
XAIText: A Domain-Specific
Language for Developing an AI

Pipeline

Master thesis

Author: Håvard Brynjulfsen
Supervisor: Fazle Rabbi

University of Bergen
The Department of Information Science and Media Studies

June 15, 2021

2

Acknowledgements

I want to extend gratitude to all my coworkers at Dips Front in Bergen.
Everything I have learned at the job provided me with the tools to create
the software presented in this thesis from the ground up. I would also like
to extend my gratitude to Fazle Rabbi, for his feedback. For our discussion
of ideas and his guidance through this process from start to finish. Fazle
was believed to be one of the best supervisors by the students, and he did
not disappoint. Finally, I would also like to thank the participants of the
INTROMAT project for providing data.

Håvard Brynjulfsen
Bergen Norway, 15.06.2021

ii Acknowledgements

Abstract

AI has a wide range of applicability and uses in the healthcare sector span-
ning everything from drug-drug interaction (Zhou et al., 2018), depres-
sion(Garcia-Ceja et al., 2018a) and prostate cancer (Pantanowitz et al.,
2020). Explainable artificial intelligence - XAI has seen growth in the past
years. With an increasing number of articles coming out every year (Barredo
Arrieta et al., 2020), since the GDPR (General Data Protection Regulation)
puts stringent demands on the algorithm’s ability to explain its decisions to
participants(Goodman and Flaxman, 2017). In addition, multiple fields use
XAI, presenting an explanation for participants to legally use machine learn-
ing algorithm’s (Barredo Arrieta et al., 2020). Thus the area of AI research
has become more tailored towards XAI. The field of XAI already has many
good explanations and visualization techniques. With everything from sen-
sitivity analysis of what factors produces what kind of output to bar charts
that explain the weights in a regressor. These techniques can visually present
the algorithm’s decisions made to a user group. The field still lacks an easy
and flexible way to customize a domain-specific language (DSL) for prob-
lems related to XAI.
The thesis suggests creating an entire pipeline by weaving time-series, pre-
processing, feature extraction, machine learning algorithms, user explana-
tions, and algorithm tweaking inside a DSL. Then, applying this to the XAI
field to extract features, train an algorithm, and explain the algorithm’s deci-
sion to a broader audience. The XAIText software was created through mul-
tiple iterations and testing on two datasets from the INTROMAT project, the
depression dataset containing data from a depression study and the ADHD
dataset containing data from an ADHD intervention study. XAIText can de-
ploy this pipeline through a domain-specific language based on a model-
driven engineering approach.
Through this easily deployable domain-specific language with state of the
art time-series feature extraction, the pipeline achieved a weighted F1 score
of 0,83 and an MCC of 0.68 on the depression dataset. Compared to the best
previous scores of 0.73 and 0.44. The software demonstrated visually how
a simplified version of the SVM algorithm worked by allowing real-time
tweaking of two input factors.
It proved pragmatically viable and time-saving to deploy the DSL on both
the ADHD and depression datasets. Thus, demonstrating the prospect and
potential of a rapidly deployable pipeline for solving XAI problems.

iv Abstract

Contents

Acknowledgements i

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Availability of the project 3
1.4 Research questions . 4
1.5 Thesis outline . 4

2 Theory 5
2.1 AI . 5

2.1.1 Overview - AI in healthcare 5
2.1.2 Machine learning 6
2.1.3 Support Vector Machine 6
2.1.4 Feature . 7
2.1.5 Scaling . 7
2.1.6 Classification . 7
2.1.7 Supervised/Unsupervised learning 8
2.1.8 Generalization . 8
2.1.9 Regularization . 8
2.1.10 Cross-Validation 8
2.1.11 AI Limitations . 9

2.2 XAI . 9
2.2.1 Introduction . 9
2.2.2 Definitions . 9
2.2.3 Ways of explaining a model 10
2.2.4 Visualizations . 11

2.3 Model-driven engineering 12
2.3.1 Definitions . 13
2.3.2 Advantages . 13
2.3.3 Disadvantages . 13
2.3.4 Model-driven engineering in XAI 14

2.4 Graph Theory . 14
2.4.1 Definitions . 14
2.4.2 Visibility algorithm 16

vi CONTENTS

2.5 Time-series . 17

3 Related Work 19
3.1 MDE in Machine learning 19
3.2 The visibility graph . 20
3.3 Visibility Algorithms: A Short Review 20
3.4 Graph theory applied to schizophrenia and depression 21

3.4.1 Machine learning applied to depression 21
3.5 Sensitivity analysis on black box models 23
3.6 Further sensitivity analysis on black box models 23

4 Data 25
4.1 Introduction . 25

4.1.1 INTROMAT project owners 26
4.1.2 INTROMAT participants 26
4.1.3 Goals of INTROMAT 26
4.1.4 What has INTROMAT achieved 26

4.2 Project participation . 27
4.3 Depression dataset . 27
4.4 Variables and their usage 27
4.5 ADHD dataset and study 29

4.5.1 ADHD dataset . 29
4.5.2 Purpose of study 29
4.5.3 Measurements of the study 30

4.6 Variables and their usage 30

5 Software Development 33
5.1 Proposed solution architecture 33

5.1.1 Python . 33
5.1.2 Sklearn . 33
5.1.3 Tsfresh . 33

5.2 Ethik . 34
5.2.1 Pycharm . 34
5.2.2 Jinja 2 . 34
5.2.3 TextX . 34
5.2.4 Plotly dash . 35
5.2.5 Pandas . 35

5.3 Why the technologies were chosen 35
5.3.1 XAI technology needs 35
5.3.2 Technology choice 36
5.3.3 Bringing the technology under a DSL 37

5.4 Development . 37
5.4.1 The goal of the final product 38
5.4.2 Methods . 38
5.4.3 Constraints . 38
5.4.4 The program visualized 39
5.4.5 Problems that needed to be solved 39

CONTENTS vii

6 Analysis 41
6.1 Grammar . 41
6.2 Model created from the grammar 41
6.3 User class . 43
6.4 Handler class . 43
6.5 Research class . 43
6.6 Running example from the depression dataset 44

7 Results 59
7.1 Results from the depression datasets 59

7.1.1 Graphical user interface Depression dataset 59
7.1.2 Depression Data-set Score results 60

7.2 Results from the ADHD datasets 65
7.2.1 ADHD dataset graphical user interface 65
7.2.2 ADHD dataset Classification scores 65

7.3 User Explanation Graphical user interface 69
7.4 Deploying a Gephy graph 73

8 Discussion and Conclusion 75
8.1 Challenges and limitations 75
8.2 Pipeline score . 75

8.2.1 depression dataset 75
8.2.2 ADHD dataset . 76

8.3 Research questions . 76
8.4 Improvements and future work 77

8.4.1 Code cleaning . 77
8.4.2 User Class . 77
8.4.3 Handler Class . 78
8.4.4 Server data uploading and download 78
8.4.5 Research Class . 78
8.4.6 Grammar expansion 79
8.4.7 Dash Plotly improvements 79
8.4.8 Creating an executable file 79
8.4.9 Conclusions . 79

A XAIText - DSL grammar 81

B Technical details of data handling 83
B.1 Data exploration deppression dataset 83
B.2 Data exploration ADHD dataset 83

C Code generator 85

D Github repository 89

viii CONTENTS

List of Figures

1.1 Overview of the programming artefacts (Generated from the
deployment of MDE components) 3

2.1 SVM algorithm . 7
2.2 Sensitivity analysis, measuring the importance of factors . . 12
2.3 Sensitivity analysis over the range of a factor 12
2.4 Node . 15
2.5 Line between two nodes 15
2.6 Graph with edges and nodes 15
2.7 Visibility algorithm . 16
2.8 Time-series . 17

4.1 After extraction features for all 55 participants, we narrow
them down from 773 to 237 per user. 28

4.2 The SVM, when we use two meaningless variables to train it. 29
4.3 After extraction features for all 125 participants, we narrow

them down from 773 to 161 per user. 30
4.4 The SVM, when we use two meaningful variables to train

on it. 31

5.1 The solution architecture and how the technologies in it
overlap . 37

5.2 The grammar, code generation, and program in the same figure 39

6.1 Dot modell showing the entire grammar of the XAIText DSL 42
6.2 How the model was written from the XAIText DSL 42
6.3 Dot file created from the written model 43
6.4 Selection of dataset . 44
6.5 SVM machine learning algorithm with blue and red dots . . 45
6.6 the SVM deployed on the deppression dataset top to bottom 46
6.7 the SVM deployed on the deppression dataset only showing

the test samples . 47
6.8 the SVM deployed on the deppression dataset only showing

the training samples . 48
6.9 Retrainability menu . 49
6.10 Choosing factors to train on 49
6.11 changing all the training parameters and factors to train on . 50

x LIST OF FIGURES

6.12 The newly trained model after we changed the training pa-
rameters . 51

6.13 The newly trained model after we changed the training pa-
rameters and zoomed in . 52

6.14 time-series from user . 53
6.15 time-series from another user 54
6.16 Zoomed in on the time-series 55
6.17 Zooming in again . 56
6.18 Pipeline achieving its score 57

7.1 Deppression dataset with timeseries and SVM 59
7.2 ROC and Confusion Matrix 60
7.3 tweak menu . 60
7.4 F1 micro with minimal feature extraction 61
7.5 F1 macro with minimal feature extraction 61
7.6 F1 weighted with minimal feature extraction 61
7.7 Matthews Corrcoef with minimal feature extraction 62
7.8 F1 micro score with efficient feature extraction 62
7.9 F1 macro score with efficient feature extraction 63
7.10 F1 weighted score with efficient feature extraction 63
7.11 Matthews Corrcoef with efficient feature extraction 63
7.12 F1 micro score with Comprehensive feature extraction . . . 64
7.13 F1 macro score with Comprehensive feature extraction . . . 64
7.14 F1 weighted score with Comprehensive feature extraction . . 65
7.15 Matthews Corrcoef with Comprehensive feature extraction . 65
7.16 ADHD GUI . 66
7.17 F1 micro score with minimal feature extraction 67
7.18 F1 macro score with minimal feature extraction 67
7.19 F1 micro score with efficient feature extraction 67
7.20 F1 macro score with efficient feature extraction 68
7.21 Visual explanation for user, feature importance and classifi-

cation chance . 69
7.22 Sensitivity analysis part 1 70
7.23 Sensitivity analysis part 2 71
7.24 Sensitivity analysis part 3 72
7.25 Sensitivity analysis part 4 73
7.26 Visualization of activity data using visibility algorithm for a

patient with depression symptom 74
7.27 Visualization of activity data using visibility algorithm for a

patient without depression symptom 74

C.1 Code generator . 86
C.2 Code generator template 87

Chapter 1

Introduction

Artificial intelligence has a wide range of healthcare domain applications.
Significant areas include cancer, neurology and cardiology (McCarthy,
2007). With the demand for decision support systems in healthcare (Mc-
Carthy, 2007) and the stringent demands of the GDPR(Goodman and Flax-
man, 2017), there has been an increase in the demand for explainable artifi-
cial intelligence - XAI(Barredo Arrieta et al., 2020). The purpose of XAI is
to increase the capacity of explainability for AI (artificial intelligence) out-
comes. XAI is crucial for the healthcare domain as the decision-makers need
to make decisions that involve patients’ lives. Given these factors, XAI has
seen an increase in recent years(Barredo Arrieta et al., 2020). With articles
in the XAI spanning everything from explaining artificial intelligence, visu-
alising artificial intelligence and how multiple machine learning algorithms
can be made explainable to a broader audience.

1.1 Motivation

The main problem concerning XAI is how to make the AI algorithms more
explainable. Under certain circumstances, an AI technique called machine
learning performs well. It can generate new insight, gives us new knowl-
edge, and help us solve problems in the healthcare domain. Moreover,
more and more data is now time-series based, and we can gather data on
a scale never seen before (Sharma, 2015): through watches, social media,
and smartphones. We can help patients solve health problems like irregular
heart rhythm, depression, and diabetes with machine learning from all this
data. The most pressing issue is that if we are to use these machine learning
algorithms. We will have to explain to a broader audience how these algo-
rithms work and how they made their decision, transparency being the key.
Domain-specific languages (DSL) simplify programming complexity as it
raises the level of abstraction. They are specialised computer languages
designed for a domain. Like any other general-purpose programming lan-
guage, domain-specific languages use grammar for the construction of their
syntax rules. Many programming projects usually deploy many DSLs to
achieve their goals. (Fowler, 2010). The key reason for doing so is the pro-

2 Introduction

ductivity gains from deploying them. (Fowler, 2010). They make it easier to
communicate with experts and make things easier for domain experts who
want to contribute (Fowler, 2010).
Searching for scientific articles in scholar.google.com keyword "XAI +
DSL" returns 654 results. However, in the hundred first hits, there are no
relevant articles. The only relevant, up-to-date article is "The next evolution
of MDE: a seamless integration of machine learning into domain modelling"
(Hartmann et al., 2017). Found by searching for "MDE + machine learn-
ing". This article illustrates experiments with machine learning in domain
modelling. Given the lacking research on the topic, utilising DSL in XAI
seems like an untapped area of novelty for the XAI field.

1.2 Contribution

The contribution to the XAI field is a novel pipeline built using a model-
driven engineering approach (MDE). It contains what is needed to train a
machine learning algorithm and explain it: tweak two factors on it, visualise
it, handle the input data, present explanations to users, and allow researchers
to visualise the machine learning algorithm and explore user inputs. The
pipeline is helpful because it is a tool a researcher can deploy relatively effi-
ciently over a dataset with user inputs. It solves a machine learning-related
problem while at the same time being able to explain the algorithm’s de-
cisions to participants. The pipeline has two logically distinguished parts.
The first part will consist of a Domain-Specific grammar containing an en-
tire machine learning pipeline that is deployable onto an XAI problem. The
second part is the deployed pipeline. The evaluation of the second part is
what kind of score this pipeline can produce on a dataset and what utility
this pipeline will create for researchers and users.
Due to time constraints, the domain-specific language (DSL) had to narrow
itself into a small DSL grammar containing the essentials for a deployable
XAI analysis and user explanation tool. It is not very comprehensive but
has enough features for a proof of concept stage or minimal usage stage
with the options in the DSL grammar. The pipeline is deployable with two
machine learning algorithms, SVM and LogisticRegression. It can present
an explanatory machine learning visualisation to users. It contains many
tweak-able parts that are also customisable in the grammar.
For the analysis stage, there is the possibility to view every time-series plot
from users. A code segment not fully implemented in the pipeline showed
that it could export this time-series plot into GraphML format. This time-
series was then importable into popular graph visualisation tools such as
Gephi. The scalar in the machine learning algorithm is customisable in the
DSL. There is also the option to choose from time-series or non time-series
data. The pipeline was deployed and tested on two datasets from the IN-
TROMAT project, the depression dataset containing data from a depression
study and the ADHD dataset containing data from an ADHD intervention
study.

1.3 Availability of the project 3

Users

User Interface

Data Processing Machine Learning Algorithm

Cloud XAI Explanation

User measurements

Figure 1.1: Overview of the programming artefacts (Generated from the deployment of
MDE components)

Figure 1.1 shows the entire program once deployed through the DSL.
The bottom left begins with the users, which uploads time-series user data
that the program takes in. From there, the program organises the data and
uploads it. Next, the program takes in this data and trains a machine learning
algorithm on it. Finally, the program creates explainable information that
both the users and researchers can use.

1.3 Availability of the project

The contribution of the master’s thesis project has been made available as an
open-source project which the researcher community can use. The project is
available at the author’s GitHub repository; see appendix D for the full web
address. Contributors can improve it, with endless possibilities regarding
machine learning models, tweak ability, and DSL features. New features
can be easily implemented in the DSL grammar. The pipeline can easily
be deployed for any project within certain constraints. As it stands now,
researchers interested in deploying the pipeline can do so with the ability
to utilise an SVM analysis tool. This tool can inspect every time-series
point and produce an explanation to end-users that contributed with their
data. Many libraries and tools have proved to be very good at visualisation,
machine learning, and data handling. The DSL brings together many of
these tools, which can have a sizeable pragmatic value for researchers and
programmers.

4 Introduction

1.4 Research questions

Research question 1:
"How can we increase the application of explainable AI utilizing a model-
driven engineering approach?"

Research question 2:
"How can the area of XAI be improved by interpretation and visualization
techniques?"

1.5 Thesis outline

Chapter 2 Theory
This section outlines the theoretical foundation of the thesis. It discusses
XAI, machine learning, model-driven engineering, time-series, visualisa-
tions, similarity graphs and graph theory.

Chapter 3 Related work
This chapter outlines and shows articles which contain work that is related
to or relevant to the thesis.

Chapter 4 Data
The data used for the thesis consists of 2 datasets. One is the publicly avail-
able depression dataset, while the other is the ADHD dataset. This section
introduces both datasets. In addition, the section also introduces the Infro-
mat project and the thesis’s contribution to it.

Chapter 5 Software development
This chapter outlines the technologies and their use in the creation of the
program. It outlines the development process from start to finish is. It illus-
trates the significant problems encountered and their resolution.

Chapter 6 Analysis
The chapter first presents an example of creating a model with the XAIText
DSL grammar. Furthermore, it illustrates how the graphical user interface
looks and behaves with a deployed pipeline on the depression dataset.

Chapter 7 Results
This chapter presents the results from both datasets as cross-validation
scores, illustrates the GUI, usability, a user explanation and a Gephy graph.

Chapter 8 Discussion and Conclusion
This section outlines and deliberates on the results achieved, discussing the
problems and issues that arose. It contains ideas for improvements and the
potential of the pipeline. This chapter also concludes the project.

Chapter 2

Theory

2.1 AI

2.1.1 Overview - AI in healthcare
Artificial intelligence research started after WW2, thought of as the science
and engineering behind intelligent machines (McCarthy, 2007). Its thought
of as being methods that pertain to understanding human intelligence (Mc-
Carthy, 2007).
AI applications are, among others, game playing, speech recognition, under-
standing natural language, computer vision, expert systems, heuristic classi-
fication (McCarthy, 2007) and more. Various branches of AI include logical
AI, search AI, pattern recognition, representation, inference, common sense
knowledge and reasoning, learning from experience, planning, epistemol-
ogy, heuristics, and genetic programming.
As outlined in McCarthy (2007) intelligence is the goal-directed computa-
tional part responsible for achieving goals. It varies between individuals,
humans and machines. The problem with the construct of intelligence is
that we do not know what kind of computational mechanisms we can clas-
sify as intelligent or not. Machines as we know them today cannot neces-
sarily classify as either intelligent or not intelligent. Machines can perform
well on specific tasks but cannot function the same way humans do. So it
would be correct to call them somewhat intelligent. The Turing test is a test
to verify if we have created an intelligent machine. The test says that if a
person manages to fool a human being into believing a machine is human,
That person should consider the machine intelligent. Still, this is an open
philosophical question since a machine could be intelligent but fail to imi-
tate humans.
The healthcare systems have been using AI to diagnose and cure diseases
since the 1970’s (Davenport and Kalakota, 2019). As outlined in Amisha
et al. (2019) AI is growing and becoming a more extensive part of the health-
care industry every year. AI in healthcare divides into two aspects, Virtual
and physical. Examples of the virtual being a patient journal and examples
of the physical being robots assisting a surgeon. Numerous smartwatches
and health care trackers like Fitbit and apple allow continuous monitoring

6 Theory

of various patient inputs, uploading information to doctors for treatment and
diagnosis. AI is used to diagnose healthcare workflow and system analy-
sis for more efficient therapies and workflow. AI is a tool for demanding
things in doctors work, like giving a prognosis of the adverse effects of mul-
tidrug prescriptions. Even the traditional role of the doctors, sitting down
and asking multiple questions about the state and symptoms of a patient’s
health, can be given to an AI. Which, based on a whole database of po-
tential illnesses, concludes a diagnosis. The only problem here is cues that
only the doctor can observe; AI also challenges this aspect by improving im-
age recognition technology. As outlined in Davenport and Kalakota (2019)
the future potential of AI in healthcare is multifold. This future consists of
having AI perform phone calls and conversations with patients, improved
robots helping with surgeries and stitching. Better early warning detection
and predictions of disease based on big data and AI. More personalised and
contextual care. Care based on smartwatches, biosensors, and smartwatches
to guide patients into better coping methods.

2.1.2 Machine learning
Outlined in Andreas C. Müller (2016) machine learning is the study of al-
gorithms that learns or improve through input and testing. The key point
behind machine learning is that machine learning is a tool for extracting
knowledge from data. DNA sequence analysis, recommender systems, and
personalised cancer treatments, among others, all use machine learning tech-
niques. (Andreas C. Müller, 2016). Facebook uses techniques from machine
learning together with Amazon and Netflix, which is why people probably
interact with machine learning models daily. The field is said to be a field
where computer science, statistics, and artificial intelligence meet. (Andreas
C. Müller, 2016)

2.1.3 Support Vector Machine
The pipeline presented in this thesis will primarily use the Support Vector
Machine (SVM) machine learning technique, an excellent machine learning
technique visualised in a 2d space with two input factors. It takes in vari-
ous inputs, which are used for classification. The mathematical basis behind
SVM is a technique that plots different points from different classes in a
graph. From there, we draw a boundary between the two clusters of points.
By making one line the mainline with two symmetrical margins on oppo-
site sides of the mainline, these two margins go through the nearest points
of each class. The points are called support vectors. Hence the name "sup-
port vector machines." The whole point with the mathematics behind the
SVM approach is to maximise the size of these two margins. The math-
ematical tools utilised for this approach are algebra, vector calculus, and
Lagrange optimisation. (Fletcher, 2009) Figure 2.1 shows an SVM model
with a boundary drawn between two classes.

2.1 AI 7

X1

X2

Figure 2.1: SVM algorithm

2.1.4 Feature
A feature means an attribute that is selected. Feature engineering means
combining features into new ones.(Andreas C. Müller, 2016, p. 213) An
example of a feature can be height, weight, and age. An engineered feature
could be BMI derived from height and weight.

2.1.5 Scaling
Scaling is when a feature, which might otherwise vary significantly, is
standardised on a standard scale.(Andreas C. Müller, 2016, p.134-142) An
example being a feature with minimum and maximum values of 4 and
1000000, getting its place on a scale from 0-1. Making everything much
easier for extracting features and training machine learning algorithms as
extreme number differences can create unnecessary problems and confu-
sion.

2.1.6 Classification
Classification means classifying something as either "a" or "b", giving it a
class label. It means putting a definite and non floating value on something.
We can use binary classification, or we can use multi-class classification.
For example, Binary being two possible values and multi-class being more
than two.(Andreas C. Müller, 2016, p.27-28)

8 Theory

2.1.7 Supervised/Unsupervised learning
Supervised learning consists of a machine learning algorithm learning from
inputs with a given output classification. Algorithms use these input/out-
put pairs to predict the value of new inputs. Unsupervised learning is the
phenomenon where the algorithms try to find new patterns in unclassified
data.(Andreas C. Müller, 2016, p.2-3)

2.1.8 Generalization
As outlined in (Andreas C. Müller, 2016, p.17-18) generalisation is the phe-
nomenon where the trained algorithm is usable on other data. Poor general-
isation means that the algorithm cannot utilise predictions on anything other
than its predictive value on the domain trained on successfully. Generalisa-
tion divides itself into two sub phenomena.

Underfitting

Underfitting is weakly tailoring the model to the trained data. The model
will be very generalisable to new datasets but will not be very accurate.

Overfitting

Overfitting is heavily tailoring the model to the dataset. Meaning that the
model cannot accurately predict a range of different datasets since it is not
very generalisable.

2.1.9 Regularization
Regularisation is when we usually put a penalty on a machine-learning al-
gorithm to reduce the chance of it overfitting. The critical insight of regu-
larisation is that we reduce the complexity of a model to make it less likely
to overfit.(Andreas C. Müller, 2016, p.51)

2.1.10 Cross-Validation
Cross-validation is a technique used for evaluating the generalised perfor-
mance of a machine learning model on a dataset.(Andreas C. Müller, 2016,
p.258-259) It functions by training and testing the model several times. Each
time shuffling the test and training data around, we use more parts of the data
for testing and more parts of the data for training through the whole process.
The total score obtained is an average of all the models trained. By shuffling
the training and test data around, we make sure that we do not end up with
a non-generalisable result. Because we got lucky or unlucky when selecting
the test data.

2.2 XAI 9

2.1.11 AI Limitations
The limitations of AI is that implementing, using and explaining them to a
broader audience can be difficult. Using machine learning takes technical
knowledge and skill. Understanding how machine learning algorithms work
and make their decisions also takes much knowledge.

2.2 XAI

2.2.1 Introduction
Explainable artificial intelligence is a strand of artificial intelligence that ex-
plains how the algorithm came to its conclusion and classification. The field
has had an upsurge in recent years due to society’s stringent demands on
utilising AI systems in society (Barredo Arrieta et al., 2020). The critical
key here is the emergence of a need for trustworthy, understandable, and
manageable AI systems for society. (Barredo Arrieta et al., 2020) XAI al-
leviates the limitations of traditional AI by aiming to increase the degree of
explainability of an AI model. The limitations of XAI is the added work
needed to create XAI systems since we have to design in explanations and
transparency.

2.2.2 Definitions
Explainability in this context is outlined in (Barredo Arrieta et al., 2020,
p.5) and consists of the following XAI terms:

Understandability

Understandability means how easy it is for human beings to understand how
the algorithm functions and decide without illustrating and explaining its
inner workings.

Comprehensibility

The ability of the model to present the knowledge is has attained in a fashion
that is understandable to humans.

Interpretability

Ability to provide the meaning in an understandable human way. With terms
and explanations being comprehensible for humans.

Explainability

In this context, explainability denotes the link or interface between humans
and a decision-maker. Meaning the interface acts as a proxy for the decision-
maker (the algorithm), in a way that is understandable to humans.

10 Theory

Transparency

The model is transparent if, in and of itself, it is understandable. Lipton
(2016) categorise models into "simulatable models, decomposable models,
and algorithmically transparent models."

Of the five above mentioned facets of XAI, the first one, understandabil-
ity is the most important one(Barredo Arrieta et al., 2020, p.5)

2.2.3 Ways of explaining a model
Particular models are more straightforward to explain than others but may
provide lower accuracy for the task at hand. Deep learning is the most dif-
ficult to explain due to its complexity, and rule-based learning is the eas-
iest due to its simplicity. (Barredo Arrieta et al., 2020, p.12) outlines six
ways the field of XAI uses for explaining an AI model. These techniques
used standalone or in conjunction provides explainability towards the model.
Outlining the techniques below:

Text explanations

Text explanations mean that we are spelling out in text how the algorithm
worked. Included in these text explanations are symbols for method gener-
ation that illustrates how the algorithm worked.

Visual explanation

Visual explanations present the algorithm’s function visually. They usu-
ally include simplifications and dimensionality reduction. They are often
coupled with other techniques to explain a machine learning model. Con-
sidered the best way to introduce machine learning to people who have not
been introduced to machine learning algorithms.

Local explanations

Local explanations take the entire machine learning problem and divide
them into multiple problem spaces that together make up the whole. Fur-
thermore, From there, explaining each problem space locally.

Explanations by example

Explanations by example mean that the explanation takes the correlations
and relationships within the model and represents them as examples towards
an audience. Much like humans do when trying to explain unknown knowl-
edge or information towards one another.

2.2 XAI 11

Explanations by simplification

These are all the techniques where we build a simplified model of the orig-
inal model to have a close resemblance and score of the original model. In
its simplicity, it is less difficult to explain. With this goal achieved, the un-
intended side effect is that this new model is easier to implement due to its
lower complexity.

Feature relevance explanation

Feature relevance is explanations thought of as indirect post-hoc techniques
for explaining models. The techniques take each input and perform a sensi-
tivity analysis or feature relevance technique to map out how important each
input was for the model’s output.

2.2.4 Visualizations
Visualisation techniques mean a visual explanation of how an AI algorithm
made its decision. In XAI, visualisation techniques centres around feature
relevance techniques. (Barredo Arrieta et al., 2020) The most common tech-
niques for drawing out and explaining the most relevant factors in a machine
learning model are sensitivity analysis techniques. They measure the output
when varying the input and has proven its value as a technique for explaining
an ML model. (Cortez and Embrechts, 2013) Illustrates Many different sen-
sitivity analyses outlined as Data-based SA, Cluster-based SA, Monte Carlo
SA. (Goldstein et al., 2013) Outlines Individual Conditional Expectation.

List of common visualisation techniques used for black-box models in
XAI:

• Data-based SA

• Cluster-based SA

• Monte Carlo SA

• Individual Conditional Expectation

• Bar charts

• Vectors

• Correlation map

• Vectors

• Contour maps

12 Theory

Age Weight Diet ExerciseHeightDiabetes risk

Medium

High

Low

Figure 2.2: Sensitivity analysis, measuring the importance of factors

Figure 2.2 shows an example of sensitivity analysis. The result achieved
shows us how important the various factors in the figure are regarding dia-
betes risk.

Figure 2.3: Sensitivity analysis over the range of a factor

Figure 2.3 shows us an example of what happens when we run a sensi-
tivity analysis on a particular factor and measure the change to the classifi-
cation chance.

2.3 Model-driven engineering

2.3 Model-driven engineering 13

2.3.1 Definitions
The MDE approach, defined as model-driven engineering, utilises domain
models in the design process. Gurunule and Nashipudimath (2015) describe
domain models as conceptualisations of all the topics, features, or concepts
related to a problem sphere. The approach attempts to conceptualise the
problem abstractly rather than in a programmed concrete instance of the
necessary algorithms and implementations. Described in Fowler (2010) It
is an approach where we can auto-generate code and implement the same
concepts over many domains. Domain-specific languages (DSL) has been
around for a long time. They are languages tailored to the specific domain,
with a grammar that functions as pre-assembled building blocks the pro-
grammer can use to buildup his code. A perfect example would be CSS,
where CSS is just the styling implemented over the domain of HTML. The
lines between a DSL and a general programming language are often blurry.
An example is Ruby on rails, usually considered a domain-specific lan-
guage, even though it is easy to think of it as a generalised programming
language. The critical point is that a DSL is not Turing complete. Mean-
ing it cannot express everything the same way an entire generalized Turing
complete language like Python can.

2.3.2 Advantages
With a DSL, it is easy to read and understand the whole concept we are try-
ing to illustrate by modelling abstract concepts orderly and organised. Once
modelled in an MDE approach, using the same model in different domains
is possible by simply changing the relevant domain concepts(Fowler, 2010).
In the book Fowler (2010), the author outlines the critical point about DSLs:
it can potentially increase the productivity of programmers by implement-
ing them over a domain.
The second key point outlined in (Fowler, 2010) is the ease of understanding
a DSL. Easy-to-understand DSLs give domain-specific experts the ability to
improve and contribute code instead of just pure programmers. It provides
benefits for both the domain experts and the programmer working towards
solving a problem.
The third point in (Fowler, 2010) is that with DSLs, presenting the work of
the programmers to potential clients can make the presentation more under-
standable. This presentation is beneficial for someone that otherwise might
not understand anything of the code without a programming background.
The strength of the DSL is a function of its presentation value to outsiders.

2.3.3 Disadvantages
The first problem with DSLs is the cost accosted with building, maintaining,
and deploying a DSL. If the cost outweighs the gain by making a DSL, it has

14 Theory

not served its intended function. A problem might occur if the developers
of the DSL accidentally make it into a general-purpose programming lan-
guage, thus undermining their effort at creating a pragmatically viable DSL.
Further problems can arise when applying DSLs to a context where it is un-
feasible. (Fowler, 2010). There is also the pitfall of building things that you
may get from the outside (Fowler, 2010) or simply adding too much syntac-
tic sugar towards your DSL (Fowler, 2010).

2.3.4 Model-driven engineering in XAI
The reasons for combining Model-driven engineering(MDE) and XAI is
that MDE can fix the problems of implementing XAI. This thesis created
a DSL pipeline that is easily deployable compared to typing out every code
when making an XAI application. Combining MDE with XAI is because the
MDE approach can enhance the explaining power of XAI. Multiple ways of
explaining and showcasing a model are possible as pre-defined DSL parts
with the MDE approach. These deployable parts give programmers and re-
searcher a tool to increase the level of abstraction of the XAI domain for a
gain in efficiency when creating XAI applications. Creating an interface be-
tween humans, machine learning algorithms and the tools needed to explain
them.

2.4 Graph Theory

2.4.1 Definitions
Outlined in tutorialspoint (2021) Graph theory is a popular subject used in
both computer science and mathematics, defined as "the study of graphs that
concerns the relationship among edges and vertices" (tutorialspoint, 2021).
A graph consists of vertices and edges. A point is a particular position on
the graph, and edges are the lines that connect the vertices. A line means
a connection between two points. The point where multiple lines meet is a
vertex. The line connecting two vertices is an edge. A graph is a set of edges
and vertices. A loop is just an edge drawn from a vertex to itself. Graph
theory can illustrate the connectives of computers in a computer network.
It illustrates different algorithms in computer science, including Kruskal’s
Algorithm, Prim’s Algorithm, and Dijkstra’s Algorithm. Figure 2.4 shows a
node, 2.5 an edge and 2.6 a graph.

2.4 Graph Theory 15

A

Figure 2.4: Node

A B
Edge

Figure 2.5: Line between two nodes

A

EC

D

B

Figure 2.6: Graph with edges and nodes

16 Theory

2.4.2 Visibility algorithm
Núñez et al. (2012) Outlines the idea behind the visibility algorithm. It is a
technique for mapping time-series into graph theory. Bridging time-series
into graph theory allows us to use graph theory techniques on time-series
data.

0

1

0.5

Figure 2.7: Visibility algorithm

The visibility algorithm is an algorithm that functions by creating a line
between two points for every point in a time-series as shown in figure 2.7.
If the points are visible for each other, There must be a visible line between
both points. If one time-series point gets in the way of this visibility, The
line between the two points not visible to each other gets omitted. Núñez
et al. (2012) draws out four premises for the visibility algorithm "(i) con-
nected: each node sees at least its nearest neighbours (left-hand side and
right-hand side).
(ii) undirected: the way the algorithm is built up, there is no direction de-
fined in the links.
(iii) invariant under affine transformations of the series data: the visibility
criterium is invariant under rescaling of both horizontal and vertical axis, as
well as under horizontal and vertical translations.
(iv) "lossy ": some information regarding the time-series is inevitably lost
in the mapping from the fact that the network structure is completely deter-
mined in the (binary) adjacency matrix. For instance, two periodic series
with the same period as T1=..., 3, 1, 3, 1, ... and T2=..., 3, 2, 3, 2, ... would
have the same visibility graph, albeit being quantitatively different."

2.5 Time-series 17

Figure 2.8: Time-series

2.5 Time-series

With the advent of big data, time-series has become more relevant. Be-
cause time-series data in real-time data can be mined and exploited for AI
purposes, spanning everything from heart rates to stock exchanges. This
time-series data can be presented and analysed for various purposes.

Time-series means that the data is in a format where the entire time-series
with timestamps presents itself from beginning to end as shown in figure 2.8.

Researchers in (Núñez et al., 2012) illustrated that it is possible to take a
time-series and apply the visibility algorithm upon this time-series. It is
possible to utilise the features generated from the time-series graph.

18 Theory

Chapter 3

Related Work

3.1 MDE in Machine learning

purpose of the study

In Hartmann et al. (2017), the researchers illustrated that it was possible to
weave machine learning into a DSL seamlessly. With a novel approach cen-
tred around microlearning units and use it for a potential boost in prediction
accuracy. There stated goal in the research report was to predict individual
and global power consumption.

Theory of the study

Hartmann et al. (2017) makes a distinction between fine-grained and coarse-
grained learning. Fine-grained learning is when we extract and infer knowl-
edge on a detailed small scale level. Coarse-grained learning aggregates
knowledge from multiple sources. Combining coarse-grained and fine-
grained learning compared to only using coarse-grained learning can be a
better result. This type of learning is especially relevant in IoT (the internet
of things) when multiple small units work individually and together.

Hartmann et al. (2017) define microlearning units as "reusable, chainable,
and independently computable elements". The purpose of the microlearn-
ing units is to infer and derive the necessary attributes for machine learning
algorithms deployed into the meta-model. The microlearning units are the
core element of the approach presented in Hartmann et al. (2017).

The meta-model is the model representing all necessary elements for imple-
menting the approach. A code generator can generate code in Java, Scala,
or Go with the meta-model.

The meta-meta model represents what goes into the Meta-model. The DSL’s
function is to be a tool for creating this meta-meta model.

20 Related Work

Execution and results

What Hartmann et al. (2017) did in their study was to deploy a DSL over
the domain of power consumption. Once deployed, this DSL would use mi-
crolearning units, inferring and gathering all the necessary data to gather
attributes and parameters for machine learning algorithms. Afterwards, cre-
ating a meta-model from the DSL and the inferred information from the
microlearning units, using this Meta-model as a model for generating code
in Java, Scala or C++. The Domain-specific language of the research re-
port is an extension of a domain-specific language defined in Fouquet et al.
(2014)
Hartmann et al. (2017) deduced that their microlearning approach achieved
an accuracy of 85 per cent versus accuracy of 72 per cent for coarse-grained
learning. The method proved its utility, especially over an IoT type domain.

3.2 The visibility graph

Lacasa et al. (2008) presents the visibility algorithm. The article is from
2008, and Lacasa et al. (2008) outline how to make the visibility algorithm
from time-series. Lacasa et al. (2008) show how to take the visibility algo-
rithm and apply analysis tools on the created graph. The method is computa-
tionally inexpensive. The whole point of the article is that with the creation
of the visibility graph, a whole new dimension of analysis of time-series is
possible. Lacasa et al. (2008) also suggest many more avenues of research
based on their method.

3.3 Visibility Algorithms: A Short Review

Núñez et al. (2012) is a state of the art article from 2012 making a summary
of how time-series features is used through the visibility algorithm. It shows
all the work built around the authors from Lacasa et al. (2008). It takes, as its
basis, the technique of the visibility algorithm outlined in the theory section.
The whole point of the article is to present an overview as to how to use the
visibility algorithm on time-series and apply graph theory for analysis. The
article discusses different ways of applying graph theory in this domain and
the challenges faced. The article lists several different methods for mapping
time-series into graphs. Below is a list from Núñez et al. (2012) of some of
the most important ones:

• "mapping each cycle of a pseudo periodic time-series into a node in a
graph."

• "relative frequencies of appearance of four-node motifs inside a par-
ticular graph."

• "technique based on the properties of recurrence in the phase space of
a dynamical system."

3.4 Graph theory applied to schizophrenia and depression 21

• "a surjective mapping which admits an inverse operation."

• "Horizontal visibility algorithm."

• "Directed horizontal visibility graph."

Núñez et al. (2012) give many mathematical backgrounds and in-depth
explanations of applying graph theory can to time-series. To extract infor-
mation and explore the abilities of the various techniques and graphs in dif-
ferent problem spaces. Núñez et al. (2012) gives suggestions towards more
research into these problem spaces and how the focus of research might be
in order to solve them.

3.4 Graph theory applied to schizophrenia and de-
pression

purpose of the study

In Fasmer et al. (2018), a group consisting of 24 psychotic patients and 23
patients with mood disorders, all currently depressed, were used. In the
study, Fasmer et al. (2018) had a control group consisting of 18 women and
11 men.
What Fasmer et al. (2018) had available of data was actigraph registrations
of each participants motor activity spanning over 12 days, obtained from
watches that registered activity. This data was converted into graphs, apply-
ing graph theory as an analysis tool on the extracted graphs. The study hoped
that their new and novel similarity graph would display different characteris-
tics for depressed and schizophrenic patients compared to the control group.
Conducting various experiments and methods for creating and analysing the
graph to find any differences between the participants in the study.

Results and conclusions

Fasmer et al. (2018) results showed a marked difference between the con-
trol group versus the schizophrenic and depressed patients. There was also
a significant difference between schizophrenic and depressed patients. An-
other discovery was that the depressed patients had more complexity in their
time-series.

3.4.1 Machine learning applied to depression
purpose of the study

The participants in Garcia-Ceja et al. (2018b) were 23 bipolar and unipo-
lar depressed patients with 32 healthy controls. Five hospitalised subjects
were part of the depressed group. The purpose of the study was to have
patients and the control group wear actigraph watches and measure their

22 Related Work

activity during an average of 12.6 days. From these measurements, Garcia-
Ceja et al. (2018b) used statistical techniques to extract features and train
machine learning models to classify subjects as either depressed or non-
depressed. The research in Garcia-Ceja et al. (2018b) aims to classify de-
pression based on activity levels from the actigraph watches. The study built
upon similar research with a lot of the digital appliances used as measure-
ment devices. Below follows a list of previous findings from Garcia-Ceja
et al. (2018b) that the study builds upon:

• "They found that physical activity was reduced in adults with Late-
life depression compared to healthy controls and showed slower fine
motor movements."

• "They found that in patients with bipolar disorder the more severe the
depressive symptoms, the less answered incoming calls, fewer outgo-
ing calls and patients moved less."

• "Used smartphone data to classify depressed and manic states in bipo-
lar patients achieving a 76 per cent recognition accuracy."

• "Used audio, motor activity and questionnaires to classify mood in
bipolar patients with an accuracy of 85 per cent."

• "Correctly identified 70 per cent of all depressed cases with Random
Forest from uploaded photos to Instagram."

• "This systematic review identified that a depressive state is associated
with reduced daytime motor-activity, as well as an increased nighttime
activity when comparing to healthy controls."

• "This systematic review identified that reduced motor activity is asso-
ciated with bipolar depressions, besides increased variability in activ-
ity levels compared to healthy controls."

Garcia-Ceja et al. (2018b) shows the potential of monitoring technology for
the healthcare sector. With all the previous research attesting to the ability
of digital technology in gathering data and performing a diagnosis related
classification. Garcia-Ceja et al. (2018b) also elaborates on depression as
it is increasing in society. It is a diagnosis that hampers the willingness to
engage in activities, socialise, and have a positive outlook on life. It breeds
anxiety, feelings of emptiness and low self-worth. In its worst cases, it can
create suicidal feelings. Previous research has shown that depressed people
have increased nighttime activity and decreased daytime activity. Depres-
sion correlates with alcohol and drug abuse. Garcia-Ceja et al. (2018b)
shows how it is possible to extract statistical features used as training data
for a machine-learning algorithm. Conducting machine learning classifica-
tion with both the Random Forest algorithm and the Deep neural network
model.

3.5 Sensitivity analysis on black box models 23

Results and conclusions

The authors of Garcia-Ceja et al. (2018b) achieved a weighted F1 score of
0.73 and an MCC of 0.44. In terms of classification, the Random forest
outperformed the deep neural network model. DNN was better at detecting
non-depression than random forest.

3.5 Sensitivity analysis on black box models

Cortez and Embrechts (2011) explains how particular models, such as neural
networks, support vector machine and ensembles, help make accurate pre-
dictions. However, they are challenging to explain to an audience. Cortez
and Embrechts (2011) explain that the explanation power of sensitivity anal-
ysis can be thought of by how easy it is for humans to understand. Cortez
and Embrechts (2011) suggests a novel visualisation approach based on sen-
sitivity analysis. The visualisation technique functions by varying the input
of a factor used in the machine learning model and measuring the corre-
sponding output. With this technique, it is possible to rank the input ac-
cording to its importance. Primarily SA has been used for feature selection.
However, it also has its value in being a valuable tool for explaining black-
box models. By showcasing their global sensitivity analysis algorithm and
the visualisation technique, the Variable Effect Characteristic (VEC) curve
can open up any black-box model for explanation purposes. With this tech-
nique, Cortez and Embrechts (2011) manage to explain datasets by showing
what factors were the most important and showcasing how these various
factors were crucial during the whole input spectrum of that factor.

3.6 Further sensitivity analysis on black box models

Cortez and Embrechts (2013) continue their work from (Cortez and Em-
brechts, 2011). They reiterate that some models like SVM and deep neural
networks, ensembles, random forests, and kernel-based methods are com-
plicated to explain to an audience. For explaining these kinds of models,
rule extraction or visualisation are the preferred techniques. The problem
with rule extraction is that they risk simplifying the model to where crucial
information about its inner workings is lost. Cortez and Embrechts (2013)
suggests sensitivity techniques as a way to explain these black-box mod-
els. Cortez and Embrechts (2013) presents a multitude of these techniques
for handling both regression and classification tasks. The SA, methods and
techniques outlined by Cortez and Embrechts (2013) are in the list below.

• "novel and computationally efficient DSA."

• "novel and computationally efficient MSA."

• "novel and computationally efficient CSA."

• "comparing DSA, MSA and CSA with 1D-SA and GSA."

24 Related Work

• "a new SA measure of input importance (AAD)."

• "AAD is tested against three other measures."

• "adapting the SA methods and measures for handling discrete vari-
ables and classification tasks."

• "novel functions for aggregating multiple sensitivity responses."

• "3-metric aggregation for 1D regression analysis."

• "fast aggregation strategy for input pair (2D) analysis."

• "new synthetic datasets."

• "input importance bars."

• "colour matrix."

• "variable effect characteristic curve."

• "surface and contour."

• "explore the black box model NN."

• "explore the black box model SVM."

• "explore the black box model RF."

• "white box model decision tree."

• "Show how SA can open up black box models on four real-world
tasks."

The authors of Cortez and Embrechts (2013) shows a plethora of SA
techniques and methods for opening up black-box models. Cortez and Em-
brechts (2013) also point out the importance of computational expense when
using SA models. Cortez and Embrechts (2013) suggests that future re-
search uses more real-world data and presents the SA analysis within a
graphical user interface.

Chapter 4

Data

4.1 Introduction

To show the effectiveness of the proposed method in this thesis, we have per-
formed experiments with healthcare datasets. The datasets are from a project
called INTROMAT. The INTROMAT project abbreviates "Introducing per-
sonalised Treatment Of Mental health problems using Adaptive Technology
project". The project intends to use technologies and psychological inter-
ventions to handle the burden of psychological illnesses. The collaborators
for the project include domain experts, project managers, postdoctoral re-
searchers, PhD fellows and other project members.
During the thesis development, we held meetings and showcases with the
stakeholders who contributed to datasets. Both datasets are from previous
and current work on the INTROMAT project, which contained data from in-
dividual participants in a research setting. The ADHD dataset needed usage
permission.
The depression dataset (Garcia-Ceja et al., 2018b) is publicly available,
used in many research reports from the Infomat project and contain time-
series data. Reasons for choosing the datasets are that there were possibil-
ities to try out different machine learning techniques, improve feature ex-
traction, and achieve a better score than previously achieved. It was also a
good case for experimenting with deploying the pipeline through the DSL
and presenting a user explanation to the participants.
The ADHD dataset contains warnings given to users, how often they logged
on and if they completed their training modules or not. Using this dataset
was because the pipeline was an analysis tool deployable over the data.
Therefore, it could show the efficacy of the pipeline as an analysis tool.
The thesis and its attachment to the project showcased the DSL pipeline as
a tool for current and potential research. Furthermore, to obtain better re-
sults than previously achieved and doing novel experiments relevant to the
INTROMAT project.

26 Data

4.1.1 INTROMAT project owners
INTROMAT is one of three projects chosen by the Norwegian research
council through their "IKTPLUSS Lighthouse call"(Haukeland-University-
Hospital, 2021a). Haukeland University hospital owns the project. It builds
on the premise that the prevalence of anxiety and depression in the popu-
lation stands at 20-25 per cent lifetime occurrence of depression and 8 per
cent current anxiety or depression. The project develops interactive and
adaptable technology with flexible treatment modules for mental health is-
sues. The project also develops scalable infrastructure to support its effort.
The project originates from eMeistring (Haukeland-University-Hospital,
2021b).

4.1.2 INTROMAT participants
Participants in the project include domain experts, project managers, post-
doctoral researchers, PhD fellows and other project members. Partners
of the project include Attensi, Bryggen research, CheckWare, Explorable,
Helse Bergen, Helse vest ikt, Høgskolen på vestlandet, IBM, Imatis, Mod-
umbad, Telenor, UiB, UiO, and Youwell.

4.1.3 Goals of INTROMAT
The goals of INTROMAT is to use Information and communications tech-
nologies (ICT) to improve the mental health of the public. Therefore, they
want to create relevant technologies and infrastructure for this task. Further-
more, the goal is for the developed technologies to be novel, interactive and
adaptive.
Hindrances and obstacles these goals face are many. There is low recog-
nition of ICT techniques for treating and assessing mental health patients.
There is a lack of knowledge around ICT’s efficacy in the healthcare do-
main. The systems in the healthcare sector also need to be integrated with
these new technologies and solutions. User-friendly interfaces that engage
users and clever new ways of procuring data are still lacking.

4.1.4 What has INTROMAT achieved
The INTROMAT project has published numerous reports since 2016. The
published reports span everything from ethics, data visualisation patterns,
applying machine learning on time-series data and artificial intelligence. In
addition, publishing multiple master degrees with subjects and work rela-
tive to the project. The media has also mentioned the project in numerous
articles.(Haukeland-University-Hospital, 2021a)

4.2 Project participation 27

4.2 Project participation

The participation and contribution towards the INTROMAT project are nu-
merous. The most obvious contribution was towards gaining a better score
than previously achieved on the depression dataset. In addition, trying on a
new machine learning algorithm and extracting time-series features for the
dataset. For the ADHD dataset, novelty included creating an artificial time-
series that the feature extractor could utilise. Furthermore, the thesis showed
how the SVM algorithm could present data for users and researchers con-
tributing to a research project. Moreover, demonstrating the user, handler,
researcher as a DSL framework for the XAI field. Furthermore, it created
suggestions for interactive dashboards that researchers and users can use.
Moreover, collaboration and presentation towards project contributors was
an ongoing process. Finally, through a professional experience in DIPS, the
Norwegian ICT healthcare firm, I achieved synergy between my work and
master’s thesis research. As a result, the XAIText DSL is usable on both fu-
ture and current projects. Used alone to deploy a pipeline, be expanded or
used as a scaffolding framework.

4.3 Depression dataset

The depression dataset is a publicly available dataset containing the activity
measurements of 55 patients (Garcia-Ceja et al., 2018b). Twenty-three are
depressed, and 32 control subjects are not depressed; these measures, taken
during several weeks, with the measurements presented as time-series data.
In addition, varying factors of the subject are offered, such as gender, bipo-
lar, and age. The idea behind the dataset is that depressed people have dif-
ferent activity measurements of activity, especially daytime rhythms caused
by depression, than non-depressed people. (Garcia-Ceja et al., 2018b) The
best results achieved from the depression dataset are a weighted F1 score of
0,73 and an MCC of 0.44. (Garcia-Ceja et al., 2018b) Appendix B presents
technical details of data handling for the dataset.

4.4 Variables and their usage

The classification variable in the depression dataset is if the contributor is
either depressed or not depressed. Measurements from the participants are
in time-series data. The feature extracting software Tsfresh uses this time-
series data to generate features. Meaning we start with a user, classified as
either depressed or non-depressed. When Tsfresh has done its job, we have a
user classified as either depressed or non-depressed with several associated
time-series features. Adjusting the number and complexity of these time-
series features in Tsfresh is efficiently done according to our needs. The
training variable is all these extracted time-series features associated with
a user. Using these time-series features on a machine learning algorithm

28 Data

lets the algorithm decide which features are the most important and discard
unimportant ones. This approach is the crucial strength of Tsfresh. Extract
time-series features in the hundreds, with every kind of mathematical feature
extracted. From there, it filters down the most important ones, using them
as the basis for training a good machine learning algorithm.

Figure 4.1: After extraction features for all 55 participants, we narrow them down from
773 to 237 per user.

Figure 4.1 shows the feature filtering process using a linear support vec-
tor classifier. The classifier decides what features are the most important and
discard the least important ones.

4.5 ADHD dataset and study 29

Figure 4.2: The SVM, when we use two meaningless variables to train it.

The SVM in the Dash Plotly graphical user interface is only trainable on
two features simultaneously. Because of how the SVM functions. Meaning
in 2d space, we can only visualise two factors at the same time. We could
potentially use three factors if we had a 3d space to picture them in, but any
more than that would be impossible to visualise in this way. We can create
an SVM with more than three factors, but we cant visualise all of them at
once. In figure 4.2, we have used two features, "dim0varianceLargerThan-
StandardDeviation" and "dim0HasDuplicateMax" extracted from Tsfresh.
Since none of these two features has any predictive value, we end up with
an SVM with all the points dotted on top of each other and a meaningless
boundary. Throughout the rest of the thesis, we will present how we can
fine-tune the performance of classification algorithms through a DSL.

4.5 ADHD dataset and study

4.5.1 ADHD dataset
The dataset consisted of willing participants over the age of 18. Further re-
quirements were that the participants had access to a smartphone, computer
and the internet. The participants needed to speak, write and read Norwe-
gian. Exclusion criteria consisted of current standing psychiatric disorders,
like substance abuse, psychosis or suicidal ideation. The number of partic-
ipants available for analysis after the researcher had run the study was 125.
Appendix B presents technical details of data handling for the dataset.

4.5.2 Purpose of study
The idea of the study relevant to the dataset was to figure out if there were
any effects of internet-based interventions to help ADHD patients cope with
their symptoms. In addition, the idea was to give the participants warnings
to see if this had any influence on their completion and participation rates in
the study.

30 Data

4.5.3 Measurements of the study
From the research protocol, the study methods aimed to measure included
in the dataset are as follows.

Primary measure:

• Adherence (completed modules);

• Participant feedback regarding self-reported engagement;

Secondary clinical outcomes:

• Inattention and hyperactivity/impulsivity measured by two - Subscales
from the Adult ADHD Self-Rating Scale (ASRS);

• quality of life measured by Adult ADHD Quality of Life Measure
(AAQol);

• Stress measured by the Perceived Stress Scale (PSS)

• Executive functioning measured with Behavior Rating Inventory of
Executive Function (BRIEF), and self-compassion measured by the
Self compassion-Scale (SCS)

4.6 Variables and their usage

In the ADHD dataset, the data is in a non time-series format. Therefore,
deploying the timeline on the dataset was predicated on transforming the
data into usable time-series data. Creating this time-series data was done by
measuring the completion time per week for each user when doing a training
module. The classification variable in this context is if the participant com-
pleted the last week of the training modules. The training variables are the
features extracted from the feature extractor associated with a user. Figure
4.3 shows the feature filtering process using a linear support vector classifier
the same way as figure 4.1.

Figure 4.3: After extraction features for all 125 participants, we narrow them down from
773 to 161 per user.

4.6 Variables and their usage 31

Figure 4.4: The SVM, when we use two meaningful variables to train on it.

Figure 4.4 shows us what happens when we use the two significant vari-
ables "Dim0maximum" and "dim0SumValues" to train an SVM algorithm.
Here we can see that the two clusters spread out in an orderly pattern, allow-
ing good classification to happen.

32 Data

Chapter 5

Software Development

5.1 Proposed solution architecture

The creation of the entire program happened with Python in Pycharm com-
munity edition. By using Sklearn for deploying the SVM machine learning
algorithm. Time-series was created in a readable manner using Pandas to
splice and combine the time-series measurements. Tsfresh was used to ex-
tract time-series features, which the SVM machine learning algorithm from
the Sklearn library could train a model on. The XAIText DSL language,
created using TextX with Jinja2 for generating code from the templates. Fi-
nally, presenting all this in Plotly Dash, where the user or researcher could
tweak and interact with the result.

5.1.1 Python
Python is a complete object-based programming language that is both high
level and general purpose (Python software foundation, 2021). It is well
suited for machine learning and data manipulation, given its extensive sup-
port for libraries such as pandas and Sklearn. The Python programming
language ranks as one of the most used and popular.

5.1.2 Sklearn
Sklearn is a python library consisting of a wide plethora of machine learn-
ing models (Pedregosa et al., 2011). It functions well and designed to be
compatible with both NumPy and Schipy. Sklearn can integrate with well-
known python modules such as Plotly, Matplotlib, pandas, and Tsfresh.

5.1.3 Tsfresh
Tsfresh is a module used for extracting time-series features(Christ et al.,
2016). It is suitable for extracting time-series features on a static dataset. It
takes a time- series and extracts features like the mean, median, max value,
min value, and the number of peaks. Then, Sklearn can train these features

34 Software Development

on a machine learning algorithm. Tsfresh also has transformer modules for
Sklearn; Tsfresh can extract and filter features through a Sklearn pipeline.
Tsfresh is not suitable for streaming data but can use a roll function for
splicing more time-series data into the existing one.

5.2 Ethik

Ethik is a plugin for Python designed to aid in creating fair and explainable
AI and designed to perform a sensitivity analysis. By taking a variable and
change its input, measuring how this affects a machine learning algorithm
(Max Halford, 2019). Ethik is usable for investigating a single variable and
measure how influential this variable is.

5.2.1 Pycharm
Pycharm is an IDE for both professional and non-professional develop-
ers(Jetbrains, 2021). It includes several tools for python developers, git
up-loading and the standard help functions from JetBrains when used as
a plugin in other languages. It is a popular IDE featuring an intelligent code
editor, smart code navigation, fast and safe refactorings, debugging, remote
development, scientific tools, interactive python console, Conda integration,
IPython Notebook integration and database tools.

5.2.2 Jinja 2
It is a templating engine used for creating and writing templates. It is de-
signed for Python and is text-based (Ronacher, 2021). It throws exceptions
to make debugging easier, allows inheritance, inclusion and has many more
features. It is one of the most used templating engines compatible with
Python. Combined with TextX models and a code generator, it can generate
python code.

5.2.3 TextX
TextX is a domain-specific modelling language (Dejanovi et al., 2017). It is
inspired by but should not be confused with the similarly sounding Xtext, a
domain-specific language designed for compatibility with the Java program-
ming language. TextX is a domain-specific language designed for Python.
What is possible to do in TextX is to create a DSL grammar. From this
grammar created, it is possible to create models. These models can be used
together with templating engines and code generators to create entire pro-
grams. Projects to help TextX with syntax highlighting, code outline and
Language Server Protocol support for IDE’s and editors are underway.

5.3 Why the technologies were chosen 35

5.2.4 Plotly dash
With Plotly Dash, it is easy to create interactable and live updating graphs
and illustrations (Plotly, 2021). The dashboards can build with Plotly Dash
can be opened and illustrated in a browser.
The three pillars of Plotly Dash, which the whole concept builds upon, is as
follows:
Dash components
These include everything from buttons to sliders to input boxes. They con-
trol and interact with the apps created. Plotly Dash has a whole library with
these components.
Plotly graphs
These are the illustrative screens or graphs where the interactivity of Plotly
Dash. It is possible to show 3d graphs, financial graphs, and medical graphs.
Only the imagination limits what the illustrative capabilities of interactive
graphs are.
Callback function
The callback function is the most central feature of Dash Plotly. It binds the
buttons with the output of the graph, triggering all the underlying program-
ming code the button was supposed to trigger.

5.2.5 Pandas
It is a python based library designed for manipulating and analysing data
(pandas development team, 2020). It is very flexible and can change and
manage data by a data frame object with integrated indexing. It is possible
to join, discard and merge data with pandas. It is considered one of the best
tools for data manipulation in Python.

5.3 Why the technologies were chosen

5.3.1 XAI technology needs
The needs of XAI are primarily good ways of explaining how machine learn-
ing made its decision to all participants. Therefore, the explanations should
be interactable and presented in a way that is the easiest for each particular
user to understand.
The other significant concern is having good support for AI and machine
learning and, for example, accessing good machine learning libraries and
manipulating data. Other concerns for developers in the XAI field are
speedy and easily deployable apps. Libraries and technologies with high in
between compatibility, preferably with everything under one programming
language is a major advantage.

36 Software Development

5.3.2 Technology choice
The initial plan was to develop the XAI capable DSL using the Eclipse-
based toolset Xtext. Because it has a large user base, online tutorials, books,
and a live creation editor. This editor provides feedback for DSL syntax
errors while creating a model based on DSL grammar. Xtext is not Python-
compatible but compatible with Java. Java does not have the same sup-
port for machine learning and data manipulation that Python has based on
the libraries Pandas and Sklearn. A front-end technology to display the
machine learning algorithm and explanations needed to fulfil the project’s
needs. There were alternatives for Java, and there are many technologies
and tools available for this task, but Dash Plotly has several advantages. It
is in Python, it is browser-based and works well with machine learning li-
braries and tools. The support, flexibility and interactability in Dash Plotly
is a significant advantage. The need and practicality of having everything in
one programming language was the principal decision behind choosing the
Python-based technology stack. The technology stack selected helps create
an XAI application. Most of these tools are compatible with each other as
a design feature. There are many tools available to create an XAI applica-
tion and solve problems in the domain. The solution architecture chosen is
a solid example of a highly compatible technology stack capable of solv-
ing these problems. It is not perfect in all its single parts, but it is a reliable
compromise and alternative.

5.4 Development 37

Python

Pycharm IDE

textX

Plotly
Dash

Tsfresh SklearnPandas Ethik

Jinja2

XAIText

Figure 5.1: The solution architecture and how the technologies in it overlap

Figure 5.1 shows how everything is usable within Pycharm IDE. Fur-
thermore, everything is in Python. For example, using Pandas for data ma-
nipulation, Tsfresh for time-series extraction, Sklearn for machine learning
and Plotly Dash for outputting interactive dashboards. Tsfresh, Sklearn, and
Plotly Dash are within the XAIText DSL of TextX. Using Ethik for sensitiv-
ity analysis of the features extracted by Tsfresh. XAIText creates the pipeline
by writing out the model with Python and generating the code with a code
generator and Jinja2 templates.

5.3.3 Bringing the technology under a DSL
The limitations of Sklearn, Dash Plotly and Tsfresh is that they are useless
alone in this context. With a DSL, it is pretty easy to bring them all in
under one umbrella. Python is a Turing complete expressive programming
language that can express everything that needs programmatic expression.
Within the confines of the XAI domain, particular chunks of code repeat
themselves throughout applications, and there are bound to be certain parts
that need modification the most. A DSL can bring these chunks of code
together for an efficiency gain.
With the TextX DSL creation tool, it is possible to generate many lines with
very few lines of code. For example, creating a tiny model in the XAIText
DSL with 20+ lines can produce over 1000+ lines of runnable python code.

5.4 Development

38 Software Development

5.4.1 The goal of the final product
The goal of the final product was to create a pipeline consisting of three
main Python classes: A handler class for reading and handling all the data,
a user class for presenting an explanation for each user, and a research class
for training and investigating the machine learning model in real-time.

5.4.2 Methods
Python 3.8 was the main interpreter used with Pycharm as the primary de-
velopment tool. By using a TextX file within Pycharm to create the DSL
grammar. The primary development methodology was to develop the pro-
gram with informal sprints, going from 1 version to the next, in an ever-
improving product result cycle. The supervisor and intromat participants
gave feedback during development.

5.4.3 Constraints
Initially, there were development problems because the entire XAI field is
incredibly vast with all sorts of machine learning algorithms and visualisa-
tion techniques. The restricted development time put limits on the project’s
scope to a proof of concept phase. This limit was for a DSL deployable as an
XAI pipeline on the datasets. There were prioritising issues on the pipeline
development, given the limited amount of time for the project. The solution
was to prioritise the research class over the user and handler class. Because
this class probably had the most central position in the program, with the
most power to illustrate the pipeline’s potential.

5.4 Development 39

5.4.4 The program visualized
The deployment of the entire pipeline and different classes visualise as fol-
lows. First, in figure 5.2, a programmer uses the XAIText DSL grammar
to create a model. Then, with this model and templates, a code generator
generates code. The three generated classes in this code are a user class, a
handler class and a research class. The user class takes the specific user and
uploads that users measurements as data the handler can understand. Next,
the handler class takes in and transforms this user data into readable data
for Tsfresh contained in the research class. Finally, the research class takes
the data and trains a machine learning algorithm uploaded into Plotly Dash,
creating explainable data through an interactive dashboard. This interactive
dashboard can be used by the user class or the research class, fulfilling the
explainability criterium for XAI.

Machine
learning

algorithm

Trainable
Data

XAI
explanation

Code
Generator

Model

Templates

Research ClassHandler Class

Grammar

User Class

User data

Program

Uses

Creates

Uses

Gets Uploads Takes in CreatesUploads Takes in

Creates

Explainable Data

Figure 5.2: The grammar, code generation, and program in the same figure

5.4.5 Problems that needed to be solved
The first problem that needed to be solved was how to handle time-series
data, exactly how to handle and parse the data. For this purpose, Pandas was

40 Software Development

used to create time-series data that a potential handler could use. The next
step was that the feature extractor Tsfresh could only use the data if all the
time-series data chunks were of equal length. In the depression dataset, this
is not the case. As the measurements between every user are different, some
span a much longer time than others. The solution to this was to give each
user a predefined time-series chunk given to the handler. Meaning that all
time-series measurements from each user in the depression dataset would be
of the same length.
For code generation and the DSL grammar, Xtext for Java was touted as the
best alternative online for this task. Unfortunately, Python is more the gold
standard for machine learning (Sklearn) and data splicing (pandas). Plotly
Dash was also only compatible with Python. Fortunately, an equivalent
to XText tool named TextX was found, which is compatible with Python.
TextX has several features of the same features as Xtext.
Presenting the data to users and researchers, Plotly Dash was the preferred
tool for building interactive graphs and dashboards. With Plotly Dash, it is
possible to use callbacks, which means that we use input buttons that run a
certain amount of code, which changes the output. The problem faced with
Plotly Dash was around global variables. An example was when two call-
backs got called simultaneously, where one changed a global variable that
the other needed. Unfortunately, the one callback that needed this global
variable did not pick up this change. The solution to this was to use async
programming were putting a delay timer event on top of the callback that
needed to get the global variable that the other callback had changed.

The software stands as a good analysis and productivity tool for re-
searchers to deploy a wanting to deploy and tweak an SVM machine learn-
ing algorithm. The researcher can deploy the pipeline within the customis-
able parameters of the XAIText DSL grammar, giving him a tweakable tool
to deploy over a dataset to study it and solve problems.

Chapter 6

Analysis

The following chapter will show an example of the deployment of the
pipeline. By illustrating the XAIText DSL grammar available. The model
created from the XAIText DSL grammar is described together with the gen-
erated classes and their functionality.

6.1 Grammar

A Domain-specific grammar is the building blocks, rules and syntax a
domain-specific language uses to create a domain-specific model. The
grammar allows us to develop a model of the domain within a set speci-
fied scope and boundary. The XAIText DSL grammar is in Appendix A.
Anyone with a knowledge of TextX can use, modify or expand the gram-
mar.

6.2 Model created from the grammar

Below in figure 6.1 is a simple .dot figure presented as a UML class diagram
of the grammar, generated through the Pycharm command line with TextX,
showcasing the XAIText DSL grammar. Figure 6.2 is a model we typed out
with the syntax rules of our grammar. Finally, in figure 6.3, TextX gener-
ated a .dot file through the command line of Pycharm.

42 Analysis

Figure 6.1: Dot modell showing the entire grammar of the XAIText DSL

Figure 6.2: How the model was written from the XAIText DSL

6.3 User class 43

Figure 6.3: Dot file created from the written model

6.3 User class

We have generated two "User" classes from the model in figures 6.2 and 6.3
through a code generator based on the templates of our choosing. The main
functionality of the user classes is to read a .csv file and upload the data from
this .csv file as a text format file. This format makes all the text files sewable
together to form a single .TS file by the handler. Ideally, every User class
should have had many visual explanations to choose from in the XAIText
DSL grammar. Still, due to time constraints, only a single graphic descrip-
tion of an SVM model, the weight of its features and sensitivity analysis of
input factors are available for the two users. Note that the user classes are
not extracting the entire time-series but have to make due using only 10000
time-series points; the time-series has to be of equal length for Tsfresh to
work.

6.4 Handler class

The handler class in figures 6.2 and 6.3 takes all the text files outputted by
the User classes, combines them, and creates a .TS file. Because this is
what the time-series features extractor Tsfresh needs to extract time-series
features.

6.5 Research class

The research class in figures 6.2 and 6.3, generated through a code generator
with a template, takes the .TS file and extracts features from it through Ts-
fresh’s feature extractor. In this version of the model from the XAIText DSL,
we have decided that the research class contains a features extractor set to
minimal feature extraction. The features are scaled to a standard scalar and

44 Analysis

trained through an SVM machine learning algorithm.

From there, the researcher can choose from and view the following GUI
alternatives: choosing dataset, viewing individual time-series points, ROC
curve, confusion matrix, threshold, cost(C), choosing feature and a retrain
button.

6.6 Running example from the depression dataset

For readability, the following section will show a running example of the de-
pression dataset. Figure 6.4 illustrates the ability to choose data sets. Note
that this method remains an unimplemented method in the pipeline but im-
plements itself quickly if needed.

Figure 6.4: Selection of dataset

6.6 Running example from the depression dataset 45

Figure 6.5: SVM machine learning algorithm with blue and red dots

Figure 6.5, illustration of the SVM algorithm. We see each point of
the participants as dots, with circles denoting training data and triangles
denoting test data.

46 Analysis

Figure 6.6: the SVM deployed on the deppression dataset top to bottom

Figure 6.6 showing the entire output dashboard of the SVM when trained
on the depression dataset. Not shown are the trainability options, selecting
datasets and time-series for a specified user.

6.6 Running example from the depression dataset 47

Figure 6.7: the SVM deployed on the deppression dataset only showing the test samples

Figure 6.7 shows us that by clicking on training data, we can see all the
test data points alone. From there, it is possible to see the misclassification
of three depressed (blue) samples.

48 Analysis

Figure 6.8: the SVM deployed on the deppression dataset only showing the training sam-
ples

Figure 6.8 shows us that we can see all the training points alone by click-
ing on "Test Data" and get a picture of how the SVM drew the boundary.

6.6 Running example from the depression dataset 49

Figure 6.9: Retrainability menu

Figure 6.10: Choosing factors to train on

Figure 6.9 and 6.10 shows the trainability options; changing the thresh-
old, meaning where the SVM draws its boundary between points. In ad-
dition, the tuning regularisation parameter C is changeable. Also, we can
change which two factors from Tsfresh we use as training variables in the
SVM algorithm.

50 Analysis

Figure 6.11: changing all the training parameters and factors to train on

In figure 6.11, we have changed the threshold, cost(C), and training fea-
tures.

6.6 Running example from the depression dataset 51

Figure 6.12: The newly trained model after we changed the training parameters

Figure 6.12 shows the newly trained SVM model after changing the
training parameters and hitting the retrain button.

52 Analysis

Figure 6.13: The newly trained model after we changed the training parameters and
zoomed in

Figure 6.13 shows the newly trained SVM model after we drew a square
with the mouse around the SVM screen and by doing so zoomed in.

6.6 Running example from the depression dataset 53

Figure 6.14: time-series from user

Figure 6.14 shows the time-series from a user represented as a dot in the
SVM.

54 Analysis

Figure 6.15: time-series from another user

Figure 6.15 shows the time-series when we click on the dot representing
another user.

6.6 Running example from the depression dataset 55

Figure 6.16: Zoomed in on the time-series

Figure 6.16 shows what happens when we draw a box around the time-
series screen and zoom in.

56 Analysis

Figure 6.17: Zooming in again

Figure 6.17 shows what happens when we again draw a box around the
time-series screen and zoom in even further.

6.6 Running example from the depression dataset 57

Time Series
User Data

Time-series
features

Organized time-
series user data

Filtered time
series features

Users
SVC RBF
Kernel

Score

TsfreshHandler
SVC Linear

Kernel

Figure 6.18: Pipeline achieving its score

Figure 6.18 explains how the pipeline achieved its score on the depres-
sion dataset. First, we have users who upload their time-series data to a han-
dler. This handler takes these time-series features and organises them. Ts-
fresh uses these organised time-series to extract time-series features. From
there, we put these time-series features into an SVC Linear Kernel that deter-
mines which of these features are the most important. Afterwards, putting
these filtered time-series features into an SVC with an RBF kernel. This
SVC trains a model and gets the final score. The final score is not the score
from the SVM GUI since this GUI is from a model that only takes two fac-
tors to train a model.

58 Analysis

Chapter 7

Results

7.1 Results from the depression datasets

The following section shows the results obtained with the pipeline deployed
onto both the ADHD and Depression dataset. The section also illustrates the
deployment of the Gephy graph and the user explanation in the user class.

7.1.1 Graphical user interface Depression dataset

Figure 7.1: Deppression dataset with timeseries and SVM

From the depression dataset in figure 7.1, the researcher could see all the
participants and their place in the SVM algorithm. By clicking on each point
illustrated in the figure, the researcher could see each individual’s activity

60 Results

level on each timeline. The functioning of the timeline let the researcher
zoom in and investigate it in more detail, allowing the researcher to zoom in
on a more exact time point of the timeline.

There was also a ROC and confusion matrix available to illustrate the ef-
ficiency of the currently trained model in figure 7.2.

Figure 7.2: ROC and Confusion Matrix

The research class in figure 7.3 made it possible to retrain the model
based on the time-series features.

Figure 7.3: tweak menu

7.1.2 Depression Data-set Score results
Result from the six runs of cross-validation on the Depression dataset with
time- series extracted features, organised into minimal, efficient and com-
prehensive feature extraction from Tsfresh. Showing the number of features
and how much they were filtered down. The classifier is illustrated but is
the same across every cross-validation run: F1 micro and F1 macro scores
displayed on the results with the standard deviation.

7.1 Results from the depression datasets 61

Run 1 with minimal feature extraction from Tsfresh

Figure 7.4: F1 micro with minimal feature extraction

Figure 7.5: F1 macro with minimal feature extraction

Figure 7.6: F1 weighted with minimal feature extraction

62 Results

Figure 7.7: Matthews Corrcoef with minimal feature extraction

Figure 7.4, 7.5, 7.6 and 7.7 shows the F1 micro, macro, weighted and
MCC score from the pipeline when using minimal feature extraction from
Tsfresh.

Run 2 with efficient feature extraction from Tsfresh

Figure 7.8: F1 micro score with efficient feature extraction

7.1 Results from the depression datasets 63

Figure 7.9: F1 macro score with efficient feature extraction

Figure 7.10: F1 weighted score with efficient feature extraction

Figure 7.11: Matthews Corrcoef with efficient feature extraction

64 Results

Figure 7.8, 7.9, 7.10 and 7.11 shows the F1 micro, macro, weighted and
MCC score from the pipeline when using efficient feature extraction from
Tsfresh.

Run 3 with comprehensive feature extraction from Tsfresh

Figure 7.12: F1 micro score with Comprehensive feature extraction

Figure 7.13: F1 macro score with Comprehensive feature extraction

7.2 Results from the ADHD datasets 65

Figure 7.14: F1 weighted score with Comprehensive feature extraction

Figure 7.15: Matthews Corrcoef with Comprehensive feature extraction

Figure 7.12, 7.13, 7.14 and 7.15 shows the F1 micro, macro, weighted
and MCC score from the pipeline when using comprehensive feature extrac-
tion from Tsfresh.

7.2 Results from the ADHD datasets

7.2.1 ADHD dataset graphical user interface
From the ADHD dataset, it is possible to click on every point and get the
corresponding completion rate of every user in seconds. 0 means in this con-
text that the user has not completed that week’s module. It is also possible
to view if that particular user received any warnings or not during a specific
week.

7.2.2 ADHD dataset Classification scores
In the ADHD dataset, the last week in the module, number seven, was set
as the classification criteria, classifying those who completed it with one
and those who did not complete it with 0. Based on the completion rates,
meaning the time it took to complete a module for each week, time-series
features extracted through Tsfresh. These features are then used together
with the classification to create a machine learning model. Below in figure
7.16 are the results from this model. This model shows if the user completed
a module and warnings given.

66 Results

Figure 7.16: ADHD GUI

7.2 Results from the ADHD datasets 67

Run 1 with minimal feature extraction from Tsfresh

Figure 7.17: F1 micro score with minimal feature extraction

Figure 7.18: F1 macro score with minimal feature extraction

Run 2 with efficient feature extraction from Tsfresh

Figure 7.19: F1 micro score with efficient feature extraction

68 Results

Figure 7.20: F1 macro score with efficient feature extraction

Figure 7.17 and 7.18 shows the F1 micro and macro with minimal fea-
ture extraction. Figure 7.19 and 7.20 shows the F1 micro and macro with
efficient feature extraction.

7.3 User Explanation Graphical user interface 69

7.3 User Explanation Graphical user interface

Figure 7.21: Visual explanation for user, feature importance and classification chance

Figure 7.21 shows the presentation of the user explanation, for example,
showing the relative importance of the features drawn out from Tsfresh and
showing how certain the classifier is in this particular case.

70 Results

Figure 7.22: Sensitivity analysis part 1

In figure 7.22, we can see that user’s with overall high average activity
levels aggregated across the entire time-series have a higher chance of being
depressed. In addition, the average median also slightly increase the chance
of being depressed.

7.3 User Explanation Graphical user interface 71

Figure 7.23: Sensitivity analysis part 2

In figure 7.23, the mean value is important, increasing the chance of
depression if increased. Unfortunately, the average length variable is not
shown due to a bug in Ethik software.

72 Results

Figure 7.24: Sensitivity analysis part 3

In figure 7.24, standard deviation had a large impacts on the chances of
being depressed, and the variance had a negligible impact on the result. The
standard deviation result is comparable to the gephy graphs showed later in
the thesis where a depressed person having a larger deviation in his time-
series.

7.4 Deploying a Gephy graph 73

Figure 7.25: Sensitivity analysis part 4

Figure 7.25 shows that the maximum value increased the chance of being
depressed, and the minimum value had no relevance.

7.4 Deploying a Gephy graph

There were also experiments conducted on running a Gephy graph of the
activity section of a depressed and non depressed users CSV file. The 1000
first activity entries in the users time-series illustrated with the nodes stand-
ing for each activity score in each point of a time-series in figure 7.26 and
7.27. Edges between the nodes are drawn based on the rules of the visibil-
ity algorithm. Note, the Gephy graph is not deployable through the research
class in the pipeline but is deployable through a self-contained code seg-
ment. We can see that the depressed user has a different activity level than
the non-depressed user. All the edges going into one node means that the
user at that particular point in time had a very high activity level. Due to
time constraints, extracting graph features to use on the pipeline was not
done.

74 Results

Figure 7.26: Visualization of activ-
ity data using visibility algorithm
for a patient with depression symp-
tom

Figure 7.27: Visualization of activ-
ity data using visibility algorithm
for a patient without depression
symptom

Chapter 8

Discussion and Conclusion

8.1 Challenges and limitations

The apparent restrictions were time constraints forcing limitations on the
scope of development. There was not enough time to integrate the XAIText
domain model grammar and the whole Plotly Dash logical structure. Some
parts of the program needed to receive the most resources, and a decision
to prioritise the research class as it is best at illustrating the potential of the
developed tool was needed.

8.2 Pipeline score

8.2.1 depression dataset
In the depression dataset, the highest score achieved is a weighted F1 score
of 0,73. With minimal feature extraction, the pipeline reached an F1 micro
score of 0,78 and an F1 macro score of 0,75, better than the best score on
the dataset. With efficient feature extraction, achieving an F1 score of 0.81
macro and 0,86 micro, this is far better than the best score achieved on the
dataset. Extracting even more features did not improve the overall score.
The high degree of standard deviation on the dataset is interesting, result-
ing from the low number of participants - 55. Still, an F1 micro score of
0,78 by extracting and selecting features through Tsfresh and training them
on a dataset seems like an outstanding achievement. From the results, it
appears that monitoring patients at risk for depression with activity moni-
tors has its use. Machine learning techniques are also something that is best
on large datasets(Zhang and Ling, 2018). Predicting how the scores would
have changed if the dataset contained more participants is difficult. Still,
it is not unlikely that an improvement would occur, or most definitely, the
standard deviations would have gone down - presenting a more stable result.
The depression dataset has many factors like age, gender, work, marriage,
education, MADRS scores, and daycare days. The authors of Garcia-Ceja
et al. (2018a) tried utilising these features and receiving little success in us-
ing these factors in a predictive way. Perhaps Tsfresh somehow extracts

76 Discussion and Conclusion

time- series features that correlate with these unused inputs. Still, it would
be interesting to see if we had a larger dataset, how training algorithms could
improve the overall result when taking these factors into account. Even with
this small dataset, a natural next step would be to factor in these variables
to investigate if an even better score is achievable. There is also some good
work on extracting graph theory features from time-series. Suppose the fea-
ture extractor of Tsfresh does not cover this. Strictly for pragmatical reasons
to achieve a better score, combining as many features as possible, from time-
series extraction, graph theory, or static variables, seems like a good strategy
for future research.

8.2.2 ADHD dataset
The first run of the pipeline on the ADHD dataset provided an F1 micro
score of 0,81 and an f1 macro score of 0,79 with minimal features extrac-
tion. It achieved an F1 score of 0.98 for both micro and macro F1 with
a standard deviation of 0.09 with efficient feature extraction, an excellent
score. However, the pipeline tried to solve a problem where the SVM al-
gorithm might not have been the ideal algorithm. The algorithm only tried
to solve how we categorise through time-series features which would fin-
ish week seven versus who would not. The intention behind the research of
the ADHD dataset was to see if retention rates, meaning people who finish
the modules, could be improved by adding warnings or reminders in vari-
ous forms. What the pipeline did accomplish was to show its ability as an
analysis tool. It plots all the participants into an SVM graph, their relative
position being their mathematical relations towards the SVM model based
on the time-series extracted features of Tsfresh. It did prove to be an analysis
tool that at least could show deviating scores. Letting any researcher click
on the point and investigate it or see where the different classified scores
tended to cluster together.

8.3 Research questions

Research question1
"How can we increase the application of explainable AI utilising a model-
driven engineering approach?".

Domain model engineering approaches showed great potential at creating
and scaffolding out AI applications. It is possible to take a pre-made AI
application project and modify it for other purposes. However, having this
all in a deployable pipeline through a domain model grammar could signif-
icantly shorten the work required to create and deploy an XAI application.
Having a logical connection between research, user and handler class was
very useful. The user class could upload data, which the handler aggre-
gated into a TS file. The research class then brought this all into a machine
learning algorithm. TextX proved that it could generate large amounts of

8.4 Improvements and future work 77

code from small models, potentially producing large amounts of productiv-
ity gains.

Research question 2
"How can the area of XAI be improved by interpretation and visualisation
techniques?

The thesis did not make any better visualisation techniques. However, it
demonstrated an approach for efficiently enabling visualisation techniques
for user and researchers to be deployed by the pipeline deployed through
the MDE approach. Referencing the definitions in the theory section for
XAI. The suggested explanation for the SVM, visualised with two selected
factors, makes it easy to understand for humans. It is "understandable" for
human beings without revealing its inner workings. When presenting the
sensitivity analysis in the user explanation, the model has "comprehensi-
bility". Because the knowledge and insight attained through the sensitivity
analysis are presentable to humans. It is a "feature relevance explanation".
It is also "interpretable" since the meaning from the model presents itself
in a way that has meaning to humans. The pipeline also has "explainabil-
ity" since there is an interface between the humans and the algorithm. The
algorithm is also "transparent" since so much of its inner working reveals
itself to the user. A "explanations by simplification", "explanation by exam-
ple", and "visual explanation" is also demonstrated for users by showing the
SVM when it takes in 2 factors extracted from Tsfresh.

8.4 Improvements and future work

8.4.1 Code cleaning
The code itself could also be more pragmatically valid for developers if
refactored to meet the most stringent clean code principles. It would also
be helpful if the code were also simplified as much as possible, meaning
one chunk of code could replace three if possible. The code is also more
complicated than it needs to be at certain places; simplifications could make
the whole tool more useful.

8.4.2 User Class
Expanding the user class since what it was now was only bare bones. Future
work should have a "commit data" or something similar style button. The
user can upload his data towards a project. Also, a "get explanation button",
where Plotly Dash graphs present the workings of how the machine learning
algorithm made its decision. With a wast library of various explanation
techniques in the DSL, this button could have a tailored explanation to the
individual user. For example, someone with aphasia, learning disabilities,
visual problems, or similar could have their explanation custom-fitted.

78 Discussion and Conclusion

8.4.3 Handler Class
What needed doing while handling both datasets was cleaning and fixing
the data beforehand. Working knowledge of pandas and IT would be a pre-
requisite for such a job. What might be an option would be to create a user
interface around the handler class. Making it possible to take in the data in
various formats. From there, it might be helpful to clean the dataset from
within a GUI. It was possible to retrain and tweak a machine learning algo-
rithm through an interactive GUI. It was also possible to research every data
point within the algorithm. Doing something similar with the handler class,
where it takes in a CSV file or other input should be possible. This step
illustrating the CSV file in a viewable and browsable format. From there,
pandas style cleaning and data organisation tasks are available. This opera-
tion could improve the whole job of cleaning and organising data easier for
people with less IT or experience with pandas or similar tools. A drop-down
menu with different datasets, like demonstrated in the research class, could
also be helpful as a way to organise a pandas GUI workbench.

8.4.4 Server data uploading and download
What could also be helpful is if it was possible to create a class or function
through the user class where the data the user inputs somehow get uploaded
to a server. If this server could send data down to the user, it would be an
overall beneficial system. There should also be cross-platform compatibility
and usability for different operating systems. Given that most smartphones
and smartwatches do not use windows as their operating system.

8.4.5 Research Class
The research class has gotten the most work done on it in this thesis since
it is the best for illustrative purposes and overall utility. Still, some more
work should have gotten done on it if there were time. An expansion of
the research capability of the class would also be beneficial. It can see all
the users’ points and visualise what kind of time-series data the machine
learning algorithm received as its input. In this class, researchers should get
more information about each user when clicking on a user point in the SVM
screen. The researcher should have the ability to dig deep into each user
seeing all the data he wants about each user. As shown, this can be done
and would not be a problematic expansion programmatically. All this added
information could be optional in the XAIText grammar.
Furthermore, it might be helpful if the researcher could do some tweaking
towards an explanation aimed at each user. This explanation is saved for
each user on a server. When the user logs on and requests an explanation,
the stored explanation from the researcher gets illustrated. This explanation
being useful if the researcher, for example, browses through the users and
finds someone with a diagnosis of autism, aphasia, learning disabilities or

8.4 Improvements and future work 79

lack of IT knowledge. From there, he could use whatever is available of
empirical knowledge and custom-make an explanation for every user based
on their peculiar situation.

8.4.6 Grammar expansion
The most apparent improvement towards the code and the tool would be
if the XAIText grammar, expanded to include many machine learning algo-
rithms. These machine learning algorithms could span everything from the
easily explainable regression-based models to the more complicated to ex-
plain deep learning neural net models. There should also be more of an em-
phasis on creating complete callbacks functions customisable in the XAIText
DSL.

8.4.7 Dash Plotly improvements
There is also a vast potential to improve the process concerning Plotly Dash
with domain modelling for creating fast deployable visualisation techniques.
For example, by experiments with more flexible templates. Even on the
website of Plotly Dash, there are many machine learning apps displayed.
Having similar apps like those deployed through customisable grammar and
very flexible templates can make creating apps like this a lot easier.

8.4.8 Creating an executable file
Something that would also have some practical value is if the code gener-
ation, XAIText DSL grammar and the templating system is organised into
an executable program containing an interface. This interface could ease
the app creation process for people unfamiliar with programming and IT.
It could help deploy XAI applications and curb the comprehensive learning
curve by writing a model within TextX with a graphical user interface.

8.4.9 Conclusions
Domain-specific languages and domain engineering does have their use in
the area of XAI. XAI needs efficient ways to deploy applications with ex-
plainability. This thesis shows that the link between a handler, a user class
presenting an explanation and a researcher class training and tweaking an
algorithm has its use. Many parts of the XAIText DSL and the templates
are grounded in Plotly Dash as the output. Suppose something proves to be
more applicable than Plotly Dash. In that case, it should not be too difficult
to only change out the front end part of the pipeline.
Something which much literature about the usefulness of DSL focuses on
is whether the given case the developer has in front of them is the ideal for
a domain-specific language. Since we are essentially creating the building
blocks of something that we are to mass-produce through a factory-like code

80 Discussion and Conclusion

generator. The question is if the domain chosen is ideal for a DSL. Or, more
specifically, is the creation of a domain-specific language with a grammar
and a code generator, with its usage of time, adequately compensated for by
all the applications and code potentially turned out from it?
In this case, it seems to be worth it. Having one excellent and flexible han-
dler, a solid user class and a research class, all being very flexible in their
usage. The possibility of churning out many suitable applications based on
this foundation and grammar shortens the creation time for apps. Any new
invention in either Pandas, Plotly, or Sklearn can be added to the existing
grammar with ease. With a critical mass of grammar and templates, this
tool could be highly effective and helpful for churning out XAI applications
with the latest and best tools.
Reaching a critical mass and expanding the XAIText grammar beyond a proof
of concept face is possible if the project gets expanded, as mentioned pre-
viously. It is possible if some master students would like to continue the
project, for example, in a group of 2-3 students next year. They would then
have a foundation and the time resources to expand the XAIText grammar
and functionality to reach this critical mass by having a reliable and help-
ful tool to be deployed over multiple datasets and creating XAI applications
with solid individual user explainability.

Appendix A

XAIText - DSL grammar

Program: ”
users+=User?
data+=Data?
handler+=Handler?
researcher+=Researcher?
”
;

User:
’Class’ name=ID ”
’timeSeriesLength’ ’:’ chunkSize=INT ’,’ ’readfile’ ’:’ file=STRING
”
;

Data:
’Datas’ name=ID ”
Datasource= ’:’ Series
”
;

Handler:
’Handler’ name=ID ”
’Classifier’ ’:’ ml=MachineLearningAlgorithme
’featureExtractor’ ’:’ extractor= Ext
’scalar’ ’:’ scalar= Scalar
”
;

Researcher:
’Researcher’ name=ID ”
’Handler’ ’:’ Hand=Handler
”
;

82 XAIText - DSL grammar

Ext:
"minimal" | "efficient" | "comprehensive"
;

Series:
"timeseries" | "non-timeseries"
;

Scalar:
"StandardScaler" | "MinMaxScaler" | "None"
;

MachineLearningAlgorithme:
"svm" | "LogisticRegression"
;

Appendix B

Technical details of data handling

B.1 Data exploration deppression dataset

The depression dataset is a collection of .csv files. The format changes, and
the operations performed on the dataset was multifold. Firstly, what was
needed was to gather everything into a .TS file. Because the feature extrac-
tion from Tsfresh requires that the format for feature extraction is in a .TS
format, to achieve this, the most pragmatic solution was to read the relevant
column, which in the case of the depression dataset was the "activity" col-
umn of every user .csv file. After reading the column and converting it into
a text file, writing the text file in a long string with commas separating ev-
ery value, adding annotations at the end of the text file with either a :1 or
:0 for a depressed or non-depressed person. All these text files were writ-
ten as text file and put into a user class folder. The handler could take all
these files and write them into a single .TS file from this folder. From there,
the research class could read this .TS file, extract features, train a machine
learning algorithm and display all the points of each user.

B.2 Data exploration ADHD dataset

The ADHD dataset presents itself through an XLSX file. From this XLSX
file, we have access to all the relevant data, viewing each dataset’s page as
we please. From the relevant pages, choosing the modules page and the
alarm page. The modules page showed when the participants started their
exercises and when they finished their activities. Firstly the dataset was
cleaned and fixed in pandas. Afterwards, saving all the data from each user
in the modules page saved as a .csv file. From there, loading the .csv files
into Pandas. After that, Pandas could perform operations on the data. With
pandas, calculating for every user the time it took to complete a module for a
week by taking the completion date and subtracting it from the starting date.
From there, converting the result to seconds. Saving the converted work as
a text file for each user.
The second page chosen was the alarm section, which showed the number
of alarms sent out to each user per week. Handling this data was relatively

84 Technical details of data handling

straightforward. Converting it to a .csv file. From there, the number of
alarm’s sent out to each user per week was saved into a text file the same
way as on the modules page.
When processing these pages and the user data in them had been into a .TS
file by the handler, the research class displayed all the user’s data as points
in the SVM. And showing both the time it took for each user to complete
a task per week and how many warnings they received for that week as
independent graphs.

Appendix C

Code generator

Generating code from TextX with the grammar was relatively straightfor-
ward. All that was needed was to create a model from the grammar in
textX. From this model, it was possible to use jinja2 templates to gener-
ate code through a code generator. It would be possible to create an entire
application through this code generation process.

Figure C.1 shows a code generator, and figure C.2 shows a template. By
using the templates, code generator and model generated from the XAIText
it is possible to create the entire pipeline.

86 Code generator

Figure C.1: Code generator

87

Figure C.2: Code generator template

88 Code generator

Appendix D

Github repository

https://github.com/kingofthenorth871/deppresionDatasetGUI

90 Github repository

Bibliography

Amisha, P. Malik, M. Pathania, and V. Rathaur (2019), Overview of artificial
intelligence in medicine, Journal of Family Medicine and Primary Care,
8, 2328, doi:10.4103/jfmpc.jfmpc_440_19. 2.1.1

Andreas C. Müller, S. G. (2016), Introduction to Machine Learning with
Python: A Guide for Data Scientists, OReilly Media. 2.1.2, 2.1.4, 2.1.5,
2.1.6, 2.1.7, 2.1.8, 2.1.9, 2.1.10

Barredo Arrieta, A., N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila,
and F. Herrera (2020), Explainable artificial intelligence (xai): Concepts,
taxonomies, opportunities and challenges toward responsible ai, Informa-
tion Fusion, 58, 82–115, doi:https://doi.org/10.1016/j.inffus.2019.12.012.
(document), 1, 2.2.1, 2.2.2, 2.2.2, 2.2.3, 2.2.4

Christ, M., A. W. Kempa-Liehr, and M. Feindt (2016), Distributed and paral-
lel time series feature extraction for industrial big data applications, arXiv
e-prints, arXiv:1610.07717. 5.1.3

Cortez, P., and M. Embrechts (2011), Opening black box data mining
models using sensitivity analysis, pp. 341–348, doi:10.1109/CIDM.2011.
5949423. 3.5, 3.6

Cortez, P., and M. Embrechts (2013), Using sensitivity analysis and visu-
alization techniques to open black box data mining models, Information
Sciences, 225, doi:10.1016/j.ins.2012.10.039. 2.2.4, 3.6

Davenport, T., and R. Kalakota (2019), The potential for artificial intel-
ligence in healthcare, Future Hospital Journal, 6, 94–98, doi:10.7861/
futurehosp.6-2-94. 2.1.1

Dejanovi, I., R. Vaderna, G. Milosavljevi, and Z. Vukovi (2017), Textx: A
python tool for domain-specific languages implementation, Knowledge-
Based Systems, 115, 1–4, doi:https://doi.org/10.1016/j.knosys.2016.10.
023. 5.2.3

Fasmer, E., O. B. Fasmer, J. Berle, K. Oedegaard, and E. Hauge (2018),
Graph theory applied to the analysis of motor activity in patients with
schizophrenia and depression, PloS one, 13, e0194,791, doi:10.1371/
journal.pone.0194791. 3.4, 3.4

92 BIBLIOGRAPHY

Fletcher, T. (2009), Support vector machines explained. 2.1.3

Fouquet, F., G. Nain, B. Morin, E. Daubert, O. Barais, N. Plouzeau, and J.-
M. Jézéquel (2014), Kevoree modeling framework (kmf): Efficient mod-
eling techniques for runtime use. 3.1

Fowler, M. (2010), Domain-Specific Languages, Addison-Wesley Profes-
sional, London. 1.1, 2.3.1, 2.3.2, 2.3.3

Garcia-Ceja, E., M. Riegler, P. Jakobsen, J. Torresen, T. Nordgreen, K. J.
Oedegaard, and O. B. Fasmer (2018a), Motor activity based classification
of depression in unipolar and bipolar patients, in 2018 IEEE 31st Inter-
national Symposium on Computer-Based Medical Systems (CBMS), pp.
316–321, doi:10.1109/CBMS.2018.00062. (document), 8.2.1

Garcia-Ceja, E., M. Riegler, P. Jakobsen, J. T. rresen, T. Nordgreen, K. J.
Oedegaard, and O. B. Fasmer (2018b), Depresjon: A motor activity
database of depression episodes in unipolar and bipolar patients, in Pro-
ceedings of the 9th ACM on Multimedia Systems Conference, MMSys’18,
ACM, New York, NY, USA, doi:10.1145/3204949.3208125. 3.4.1, 3.4.1,
4.1, 4.3

Goldstein, A., A. Kapelner, J. Bleich, and E. Pitkin (2013), Peeking inside
the black box: Visualizing statistical learning with plots of individual con-
ditional expectation, Journal of Computational and Graphical Statistics,
24, doi:10.1080/10618600.2014.907095. 2.2.4

Goodman, B., and S. Flaxman (2017), European union regulations on algo-
rithmic decision-making and a right to explanation, AI Magazine, 38(3),
50–57, doi:10.1609/aimag.v38i3.2741. (document), 1

Gurunule, D., and M. Nashipudimath (2015), A review: Analysis of aspect
orientation and model driven engineering for code generation, Procedia
Computer Science, 45, 852–861, doi:10.1016/j.procs.2015.03.171. 2.3.1

Hartmann, T., A. Moawad, F. Fouquet, and Y. Le Traon (2017), The next
evolution of mde: A seamless integration of machine learning into domain
modeling, pp. 180–180, doi:10.1109/MODELS.2017.32. 1.1, 3.1, 3.1, 3.1

Haukeland-University-Hospital (2021a), Intromat, https://intromat.
no/, accessed: 2021-08-06. 4.1.1, 4.1.4

Haukeland-University-Hospital (2021b), Emeistring, https:
//helse-bergen.no/emeistring/, accessed: 2021-08-06. 4.1.1

Lacasa, L., B. Luque, F. Ballesteros, J. Luque, and J. C. Nuño (2008), From
time series to complex networks: The visibility graph, Proceedings of the
National Academy of Sciences, 105, 4972, doi:10.1073/pnas.0709247105.
3.2, 3.3

https://intromat.no/
https://intromat.no/
https://helse-bergen.no/emeistring/
https://helse-bergen.no/emeistring/

BIBLIOGRAPHY 93

Lipton, Z. (2016), The mythos of model interpretability, Communications of
the ACM, 61, doi:10.1145/3233231. 2.2.2

Max Halford, V. L. (2019), Ethik, https://pypi.org/project/ethik/,
accessed: 2021-08-06. 5.2

McCarthy, J. (2007), What is artificial intelligence. 1, 2.1.1

Núñez, A., L. Lacasa, J. Gomez, and B. Luque (2012), Visibility Algorithms:
A Short Review, doi:10.5772/34810. 2.4.2, 2.4.2, 2.5, 3.3

pandas development team, T. (2020), pandas-dev/pandas: Pandas, doi:10.
5281/zenodo.3509134. 5.2.5

Pantanowitz, L., G. M. Quiroga-Garza, L. Bien, R. Heled, D. Laifen-
feld, C. Linhart, J. Sandbank, A. Albrecht Shach, V. Shalev, M. Vec-
sler, P. Michelow, S. Hazelhurst, and R. Dhir (2020), An artificial intel-
ligence algorithm for prostate cancer diagnosis in whole slide images of
core needle biopsies: a blinded clinical validation and deployment study,
The Lancet Digital Health, 2(8), e407–e416, doi:https://doi.org/10.1016/
S2589-7500(20)30159-X. (document)

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay (2011),
Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research, 12, 2825–2830. 5.1.2

Plotly (2021), Plotly dash, https://plotly.com/dash/, accessed: 2021-
08-06. 5.2.4

Python software foundation (2021), Python, https://www.python.org/
community-landing/, accessed: 2021-08-06. 5.1.1

Ronacher, A. (2021), Jinja2, https://pypi.org/project/Jinja2/, ac-
cessed: 2021-08-06. 5.2.2

Sharma, S. (2015), Rise of big data and related issues, in 2015 Annual
IEEE India Conference (INDICON), pp. 1–6, doi:10.1109/INDICON.
2015.7443346. 1.1

tutorialspoint (2021), Graphtheory, https://www.tutorialspoint.com/
graph_theory/index.htm, accessed: 2021-08-06. 2.4.1

Zhang, Y., and C. Ling (2018), A strategy to apply machine learning to
small datasets in materials science, npj Computational Materials, 4, doi:
10.1038/s41524-018-0081-z. 8.2.1

Zhou, D., L. Miao, and Y. He (2018), Position-aware deep multi-task learn-
ing for drugdrug interaction extraction, Artificial Intelligence in Medicine,
87, 1–8, doi:https://doi.org/10.1016/j.artmed.2018.03.001. (document)

https://pypi.org/project/ethik/
https://plotly.com/dash/
https://www.python.org/community-landing/
https://www.python.org/community-landing/
https://pypi.org/project/Jinja2/
https://www.tutorialspoint.com/graph_theory/index.htm
https://www.tutorialspoint.com/graph_theory/index.htm

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Contribution
	Availability of the project
	Research questions
	Thesis outline

	Theory
	AI
	Overview - AI in healthcare
	Machine learning
	Support Vector Machine
	Feature
	Scaling
	Classification
	Supervised/Unsupervised learning
	Generalization
	Regularization
	Cross-Validation
	AI Limitations

	XAI
	Introduction
	Definitions
	Ways of explaining a model
	Visualizations

	Model-driven engineering
	Definitions
	Advantages
	Disadvantages
	Model-driven engineering in XAI

	Graph Theory
	Definitions
	Visibility algorithm

	Time-series

	Related Work
	MDE in Machine learning
	The visibility graph
	Visibility Algorithms: A Short Review
	Graph theory applied to schizophrenia and depression
	 Machine learning applied to depression

	Sensitivity analysis on black box models
	Further sensitivity analysis on black box models

	Data
	Introduction
	INTROMAT project owners
	INTROMAT participants
	Goals of INTROMAT
	What has INTROMAT achieved

	Project participation
	Depression dataset
	Variables and their usage
	ADHD dataset and study
	ADHD dataset
	Purpose of study
	Measurements of the study

	Variables and their usage

	Software Development
	Proposed solution architecture
	Python
	Sklearn
	Tsfresh

	Ethik
	Pycharm
	Jinja 2
	TextX
	Plotly dash
	Pandas

	Why the technologies were chosen
	XAI technology needs
	Technology choice
	Bringing the technology under a DSL

	Development
	The goal of the final product
	Methods
	Constraints
	The program visualized
	Problems that needed to be solved

	Analysis
	Grammar
	Model created from the grammar
	User class
	Handler class
	Research class
	Running example from the depression dataset

	Results
	Results from the depression datasets
	Graphical user interface Depression dataset
	Depression Data-set Score results

	Results from the ADHD datasets
	ADHD dataset graphical user interface
	ADHD dataset Classification scores

	User Explanation Graphical user interface
	Deploying a Gephy graph

	Discussion and Conclusion
	Challenges and limitations
	Pipeline score
	depression dataset
	ADHD dataset

	Research questions
	Improvements and future work
	Code cleaning
	User Class
	Handler Class
	Server data uploading and download
	Research Class
	Grammar expansion
	Dash Plotly improvements
	Creating an executable file
	Conclusions

	XAIText - DSL grammar
	Technical details of data handling
	Data exploration deppression dataset
	Data exploration ADHD dataset

	Code generator
	Github repository

