR plus the third quartile.

threshold =
3

2
IQR +Q3 =

3

2
(Q3 − Q1) +Q3 =

5Q3 − 2Q1

2

It is also possible to look at a histogram to determine where it is suitable to put an anomaly
threshold; however, this is a bit harder to implement in a cross-validation process because
we utilize an automatic pipeline.

3.7.4 Developing an IDS

To create a dashboard front-end, we utilize the React framework coupled with Typescript.
Our backend utilizes python and the Flask framework for the API and Tensorflow/Keras
for machine learning. The data is streamed to the front-end using Websockets.

Designing the dashboard

In the dashboard of the IDS, one can get an overview of the network flows from the last
twenty-four hours. Should the IDS alert of an anomalous flow, the user can click on the
detected anomaly to further inspect it and its parameters. Also, a user can fetch expla-
nations of anomalous flows by clicking an explain-anomaly button. Below is a screenshot
of the dashboard.

Figure 3.13: IDS Dashboard

Designing the backend

Using the CiCFlowMeter[32], we continuously record traffic flows from a network interface
that writes flows to a CSV file. Using Python and a generator function, we monitor said
CSV file. In a Python script, we poll the generator function monitoring the CSV file,
yielding all flows that have not yet been seen. A seen flow is a flow that the generator
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function has yielded. The flows are aggregated into batches of 100. Each batch is sent to
the machine learning part of the backend analyzing the submitted flows. Subsequently,
we receive the result from the backend indicating if there were an anomaly in the batch.
If an anomaly is present, the API receives instructions to update the front end with the
timestamp of the anomaly and its associated data. After the API is instructed, the dis-
covered anomaly gets added to a MongoDB collection. An overview of the infrastructure
and dataflow is visualized below

Figure 3.14: IDS Dashboard
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Chapter 4

Experiments and Results

4.1 Research method

A variety of models have been tested in a Jupyter Notebook environment when deter-
mining the candidate model architectures for this thesis—the models with the best per-
formance on a small proportion of the data set and the most interpretable model were
selected. Hence, we selected simpler models. Every model that was a part of the initial
selection process is specified in Appendix C. The selected models are optimized one by
one using KFold cross-validation to determine their optimal hyperparameters. Common
hyperparameters are scaler and learning rate. However, each model has its own set of
hyperparameters as well. To train and evaluate the models, we use the CiCDDoS2019
dataset from the researchers at the University of New Brunswick[5]. The data is captured
on two separate days. Several other papers, for example, [33, 34] combine the two days of
data to make one extensive dataset and do a train-test split to train a model and measure
its performance. Combining the two days of data could lead to information leakage and
overfitting, making it impossible to evaluate properly how a model performs on unknown
attacks. Thus, we follow how the original creators of the CiCDDoS2019 dataset[5] struc-
tured the training process, using day one for training and tweaking the models and set
aside the second day of data for further model evaluation, and in our case, modifying the
attacks.

Using KFold cross-validation, we optimize each of our proposed models, where the number
of folds k equals the number of hyperparameter combinations. After each candidate model
is optimized, we want to test their robustness. The first step will be to execute attacks
from day 2 of the dataset. We measure the performance and examine each set of SHAP
values. Analyzing the SHAP values, we find what features contributing to the model
correctly classifying the fraudulent flow. Utilizing the SHAP values to find what features
the model deems as important, we try to modify the attack to maximize the throughput
of the attack while also attempting to make the model misclassify fraudulent flows as
benign. How well the model manages to withstand the modification will determine its
robustness.
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4.2 Candidate model architectures

The candidate model architectures are two supervised and two unsupervised models. As
stated above, simpler models were selected over more complex ones since they are easier
to explain, require less memory, and have fast inference compared to RNN-LSTM[33]
networks and GANs[35].

4.2.1 Unsupervised dense autoencoder

77 −→ d1 −→ d2 −→ d2 −→ d1 −→ 77

Figure 4.1: The proposed dense Autoencoder

We begin by proposing a dense unsupervised autoencoder. The neural network takes a
77-dimensional vector as input and outputs a reconstructed 77-dimensional vector. We
use the dense layer in each hidden layer. The dimensions of the first and last hidden layer
are d1, and the dimension of the two middle layers is d2. In between the d1 and d2 on
both sides of the network, we use dropout with a rate set to 25%. The network in itself is
simple yet powerful enough to model complex relations. Using cross-validation we want to
find the following optimal hyperparameters: how many neurons in dense layers d1 and d2,
activation function in the hidden layers f , learning rate α and type of scaler s. We use the
Sigmoid activation function in the output layer. When training the unsupervised dense
autoencoder we only utilize benign data. The reason being we want the autoencoder to
be good at reconstructing benign flows and bad at reconstructing fraudulent flows.

4.2.2 Supervised dense neural network

77 −→ d1 −→ d2 −→ 2

Figure 4.2: The proposed supervised dense neural network
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Subsequently, we define the supervised dense neural network, which takes a 77-dimensional
input and outputs a 2-dimensional vector. The first dimension of the output corresponds
to the probability of the input being benign and the second dimension being an attack.
The hidden layers consist of dense layers. Like the previous model, we use dropout in
between d1 and d2 with a rate set to 25%. When optimizing the model with cross-
validation, we want to find the following hyperparameters: how many neurons in dense
layers d1 and d2, activation function in the hidden layers f , learning rate α and type of
scaler s. We use the Sigmoid activation function in the output layer. When training the
sueprvised dense neural network we utilize both benign and fraudulent data. We make
sure to have a balanced dataset using the undersampling technique described in Section
3.5.4.

4.2.3 Unsupervised convolutional autoencoder

Figure 4.3: The proposed CNN Autoencoder

As a third model, we propose an unsupervised convolutional autoencoder. It takes a
77-dimensional vector as input and outputs a reconstructed 77-dimensional vector. The
first hidden layer is a dense layer with 64 neurons reshaped into an (8x8) image. We use
a dense layer to ensure a smooth divisible dimension, which we need for the convolutional
layers. After the dense layer, three convolutional layers with a kernel size of (2,2) follow.
The final layers consist of three transposed convolutional layers, a dense layer with 64
neurons, and the output layer. We also try to substitute the second convolutional layer
with the MaxPooling layer in the model selection process. MaxPooling can be effective in
highlighting large feature values, which is often apparent in an attack. We use the Sigmoid
activation function in the output layer. When optimizing the model, we want to find
the following hyperparameters: Amount of filters per convolutional layer ωi, activation
function in the hidden layers f , learning rate α, and type of scaler f . Like the unsupervised
dense autoencoder, the unsupervised CNN autoencoder training process utilize benign
flows. Flows that are poorly reconstructed are considered an anomaly.
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4.2.4 Supervised convoltional neural network

Figure 4.4: The proposed CNN Autoencoder

Finally, as the last model, we propose the supervised convolutional neural network (CNN).
It takes a 77-dimensional input and outputs a 2-dimensional vector working the same way
as in the supervised dense neural network. After the input layer, there is a dense layer
with 64 neurons that we reshape into an (8x8) image. Following the dense layer are
three convolutional layers, each with a kernel size of (2,2). The last convolutional layer
is then flattened and connected to a dense layer with 64 neurons. Lastly, we connect
the dense layer to the 2-dimensional output layer that utilizes the Sigmoid activation
function. We use the same hyperparameters as in the convolutional autoencoder. Like
the model in Section 4.2.2, undersampling is used to acquire a balanced dataset of benign
and fraudulent flows.
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4.3 Explaining features using SHAP values

We devise Algorithm 1 to utilize the SHAP framework to explain an unsupervised model
and find what features it weighs the most. Algorithm 1 is based on the work from [7].

Algorithm 1: Find the m most impacting features using SHAP values

Input: X - A dataset containing benign flows, S - A dataset containing 20
fraudulent flows, and f - the model

Output: topMfeatures - the top six impacting features
/* The procedure is slightly different for the supervised models */

1 S’ ←− f(S)
2 mses = MSE(S,S’) // Column-wise MSE

3 selected indicies ←− top 6 highest mse cols(mses)
4 permuted data ←− shap.sample(X, 100)
5 explainer ←− shap.KernelExplainer(model, permuted data)
6 shap values ←− explainer.shap values(S)
7 top m features ←− { } // An empty dictionary

8 for each feature i ∈ selected indicies do
9 top three indicies ←− find top three SHAP columns(shap values, i)

10 for j in top three indicies do
11 top m features[j] += 1

12 m most important feautres = find m largest values indicies(top m feautres, m)
13 return m most important feautres

The algorithm works by first finding the six most poorly reconstructed columns. Then
we permute 100 data points from the original dataset X to form the background data for
the explainer. We want to make a permuted dataset from X, because we want to capture
important aspects of the data using only 100 data points. If we were to increase the
number of background samples from 100, it would considerably increase the computation
time of the SHAP explainer. Lundberg et al.[25] provide a function inside their framework
to permute the data. After the permutation, we want to initialize the explainer using the
permuted data. Using the explainer, we find the SHAP values from the fraudulent dataset
S. Since S contains 77 columns, then the SHAP values variable has a dimension of 77x77.
Thus, each column in S has its own set of SHAP values. To determine the top m impacting
features, we iterate through each of the six most poorly reconstructed columns and find
the top three highest impacting features for that column. When a column is a part of
another column’s top three features, it gains 1 point. The top m features with the highest
amount of points get selected as the m most important features. Note that the process
is considerably easier for the supervised models. We know that the second dimension of
the output vector corresponds to the flow being an attack. We simply use the SHAP
explainer and its explanations directly on the output vector’s second dimension and find
the top m most impacting features.
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Example run on an NTP attack

Figure 4.5: Example SHAP values for an NTP attack

Using Algorithm 1 and examining 20 anomalies from the NTP reflection attack, we can
see that the top six most influential features for these particular anomalies are Protocol,
Fwd Pkts/s, Flow Pkts/s, Fwd IAT Mean, Flow IAT Mean, Flow IAT Std. Each row in
the plot tells us how much the features have contributed to the model’s prediction. In the
bottom left of the plot, one can observe what value to expect from a benign flow, while
in the top right corner is the predicted value for the current flow.

4.4 Training and performance on unmodified attacks

4.4.1 Unsuperivsed CNN Autoencoder

The candidate hyperparameters of this model are the learning rate α ∈ { 0.01, 0.001,
0.0005, 0.0001 } , the number of filters in the convolutional layers, (ω1, ω2, ω3) ∈ {
(128,40,40), (64, 40, 20), (64, 8, 8), (20,4,2) }, scaler ∈ { MinMax scaler, Standard
scaler, Robust scaler }, activation function f ∈ { Sigmoid, ReLU, LeakyReLU } and what
reconstruction error threshold to use. In the hyperparameter selection we also attempt
to substitute the second convolutional layer with a MaxPooling layer.
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Figure 4.6: Training and validation loss for the optimal model

By observing Figure 4.6, we see that the validation loss follows the training loss. Hence,
the model does not seem to overfit. After KFold cross validation, we end up with the
following parameters: α = 0.005 f = MinMax Scaler, ω1 = 64, ω3 = 8, substituting
the second convolutional layer with a MaxPooling layer and, and f = ReLU. We also
ended up using the interquartile range threshold selection technique defined in Section
3.7.3.

Attack Type F1-Score Precision Recall Accuracy
DrDoS NTP 0.741 0.686 0.835 0.761
DrDoS DNS 0.474 0.351 0.870 0.611
DrDoS LDAP 0.286 0.186 0.884 0.535
DrDoS MSSQL 0.184 0.119 0.826 0.472
DrDoS NetBIOS 0.279 0.182 0.874 0.528
DrDoS SNMP 0.222 0.152 0.780 0.466
DrDoS SSDP 0.626 0.569 0.752 0.661
DrDoS UDP 0.649 0.521 0.914 0.718
UDPLag 0.038 0.023 0.823 0.423
TFTP 0.000 0.000 1.000 0.500

Table 4.1: Training day performance for the unsupervised CNN autoencoder

There were made multiple attempts to increase the performance by using contrastive
learning, for instance[36]. Unfortunately, the attempt to use contrastive learning degraded
the performance of the model. There were also attempts to use regularization and dropout,
where both did not increase the performance, indicating that the benign and fraudulent
traffic has many similarities.
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4.4.2 Supervised CNN

The candidate hyperparameters of this model are the learning rate α ∈ { 0.01, 0.001,
0.0005, 0.0001 } , the number of filters in the convolutional layers, (ω1, ω2, ω3) ∈ {
(128,40,40), (64, 40, 20), (64, 8, 8), (20,4,2) }, scaler ∈ { MinMax scaler, Standard
scaler, Robust scaler }, and activation function f ∈ { Sigmoid, ReLU, LeakyReLU }. In
the hyperparameter selection we also attempt to substitute the second convolutional layer
with a MaxPooling layer.

Figure 4.7: Training and validation loss for the optimal model

There are no discrepancies between the training and validation loss, so it seems like
the optimized model did not overfit. After KFold cross validation, we end up with the
following parameters: α = 0.001 f = Standard Scaler, ω1 = 64, ω2 = 40 and ω3 = 20,
and f = LeakyReLU.
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Attack Type F1-Score Precision Recall Accuracy
DrDoS NTP 0.995 0.995 0.996 0.995
DrDoS DNS 0.820 0.817 0.825 0.821
DrDoS LDAP 0.267 0.186 0.791 0.488
DrDoS MSSQL 0.756 0.867 0.572 0.720
DrDoS NetBIOS 0.667 0.904 0.192 0.548
DrDoS SNMP 0.633 0.685 0.521 0.603
DrDoS SSDP 0.829 0.982 0.615 0.798
DrDoS UDP 0.807 0.946 0.603 0.774
UDPLag 0.804 0.782 0.836 0.809
TFTP 0.886 0.940 0.819 0.879

Table 4.2: Training day performance for the supervised CNN

The supervised CNN is very good at detecting attacks but needs further fine-tuning to
capture the underlying structure of benign traffic.

4.4.3 Dense Autoencoder

The candidate hyperparameters of this model are α = {0.01, 0.001, 0.0005, 0.0001}, the d1
and d2 pairs { (120, 60), (60, 40), (40, 20), (20, 10), s = {MinMax scaler, Standard scaler,
Robust scaler}, f = { Sigmoid, ReLU, LeakyReLU }, and how to decide the threshold.

Figure 4.8: Training and validation loss for the optimal model

After KFold cross validation, we end up with the following parameters: α = 0.0001
f = MinMax Scaler, d1 = 20, and d2 = 10 and f = LeakyReLU. We ended up using
the interquartile range to determine the threshold.
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Attack Type F1-Score Precision Recall Accuracy
DrDoS NTP 0.741 0.686 0.835 0.761
DrDoS DNS 0.474 0.351 0.870 0.611
DrDoS LDAP 0.286 0.186 0.884 0.535
DrDoS MSSQL 0.184 0.119 0.826 0.472
DrDoS NetBIOS 0.279 0.182 0.874 0.528
DrDoS SNMP 0.222 0.152 0.780 0.466
DrDoS SSDP 0.626 0.569 0.752 0.661
DrDoS UDP 0.649 0.521 0.914 0.718
UDPLag 0.038 0.023 0.823 0.423
TFTP 0.000 0.000 1.000 0.500

Table 4.3: Training day performance for the dense autoencoder

The dense autoencoder does not seem to overfit, and it converges. Like the CNN Au-
toencoder, an attempt was made to apply the contrastive learning technique[36] without
yielding better results. The dense autoencoder is best at predicting benign flows and
struggles to get a good detection rate.

4.4.4 Dense Supervised

The candidate hyperparameters of this model are α = {0.01, 0.001, 0.0005, 0.0001}, the d1
and d2 pairs {(120, 60), (60, 40), (40, 20), (20, 10) }, f = {MinMax scaler, Standard scaler,
Robust scaler}, and f = { Sigmoid, ReLU, LeakyReLU } By examining the training and
validation loss during the training process, we see that the validation set follows the loss
of the training set. We observe that the model does not overfit or underfit.

Figure 4.9: Training and validation loss for the optimal model
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After KFold cross validation, we end up with the following parameters: α = 0.001
f = MinMax Scaler, d1 = 40, and d2 = 20, and f = LeakyReLU.

Attack Type F1-Score Precision Recall Accuracy
DrDoS NTP 0.993 0.990 0.996 0.993
DrDoS DNS 0.818 0.813 0.827 0.820
DrDoS LDAP 0.267 0.186 0.791 0.488
DrDoS MSSQL 0.754 0.842 0.610 0.726
DrDoS NetBIOS 0.599 0.749 0.246 0.498
DrDoS SNMP 0.636 0.685 0.531 0.608
DrDoS SSDP 0.815 0.972 0.587 0.780
DrDoS UDP 0.803 0.938 0.603 0.770
UDPLag 0.804 0.782 0.837 0.810
TFTP 0.933 0.905 0.966 0.935

Table 4.4: Training day performance for the dense supervised model

The dense supervised model ended up performing below what to expect in an intrusion
detection system. However, it got the best model score out of the four proposed models.

4.4.5 Base results

The performance of the supervised model was overall considerably better than the unsu-
pervised ones. However, the unsupervised models did a better job at predicting benign
flows. The results indicate that the models are not good enough to solely be used in
an intrusion detection system due to inaccuracy and the number of false positives. By
observing the results of the supervised models, it is easy to see that they fail to model
benign traffic properly. When examining the unsupervised models, the same applies, but
to a lesser degree. The autoencoder seems to fail in its task to find underlying structures
in benign traffic. Consequently, the unsupervised models reconstruct both benign and
fraudulent traffic equally poorly, making it hard to distinguish between them.

4.5 Modified attacks

4.5.1 Identifying controllable features

To experiment with modifications of attacks, we develop a sandboxing environment where
we have to make some assumptions. We are unable to modify some parameters, and there
are hard limits on packet size, idling before timeout, throughput, and how many flags
we can send, for instance. To the best extent, we will try to abide by the theoretical
boundaries. Below are some remarks on which columns are interesting to manipulate.
See the appendix for more details about each feature in the dataset.

• Flow duration - Since we can delay / increase when the connection comes to a close
this is a interesting parameter to manipulate
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• Since we can delay/increase when the connection comes to a close, this is an inter-
esting parameter to manipulate

• Backward(bwd) parameters are somewhat more difficult to analyze since each server
may react differently, and thus we are unable to control it in the same way as the
fwd parameters

• Flag counts can, to a smaller extent, be manipulated

4.5.2 How to modify an attack

It is infeasible to try all combinations of changes. The solution was to separate into
three different experiments. The most important features across the models are used as
a base when designing the experiments. Each model explanation from the day 2-attacks
is located in Appendix E.

Experiment number one is about increasing the flow duration. However, all parame-
ters that can be preserved are unchanged. The goal is to see if we can manage to increase
the total data sent to the victim. We choose to modify flow duration because SHAP did
not detect it as important in any of the models. It is also an uncomplicated parameter to
manipulate.

Experiment number two is about increasing the number of packets sent while keeping
the same amount of bytes per second. To achieve a higher number of packets and preserve
throughput, we need to divide packets into a smaller size and send an increased amount
of traffic with the smaller packets. The goal is to see if we can manage to maintain
throughput while concealing the traffic.

Experiment number three is about maintaining throughput by decreasing packets
sent and increasing packet size and all related parameters. The goal of this experiment is
to test the reverse of experiment two.
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Feature Name Feature dependencies
flow duration total fwd packet, total bwd packets, total length of fwd

packet, total length of bwd packet, fwd header length,
bwd header length, Flow IAT Mean, Flow IAT Std, Fwd
IAT Mean, Fwd IAT Std, ACK Flag Count

flags none, except ack flag
flow packets/s fwd packets/s, bwd packets/s, total fwd packets, total

bwd packets, totlen fwd packets, totlen bwd packets,
average packet size, Flow IAT Mean, Flow IAT Std, Fwd
IAT Mean, Fwd IAT Std, ACK Flag Count

flow bytes/s flow duration, average packet size, Packet Length Mean,
Packet Length Std, Fwd Packet Length Mean, Fwd
Packet Length Std

Now that we have modeled some dependencies, we devise Algorithm 2 to utilize a feature
and its dependencies to generate a new dataset with a p percent increased dataset.

Algorithm 2: Modify dataset given a modificator p

Input: X - A dataset containing benign and fraudulent flows, col - What feature to
permute, dependencies - Dependencies of the column, which is an array of
tuple containing the dependency column and if it is negative proportional
or proportional, p - how many percent modification to apply to the data

Output: X modified - A modified version of the input data X
1 inverse factor = 1

1+p

2 X modified ←− deepcopy(X)
3 X modified[:,col] = X[:, col]· (1+p)
4 for each (dep col,prop) ∈ dependencies do
5 if dep col is negative proportional then
6 X modified[:, col] = X[:,col] · inverse factor
7 else
8 X modified[:, col] = X[:,col] · (1 + p)

9 return X modified

Generating modified datasets For the different experiments, we will apply changes
from 1 to 100%, with a step size of 1%, generating 100 modified datasets. How the models
react to the modified dataset will determine its robustness.

4.6 Performance on modified attacks

The data we will use for the modified attacks is from day 2 in the CiCDDoS2019 dataset.
Day 2 contains the reflection attacks Portmap, NetBIOS, LDAP, MSSQL, UDP, and
UDPLag. Before using the data set, we balance it to contain an equal amount of benign
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and fraudulent flows. For each model, we will evaluate the modified attacks against the
base precision. The base precision is calculated before applying any modifications. For
each attack, we generate a plot containing a threshold line equalling the base precision and
a graph for each experiment conducted. The X-axis denotes the percentage change factor,
and the Y-axis denotes the precision. If a point (X, Y) is placed below the threshold, the
model was fooled by the modified data set. Note that the UDPLag contained very few
samples and thus was omitted from the experiments.

4.6.1 Unsupervised CNN Autoencoder

Base performance

We start by measuring the base performance on the data set. In the table below, we
observe a pretty mediocre result. However, the model does a decent job at predicting
benign traffic. With the base performance as a threshold, we perform the modified attacks.

Attack Type F1-Score Precision Recall Accuracy
Portmap 0.094 0.057 0.844 0.451
NetBIOS 0.159 0.096 0.890 0.493
LDAP 0.120 0.072 0.873 0.473
MSSQL 0.708 0.621 0.866 0.743
UDP 0.354 0.243 0.870 0.556

Table 4.5: Base results for the unsuperivsed CNN autoencoder
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Figure 4.10: Modified attacks for the CNN Autoencoder. MSSQL top left, LDAP top
right, NetBIOS bottom left and Portmap bottom right

Experiment 1 There were not any noticeable results in this experiment. Even to the
slightest increase in percent, the model instantly reacted and discovered the modified
attacks.

Experiment 2 Again, there were no significant results.

Experiment 3 Again, none of the attacks that were modified managed to bypass the
autoencoder model.

Discussion The CNN autoencoder was very robust against manipulated attacks. How-
ever, the detection rate of unmodified attacks was already pretty low, and it allowed
plenty of fraudulent traffic to flow through, which is not ideal for an intrusion detection
system. If we were to tune the model further and achieve better results on the unmodified
attacks, it could be a decent candidate model for an IDS.

4.6.2 Supervised CNN

Supervised CNN outperformed the CNN autoencoder in the unmodified attacks section.
While it does perform better than the CNN autoencoder on the new unseen data, it is
still not good enough.
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Attack Type F1-Score Precision Recall Accuracy
Portmap 0.099 0.052 0.988 0.520
NetBIOS 0.192 0.134 0.745 0.440
LDAP 0.744 0.878 0.517 0.698
MSSQL 0.899 0.958 0.827 0.893
UDP 0.045 0.027 0.818 0.423

Table 4.6: Base results for the supervised CNN

Figure 4.11: Modified attacks for the supervised CNN. MSSQL top left, LDAP top right,
NetBIOS bottom left and Portmap bottom right

Experiment 1 The attacks were successful, and we managed to double the throughput
and conceal a greater portion of the flows from the IDS in the LDAP and NetBIOS attacks.
The magnitude of the attacks was vastly increased.
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Experiment 2 This experiment did not yield any results.

Experiment 3 By observing the graphs, the attack was immensely successful. The
modification managed to conceal almost every flow from the IDS, thus dramatically in-
creasing the throughput

Discussion For every experiment apart from number 2, the more we modified the traffic
both in increasing the throughput and preserving the throughput, we managed to conceal
fraudulent flows. Based only on the pure, unmodified results alone, one would think this
model performs well. In reality, the decision boundaries of the model are severely flawed.
That we managed to bypass the model is a significant result because it means we can gain
an insight from the SHAP values to fool a model. There could be several reasons why
it responds so poorly to the modifications. What is certain is that it fails to recognize
combinations of parameters that should be inferred as an attack.

4.6.3 Dense Autoencoder

Let’s take on the next model and get some base results for the unmodified attacks. Like
the Unsupervised CNN it has rather poor performance, but decent results on benign
traffic.

Attack Type F1-Score Precision Recall Accuracy
Portmap 0.096 0.058 0.848 0.453
NetBIOS 0.097 0.052 0.971 0.512
LDAP 0.176 0.108 0.880 0.494
MSSQL 0.062 0.035 0.920 0.477
UDP 0.391 0.288 0.814 0.551

Table 4.7: Base results for the dense autoencoder
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Figure 4.12: Modified attacks for the Dense autoencoder. MSSQL top left, LDAP top
right, NetBIOS bottom let and Portmap bottom right

Experiment 1 There were no considerable results.

Experiment 2 There were no considerable results.

Experiment 3 There were no considerable results.

Discussion From the graphs above, we observe that the model is robust against mod-
ification attacks. Experiment three came closest to yielding any results. However, any
modification to the dataset made the detection rate better, which could be due to a wide
range of reasons. It seems like the attacking flows are not different enough from the be-
nign traffic to make them go above the reconstruction threshold. Nevertheless, when the
fraudulent flows are modified, they get far enough from regular flows to get recognized
instantly.

4.6.4 Dense Supervised

Similar to the Supervised CNN, the dense supervised model outperforms the two un-
supervised approaches. From the results, we observe that detecting DDoS attacks is
challenging.
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Attack Type F1-Score Precision Recall Accuracy
Portmap 0.186 0.104 0.989 0.546
NetBIOS 0.190 0.131 0.750 0.441
LDAP 0.764 0.921 0.509 0.715
MSSQL 0.899 0.958 0.825 0.892
UDP 0.030 0.018 0.816 0.417

Table 4.8: Base results for the dense supervised model

Figure 4.13: MSSQL top left, LDAP top right, NetBIOS bottom let and Portmap bottom
right

Experiment 1 In this experiment, the attempt to modify traffic was successful in all
the attacks. In the MSSQL and NetBIOS attacks, we managed to conceal a significant
portion of the traffic.
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Experiment 2 There were no considerable results.

Experiment 3 Lastly, we observe that experiment 3 was very successful. We managed
to bypass a considerable amount of flows.

Discussion The dense supervised model had one of the best base results and outper-
formed the unsupervised models. However, the proposed model was highly vulnerable
to modification attacks—even more than the supervised CNN. Like the supervised CNN,
the decision boundaries have to be severely flawed. In Section 4.4.4 we could see that
the dense supervised model struggled in some of the attacks to detect benign flows. The
modification attack further highlighted this issue. It is hard to single out why the model
performs so incredibly poorly on the modified attacks. There was, unfortunately, no time
to research this issue further. Hence, we leave it as future work.
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Chapter 5

Conclusion

5.1 Summary

The primary aim of this thesis was to figure out if we can utilize SHAP values as a base
for generating more sophisticated attacks. The main source of data is the University of
New Brunswick’s DDoS dataset. It has two days worth of attack data, where we used
the first day to select and optimize four candidate models. After examining the test
performance, the supervised models outperformed the unsupervised model by quite a
lot. Although much effort was put in to find high-performing models to use in an IDS,
the performance of our models did not have a sufficiently high detection rate to be used
in an IDS alone. For each attack on the second day, we recorded the performance per
model and determined each of the models most important features. When modifying
an attack to bypass a particular model, we apply changes to each feature recognized as
important. For the unsupervised models, this approach did not produce any meaningful
results. However, for supervised models, we managed to both conceal fraudulent traffic
and double the throughput. The supervised models who would be selected as the main
model for the IDS were completely disarmed. Hence, utilizing the SHAP framework to
modify attacks and bypass intrusion detection systems appears to be possible.

5.2 Future work

While modifying attacks worked for supervised models, we did not manage to fool the
unsupervised models. Future work could be to test the robustness of unsupervised models
further. Additionally, the unsupervised models’ performance was not good enough. We
need to tweak the unsupervised models to detect a more significant portion of the attacks.
Another important future work is setting up a testbed and executing actual modified
attacks, confirming our findings. Further, one could try to research defense mechanisms
for the supervised IDS to withstand the modified attacks. It is also interesting to attempt
the modification attack on another IDS, for instance, Bro[37]. Since our approach to fool
intrusion detection systems showed promise, further work could be to translate the attack
to other fields, such as credit card fraud detection.
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Appendix

A: CiCFlowmeter feature descriptions

Feature Name Description
Protocol The protocol of the flow
Flow duration Duration of the flow in Microsecond
total Fwd Packet Total packets in the forward direction
total Bwd packets Total packets in the backward direction
total Length of Fwd Packet Total size of packet in forward direction
total Length of Bwd Packet Total size of packet in backward direction
Fwd Packet Length Min Minimum size of packet in forward direction
Fwd Packet Length Max Maximum size of packet in forward direction
Fwd Packet Length Mean Mean size of packet in forward direction
Fwd Packet Length Std Standard deviation size of packet in forward direction
Bwd Packet Length Min Minimum size of packet in backward direction
Bwd Packet Length Max Maximum size of packet in backward direction
Bwd Packet Length Mean Mean size of packet in backward direction
Bwd Packet Length Std Standard deviation size of packet in backward direction
Flow Bytes/s Number of flow bytes per second
Flow Packets/s Number of flow packets per second
Flow IAT Mean Mean time between two packets sent in the flow
Flow IAT Std Standard deviation time between two packets sent in the

flow
Flow IAT Max Maximum time between two packets sent in the flow
Flow IAT Min Minimum time between two packets sent in the flow
Fwd IAT Min Minimum time between two packets sent in the forward

direction
Fwd IAT Max Maximum time between two packets sent in the forward

direction
Fwd IAT Mean Mean time between two packets sent in the forward di-

rection
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Fwd IAT Std Standard deviation time between two packets sent in the
forward direction

Fwd IAT Total Total time between two packets sent in the forward di-
rection

Bwd IAT Min Minimum time between two packets sent in the back-
ward direction

Bwd IAT Max Maximum time between two packets sent in the back-
ward direction

Bwd IAT Mean Mean time between two packets sent in the backward
direction

Bwd IAT Std Standard deviation time between two packets sent in the
backward direction

Bwd IAT Total Total time between two packets sent in the backward
direction

Fwd PSH flags Number of times the PSH flag was set in packets trav-
elling in the forward direction (0 for UDP)

Bwd PSH Flags Number of times the PSH flag was set in packets trav-
elling in the backward direction (0 for UDP)

Fwd URG Flags Number of times the URG flag was set in packets trav-
elling in the forward direction (0 for UDP)

Bwd URG Flags Number of times the URG flag was set in packets trav-
elling in the backward direction (0 for UDP)

Fwd Header Length Total bytes used for headers in the forward direction
Bwd Header Length Total bytes used for headers in the backward direction
FWD Packets/s Number of forward packets per second
Bwd Packets/s Number of backward packets per second
Packet Length Min Minimum length of a packet
Packet Length Max Maximum length of a packet
Packet Length Mean Mean length of a packet
Packet Length Std Standard deviation length of a packet
Packet Length Variance Variance length of a packet
FIN Flag Count Number of packets with FIN
SYN Flag Count Number of packets with SYN
RST Flag Count Number of packets with RST
PSH Flag Count Number of packets with PUSH
ACK Flag Count Number of packets with ACK
URG Flag Count Number of packets with URG
CWR Flag Count Number of packets with CWR
ECE Flag Count Number of packets with ECE
Down/Up Ratio Download and upload ratio
Average Packet Size Average size of packet
Fwd Segment Size Avg Average size observed in the forward direction
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Bwd Segment Size Avg Average number of bytes bulk rate in the backward di-
rection

Fwd Bytes/Bulk Avg Average number of bytes bulk rate in the forward direc-
tion

Fwd Packet/Bulk Avg Average number of packets bulk rate in the forward di-
rection

Fwd Bulk Rate Avg Average number of bulk rate in the forward direction
Bwd Bytes/Bulk Avg Average number of bytes bulk rate in the backward di-

rection
Bwd Packet/Bulk Avg Average number of packets bulk rate in the backward

direction
Bwd Bulk Rate Avg Average number of bulk rate in the backward direction
Subflow Fwd Packets The average number of packets in a sub flow in the for-

ward direction
Subflow Fwd Bytes The average number of bytes in a sub flow in the forward

direction
Subflow Bwd Packets The average number of packets in a sub flow in the back-

ward direction
Subflow Bwd Bytes The average number of bytes in a sub flow in the back-

ward direction
Fwd Init Win bytes The total number of bytes sent in initial window in the

forward direction
Bwd Init Win bytes The total number of bytes sent in initial window in the

backward direction
Fwd Act Data Pkts Count of packets with at least 1 byte of TCP data pay-

load in the forward direction
Fwd Seg Size Min Minimum segment size observed in the forward direction
Active Min Minimum time a flow was active before becoming idle
Active Mean Mean time a flow was active before becoming idle
Active Max Maximum time a flow was active before becoming idle
Active Std Standard deviation time a flow was active before becom-

ing idle
Idle Min Minimum time a flow was idle before becoming active
Idle Mean Mean time a flow was idle before becoming active
Idle Max Maximum time a flow was idle before becoming active
Idle Std Standard deviation time a flow was idle before becoming

active
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B: Variable definitions

Variable Description
X Some data set consisting of n entries
Xi Entry i in the data set X consisting of k features
X ′i An estimation of Xi

Xmin A vector consisting of the minimum value for each col-
umn

Xmax A vector consisting of the maximum value for each col-
umn

y Some vector with corresponding labels to some data set
X

yi The i’th label corresponding to entry Xi

y′i A label prediction of Xi with the true value yi
x Some data point in some data set consisting of k features
xi Feature i of the data point x
f Some activation function f like ReLU, Sigmoid or

LeakyReLU
z Some neuron activation value
ξ A surrogate model trained on some instance x
L Loss function
m Some machine learning model
g An explanation model for some instance x
G Family of all possible explanations
wx Weight between sampled data and original data in the

surrogate model training process
φ The Shapley values for all features
φi The Shapley values for the feature i
M The maximum coalition size
z′ The coalition vector. z′ ∈ {0, 1}M
βi The ith slope in a linear regressor
εi The irreducible error of the ith datapoint
γ, α, ε Optimizer parameters

w(t), b(t) The biases and weights of the t’th iteration
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C: Attempted models

Supervised models

• Convolution neural network[2]

• Dense neural network [3]

• XGBoost[38]

• Random forest [39]

Unsupervised models

• Generative Adversarial Network(GAN)[35]

• AnoGAN[40]

• LSTM Autoencoders [33]

• Convolution-Deconvolution Neural Network [41]

• Dense Autoencoders [3]

• Isolation forest [42]
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D: Figure sources

• Figure 3.3 - Underfitting and Overfitting.
Available from: https://subscription.packtpub.com/book/data/9781838556334/7
/ch07lvl1sec82/underfitting-and-overfitting

• Figure 3.5 - Linear regression
Available from: https://community.cloudera.com/t5/Community-Articles
/Understanding-Linear-Regression/ta-p/281391

• Figure 3.8: 2D Convolution block. Available from: https://peltarion.com/knowledge-
center/documentation/modeling-view/build-an-ai-model/blocks/2d-convolution-block

• Figure 3.9: Application of Transfer Learning Using Convolutional Neural Network
Method for Early Detection of Terry’s Nail - Scientific Figure on ResearchGate.
Available from: https://www.researchgate.net/figure/Illustration-of-Max-Pooling-
and-Average-Pooling-Figure-2-above-shows-an-example-of-max fig2 333593451

• Figure 3.10 - Transposed Convolution Demystified
Available from: https://towardsdatascience.com/transposed-convolution-demystified-
84ca81b4baba

Throughout the thesis we created figures with draw.io and
alexlenail.me/NN-SVG/AlexNet.html to visualize the proposed models.
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E: SHAP explanations for the day 2 attacks

Supervised CNN

LDAP

Figure 5.1: LDAP Explanation

MSSQL

Figure 5.2: MSSQL Explanation
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Portmap

Figure 5.3: Portmap Explanation

UDP

Figure 5.4: LDAP Explanation
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Supervised dense neural network

LDAP

Figure 5.5: LDAP Explanation

MSSQL

Figure 5.6: MSSQL Explanation
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Portmap

Figure 5.7: Portmap Explanation

UDP

Figure 5.8: LDAP Explanation
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Unsupervised CNN autoencoder

LDAP

Figure 5.9: LDAP Explanation

MSSQL

Figure 5.10: MSSQL Explanation
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Portmap

Figure 5.11: Portmap Explanation

UDP

Figure 5.12: LDAP Explanation
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Unsupervised dense autoencoder

LDAP

Figure 5.13: LDAP Explanation

MSSQL

Figure 5.14: MSSQL Explanation
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Portmap

Figure 5.15: Portmap Explanation

UDP

Figure 5.16: LDAP Explanation
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Unsupervised dense autoencoder

LDAP

Figure 5.17: LDAP Explanation
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MSSQL

Figure 5.18: MSSQL Explanation

Portmap

Figure 5.19: Portmap Explanation
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UDP

Figure 5.20: LDAP Explanation
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