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Abstract Using deep convolutional neural network (CNN),
the nature of the QCD transition can be identified from the
final-state pion spectra from hybrid model simulations of
heavy-ion collisions that combines a viscous hydrodynamic
model with a hadronic cascade “after-burner”. Two different
types of equations of state (EoS) of the medium are used in
the hydrodynamic evolution. The resulting spectra in trans-
verse momentum and azimuthal angle are used as the input
data to train the neural network to distinguish different EoS.
Different scenarios for the input data are studied and com-
pared in a systematic way. A clear hierarchy is observed
in the prediction accuracy when using the event-by-event,
cascade-coarse-grained and event-fine-averaged spectra as
input for the network, which are about 80%, 90% and 99%,
respectively. A comparison with the prediction performance
by deep neural network (DNN) with only the normalized
pion transverse momentum spectra is also made. High-level
features of pion spectra captured by a carefully-trained neu-
ral network were found to be able to distinguish the nature
of the QCD transition even in a simulation scenario which is
close to the experiments.

1 Introduction

The dynamics of the strong interactions between quarks and
gluons, governing the properties of hot and dense nuclear
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matter, can be described by the theory of QCD. It pre-
dicts that, if the temperature of strongly-interacting matter
becomes large enough, a new state of matter is formed in
which quarks and gluons can roam freely and are not con-
fined in the hadrons anymore. This state of matter is called
the quark-gluon plasma (QGP). Lattice QCD has established
that the transition from a hadron gas to the QGP is a smooth
crossover at a high temperature T ∼ 140 − 180 MeV and
low net baryon density [1–3]. A variety of theoretical mod-
els, such as the Dyson–Schwinger equations model [4–7], the
(Polyakov loop-) Nambu–Jona–Lasinio model [8–12] and
the quark-meson coupling model [13–15] also predict the
existence of a first-order phase transition that occurs at low
temperature and moderate to large net baryon densities.

Relativistic heavy ion experiments have been carried out
at the SIS18 [16], at the AGS [17] and at the SPS [18] in
the fixed target mode and at the Relativistic Heavy Ion Col-
lider (RHIC) [19] as well as at the Large Hadron Collider
(LHC) [20] in the collider mode. The forthcoming Facil-
ity for Anti-proton and Ion Research (FAIR) [21,22] and
the Nuclotron-based Ion Collider fAcility (NICA) [23] will
provide unprecedented intensities and luminosities for future
studies. The main goal of these large experiments is to search
for signals for the QCD phase transition and study the prop-
erties of QGP in nucleus-nucleus collisions. Due to the tran-
sience of the heavy ion collision dynamics, the QCD medium
bulk properties can’t be directly observed in experiment. A
strategy to identify the signals of QGP is to compare sophis-
ticated model simulations with varying parameter sets and
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different equations of state (with and without a phase transi-
tion) with experimental data such as particle spectra and cor-
relation functions. Currently some observables, for example,
anisotropic flow [24–27], directed flow [28,29] and fluctu-
ations of particle multiplicities [30–33], are conjectured as
most sensitive to the appearance of a phase transition. How-
ever, no disentangled mapping between these observables
and this specific bulk property of the QCD medium from
others, has been obtained so far. Then it’s necessary to call
for modern data analysis methods like Bayesian analysis or
the deep neural network approach.

The Bayesian analysis [34–36] applies a global fitting to
a set of different observables for parameter estimation. In
Ref. [36], the crossover type EoS was employed in the hybrid
hydrodynamic framework and the event-averaged experi-
mental data (e.g. particle yields, momentum distribution and
flow) were used to infer the temperature-dependent shear
and bulk viscosity of nuclear matter and other parameters at
the same time. These estimated temperature-dependent vis-
cosities are their marginal distributions by integrating out
other parameters, respectively. One way to constrain these
bulk properties of nuclear matter better is to fit more data
or make use of more information from data. On one hand,
one can employ higher-dimensional raw data instead of the
integrated one to fit. On the other hand, the event-by-event
fluctuation may contain more information as well.

In this work, we will explore the feasibility of identify-
ing QCD EoS from event-by-event high-dimensional raw
hadron spectra in high energy nucleus-nucleus collisions
using the tools and techniques of Deep Learning (DL). DL
was developed to capture highly-correlated features from
big data [37,38]. It has achieved tremendous success in a
wide variety of applications, like image processing, natu-
ral language processing, computer vision, medical imag-
ing, medical information processing, and other interesting
fields. These have inspired physicists to adopt the technique
to tackle physical problems of great complexity. A lot of
progresses have been made in nuclear physics [39–45], lat-
tice field theory [46–50], particle physics [51–55], astro-
physics [56–58] and condensed matter physics [59–65].

For our exploration with DL method here, the purpose is
to find out a disentangled mapping between observed final
raw spectra and the EoS type for the medium. We vary differ-
ent parameters, including shear viscosity, equilibration time,
freeze-out temperature, etc., to enforce the neural network to
explore if it can find a direct mapping from event-by-event
high-dimensional raw spectra to the EoS type which can be
immune to other parameters’ ‘interference’ in certain ranges.
As long as we can find such a mapping, its straightforword
to infer information about the EoS type from the measured
data in experiment as the detector simulation or calibration
is also considered for further study.

The great advantage of the DL method over conventional
ones is its ability to extract hidden features from highly
dynamical, rapidly evolving and complex non-linear sys-
tems, like in relativistic heavy ion collisions. Conventional
observables rely on human’s design and are usually low-
dimensional projections of the high-dimensional raw data.
When one uses only part of these projected information
to constrain the properties of nuclear matter, the estimated
value are prone to be dependent on the specific model setup
(e.g. other untuned parameters in the fitting) and the cho-
sen observables. Instead DL methods can be used to explore
distinct mappings and to construct observables from the full
high-dimensional raw data for the classification task at hand.
Recently, a deep CNN classifier was developed as an effec-
tive “EoS-meter”, an excellent tool for revealing the nature
of the QCD transition with a high predictive accuracy ∼ 95%
in hadron spectra from a pure hydrodynamic study [39].

The present work studies the performance of a CNN to
identify the EoS trained and tested with hadron spectra from
a more realistic simulation of heavy ion collisions. The gen-
eralizability of the method is explored by considering well
established dynamics in the state-of-the-art simulation mod-
els. First of all, the hadronic rescattering, after the hydro-
dynamics evolution, is taken into account in the simulation
via a hadronic cascade. Consequently, the event-by-event
final-state pion spectra are discrete instead of smooth as in
hydrodynamic simulations. Secondly, the resonance decays
are included, which also contribute to the pion spectra. Due
to the finite number of particles, the discrete event-by-event
pion spectra will have significant fluctuations that might over-
whelm correlations one is looking for. We will develop mod-
ified DL-tools with CNN to identify the EoS in this more
complex and more realistic dynamic scenario.

This paper is organized as follows: Sect. 2 introduces the
hybrid simulation model. Section 3 discusses the neural net-
work and the methods of the data pre-processing. Section 4
presents the performance of the trained CNN in different
scenarios and comparisons with that of a fully-connected
deep neural network (DNN). Finally, Sect. 5 summarizes the
results and gives the conclusions. A gives the details of the
neural network structure. B shows the simulated data and pre-
dictive performance on testing datasets by the trained neural
network. C visualizes the training datasets in B with tradi-
tional observables.

2 Micro–macro hybrid model of relativistic heavy-ion
collisions

The modeling of relativistic heavy-ion collision is mostly
done by following a “standard prescription” for the spatio-
temporal evolution of the collision dynamics. The initial state
of the matter right after the violent collision is described
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by the “color glass condensate”, which consists of frozen
primordial gluons and is assumed to isotropize within 1
fm/c [66–70]. These gluons may evolve rapidly in accor-
dance with the classical Yang–Mills equation. A few fm/c
later, they can achieve approximate local thermal equilib-
rium [71,72] and may exist briefly as a Yang–Mills gluon
plasma, which may quickly expand nearly isentropically
due to the high initial temperature. The total entropy and
energy are not yet distributed over quark–anti-quark degrees
of freedom. Subsequently, quarks are produced by gluon–
gluon collisions [67–70], forming a strongly coupled quark-
gluon plasma (sQGP). The dynamical evolution of that QGP
can be described approximately by macroscopic dissipative
hydrodynamics [73–78]. Viscous corrections are included to
describe some of the remaining deviation from local isotropy
and thermal equilibrium. The EoS of the hot QGP medium,
the constitutive element used to close the hydrodynamic
equations, is one crucial input. As the medium expands
and cools quasi-isentropically, the quark-gluon fluid will go
through a smooth crossover, or hypothetically in this work as
a control experiment, a first order phase transition. The nature
of the QCD transition strongly affects the hydrodynamic evo-
lution [79]. Different forms of transitions are associated with
different pressure gradients which consequently lead to dif-
ferent expansion rates. As the matter becomes more dilute,
it will form an expanding non-equilibrium hadronic matter
with important final state effects. For instance, final absorp-
tion of the products of the resonance decays in the hadronic
matter can substantially change the yields of the hadrons
observed by the experimental detectors. This evolution of
the hadronic matter can be successfully described by micro-
scopic hadron cascade models [80–82].

To generate the data for the training of the CNN, we use the
iEBE-VISHNU hybrid model [83], which can perform event-
by-event simulations of relativistic heavy-ion collisions at
different energies. Major components of this hybrid model
include an initial condition generator (SuperMC), a (2+1)D
second-order event-by-event viscous hydrodynamic simula-
tor (VISHNew), a particle sampler (iSS) and a hadron cas-
cade “afterburner” simulator (UrQMD).

This hybrid model uses either the Monte-Carlo Glauber
(MC-G) [84–86] or the Monte–Carlo Kharzeev–Levin–
Nardi (MCKLN) [87,88] model to generate the fluctuating
initial conditions in the SuperMC module. The collision cen-
trality can be set up as needed, based on the assumption that,
on average, the final charged hadron multiplicity, dNch/dy, is
directly proportional to the initially produced total entropy in
the transverse plane dS/dy|y=0. The effect of viscous heating
will cause a spread in the final dNch/dy, which is considered
small (2-3%) for a given dS/dy|y=0.

The simulation with the hydrodynamic package VISH-
New uses two different EoSs: (1) the crossover type EoS,
based on a lattice-QCD parametrization [89], denoted as L-

Fig. 1 Two different EoSs are implemented in the hydrodynamic sim-
ulation, as functions of the energy density. A crossover, based on a lat-
tice QCD parametrization is compared with a first order phase transition
with a transition temperature Tc = 165 MeV, obtained by a Maxwell
construction. It is assumed that the baryon-chemical potential is exactly
μB = 0 throughout the whole simulation

EOS; (2) the first order type EoS with a Maxwell construc-
tion [90] between a hadron resonance gas and an ideal gas of
quarks and gluons, as Q-EOS. The transition temperature is
Tc = 165 MeV. These two EoSs are depicted in Fig. 1.

After the hydrodynamic evolution, the fluid fields are pro-
jected via the Cooper-Frye formula into particles, which will
then be further propagated in a hadronic cascade, the Ultra-
relativistic Quantum Molecular Dynamics (UrQMD) model.
In UrQMD, a non-equilibrium transport model, resonance
decays and hadronic rescatterings are included in the simu-
lation. In contrast to the hydrodynamic evolution, which is
governed by the conservation of energy and momentum with
the EoS, shear viscosity η, bulk viscosity ξ , particles are
assumed to be in asymptotic states and the trajectories are
given by straight-lines between the collisions in the hadronic
cascade. The hadronic cascade evolution is not deterministic
since the processes involve certain randomness, e.g., scat-
tering angle, scattering probability and decay probabilities.
Furthermore, the effects of finite number of particles, i.e.,
thermal fluctuations, are included since the cascade propa-
gates the discrete particles instead of the average densities.

This hybrid model with some adjustable parameters can
fit experimental data on final hadron spectra. These param-
eters include: the equilibration time τ0, which defines the
point when the local thermal equilibration is reached and the
hydrodynamics evolution starts, the ratio of the shear viscos-
ity to the entropy density η/s, and the freeze-out temperature
Tsw, which defines the switch from the hydrodynamic evo-
lution to the hadronic cascade.

We vary the model parameters in the generation of the
training datasets to allow the neural network to capture the
intrinsic features encoded in the EoS, instead of those biased
by the specific setup of other physical uncertainties. This
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would require many events simulations for hundreds of dif-
ferent parameter combinations and centrality selections, to
make sure that the neural network gains a sufficient gener-
alizabilty. However, in practice this is impossible. Hence we
focus on systematic changes of these parameters and study
the performance of the network whence it reaches the bound-
ary of these parameter values.

3 Neural network and data pre-processing

In Ref. [39], the DL-tool engine with a CNN has been shown
to classify successfully the EoS in pure hydrodynamical sim-
ulations, on an event-by-event basis with a ∼ 95% accu-
racy. To apply this strategy to real experimental data, it’s
crucial to perform realistic simulations with hadronic “after-
burner” and resonance decays. In the present paper, the DL-
tool engine is constructed for more realistic simulations of
heavy ion collisions. The CNN architecture used here is sim-
ilar to that discussed in Ref. [39]. We refer to that paper for
technical details. An introduction to this new CNN network
is presented in detail in Fig. 4 in A.

The input ρ(pT ,�) ≡ dNπ/dydpT d� to this neural net-
work is a histogram of the number of pions with 24 pT -
bins and 24 �-bins. pT denotes the transverse momenta
of observed pions in the final state, while � denotes the
azimuthal angles. Only pions with pT ≤ 2GeV, rapidity
|y| ≤ 1 and � ∈ [0, 2π ] are accepted and accounted in the
histogram.

In general, training or learning algorithms benefit a lot
from pre-processing of the datasets. The input to the neural
network used here, pion spectraρ(pT ,�), is a 24×24 matrix.
One refers to each matrix element as one “feature” and each
matrix as one “sample”. The pre-processing of the input data
can be applied in a feature-wise (per feature) or sample-wise
(per input sample) manner.

In the feature-wise standardization, the input ρ(pT ,�)

of all the training samples are pre-processed in a sample-
interdependent manner. Each feature is subtracted with the
mean over all training samples and is divided by their stan-
dard deviation. In this way, all features are centered around
zero and have variances of the same order. Thus it is pre-
vented that one feature with larger variance dominates the
objective function over other features. The transformation is
saved and then will be applied in the testing samples. With
this standardization, the testing data should be simulated in
one of the same collision systems as the training data, since
the multiplicity in different collision systems differ a lot.

In the sample-wise standardization, or min–max normal-
ization, the input ρ(pT ,�) are pre-processed in a sample-
independent manner. Each 24 × 24 matrix can be rescaled to
have a zero mean and a unit variance, or to a specific range,
such as [− 1

2 , 1
2 ], respectively. The latter choice is used in

Ref. [39] with success.

Our training results show that feature-wise standardization
does always perform better than the other two sample-wise
methods. Hence we will show in the following only the results
of the feature-wise standardization.

4 Training and testing results

A systematic analysis of the performance of the above
described CNN is presented for hybrid modeling for rela-
tivistic heavy-ion collisions. Here an important aspect is the
generalizability of the trained CNN model in the testing stage.
The overfitting of the network to the training data will be
checked on the validation data which are generated with the
same physical parameter set in modeling the training data.
The testing is performed on the testing datasets which are
generated with different physical parameter sets in model-
ing the training data. The generalizability of the CNN model
with respect to different physical parameter sets is studied
systematically. In the previous study with pure hydrodynam-
ics [39], the training data are generated with a viscous (3+1)D
hydrodynamics model, CLVisc [77], with AMPT initial con-
ditions [91], while the testing data are generated with a vis-
cous (2+1)D hydrodynamics model, VISHNew, with Monte-
Carlo Glauber initial conditions, which are used in a hybrid
model in this work for the training data generation instead.
However, here we find that, even in the pure hydrodynamic
study, reversing the simulation models for training and test-
ing data generation will obtain a testing accuracy only about
70%, from which we suspect some superiority of (3 + 1)D
hydrodynamics model with AMPT initial conditions over
other ones. Thus in this work, we would not be able to dis-
cuss the generalizability of the CNN model with respect to
different hybrid simulation models.

4.1 Hybrid model with late transition to cascade

The CNN in the previous study [39] was directly trained
using primordial pion spectra, obtained from a numerical
integration of the Cooper–Frye formula over the freeze-out
hypersurface in the hydrodynamics. In such a scenario, one
neglects the fluctuations due to the finite number of hadrons.
In addition, a significant portion of pions originating from
resonance decays also need to be taken into account. In
this section, we study the influence of the aforementioned
effects on the predictive power of the CNN. To see the influ-
ence of the finite number of particles and resonance decays,
we first assume a late transition from hydrodynamics to the
UrQMD cascade by taking the switching temperature the
same value as the hydrodynamics freeze-out temperature
used in Ref. [39], Tsw = 137 MeV. In this scenario, the
duration and influence of the hadronic cascade are signif-
icantly diminished and we are left with the effects of the
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finite number of particles and resonance decays as compared
to the pure hydrodynamics modeling.

4.1.1 Event-by-event input, switch at Tsw = 137 MeV

In this sub-scenario, the event-by-event pion spectraρ(pT , φ)

are taken as the input to the CNN. 12 training datasets are
generated by the iEBE-VISHNU hybrid model with the fluc-
tuating MC-Glauber initial condition and 6 different fine cen-
trality bins with 1% width in the centrality range 0-60%
in two collision systems, respectively. We set the ratio of
the shear viscosity to entropy density as η/s = 0.08 and
0.00, the equilibration time as τ0 = 0.5 and 0.4 fm/c in
the collision systems Pb+Pb

√
sNN = 2.76 TeV and Au+Au√

sNN = 200 GeV, respectively. The details of the datasets
are shown in Tables 1 and 2 in B. About 44000 events with
two different EoSs are generated in total. Figure 6 in C shows
the event-by-event normalized pT spectra and the elliptic
flow v2 as a function of pT of these training datasets with
two EoSs. These two one-dimensional traditional observ-
ables are non-distinguishable by the human eye with respect
to the EoSs. Thus it’s not trivial to identify the EoS from just
final-state pion pT spectra. The negative elliptic flow v2 in
Fig. 6 shows that there are great fluctuations in the event-by-
event spectra.

The validation accuracy is found to be about 83.5%
after 1000 epochs training. This validation accuracy indi-
cates that high-level correlations are extracted from the two-
dimensional pion spectra ρ(pT , φ) to identify the EoS. How-
ever, it is significantly lower than that in pure hydrodynamics
modeling [39], where a validation accuracy up to 99% was
obtained. This implies that the fluctuations due to the finite
number of particles and resonance decays overwhelm some
correlation information from the early dynamics to the final-
state particle spectra and thus result in the “overlap” between
these two types of event-by-event spectra with different EoSs,
which hinders the discrimination between them.

4.1.2 Cascade-coarse-grained input, switch at Tsw = 137
MeV

To mitigate the effect of fluctuation due to the finite num-
ber of particles and resonance decays, we average the pion
spectra over a certain number of events. In the model sim-
ulations one can repeat the hadronic cascade for any num-
ber of times for the same hydrodynamic evolution. Then the
pion spectra averaged over these simulations are taken as
the input for training, which will be called “cascade-coarse-
grained input”. We would like to find out whether such an
event averaging will improve the network performance due to
the statistics enhancement or worsen it due to the information
loss.

In this sub-scenario, 2 training datasets are generated by
the iEBE-VISHNU hybrid model with the fluctuating MC-
Glauber initial condition in the centrality range 0–50%. The
details are shown in Table 3 in B. In total, 15747 events are
generated with two different EoSs. The hadronic cascade is
repeated 30 times after each hydrodynamics evolution. The
spectra averaged over these 30 events are taken as the input
to the network. The validation accuracy with these cascade-
coarse-grained spectra ρc(pT , φ) can achieve about 92%.
One can see that such averaging over cascade-stage is ben-
eficial in identifying the EoS information in early dynamics
from the final-state particle spectra. This means that the statis-
tics matters a lot for using particle spectra to decode the EoS
information.

4.1.3 Event-fine-averaged input, switch at Tsw = 137 MeV

One drawback of the above average procedure is that the
separation of collision dynamics into hydrodynamic and
hadronic cascade stage is purely theoretical. Thus from a real-
istic point of view, an averaging procedure based on experi-
mentally controllable event filtering is preferable. In this sub-
scenario, spectra are averaged within the same fine centrality
bin (with 1% width) instead, which will be called “event-fine-
averaged input” in the following. To be specific, we average
the spectra of 30 random events within the same fine cen-
trality bin in Tables 1 and 2 as the input to the network to
accumulate the statistics. Figure 7 in C shows the 30-events-
fine-averaged normalized pT spectra and the elliptic flow v2

as a function of pT of these training datasets with two EoSs.
These two one-dimensional traditional observables are still
not distinguishable by eye. By comparing with the corre-
sponding event-by-event observables as shown in Fig. 6, one
can see that the fluctuations are significantly reduced in the
30-events-fine-averaged spectra. This manner of averaging
reduces the fluctuations from the initial conditions besides
that from hadronic cascade and resonance decays. Conse-
quently, a surprisingly obvious improvement for the CNN
performance in classifying the two types of EoS is made. The
validation accuracy reaches about 99% with the 30-events-
fine-averaged spectra ρa(pT , φ) after 1000 epochs training,
a value similar to that in the pure hydrodynamic case [39]. In
principal, one can include more datasets generated in differ-
ent fine centrality bins for training. However, we confirm that
it’s enough to use the datasets simulated only in 6 representa-
tive fine centrality bins as in Tables 1 and 2, respectively, for
training, since the predictive performances on the datasets
simulated in other unselected fine centrality bins are as high
as the training accuracy. This demonstrates that non-trivial
high-level correlations which are independent of the central-
ity bins are learned by the neural network.

After the training with validation, the trained network is
confronted with the testing data, which are generated with
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Fig. 2 Training and validation accuracy (upper panel) and loss (lower
panel) in three different sub-scenarios with switching temperature
Tsw = 137 MeV. These three sub-scenarios refer to the 30-events-
fine-averaged spectra (purple and brown), the cascade-coarse-grained
spectra (red and green) as well as the event-by-event spectra (blue and
orange)

different physical parameter sets in simulations to explore the
network’s generalizability. In Tables 4 and 5 in B we show
the predictive performance of the neural network trained with
the 30-events-fine-averaged spectra. A testing accuracy 95%
on average is obtained on the testing data simulated in the
centrality range 0–50% with MC-Glauber or MCKLN ini-
tial conditions. This evidently demonstrates that the trained
neural network is robust against different model setups such
as initial conditions, τ0, η/s and Tsw in a range between
[130, 142] MeV. We observe a slight centrality dependence
of the predictive accuracy in the collision system Pb+Pb√
sNN = 2.76 TeV, which decreases for more peripheral

events.

4.1.4 A hierarchy of the accuracy in the above
sub-scenarios

Figure 2 shows the training and validation accuracy (upper
panel) and loss (lower panel), respectively, by the CNN with

the same setup for the first 1000 epochs in three aforemen-
tioned sub-scenarios. In each sub-scenario, training and val-
idation accuracy (loss) are still close after 1000 epochs train-
ing, which implies that over-fitting is avoided. Besides, the
network has not been sufficiently trained in the cascade-
coarse-grained sub-scenario after 1000 epochs as the accu-
racy (loss) is still increasing (decreasing).

A clear hierarchy of the prediction accuracy is observed
when the averaging is performed over more and more stages
of the simulated dynamics. The CNN with event-by-event
spectra gives the lowest accuracy, while the one with the 30-
events-fine-averaged spectra gives the highest one, which is
as high as in the pure hydrodynamic study [39].

4.2 Hybrid model with early transition to cascade

The scenario with early transition from hydrodynamics to
hadronic cascade in hybrid modeling is in accordance with a
widely used choice of the switching temperature Tsw > 150
MeV. This scenario is different from the one discussed in the
previous subsection in two aspects. Firstly, the higher switch-
ing temperature decreases the contribution from the primor-
dial pions which are directly emitted from the hydrodynamic
evolution, and increases the contribution from resonance
decays. Secondly, the elongated duration of the hadronic cas-
cade stage may further blur out the imprint of the phase tran-
sition encoded in the final-state particle spectra. In the fol-
lowing, we will study how a higher switching temperature
affects the performance of the CNN in three aforementioned
sub-scenarios, respectively.

4.2.1 Event-by-event input, switch at Tsw > 150 MeV

In this sub-scenario, 9 training datasets are generated by
the iEBE-VISHNU hybrid model with the fluctuating MC-
Glauber initial condition in the centrality range 0–50%. The
switching temperature is Tsw = 160 MeV. Two different
values for the equilibration time τ0 and the ratio of shear vis-
cosity to entropy η/s are used in the simulations. The details
are shown in Tables 6 and 7 in B. In total, about 60000 events
are generated with two different EoS types.

The validation accuracy is found to be about 78% for the
CNN trained with these event-by-event spectra as input. This
validation accuracy is lower than that in the sub-scenario with
late transition (switching temperature Tsw = 137 MeV). This
decrease in the validation accuracy can be understood as a
result of the increased contribution from resonance decays
and the elongated duration of the hadronic rescattering.

123



Eur. Phys. J. C (2020) 80 :516 Page 7 of 17 516

4.2.2 Cascade-coarse-grained input, switch at Tsw > 150
MeV

In this sub-scenario, the cascade-coarse-grained pion spec-
tra ρc(pT , φ) are taken as the input to the CNN. 2 training
datasets are generated in analogy to the previous late transi-
tion case, by the iEBE-VISHNU hybrid model with the fluc-
tuating MC-Glauber initial condition in the centrality range
0–50% with the hadronic cascade simulated 30 times indi-
vidually after each hydrodynamic evolution. The switching
temperature Tsw is set to be 155 or 160 MeV. The details are
shown in Table 8 in B. About 24000 events with two different
EoSs are generated in total. The validation accuracy is found
to be 87.5% at most, which is also lower than that in previous
sub-scenario with late transition to cascade.

4 testing datasets are generated in this sub-scenario as
shown in Table 9 in B in the centrality range 0–50%. Both
MC-Glauber and MCKLN initial conditions are used, and
simulation parameters are varied from the training datasets
to check the generalizability of the CNN. After training and
validating the neural network, the testing accuracy on these
datasets is 83% on average, which is slightly lower than the
validation accuracy.

4.2.3 Event-fine-averaged input, switch at Tsw > 150 MeV

In this sub-scenario, the 30-events-fine-averaged spectra for
training is explored with the switching temperature Tsw =
160 MeV. This input is generated by the average over the
spectra of 30 independent events within the same fine cen-
trality bins (with 1% width) shown in Tables 6 and 7. The
validation accuracy can also reach up to 99% in this sub-
scenario as in the previous late transition one. The testing
accuracy is up to 95% on average on the testing datasets as
shown in Table 10 in the B. We also observe a slight centrality
dependence of the predictive accuracy in the collision sys-
tem Au+Au

√
sNN = 200 GeV, which decreases for more

peripheral events.
Its also interesting to further check the performance of

the neural network on the testing datasets which employ
temperature-dependent shear viscosities. Here taking this
sub-scenario for example, we evaluated the network’s pre-
diction accuracy on the testing datasets in Table 11 where
four temperature-dependent shear viscosities are employed
in hybrid simulations as shown in Fig. 5 (labelled as 1–4,
respectively). The first two are taken from Ref. [92], while
the last two are taken from the Bayesian analysis estima-
tions [35,36], respectively). The results show that the per-
formance is robust against the setup of these temperature-
dependent shear viscosities as compared with Table 10.

4.3 Comparison with fully-connected deep neural network

As already discussed in Sect. 4.1, the event-by-event and
30-events-fine-averaged normalized pT spectra and elliptic
flow v2 with two different EOS from all centrality bins in
Tables 1 and 2, as shown in Figs. 6 and 7, respectively, are
non-distinguishable within the range of event-by-event fluc-
tuations. However, one can observe that the peaks of the nor-
malized pT spectra with Q-EOS are higher than that with
L-EOS on the whole. In Figs. 8, 9 and 10 in C, we show
the event-by-event, 30-events-fine-averaged and all-events-
fine-averaged normalized pT spectra (left panel) and elliptic
flow v2 (right panel) solely from centrality bin 14–15% in
Pb+Pb collision

√
sNN = 2.76 TeV in Table 1, respectively.

Within the same centrality bin one can see that the all-events-
fine-averaged normalized pT spectra are distinguishable with
respect to different EOSs, 30-events-fine-averaged normal-
ized pT spectra are almost distinguishable from certain pT
bins, while the event-by-event normalized pT spectra are still
not. In Fig. 11 in C, we show the all-events-fine-averaged
normalized pT spectra (upper left panel) and elliptic flow
v2 (upper right panel) as well as the first (lower left panel),
second (lower middle panel) and third (lower right panel)
derivatives of the normalized pT spectra from all centrality
bins in Tables 1 and 2. One can see that these all-events-
fine-averaged normalized pT spectra are not distinguishable
again by the human eye. Their derivatives are also helpful to
distinguish the EoS in certain pT bins, which might lead us
to construct novel observables from normalized pT spectra
in the future. Inspired with this observation, we use the nor-
malized pT spectra as the input to a fully-connected DNN to
distinguish the EOSs as a first try. In this case, the normalized
pT spectra are regarded as a whole instead of isolated points
at each pT bin as regarded by the human eye, and high-level
correlations including but not limited to high-order deriva-
tives can be extracted supervisely.

We train a fully-connected DNN1 with the event-by-event
normalized pT spectra from all centrality bins in Tables 6
and 7 as the input. The validation accuracy is about 74%,
which is below that by CNN with two-dimensional spec-
tra, about 78%. Here the correlations are not very strong
in both cases due to the fluctuations from the particlization
and “afterburner”. When the 30-events-fine-averaged nor-
malized pT spectra are taken as the input instead, the val-
idation accuracy is about 97%, which is also a little below
that by CNN with two-dimensional spectra, about 99%. Here
the correlations are very strong in both cases. As for the

1 This fully-connected DNN consists of two hidden dense layers of size
128 and 256, respectively, and each is followed by a dropout [93] (with
a rate of 0.5) and PReLu activation layer [94]. These two dense layers
are initialized with “He normal” initializer [94] and constrained with
L2 regularization [95].
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Fig. 3 Comparison between the validation accuracy in all the differ-
ent sub-scenarios studied. The green star depicts the pure hydrody-
namic result [39]. The orange square, the purple triangle and the red
filled circle symbols depict the results for the 30-events-fine-averaged,
cascade-coarse-grained and event-by-event spectra, respectively, in dif-
ferent switching temperatures

testing accuracy, CNN with two-dimensional spectra outper-
forms fully-connected DNN with one-dimensional spectra
by about 8% with 30-events-fine-averaged spectra. Appar-
ently, in the above cases, fully-connected DNN with one-
dimensional normalized pT spectra can capture the main cor-
relations, while CNN with two-dimensional spectra performs
better and improves the generalizability.

When the event-by-event normalized pT spectra from all
centrality bins in Tables 1 and 2 with Tsw = 137 MeV
and in Tables 6 and 7 with Tsw = 160 MeV are taken as
the input to the fully-connected DNN, the validation accu-
racy is about 62%, which is much lower than that by CNN
with two-dimensional spectra, about 69%. This shows that
when physical parameters in the simulation model vary a
lot in the generation of the training data, the normalized pT
spectra are more difficult to distinguish and CNN with two-
dimensional spectra will outperform fully-connected DNN
with one-dimensional normalized pT spectra.

5 Summary and conclusion

We extended a previous exploratory study on identifying
EoS in the modeling of heavy ion collisions from hadron
spectra using DL technique [39]. In this extended study, we
consider more realistic hybrid modeling for heavy-ion colli-
sions, where hadronic cascade “afterburner” with finite num-
ber of particles and resonance decays are properly taken into
account. In the hybrid modeling the final-state particle spec-
tra are histograms containing large fluctuations and thus are
different from those in the previous study [39], which are
smooth hadron spectra from Cooper-Frye prescription with

perfect statistics. Fig. 3 summarizes the predictive perfor-
mances on the validation datasets in the above exploratory
studies of different sub-scenarios.

We have demonstrated that, after the hydrodynamic evo-
lution, stochastic particlization, hadronic cascade and reso-
nance decays, the information about EoS in early dynamics
is preserved in the final-state pion spectra, from the perspec-
tives of deep CNN, as shown in Fig. 3. The event-by-event
input for the network can reveal the EoS-type information
with about 80% classification accuracy in binary classifica-
tion setup.

The downward trend for the performance of network in
validation with respect to the switching temperature in Fig. 3,
implies that more stochasticity from the resonance decays
and the elongated hadronic cascade will diminish the cor-
relation between the EoS information in the early dynamics
and the final-state particle spectra. This is in accordance with
the common physical interpretation.

Finally, the hierarchy of the validation accuracy in differ-
ent sub-scenarios in Fig. 3 shows that proper enhancement
of statistics and reduction of fluctuations from either the final
hadronic dynamics or together with the initial conditions in
the input data are found to facilitate the revealing of the EoS
information by the network from final-state particle spectra.

In conclusion, deep CNN can decode the imprint of the
EoS in hydrodynamic evolution (encoded within the phase
transition dynamics) on the final-state pion spectra from
heavy-ion collisions. The good performance of the network
does demonstrate that this “EoS-encoder” works. The finger-
print of the early dynamics of the bulk matter is not washed
out by the evolution even when stochasticity is increased
due to the hadronization and sequential hadron dynamics.
Deep CNN provides an effective decoding method to extract
high-level correlations from two-dimensional final-state pion
spectra, which are immune to different physical factors, such
as centrality bins. In relatively simple cases, fully-connected
deep neural network can also identify the EoS from normal-
ized pion pT spectra with close validation accuracy as CNN
does, which can lead us to discover new observables sensitive
to EoS from normalized pion pT spectra. The generalizability
of the learned features with respect to other simulation mod-
els also depends on the simulation model for the training data
generation. In the present study, the training data is gener-
ated with well tested iEBE-VISHNU (VISHNew + UrQMD)
hybrid model. In the future we will explore how to capture
the features which can be generalized to the testing data from
other models as well as experimental data. Possible applica-
tions of the framework developed here can be extended to
classifying fluctuating initial conditions, extracting transport
coefficients of QCD matter, analysis of real experimental data
filtering and pre-processing, and detector calibration.
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Appendix A: Neural network structure

Figure 4 shows the neural network architecture. We use three
convolutional layers and one subsequent fully-connected
layer. All the convolutional layers and the fully-connected
one are followed by a batch normalization [96], PReLu acti-
vation [94], dropout [93] (with a rate of 0.2 and 0.5, respec-
tively) and average pooling (of pool size 2 × 2, following
last two convolutional layers only) layer, one by one. There
are 16, 16, 32 filters of size 8 × 8, 7 × 7 and 6 × 6, respec-
tively, in these three convolutional layers, scanning through
the input ρ(pT ,�), or the previous layers, and creating 16,
16, 32 features of size 24 × 24, 24 × 24, 12 × 12, respec-
tively. The weight and bias matrix of these convolutional
layers are initialized with “He normal” initializer [94], i.e.
truncated normal distribution with zero mean and standard
deviation

√
2/Nin where Nin is the number of input units in

the weight tensor. They are constrained with L2 regulariza-
tion [95]. Each neuron in a convolutional layer does connect
only locally to a small chunk of neurons in the previous layer
by a convolution operation. This is a key reason for the suc-

crossover

1st order

pion
spectra
24x24

16
features

24x24

16
features

12x12

32
features

6x6 1152
fc

128
output
layer

EOS

8x8 conv, 16
bn, PReLu

dropout(0.2)

7x7x16 conv, 16
bn, PReLu

dropout(0.2)
avgpool(2x2)

6x6x16 conv, 32
bn, PReLu

dropout(0.2)
avgpool(2x2)

bn, PReLu
dropout(0.5) softmax

Fig. 4 The architecture of our convolution neural network (CNN) for identifying the QCD transition type by using pion spectra with 24 transverse
momentum pT bins and 24 azimuthal angle � bins
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cess of the CNN architecture. Dropout, batch normalization,
PReLU and L2 regularization, all work together to prevent
overfitting, which will generate model-parameter-dependent
features from the training dataset and thus hinder the gener-
alizability of the method. The resulting 32 features of size
6 × 6 from the last average pooling layer are flattened and
connected to a 128-neuron fully-connected layer. The output
layer is another fully-connected layer with softmax activa-
tion and 2 special neurons which indicate the type of the EoS.
There are overall 203194 trainable and 120 non-trainable
parameters in the present neural network.

The supervised learning is performed in tackling this
binary classification task with the L-EOS case, labeled by
(1, 0), and the Q-EOS case, labeled by (0, 1). The differ-
ence between the true label and the predicted label from the
two output neurons is quantified by the cross entropy [97],
which plays the role of the loss function l(θ), where θ are
the trainable parameters of the neural network. The training
minimizes the loss function by updating θ → θ − δθ . Here
δθ = α∂l(θ)/∂θ , where α is the learning rate, with initial
value 0.0001, which is adaptively changed by the AdaMax
method [98].

The architecture is built by Keras with a Theano back-
end. The training datasets are fed into the network in batches
with an empirically selected size of 128. One traversal of all
the batches in the training datasets is called one epoch. The
training datasets are reshuffled before each epoch to speed-
up the convergence. The neural network is trained with 1000
epochs. The model parameters are saved to a new checkpoint
whenever a smaller validation loss is encountered.

Appendix B: Collection of the training data and predic-
tions on the testing data

See Tables 1, 2 and Fig. 5.

Table 1 Training datasets 1: numbers of event-by-event spectra
ρ(pT ,�) computed by the iEBE-VISHNU hybrid model with the MC-
Glauber initial conditions in the centrality range 0–60%. The ratio of
shear viscosity to entropy density η/s = 0.08. The equilibration time
τ0 = 0.5 fm/c. The switching temperature Tsw = 137 MeV. The colli-
sion system is Pb + Pb at

√
sNN = 2.76 TeV

Training datasets 1

Centrality bin L-EOS Q-EOS

4%–5% 2539 2540

14%–15% 1022 1024

20%–21% 2814 2816

30%–31% 2560 2560

40%–41% 1024 1024

50%–51% 896 1024

Table 2 Training datasets 2: numbers of event-by-event spectra
ρ(pT ,�) computed by the iEBE-VISHNU hybrid model with the MC-
Glauber initial conditions in the centrality range 0–60%. The ratio of
shear viscosity to entropy density η/s = 0.00. The equilibration time
τ0 = 0.4 fm/c. The switching temperature Tsw = 137 MeV. The colli-
sion system is Au + Au at

√
sNN = 200 GeV

Training datasets 2

Centrality bin L-EOS Q-EOS

0%–1% 979 1024

10%–11% 2560 2560

20%–21% 1024 1024

30%–31% 1024 1024

40%–41% 2560 2560

50%–51% 2816 2816

Fig. 5 Four temperature-dependent viscosities from Refs. [35,36,92]

Appendix C: Traditional observables from the training
data

See Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11 and Figs. 6, 7, 8, 9,
10 and 11.
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Table 3 Training datasets 3: numbers of cascade-coarse-grained spectra ρc(pT ,�) computed by the iEBE-VISHNU hybrid model with the
MC-Glauber initial conditions in the centrality range 0–50%

Training datasets 3

Centrality bin
√
sNN [TeV] Ini. Cond. τ0 (fm/c) η/s Tsw [MeV] L-EOS Q-EOS

0%–50% Au + Au 0.2 MC-G 0.4 0.16 137 3990 4096

0%–50% Pb + Pb 2.76 MC-G 0.6 0.08 137 3830 3835

Table 4 Predictive accuracy on the testing datasets 1: 30-events-fine-averaged spectra ρa(pT ,�) generated with MC-Glauber initial conditions
and different

√
sNN , η/s, τ0, and Tsw in the centrality range 0–50%

Predictive accuracy for testing datasets 1

Centrality bin
√
sNN [TeV] Ini. Cond. τ0 (fm/c) η/s Tsw [MeV] L-EOS Q-EOS Accuracy

15%–16% Au + Au 0.2 MC-G 0.4 0.00 141 512 512 89.1%

15%–16% Au + Au 0.2 MC-G 0.4 0.00 140 2560 2560 95.6%

45%–46% Au + Au 0.2 MC-G 0.6 0.12 130 1024 1024 100%

7%–8% Pb + Pb 2.76 MC-G 0.6 0.12 130 1280 1279 99.8%

17%–18% Pb + Pb 2.76 MC-G 0.6 0.12 130 2560 2560 98.1%

25%–26% Pb + Pb 2.76 MC-G 0.6 0.12 130 2560 2560 97.4%

25%–26% Pb + Pb 2.76 MC-G 0.6 0.16 130 1024 1024 97.8%

Table 5 Predictive accuracy on the testing datasets 2: 30-events-fine-averaged spectra ρa(pT ,�) generated with MCKLN initial conditions and
the different

√
sNN , η/s, τ0, and Tsw in the centrality range 0–40%

Predictive accuracy for testing datasets 2

Centrality bin
√
sNN [TeV] Ini. Cond. τ0 (fm/c) η/s Tsw [MeV] L-EOS Q-EOS Accuracy

15%–16% Au + Au 0.2 MCKLN 0.6 0.12 137 512 256 98.6%

35%–36% Au + Au 0.2 MCKLN 0.6 0.12 142 896 896 99.4%

10%–11% Pb + Pb 2.76 MCKLN 0.6 0.12 142 150 150 100%

25%–26% Pb + Pb 2.76 MCKLN 0.6 0.12 137 256 256 84.4%

Table 6 Training datasets 4: numbers of event-by-event spectra
ρ(pT ,�) computed by the iEBE-VISHNU hybrid model with the MC-
Glauber initial conditions in the centrality range 0–50%. The ratio of

shear viscosity to entropy density η/s = 0.08. The equilibration time
τ0 = 0.6 fm/c. The switching temperature Tsw = 160 MeV. The colli-
sion system is Pb + Pb at

√
sNN = 2.76 TeV

Training datasets 4

Centrality bin L-EOS Q-EOS

15%–16% 2560 2560

20%–21% 2560 2560

34%–35% 3840 3840

44%–45% 3840 3840

Table 7 Training datasets 5: numbers of event-by-event spectra
ρ(pT ,�) computed by the iEBE-VISHNU hybrid model with the MC-
Glauber initial conditions in the centrality range 0–50%. The ratio of

shear viscosity to entropy density η/s = 0.16. The equilibration time
τ0 = 0.4 fm/c. The switching temperature Tsw = 160 MeV. The colli-
sion system is Au + Au at

√
sNN = 200 GeV

Training datasets 5

Centrality bin L-EOS Q-EOS

10%–11% 2560 2560

15%–16% 2560 2560

25%–26% 2560 2560

34%–35% 3840 3840

44%–45% 3840 3840
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Table 8 Training datasets 6: numbers of cascade-coarse-grained spectra ρc(pT ,�) computed by the iEBE-VISHNU hybrid model with the
MC-Glauber initial conditions in the centrality range 0–50%

Training datasets 6

Centrality bin
√
sNN [TeV] Ini. Cond. τ0 (fm/c) η/s Tsw [MeV] L-EOS Q-EOS

0%–50% Au + Au 0.2 MC-G 0.4 0.16 155 4608 4608

0%–50% Au + Au 0.2 MC-G 0.4 0.00 155 3072 3072

0%–50% Au + Au 0.2 MC-G 0.4 0.16 160 9724 9724

0%–50% Pb + Pb 2.76 MC-G 0.6 0.08 155 5770 5521

Table 9 Predictive accuracy on testing datasets 3: cascade-coarse-grained spectra ρc(pT ,�) generated with the different
√
sNN , initial conditions,

η/s, τ0, and Tsw in the centrality range 0–50%

Predictive accuracy for testing datasets 3

Centrality bin
√
sNN [TeV] Ini. Cond. τ0 (fm/c) η/s Tsw [MeV] L-EOS Q-EOS Accuracy

0%–50% Au + Au 0.2 MCKLN 0.5 0.08 160 128 128 82%

0%–50% Au + Au 0.2 MC-G 0.5 0.08 160 128 128 82.28%

0%–50% Pb + Pb 2.76 MC-G 0.6 0.08 160 256 256 85%

0%–50% Pb + Pb 2.76 MC-G 0.4 0.16 155 118 118 84.32%

Table 10 Predictive accuracy on testing datasets 4: 30-events-fine-averaged spectra ρa(pT ,�) generated with the different
√
sNN , initial conditions,

η/s, τ0, and Tsw in the centrality range 0–30%

Predictive accuracy for testing datasets 4

Centrality bin
√
sNN [TeV] Ini. Cond. τ0 (fm/c) η/s Tsw [MeV] L-EOS Q-EOS Accuracy

15%–16% Au + Au 0.2 MCKLN 0.6 0.16 160 640 640 95.59%

10%–11% Au + Au 0.2 MC-G 0.4 0.12 160 2560 2560 100%

15%–16% Au + Au 0.2 MC-G 0.4 0.12 160 2560 2560 99.8%

20%–21% Au + Au 0.2 MC-G 0.4 0.12 160 2560 2560 94.9%

15%–16% Au + Au 0.2 MC-G 0.4 0.00 155 2560 2560 74.86%

20%–21% Au + Au 0.2 MC-G 0.4 0.12 155 1792 1792 88.8%

15%–16% Pb + Pb 2.76 MC-G 0.6 0.08 155 2560 2560 99.99%

20%–21% Pb + Pb 2.76 MC-G 0.6 0.08 155 2560 2560 99.78%

Table 11 Predictive accuracy on testing datasets 5: 30-events-fine-averaged spectra ρa(pT ,�) generated with the different
√
sNN , initial conditions,

temperature-dependent η/s(T ), τ0, and Tsw in the centrality range 0–30%

Predictive accuracy for testing datasets

Centrality bin
√
sNN [TeV] Ini. Cond. τ0 (fm/c) η/s(T ) Tsw [MeV] L-EOS Q-EOS Accuracy

10%–11% Au + Au 0.2 MC-G 0.4 1 160 512 512 100%

10%–11% Au + Au 0.2 MC-G 0.4 2 160 512 512 100%

10%–11% Au + Au 0.2 MC-G 0.4 3 160 512 512 100%

10%–11% Au + Au 0.2 MC-G 0.4 4 160 512 512 100%

15%–16% Au + Au 0.2 MC-G 0.4 4 160 512 512 99.51%

20%–21% Au + Au 0.2 MC-G 0.4 3 160 512 512 98.34%

10%–11% Au + Au 0.2 MCKLN 0.6 3 160 512 512 98.04%

10%–11% Pb + Pb 2.76 MC-G 0.6 3 155 512 512 99.80%

25%–26% Pb + Pb 2.76 MC-G 0.6 4 160 512 512 99.90%

35%–36% Pb + Pb 2.76 MC-G 0.6 3 155 512 512 86.72%
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Fig. 6 Event-by-event normalized pT spectra dN/NdydpT (left
panel) and elliptic flow v2 as a function of pT (right panel) of the
training datasets in Tables 1 and 2 with two EoSs. Vertical discrepancy
is event-by-event fluctuations. The green cross and the red point sym-

bol depict the observables with L-EOS and Q-EOS, respectively. These
events are generated in different centrality bins with Tsw = 137 MeV
in two collision systems

Fig. 7 Same as Fig. 6 but for 30-events-fine-averaged normalized pT spectra dN/NdydpT (left panel) and elliptic flow v2 as a function of pT
(right panel)
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Fig. 8 Event-by-event normalized pT spectra dN/NdydpT (left
panel) and elliptic flow v2 as a function of pT (right panel) of the train-
ing datasets in Table 1 with two EoSs. The green cross and the red point

symbol depict the observables with L-EOS and Q-EOS, respectively.
These events are generated in centrality bin 14%–15% with Tsw = 137
MeV in two collision systems

Fig. 9 Same as Fig. 8 but for 30-events-fine-averaged normalized pT spectra dN/NdydpT (left panel) and elliptic flow v2 as a function of pT
(right panel)
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Fig. 10 All-events-fine-averaged normalized pT spectra
dN/NdydpT (left panel) and elliptic flow v2 as a function of pT
(right panel) of the training datasets in Table 1 with two EoSs. The

green cross and the red point symbol depict the observables with L-EOS
and Q-EOS, respectively. These events are generated in centrality bin
14%–15% with Tsw = 137 MeV in two collision systems

Fig. 11 All-events-fine-averaged normalized pT spectra
dN/NdydpT (upper left panel) and elliptic flow v2 as a function
of pT (upper right panel) and the first, second and third derivative
of these normalized pT spectra (lower panel) of the training datasets

in Tables 1 and 2 with two EoSs. The green cross and the red point
symbol depict the observables with L-EOS and Q-EOS, respectively.
These events are generated in different centrality bins with Tsw = 137
MeV in two collision systems
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