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Myelin protein P2 is a peripheral membrane protein of the
fatty acid– binding protein family that functions in the forma-
tion and maintenance of the peripheral nerve myelin sheath.
Several P2 gene mutations cause human Charcot-Marie-Tooth
neuropathy, but the mature myelin sheath assembly mechanism
is unclear. Here, cryo-EM of myelin-like proteolipid multilayers
revealed an ordered three-dimensional (3D) lattice of P2 mole-
cules between stacked lipid bilayers, visualizing supramolecular
assembly at the myelin major dense line. The data disclosed that
a single P2 layer is inserted between two bilayers in a tight in-
termembrane space of �3 nm, implying direct interactions
between P2 and two membrane surfaces. X-ray diffraction from
P2-stacked bicelle multilayers revealed lateral protein organiza-
tion, and surface mutagenesis of P2 coupled with structure-
function experiments revealed a role for both the portal region
of P2 and its opposite face in membrane interactions. Atomistic
molecular dynamics simulations of P2 on model membrane sur-
faces suggested that Arg-88 is critical for P2-membrane interac-
tions, in addition to the helical lid domain. Negatively charged
lipid headgroups stably anchored P2 on the myelin-like bilayer
surface. Membrane binding may be accompanied by opening of
the P2 �-barrel structure and ligand exchange with the apposing
bilayer. Our results provide an unprecedented view into an
ordered, multilayered biomolecular membrane system induced
by the presence of a peripheral membrane protein from human

myelin. This is an important step toward deciphering the 3D
assembly of a mature myelin sheath at the molecular level.

A central question in myelin biology is the molecular mech-
anism of the tight packing of dozens of apposing lipid bilayers
into a mature, multilayered myelin sheath. A major role in this
process is played by myelin-specific proteins. The high degree
of order within the myelin sheath has been known since early
experiments using X-ray diffraction (1); however, the details of
the molecular assembly have remained enigmatic.

The spontaneous formation of lipid membrane multilayers is
a common functional property of different myelin-specific pro-
teins, which are not genetically related. In peripheral nervous
system (PNS)7 myelin, the compact multilamellar membrane
contains only a few proteins. The intrinsically disordered
myelin basic protein (MBP) is irreversibly embedded into a sin-
gle leaflet of the lipid bilayer (2). The cytoplasmic domain of
myelin protein zero (P0) behaves much like MBP, although it
embeds deeper into the membrane (3). Full-length P0 promotes
membrane stacking through both extra- and intracellular inter-
actions (3–6). Peripheral myelin protein 22 (PMP22), another
PNS integral membrane protein, forms myelin-like assemblies
(7), much like those observed with MBP and P0. P2 adheres to
the cytoplasmic leaflet of the bilayer and can be classified as a
peripheral membrane protein (8).

Peripheral membrane proteins associate with cellular mem-
branes via diverse mechanisms. Membrane binding may be
either irreversible, mediated by post-translational modifica-
tions (palmitoylation, myristoylation, or prenylation), or re-
versible with variable binding affinities. The specificity of pro-
tein-membrane interactions is affected by the physical
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properties of the protein and the lipid bilayer, such as surface
charge or membrane curvature. Many peripheral membrane
proteins utilize amphipathic helices or hydrophobic amino
acids that penetrate into the hydrophobic bilayer core to form
stable interactions with membranes (9).

P2 is a Schwann cell–specific protein expressed in the PNS
myelin of tetrapods (10). Intriguingly, P2 is expressed in a
mosaic fashion, not being present in all myelin sheaths (11, 12).
This small �-barrel protein belongs to the family of fatty acid-
binding proteins (FABPs). The bound fatty acid is enclosed
inside the � barrel by a lid formed by two adjacent � helices
(13–15); the opening of the � barrel may be of importance in
fatty acid entry and egress (13). In addition to fatty acid binding,
P2 can transfer lipids from/to membranes using a collisional
transfer mechanism (16), as seen with several other FABPs (17–
21). Besides fatty acids, P2 may bind cholesterol (14), which is
abundant in the myelin membrane and essential for myelina-
tion (22). The tip of the �-helical lid is hydrophobic, whereas
both ends of the � barrel present positively charged surfaces
(14, 15), and these properties are likely important, when P2
stacks between two phospholipid bilayers.

Studies on P2-deficient mice revealed temporarily reduced
motor nerve conduction velocity and altered lipid composition
in PNS myelin. However, the overall PNS myelin structure
remained normal (16). Further analyses on the mutant mice
revealed that P2 has a role in remyelination of an injured PNS
(23) and melanoma cell invasion (24). Five Charcot-Marie-
Tooth 1 (CMT1) disease point mutations in human P2 have
been discovered (25–29). Three CMT1-associated P2 protein
variants have been characterized at the molecular level, show-
ing altered fatty acid and lipid membrane binding properties.
The most drastic CMT1 mutation, T51P, also reduced the
membrane stacking capability of P2 (30). Overall, the stability
of the mutant proteins was decreased, even though crystal
structures indicated only minor structural changes compared
with WT P2 (30).

In the current study, we incorporated human P2 into a model
membrane multilayer system and visualized the myelin-like
proteolipid structures using cryo-EM. P2-bicelle complexes
were used for additional structural insights. We produced
mutated forms of P2 to establish determinants of lipid bilayer
and fatty acid binding and used atomistic molecular dynamics
(MD) simulations to visualize the intimate interaction between
P2 and a myelin bilayer. We show the spontaneous formation of
an ordered, crystal-like lattice of P2 bound inside membrane
multilayers and highlight factors that are important in this pro-
cess, which involves a conformational change in the protein.
The results provide a glimpse into the self-assembling proper-
ties of myelin proteins and lipid membranes, which are likely to
be crucial for correct myelination in the vertebrate nervous
system.

Results

Whereas the molecular composition of compact myelin is
relatively simple, the arrangement of proteins within the mem-
brane multilayers is to a large extent unknown. Here, we used
the peripheral membrane protein P2 from the PNS myelin
major dense line as a model system to study myelin-like mem-

brane stack formation and structure. P2 interacts with lipid
bilayers with high affinity (13, 15, 31–33). We explored its
membrane binding characteristics, determinants, and dynam-
ics more closely. The results provide further information on the
molecular details of the major dense line in PNS myelin, as well
as on CMT disease mechanisms linked to mutations in P2.

Arrangement of P2 in multilayered membrane stacks

P2 spontaneously binds lipid membranes together, as
reflected by earlier studies using turbidimetry, simulation, and
X-ray diffraction (15, 32). However, the molecular details of this
phenomenon and the resulting supramolecular structure have
remained elusive. Cryo-EM was used to follow membrane
stacking and ordering of proteolipid components in multilayers
induced by P2.

P2 induced the formation of highly ordered lipid bilayer
stacks, whereas without P2, only unilamellar vesicles were
observed (Fig. 1, A and B). The angle between two separating
bilayers at the edge of a tight apposition is consistently �60°
(Fig. 1C). Although P2 is only 15 kDa, it is visible in cryo-EM
images as ordered rows of particles between two apposed mem-
branes. Based on the calculated 2D class averages (Fig. 1, D–G),
P2 evidently stabilizes the lipid membrane stacks and defines
the spacing (�3.0 nm) between two bilayer surfaces. This
myelin-like spacing between two apposing lipid bilayers is
constant throughout the membrane stacks. Based on the P2
crystal structure (14, 15), the longest diameter of P2 is 4.5
nm, indicating that either some parts of the protein are bur-
ied within the bilayer, or P2 is turned on its side on the
membrane. The repeat distance in the multilayer, containing
a 4.5-nm bilayer and a single layer of P2 molecules, is 7.5 nm.
This is shorter than the distance measured in solution with
X-ray diffraction under more hydrated conditions and close
to the distance observed with MBP and the P0 cytoplasmic
domain in diffraction experiments (2, 3, 15). P2 molecules
are located between the bilayers with a lateral spacing of 3.5
nm between monomers (Fig. 1F), indicating lattice-like
order between membranes. This order extends into neigh-
boring membrane layers, and P2 molecules between the
bilayers are at least to some extent in register between con-
secutive layers (Fig. 1G).

Cryo-EM was similarly carried out with the “hyperactive”
P38G variant (34) mixed with lipids (Fig. 1E). Neither the
bilayer spacing nor protein-lipid organization altered in the
presence of the mutant. During sample preparation, P38G
induced membrane aggregation/stacking faster than human
WT P2 (wtP2), and the turbidity effect was visible within 2–3
min (not shown), in line with earlier experiments (34).

Three-dimensional order in P2-bicelle complexes

To obtain additional structural insight into P2-membrane
complexes, P2 was studied in a bicelle environment. P2 induced
turbidity in protein-bicelle suspensions, and EM imaging
revealed stacked arrangements of bicelles in these samples (Fig.
2A). Thus, X-ray diffraction was used to gain more information
on repetitive structures. In addition to the Bragg peaks originat-
ing from membrane stacking repeats of �7– 8 nm, additional
diffraction peaks were observed (Fig. 2, B and C) in samples
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with the highest lipid and protein concentrations. The corre-
sponding distances are close to those expected from a lattice-
like setup of P2 molecules between two membranes, as
observed in cryo-EM. The distances can be used to deduce a
possible lateral organization of P2 molecules in the membrane
plane (Fig. 2D).

The distances observed in the experiment changed as a func-
tion of protein/lipid ratio. This behavior is similar, but not iden-
tical, to that observed for the P0 cytoplasmic domain, which

caused tighter membrane packing at high protein/lipid ratios
(3). For P2, both the lipid and protein concentration affect the
repeat distance in a concerted fashion (Fig. 2C). The distances
get shorter when lipid concentration increases, indicating an
overall increase in order and tighter packing. On the other
hand, at the same lipid concentration, shorter distances are
observed with higher protein amounts. Hence, the protein and
lipid components synergistically assemble into a compact,
ordered, three-dimensional proteolipid structure.

Figure 1. Electron cryomicroscopic analysis of lipid membrane stacking by P2. A, cryo-EM image of E. coli polar lipid liposomes without protein. The
images in A and B are 480 � 480 nm in size. B, the same liposomes in the presence of human P2 make myelin-like multilayered stacks. Lipid/protein mass ratio
is 2.0. C, the angle between stacked membranes at the edges (pink circles) is nearly constant at �60°. D, 2D class averages of a single P2-linked bilayer stack. Lipid
headgroups and proteins are black. The size of the box is 140 � 140 pixels (18 � 18 nm). E, averaged structures of stacked membranes with WT and P38G
mutant human P2. Based on the observed features and distances, a resolution of 1–2 nm can be estimated. F, the space between two membranes is enough
to fit one layer of P2. The membrane diameter is 4.5 nm, the space between membranes is 3.0 nm, and the distance between individual P2 molecules is 3.5 nm.
The crystal structure of a P2 monomer has been fitted into the assembly. The crystal structure is at the correct scale; it should be noted that the exact orientation
is unknown, and the view is for visual evaluation. G, averaging of larger segments of P2-stacked multilayers, including two layers in the analysis, indicates the
lattice-like arrangement of P2 throughout the myelin-like multilayer. Scale bars, 50 nm (A–C) and 5 nm (D–G).

Figure 2. Insights into P2 structure between membranes from bicelle complexes. A, negative staining EM micrograph of P2-stacked bicelles. Being flat
lipid discs, the bicelles are here mainly seen as thin lines, corresponding to a side view. Scale bar, 100 nm. B, Bragg X-ray diffraction peaks from P2-stacked bicelles
(black) and vesicles (red). The corresponding repeat distances are marked. C, titration of protein and lipid concentration in the bicelle samples indicates shorter
distances and higher order when both protein and lipid concentrations increase. D, a model of P2 arrangement on the plane of the membrane, based on the
peak positions in B. Note that the 7.37-nm peak corresponds to the bicelle membrane stack repeat distance, and the 3.49-nm distance could be a sign of an
additional tighter arrangement of P2 on the membrane, because a 3.5-nm distance was seen in cryo-EM. For the vesicle sample in B, the 8.81-nm peak
corresponds to the stack repeat between consecutive membrane layers, and no information is obtained on the lateral protein arrangement.
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Design of point mutants

To elucidate structure-function relationships in P2, as a gen-
eral model for a FABP with a collisional mechanism and tight
interaction with membranes, we used the crystal structure of
human P2 to design mutations that might affect membrane
binding (Fig. 3A). The electrostatic surface of wtP2 shows two
positively charged faces, at the helical lid domain and the bot-
tom of the barrel structure (Fig. 3B). The mutations can be
roughly divided into three classes: those removing positive sur-
face charge, those affecting the hydrophobic surface of helix �2,
and other mutations possibly affecting the portal region.

Crystal structures of P2 variants

For a high-resolution insight into the structure-function dif-
ferences in the P2 variants, their respective crystal structures
were solved (Table S1 and Fig. 3C). None of the mutations
affected folding or secondary structure elements in the crystal
state. With respect to this observation, it is important to note
that the three studied CMT disease variants of P2 crystallized
like wtP2, even though their stability and function were

impaired (30). The root mean square deviations of the mutant
structures compared with wtP2 vary between 0.08 and 0.36 Å,
P38G being the most divergent.

Prior to the current work, all crystal structures for wtP2 or
mutant P2 contained a bound ligand inside the � barrel. The
P38G structure refined here is the first exception: its internal
cavity is clearly empty; no electron density for a bound fatty acid
is present. This allows comparison of details between liganded
and unliganded P2 (Fig. 3D). In our earlier study, the P38G
mutant contained bound palmitate (34). In the unliganded
crystal structure of P38G, the amino acid side chains pointing
inward mainly retain their conformation. The main-chain
hydrogen bond between residue 38 and Leu-10 also exists in
both P38G structures. However, helix �2 at the portal region
has slightly shifted outward from helix �1 in both chains; a
similar change is observed in the R30Q mutant, which could be
linked to altered membrane-binding properties (see below). In
addition, P38G electron density is poor for residues 33–37 at
the end of helix �2 of chain B, supporting an increased flexibil-
ity/partial unfolding of the portal region in the P38G mutant in

Figure 3. Crystal structure analysis of selected P2 mutant variants. A, stereo view of all mutants analyzed. B, surface electrostatics of human P2 reveal two
positively charged faces at opposite ends of the molecule. C, view from the top on the C� traces of all P2 variant crystal structures indicates flexibility of helix �2
and the �3-�4 loop. D, conformational differences between liganded and unliganded P38G. P38G with palmitate (PDB entry 4D6B (34)) (gray) is superimposed
with the two monomers of unliganded P38G (light and dark blue). E, partial opening of the portal in the K65Q variant (pink), superimposed on the wtP2 structure
(PDB entry 4BVM (15)).
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the absence of bound ligand, as seen in earlier simulations (34).
Phe-57, as well as the whole �4-�5 loop of chain A, has some-
what tilted away from the �2 helix.

All P2 structures excluding P38G have a fatty acid, modeled
as a mixture of palmitate or cis-vaccinate in the atomic-resolu-
tion structures (15, 35), bound inside the � barrel. The confor-
mation and position of the fatty acid are similar in most struc-
tures. In the K65Q mutant, the conformation of the palmitate is
different, and Phe-57 points outward in all four chains in the
asymmetric unit (Fig. 3E). This supports the proposed role for
Phe-57 as a gatekeeper residue in the FABP family (13, 36).

All human P2 crystal structures published thus far have an
anionic group bound in proximity of the hinge region; the iden-
tity of the ligand depends on crystallization conditions and
crystal contacts. In wtP2, either chloride or citrate interacts
with Thr-56 and Lys-37 (14, 15). P38G and F57A contain chlo-
ride and sulfate, respectively (13, 34). In the CMT-associated P2
mutant structures, there is a malate located in the anion-bind-
ing site (30). In line with these data, all P2 mutant structures
solved here have an anionic group bound in the same pocket.
These observations lend further support to the hypothesis that
this pocket may be involved in recognizing phospholipid head-
groups and initiating membrane binding and/or conforma-
tional change (15).

Membrane binding and multilayer stacking

Surface plasmon resonance (SPR) was used to follow binding
of the P2 variants onto immobilized lipid membranes, made of
either dimyristoylphosphatidylcholine (DMPC) or dimyristoyl
phospatidic acid (DMPA) (Fig. 4A). These membranes are net
neutral and negatively charged, respectively. Whereas MBP
essentially binds to lipids irreversibly on SPR (2), P2 dissociates
from the membrane rapidly (15), suggesting different mem-
brane interaction kinetics for these two proteins with overlap-
ping function.

Four P2 mutants showed decreased binding to lipid mem-
branes. One of these is L27D, which affects Leu-27 at the tip of
the helical lid and reduces the hydrophobicity of the portal
region. The other three mutations with reduced binding affinity
toward lipid membranes are found in adjacent loops on the
opposite face, at the bottom of the � barrel. All of these muta-
tions (K45S, K65Q, and R88Q) affect surface residues and
reduce the positive charge at the bottom of the � barrel. The
locations of these mutations suggest two membrane-binding
surfaces on opposite faces of P2, in line with its packing between
two bilayers in vivo and in vitro.

Whereas some mutations caused diminished binding to the
membrane surface, P38G and R30Q had increased levels of

Figure 4. Assays on P2 variant conformation and function. A, DMPC (red error bars) and DMPA (green error bars) membrane-binding assays by SPR. Each
point represents the response at the highest concentration (1 �M) from a P2 concentration series, which was run 2– 4 times for each variant. B, turbidity assay
with 1:1 DMPC/DMPG vesicles. C, SDS-PAGE analysis of proteolipid pellets reveals SDS-resistant P2 multimers. D, surface electrostatics of the P2 bottom surface
in wtP2 (left) and the R88Q mutant (right). E, turbidity assay of wtP2 with DMPC/DMPG vesicles (red) and bicelles (black). Error bars, S.D.
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binding. These two mutations are located in the vicinity of the
portal region and the helical lid domain. The difference in
membrane binding of R30Q and P38G compared with wtP2
was more pronounced, when a DMPC membrane was studied.

Turbidimetry was used to assess the effectivity of P2 vari-
ants in aggregating DMPC/dimyristoylphosphatidylglycerol
(DMPG) vesicles (Fig. 4B). When the turbid proteolipid sus-
pensions were centrifuged and analyzed by SDS-PAGE, P2 co-
sedimented with aggregated vesicles, and the strong proteolipid
complex was only partially solubilized by SDS; P2 was present
as a ladder of oligomeric forms (Fig. 4C). Again, P38G was the
most effective variant, stacking vesicle membranes more than
wtP2. Some mutations caused diminished turbidity compared
with wtP2. The clearest of these were L27D and R88Q; the latter
lies in the �6-�7 loop—in the middle of a large positively
charged surface patch at the bottom of the � barrel (Fig. 4D).
Hence, again, residues important for both membrane binding
and stacking can be found on both positively charged faces of
P2.

Another turbidimetric experiment was carried out to com-
pare bicelles and vesicles in wtP2-induced multilayer forma-
tion. Like vesicles, bicelles are stacked by P2 into large struc-
tures causing turbidity (Fig. 4E). Such ordered complexes could
be a step toward higher-resolution structure determination of
myelin proteolipid complexes (e.g. due to restrained particle
size and geometry).

Fatty acid and cholesterol binding

Using the fluorescent fatty acid analogue 11-dansylamino-
undecanoic acid (DAUDA), we followed internal ligand bind-
ing to P2 variants (Fig. 5A). The situation is complicated by the
fact that tightly bound fatty acids co-purify with P2 from the
expression host. Thus, a quantitative analysis was not per-
formed, as increased binding could reflect either higher affinity
or lower amounts of co-purified ligand. However, the level of
bound DAUDA should correlate with the opening of the portal
region and/or the barrel, which is also required for removal of
the bound fatty acid. Because bound fatty acid affects dynamics
of P2 (13, 34), it is likely that some of the mutated variants have
different affinities toward fatty acids. Most mutant variants

showed slightly higher DAUDA signal than wtP2, and P38G
was the strongest binder of all variants.

We previously proposed cholesterol binding by P2 (14), in
addition to fatty acids. Cholesterol binding was tested using
wtP2 and P38G. wtP2 induced a clear, concentration-depen-
dent change in the fluorescence spectrum of the environment-
sensitive probe 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-
amino)-23,24-bisnor-5-cholen-3�-ol (22-NBD-cholesterol);
the fluorescence maximum shifted toward shorter wave-
lengths, and its intensity increased (Fig. 5, B and C). The spec-
tral changes were more pronounced with P38G, which has a
more flexible portal region (34). The experiment shows that
cholesterol, which is very abundant in myelin, could be a phys-
iologically relevant ligand for P2. These assays together indicate
that protein flexibility is important when P2 binds to its biolog-
ical ligands.

Folding and stability of point mutant variants

CD spectroscopy was used to analyze the folding and stability
of the P2 variants. Whereas most mutations had little effect on
thermal stability, P38G had two steps of unfolding, the first one
appearing already at 50 °C and the second one only at �75 °C
(Fig. 6A). Another outlier was R30Q, which had a slightly low-
ered stability compared with wtP2. Interestingly, these two
mutations causing changes in stability are those with enhanced
membrane binding and stacking properties. In the crystal struc-
tures, they present minor conformational differences in their
helical lid, compared with wtP2.

To elucidate the conformational changes induced by mem-
brane binding, synchrotron radiation CD (SRCD) spectra for
wtP2 and some divergent mutants were measured in the pres-
ence and absence of DMPC/dodecylphosphocholine (DPC)
bicelles (Fig. 6B). For wtP2, bicelle binding induced small
changes in the SRCD spectrum. L27D exhibited less change in
the spectrum in the presence of bicelles, supporting the
reduced membrane binding of L27D observed in SPR and tur-
bidity assays. On the other hand, P38G, having a higher propen-
sity for membrane interactions, showed larger conformational
changes in the bicelle environment. R30Q behaved much like
P38G; both variants showed partial unfolding. These results

Figure 5. Ligand binding by human P2. A, binding of the fluorescent fatty acid DAUDA. B, binding of NBD-cholesterol by wtP2 (black) and P38G (red). Dashed
line, ligand alone; thin line, 10 �M P2; thick line, 40 �M P2. C, concentration dependence of fluorescence at 532 nm. Error bars, S.D.
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highlight the importance of protein flexibility in membrane
binding and indicate a role for the �-helical lid in P2-membrane
interactions.

The bicelle system was used to deduce effects of lipid com-
position on wtP2 folding state, as well as to compare with vesi-
cles with the same lipid composition. SRCD spectra showed
that in vesicles, both 1:1 and 9:1 DMPC/DMPG gave the same
conformational change of wtP2 compared with the protein in
water (Fig. 6C). In bicelles, however, wtP2 behaved differently,
in that very little change occurred in DMPC alone or in 9:1
DMPC/DMPG, and the spectrum changed more with 1:1 and
4:1 DMPC/DMPG, to resemble the one measured with vesicles
(Fig. 6D). These differences with respect to lipid composition
could be related to membrane curvature.

Atomistic simulations on P2-membrane interactions

To combine aspects of high-resolution structural data and
membrane binding, we studied the interactions of WT and
P38G P2 with membrane surfaces using atomistic MD simula-
tions (Fig. 7). Two membrane systems were built: a 1:1 mixture
of DMPC/DMPG, which corresponds to compositions often
used in the laboratory, and a myelin-like membrane based on
literature values (37).

During the attachment of wtP2 onto the membrane surface,
a similar orientation was always observed: this involved the pos-
itively charged surface close to the bottom of the � barrel.
Arg-88 is a central residue in initial P2-membrane interactions.
Whereas it was expected that initial membrane binding would
involve the portal region and the helical lid, this orientation,
with the bottom face of the � barrel first approaching the mem-
brane, is reproducible. The protein was further turned on its
side in this arrangement in the myelin lipid composition, indi-
cating that the rows of P2 molecules observed in cryo-EM
images do not embed deep into the bilayers. The 3-nm spacing
between membranes can accommodate one layer of P2 in this
orientation.

A difference in orientation was observed between the
DMPC/DMPG and myelin membranes; P2 remains more
upright and dynamic in DMPC/DMPG, whereas it falls rigidly
on its side on the myelin-like membrane (Fig. 7C). Differences
in wtP2 dynamics were additionally observed between lipid
compositions. The protein was more rigid when bound to the
myelin membrane (Fig. 7A); on DMPC/DMPG, it had higher

dynamics and hung on the membrane with the Arg-88 anchor
(Fig. 7C). During the simulation with the myelin-like bilayer,
the phosphatidylinositol 4,5-bisphosphate (PIP2) molecules
within the myelin bilayer bound to the tip of the �5-�6 and
�7-�8 loops, promoting opening of the � barrel, whereas
Arg-88 at the other end of the protein, in the �6-�7 loop, inter-
acted strongly with palmitoyloleoylphosphatidylserine (POPS)
headgroups (Fig. S1 and Fig. 7D). The PIP2-binding site is
formed of the side chains of Arg-78, Lys-79, and Arg-96. These
results could reflect an important difference between a biolog-
ical membrane composition and simplistic membrane models.

The electrostatic interactions of wtP2 and P38G were very
similar with the membrane lipids during the simulations (Fig.
S1). The P38G variant similarly attached to the myelin-like
membrane surface, being anchored sideways, and opened up
even more than wtP2 (Fig. 7, B and D). The portal region and
the expected opening during ligand exchange (13) face upward
in this setting, and upon the approach of another membrane,
they could closely interact with its surface.

Discussion

Myelin protein P2 is a unique member of the FABP family,
able to stack lipid bilayers together, in addition to being a mem-
ber of the FABP subgroup carrying out collisional transfer.
Lipid membrane binding by P2 involves the hydrophobic tip of
the helical lid, electrostatic interactions, and dynamics of the
portal region (13, 15, 34). Here, we have revealed details of the
assembly of the P2-membrane stacks and the surprising role of
the bottom region of the P2 � barrel in membrane binding. The
data provide much-needed information on the assembly of the
myelin membrane at the molecular level.

Structure of P2-induced proteolipid multilayers

Our cryo-EM experiments illustrate an organized lattice-like
supramolecular three-dimensional arrangement of P2-mem-
brane stacks. Surprisingly, P2, a 15-kDa protein, which has
dimensions of 4.5 � 3.6 nm, is visible between the lipid bilayers
as a lateral network. Both the cryo-EM images and calculated
2D class averages of P2-membrane stacks show a constant dis-
tance (3 nm) between the apposing lipid membranes and a
repeat distance (containing a single bilayer and intermembrane
space) of 7.5 nm. Earlier, a repeat distance of �9 nm for
P2-membrane stacks was measured by X-ray diffraction using

Figure 6. P2 stability and folding. A, melting curves for wtP2 and all studied mutants. The outliers are P38G (red) and R30Q (blue). Thick black line, wtP2. B,
conformation of wtP2 and selected mutants in the presence (solid lines) and absence (dotted lines) of DMPC/DPC bicelles. C, WT P2 in water (red dashed line), 9:1
DMPC/DMPG (thin black line), and 1:1 DMPC/DMPG (thick black line). D, WT P2 in water (red dashed line) and lipid/DPC bicelles containing DMPC (black dashed
line), 9:1 DMPC/DMPG (thin black line), 4:1 DMPC/DMPG (medium black line), and 1:1 DMPC/DMPG (thick black line).
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DMPC/DMPG in suspension (15). Bragg peaks in X-ray diffrac-
tion experiments support the highly organized arrangement of
P2-membrane stacks seen in cryo-EM, and the conditions for
preparing cryo-EM samples, with less hydration, might be more
relevant to myelin in vivo. Indeed, using the bicelle model sys-
tem, we measured repeat distances of 7.5 nm in stacks of
bicelles induced by P2, and the distance evolved as a function of
protein and lipid concentration. Thus, P2 may have a function
in defining the membrane spacing in PNS compact myelin,
together with MBP and P0. All three of these proteins produce
membrane stacks in vitro (2, 3), with intermembrane spacing
very close to that seen in the mature myelin major dense line.

The spacing between the neighboring P2 molecules between
membrane bilayers is constant (�3.5 nm), and there appears to
be a relationship between the positioning of P2 molecules
between consecutive membrane layers. The results suggest the
presence of a near-crystalline lattice of P2 between membranes;
this is also supported by our X-ray diffraction experiment using
stacked bicelles, in which— unlike in earlier similar experi-
ments using lipid vesicles—we see new distances much shorter
than those coming from bilayer stacking per se. As these dis-
tances depend on protein concentration, they correspond to
distances between proteins arranged as a lateral layer between
two membranes. Whether such packing occurs in vivo depends
on the local P2 concentration in myelin as well as the presence

and organization of other highly abundant myelin proteins,
such as P0 and MBP. The quantity of P2 has been reported to
vary between different regions of PNS as well as from nerve
fiber to nerve fiber (12). It is possible that altering levels of one
compact myelin protein during development are linked to
changes in one or more of the other proteins able to compen-
sate for its function. Furthermore, P2 might be more important
in thick myelin sheaths, as suggested by the very mild pheno-
type of P2 mouse mutants and the link to human CMT via P2
mutations.

We recently reported, using similar cryo-EM approaches, the
arrangement of the extracellular domains of P0 as a zipper-like
assembly between the membranes (3). The assembly of P2 at
the cytoplasmic face shown here completes the picture of PNS
myelin molecular assembly. Importantly, whereas P0 extracel-
lular domains interact with each other as two layers between
membranes, only a single layer of P2 is observed, and each pro-
tein molecule must interact with two cytoplasmic leaflets
simultaneously. The details of this aspect were further charac-
terized here through mutagenesis, functional experiments, and
high-end computer simulations.

Functional residues revealed by point mutations

The unique ability of P2 to stack lipid membranes requires
two membrane-binding sites on opposite faces of the protein;

Figure 7. MD simulations on P2 binding to lipid membrane surface. A, root mean square fluctuation (RMSF) for wtP2 (black) and P38G (red) in 1:1
DMPC/DMPG (thin lines) and myelin lipid composition (thick lines). B, distance of the �4-�5 opening of the � barrel during the simulation. Coloring is as in A. C,
angle of the P2 � barrel axis with respect to the membrane surface. Note how both wtP2 and P38G are rigidly anchored to the same orientation immediately
after the equilibration period. D, snapshots from the simulations. Left, wtP2 on DMPC/DMPG at 1135 ns. Middle, wtP2 on myelin at 2060 ns. Right, P38G on
myelin at 800 ns. Locations of the two membrane anchors, Arg-88 (blue arrowhead) and Arg-78/Lys-79/Arg-96 (magenta asterisks) are indicated.
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P2 has two positively charged surfaces. Membrane binding
experiments for surface-mutated P2 gave information about
crucial regions and mechanisms of protein-membrane interac-
tion. The L27D mutation at the tip of the �-helical portal region
reduces membrane stacking and binding as well as diminishes
the changes in CD spectrum upon introducing membrane-mi-
metic bicelles. Thus, Leu-27 may be inserted into the hydro-
phobic core of a lipid bilayer. This insertion is presumably facil-
itated by a conformational change in the portal region (15). In
addition, other portal region mutations (K21Q and K31Q),
which remove a positive charge, also decreased membrane
binding and stacking. These residues probably interact with
negatively charged lipid head groups and, together with Leu-27,
form a membrane anchor of the P2 portal region. We earlier
showed that the L27D mutation impairs the formation of
stacked membrane systems in a cell culture system (15).

On the other hand, the removal of a positive charge at the
opposite end of the � barrel (mutations K45Q, K65S, R88Q, and
K112Q) caused reduced membrane binding and stacking. In
MD simulations, R88Q protrudes into the lipid membrane and
forms tight interactions with lipid headgroups, especially PS in
the myelin-like bilayer. However, there are no hydrophobic res-
idues at the bottom face of P2, and the barrel bottom interac-
tion with the lipid membrane is facilitated by electrostatic
interactions. The bottom region of P2 is unlikely to be deeply
inserted into membranes; nor will it undergo large conforma-
tional changes.

An exception within all P2 mutants concerns P38G. In line
with earlier data (38), it is more active in most of the experi-
ments, including membrane stacking as well as membrane–,
fatty acid–, and cholesterol– binding assays. The P38G muta-
tion, however, does not alter the organization or repeat distance
of the P2-membrane stacks in cryo-EM. In the crystal structure
of P38G, there is no fatty acid bound, and this mutant is more
flexible and has altered dynamics compered with wtP2 (38). In
MD simulations, the fatty acid was observed nearly escaping
from the barrel (13). The weak electron density of the portal
region in the P38G mutant crystal structure supports the idea of
a flexible lid in this mutant, making it more dynamic (34, 39)
and prone to opening. The other mutation, R30Q, which
increased the flexibility of the portal region, causes smaller but
similar effects on the activity of P2 in several assays, confirming
the importance of the dynamics of the portal region in the func-
tion of P2. For other FABPs, the Arg residue corresponding to
P2 Arg-30 has been suggested to attract negatively charged fatty
acids (40, 41); while this could be happening in P2 as well, the
R30Q mutation clearly has larger-scale effects on membrane
interactions and local folding or dynamics.

Phe-57 is a conserved residue within the FABP family, sug-
gested to be a general gatekeeper for ligand binding (13, 36). It
controls ligand entry into the � barrel and can flip between two
conformations (13, 42). Phe-57 points outward in the K65Q
crystal structure, and the fatty acid shifts toward the opening
cleft. It is unclear how a mutation located at the other end of the
� strand might induce the flipping of Phe-57. However, the
Phe-57 flip may be one initial step in P2 opening, which was
observed in MD simulations and structural studies (13, 30).

Arg-88 appears central to the initial P2-membrane contact,
functioning as an anchor. Within the human FABP family,
Arg-88 is conserved in P2, but not other family members (15).
This indicates its possible importance for the membrane-stack-
ing function, because other collision-type FABPs bind tran-
siently to single membrane surfaces.

A specific case, not within the scope of the current study, is
the effect on the observed supramolecular assembly by the sev-
eral P2 mutations linked to CMT (25–29). In our earlier study,
we showed that three of these mutations were linked to both
lowered protein stability and altered membrane binding prop-
erties (30). It will be of interest to find out whether the highly
ordered assemblies of P2 between membranes are disorganized
when CMT mutations are present.

Conformational changes and dynamics upon membrane
binding

The binding of P2 onto a myelin-like membrane is accompa-
nied by a conformational change, opening the likely entry/
egress site of the bound fatty acid. This change can be observed
both experimentally and in computer simulations. The change
is similar to that observed in solution for the CMT disease vari-
ants and in extended computer simulations of P2 (13, 30, 34).
Similar conformational changes were observed for H-FABP
during long simulations (40). The bound ligand could be
exchanged with the apposing membrane in a multilayer, when
this conformational change occurs.

Atomistic simulations of P2 on a membrane surface revealed
different behavior on a simplistic model membrane compared
with a myelin composition. Importantly, some of the lipids con-
centrated on the myelin membrane formed specific interac-
tions with P2 during the long atomistic simulations, contribut-
ing to the conformational change. The presence of two anchor
points for P2-membrane binding enabled the membrane to
contribute to P2 barrel opening, unraveling the bound ligand.
The negatively charged lipids, PS and PIP2, might also affect
other myelin proteins in a specific fashion, and further experi-
ments will be required to grasp the full scope of intertwined
interactions between myelin proteins and specific lipids. A
model combining current data on P2 bound to the cytoplasmic
leaflet of myelin is shown in Fig. 8A.

Upon the formation of a P2-membrane complex (Fig. 8B),
the dynamics of both the protein and lipid components are
altered. When bound to P2, the dynamics of the lipid mem-
brane are decreased (31), whereas P2 becomes extremely heat-
stable when bound to membranes (15). These observations are
likely to be linked to the synergistic effects of P2 and the lipids in
the tightening of the 3D molecular assembly, as shown here by
X-ray diffraction from myelin-mimicking bicelle complexes.
Furthermore, they are in line with the decreased dynamics of P2
on a myelin-like membrane in the simulations.

Conclusions

We have shown that, similarly to P0, MBP, and PMP22,
myelin protein P2 is able to spontaneously induce the forma-
tion of myelin-like membrane multilayers. We have for the first
time visualized the arrangement of P2 between membranes,
providing an unprecedented view into the structure of the
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major dense line in peripheral nerves. Furthermore, our obser-
vations provide a lipid composition-dependent mechanism for
the opening of the P2 structure for ligand entry and egress; in
the case of a multilayered membrane, the ligand could be
exchanged with the apposing membrane. How myelin proteins
act together in forming native myelin multilayers through
interactions at both extracellular and intracellular surfaces of
the bilayer (Fig. 8C) is a major question in myelin biology; the
tools and materials exist for solving this question in the coming
years.

Experimental procedures

Protein production

The expression and purification of wtP2 was done as
described (14). Mutagenesis and the expression and purifica-
tion of P2 variants were described earlier (43).

Electron cryomicroscopy and image processing

0.6 mg/ml purified wtP2 or the P38G variant was mixed with
Escherichia coli polar lipids (Avanti Polar Lipids) using a lipid/
protein ratio of 2 (w/w), corresponding to a molar ratio of �40,
and incubated for 1–2 h at �23 °C. For grid preparation, sam-
ples were applied to glow-discharged, holey carbon grids
(QUANTIFOIL R 1.2/1.3, R 2/2, or R 3.5/1). 3-�l samples were
adsorbed for 1 min at �20 °C, 90% humidity. Grids were then
blotted for 2 s and vitrified by plunging into liquid nitrogen–
cooled liquid ethane using an FEI Vitrobot MK4 (Vitrobot,
Maastricht Instruments). The frozen grids were imaged using
an FEI Titan Krios transmission electron microscope operated
at 300 keV. Images were recorded using a Gatan K2 Summit
direct electron detector, in counting mode (0.2 s/frame, 8 s in
total, 6 –7 e/pixels/s). Movie frames were aligned with Motion-
Corr (44) and preprocessed by 2dx_automator (45). The effec-
tive pixel size of the images was 1.3 Å/pixel. Particles were
boxed with EMAN2 (Helixboxer) (46) and further processed by

Spring (47) with helical reconstruction. In total, 25,000 overlap-
ping and CTF-corrected segments with a size of 240 � 240
pixels were used with a binning value of 2 to calculate 2D class
averages.

Structural analysis of P2-stacked bicelles

0.5 mg/ml P2 was mixed with 0.5 mg/ml bicelles (phospho-
lipid/DPC ratio 2.85, phospholipids 1:1 DMPC/DMPG) and
incubated for 1 h at room temperature. 4-�l samples were then
pipetted onto glow-discharged carbon-coated copper grids
before incubating for 1 min. Excess solution was removed with
filter paper (Whatman), and the samples were washed with four
drops of Milli-Q water. Samples were stained with two drops of
2% uranyl acetate for 12 s in each drop and air-dried. Transmis-
sion EM was performed using a Jeol JEM-1230 (MedWOW)
instrument.

To examine repetitive structures in turbid samples, 2, 10, and
20 �M P2 was mixed with 1, 2, or 3 mM bicelles in 20 mM HEPES
(pH 7.5), 150 mM NaCl. Samples were prepared at ambient tem-
perature right before the measurements and measured at
�25 °C. Synchrotron SAXS data from the suspensions were
collected at the PETRA III storage ring (DESY, Hamburg, Ger-
many) on EMBL beamline P12 (48). Data were processed and
analyzed using ATSAS (49). Repeat distances in the sample
were deduced from Bragg peak positions.

Crystal structure determination

All P2 variants were crystallized, and X-ray diffraction data
were collected as described (43). Data were processed with XDS
(50, 51), and molecular replacement was done using Phaser (52)
using human wtP2 (PDB code 2WUT) (14) as a search model.
Structures were refined with phenix.refine (53), and rebuilding
was done in Coot (54). The structures were validated using
MolProbity (55). The refined coordinates and structure factors

Figure 8. Model for P2-membrane interactions in myelin based on current data. A, membrane binding based on MD simulations. Shown is a superposition
of wtP2 crystal structure (blue) and the membrane-bound conformation of P38G (orange). Upon membrane binding, Arg-88 gets anchored by POPS molecules
(red), and the basic residues around the �5-�6 loop interact strongly with PIP2 (green). The rest of the membrane lipids are colored gray. The opening of the
�5-�6 flap exposes the fatty acid ligand (purple). Leu-27, Phe-57, the anion-binding site (red circle), and the location of the P38G mutation (green circle) are
facing the apposing membrane surface (gray) in this setting. B, schematic model of lattice-like P2 (blue spheres) arrangement between consecutive membranes
(gray). C, integral (P0 and PMP-22) and peripheral (P2 and MBP) membrane proteins in PNS compact myelin. Although each individual protein has been shown
to promote membrane stacking, thus far no data exist for their arrangement in compact myelin together. MDL, major dense line (cytosolic apposition); IPL,
intraperiod line (extracellular apposition).
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were deposited in the PDB (see Table S1 for statistics and entry
codes).

Proteolipid vesicle aggregation

A 5 �M concentration of each P2 mutant was mixed with
DMPC/DMPG (1:1) vesicles in a buffer containing 10 mM

HEPES (pH 7.4), 150 mM NaCl and incubated for 10 min at
room temperature. Lysozyme and BSA were used as negative
controls. Turbidity was measured on a Tecan Infinite M200
plate reader at 450 nm. The turbidity values were plotted as
relative turbidity compared with wtP2 from the same measure-
ment series. For further characterization, the turbid samples
were centrifuged, and the supernatant and pellet fractions were
analyzed by SDS-PAGE to detect co-sedimentation of P2 with
aggregated vesicles.

Turbidity was also studied with protein-bicelle complexes,
using wtP2. For this purpose, bicelles (phospholipid/detergent
ratio 2.85) were prepared as above, but the phospholipid com-
position was varied. Bicelles were at 5 mM and P2 at 33 �M. wtP2
was simultaneously used to examine the effect of phospholipid
vesicle composition on protein-induced turbidity; the lipid
concentration was 0.5 mM. Turbidity was measured using a
Tecan Spark 20M microplate reader at �30 °C.

Surface plasmon resonance

SPR was used to determine the effect of mutations in P2 on
the binding of the protein to lipid monolayers using the Biacore
T100 SPR instrument. Lipid monolayers consisting of either
DMPC or DMPA were immobilized on an HPA chip (GE
Healthcare) according to the manufacturer’s instructions. P2 at
0.05–1.0 �M was injected onto the chip at �25 °C using 10 mM

HEPES (pH 7.4), 150 mM NaCl as running buffer.

CD spectroscopy

CD spectra were measured in 10 mM sodium phosphate (pH
7.0) at a protein concentration of 0.1 mg/ml, using quartz
cuvettes with 0.1-cm pathlength and a Jasco J-715 spectropola-
rimeter. Melting curves were measured using 0.2 mg/ml pro-
tein at 217 nm. The temperature was increased 1 °C/min from
�20 to �90 °C.

SRCD measurements for selected variants were performed
on the CD1 beamline of the ASTRID storage ring at the ISA
synchrotron (Aarhus, Denmark). Scans from 280 to 165 nm
were performed in 1-nm steps at �20 °C in H2O. Three
mutants with large effects on membrane binding (L27D, R30Q,
and P38G), were studied in a bicelle environment (4:1
DMPC/DPC).

Bicelles and vesicles with varying phospholipid compositions
were used for further SRCD experiments with wtP2. 0.4 mg/ml
wtP2 was mixed with 5 mM bicelles or 2.65 mM vesicles. Spectra
were recorded from 280 to 170 nm at �30 °C, using a 100-�m
cuvette. These experiments were performed on the AU-CD
beamline of the ASTRID2 storage ring at the ISA synchrotron
(Aarhus, Denmark).

Fluorescence spectroscopy

The fluorescent fatty acid DAUDA was used to study fatty
acid binding by P2. DAUDA has been used to study ligand bind-

ing in FABPs before (56, 57). DAUDA was dissolved in DMSO,
and the final DMSO concentration in the samples was 1%. 20
�M DAUDA was mixed with 0, 1, 5, or 10 �M protein. Samples
were incubated for 2 h at �23 °C. Fluorescence excitation at
280 nm was used, and emission was recorded at 530 nm using a
Tecan Infinite M200 plate reader.

The binding of wtP2 and the P38G mutant to cholesterol was
studied using the environment-sensitive fluorescent choles-
terol analogue 22-NBD-cholesterol. The fluorescence intensity
of 22-NBD-cholesterol increases and the fluorescence emission
maximum shifts if the probe is moved to a nonpolar environ-
ment. 100 �M 22-NBD-cholesterol stock solution was prepared
in 100% ethanol, and the maximum ethanol concentration in
the sample was 2%. All experiments were carried out in 10 mM

HEPES (pH 7.5). 2 �M 22-NBD-cholesterol was incubated for
16 h at �23 °C with varying amounts of P2. Fluorescence spec-
tra were recorded on a Horiba Fluoromax-4 instrument, using
excitation at 473 nm and emission between 500 and 600 nm,
with a bandwidth of 5 nm.

Atomic scale molecular dynamics simulations

Structures of wtP2 and P38G were prepared for the simula-
tions essentially as described elsewhere (34). Briefly, the P2
structure with bound palmitate was taken from the PDB entry
4BVM (15) and converted to match an all-atom representation
consistent with the CHARMM36 force field (58), which was
used for simulating the system components, unless mentioned
otherwise. The topology for wtP2 was directly obtained from
this conversion. The P38G mutation was made in silico and
equilibrated in a water environment. Both protein-palmitate
complexes had a total charge of �10.

Lipid bilayers were constructed using the CHARMM-GUI
membrane builder (59). Two different membrane systems were
considered: a 1:1 DMPC/DMPG bilayer as a general reference
with a net negative surface charge and a myelin bilayer mimick-
ing the cytoplasmic leaflet of the myelin membrane. The com-
position of the myelin-like bilayer was 44 mol % cholesterol, 27
mol % palmitoyloleoylphosphatidylethanolamine, 2 mol %
PIP2, 11 mol % palmitoyloleoylphosphatidylcholine, 13 mol %
POPS, and 3 mol % sphingomyelin (37). The bilayers were sym-
metrical, comprised of a total of 200 lipid molecules each.

Ten Cl� ions were included to neutralize the total charge of
each protein-palmitate complex. The systems were solvated with a
total of 15,000 water molecules each, with 0.1 M KCl. Water was
modeled using the TIP3P model (60). Additional counterions (90
K� in the DMPC/DMPG and 32 K� in the myelin membrane
system) were included to neutralize the system total charge. The
total system volume was approximately (7.5 � 7.5 � 12) nm3 for
the DMPC/DMPG and (6.5 � 6.5 � 13.5) nm3 for the myelin
membrane systems. Periodic boundary conditions were used to
make the bilayer structure continuous.

MD simulations were carried out under NpT conditions.
Temperature coupling was performed with the velocity-rescale
method (61), using separate thermostats for the protein, the
bilayer, and the solvent. Reference temperatures were set at 310
K, with coupling time constants of 2.0 ps. Pressure coupling was
done semi-isotropically with the Parrinello–Rahman barostat
(62), using reference pressures of 1.0 bar with coupling time
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constants of 2.0 ps and compressibility constants of 4.5 � 10�5

bar�1.
All bonds were constrained with the LINCS algorithm (63).

Cut-off radii of 1.0 nm were introduced for the Coulombic and
Lennard–Jones interactions, including the neighbor list. Long-
range electrostatics were calculated using the particle-mesh
Ewald method (64) with cubic interpolation and a spacing of
0.16 nm for the Fourier grid.

The simulation systems were built by adding the protein
structure near the bilayer and solvating the system thereafter.
After a short steepest-descent equilibration, the systems were
simulated long enough for the protein to spontaneously come
into close contact with the bilayer. This was used as the starting
structure, after which the systems were simulated for 3 �s each.
A total of four full simulations were run (one for each protein-
membrane combination), in addition to several shorter simula-
tions on the P2 membrane attachment phase. The first 500 ns of
each simulation were removed as an equilibration period, and
the final 2.5 �s were used for analyses. All simulations were
conducted with GROMACS 4.6.7 (65), using the CHARMM36
all-atom representation and a time step of 2 fs, saving the tra-
jectory coordinates every 50 ps.

Data availability

Refined crystal structure coordinates and experimental
structure factors for the P2 variants are available at the Protein
Data Bank with accession codes 6XU5 (variant N2D), 6XU9
(K3N), 6XUA (K21Q), 6XUW (L27D), 6STS (R30Q), 6XVQ
(K31Q), 6XVR (L35S), 6XVS (P38G), 4A1H (K45S), 4A1Y
(K65Q), 6XVY (R88Q), 4A8Z (K112Q), and 6XW9 (K120S). All
other data are either presented in the manuscript or available
from the corresponding author (Petri Kursula, University of
Bergen, Petri.kursula@uib.no) upon request.
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