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A B S T R A C T   

A carbon-based supercapacitor is usually associated with a capacitance such that the user can access its ability to 
store electrical charge. Three different measurement methods or variations thereof are typically employed to find 
the capacitance; galvanostatic charging, cyclic voltammetry and impedance spectroscopy. These three methods 
may give rather different capacitances, which must be interpreted with care. Here, it is discussed how one can 
extract consistent capacitance values from measurements obtained with the three techniques, to be interpreted 
within a single dynamic equivalent circuit. Different methods are compared in order to demonstrate where 
systematic errors occur, and how and under which conditions they can be removed. The extension of the methods 
presented here to pseudocapacitors utilizing both Faradaic and non-Faradaic charge storage is also briefly 
discussed.   

1. Introduction 

Supercapacitors, often also called electrochemical double layer ca
pacitors, are based on porous carbon structures immersed in an elec
trolyte [1–4]. The electrical double layer formed by ions at the porous 
carbon surface is responsible for the large amount of charge that a 
supercapacitor can store [5–8]. The behavior of supercapacitors has 
been modelled using microscopic models [9–12] as well as different 
electrical equivalent circuits [13–39]. These equivalent circuit models 
have found widespread use also in practical applications, whenever 
quick and computationally efficient analysis is required. 

A crucial parameter of a supercapacitor is its capacitance. Three 
different measurement methods, or variants thereof, are often employed 
to find the capacitance; galvanostatic charging, cyclic voltammetry and 
impedance spectroscopy. In the electrochemical literature on electrical 
double layers one distinguishes between integral and differential 
capacitance [40]. This distinction has sometimes also been used when 
analyzing supercapacitors [41–45]. While the integral capacitance is 
often extracted from galvanostatic charging and cyclic voltammetry 
experiments, differential capacitance can be obtained from impedance 
spectroscopy measurements. Care is often taken to distinguish the two 
definitions [42,45] or to make analysis methods or electrical measure
ment setups to improve the correctness of the measured capacitance 
values [4,44]. While there are inherent differences in the methods used 
for extracting capacitance values from galvanostatic charging, cyclic 
voltammetry and impedance spectroscopy, it would be beneficial to be 
able to extract capacitance values that are consistent within the exper
imental errors and that can be interpreted within a single equivalent 
circuit. In the current study supercapacitors utilizing non-Faradaic 

charge storage in the electrical double layer are addressed, and the ca
pacitances obtained using the three different methods are compared in 
order to demonstrate where systematic errors occur, and how and under 
which conditions the errors can be removed. At the end it is also briefly 
discussed how the methods can be extended to pseudocapacitors where 
both Faradaic and non-Faradaic charge storage play roles. 

2. The dynamic equivalent circuit and the two definitions of 
capacitance 

Consider the supercapacitor structure as visualized in Fig. 1. 
We note first that there is a resistance contribution Rs1 due to contact 

with the metal electrode and Rsi due to the separator, and so on. These 
latter contributions sum up to a single resistance which hereafter will be 
denoted Rs. One can then imagine that for each carbon grain, there is an 
electrical double layer that allows a displacement current Idi=Aiε0εr∂Ei/ 
∂t, where Ai is the local area, εr is the relative permittivity, ε0 the 
permittivity of vacuum and Ei the local electrical field. In addition, there 
is also a resistive current Iri which could be due to local resistive paths 
between grains in the electrolyte as well as flaws in the electrical double 
layer. In the simplest approximation, also called Ohms law, there is a 
linear relationship between the resistive current and the applied electric 
field according to Iri = AiσiEi, where σi is the local conductivity. The sum 
of the displacement and resistive current elemental contributions give I 
= Idi + Iri = Aiε0εr∂Ei/∂t + AiσiEi. We here assume that this current fol
lows a path through the porous carbon + electrolyte system, thus 
forming an equivalent circuit as seen in Fig. 1. If one now assumes that 
the local grain voltage Ui over the double layer is proportional to the 
electric field such that Ei=Ui/di, where di has unit thickness but is here 
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treated merely as a proportionality constant, one may write the current 
as 

I =
Ui

Ri
+ Ci

dUi

dt
, (1)  

where Ri=di/(σiAi) is a measure of the local resistance and Ci=ε0εrAi/di is 
a measure of the local capacitance. It should be emphasized Eq. (1) is not 
based on a formal derivation, but rather a semi-empirical justification 
leading to the equivalent circuit in fig.1 using linearized equations. For 
example, the given capacitance would only be reasonable for a flat 
electrical double layer under the condition of small voltages [40]. That 
is, the Ci does not explicitly account for the known voltage-dependence 
of supercapacitors, although this problem could perhaps be fixed 
empirically if one allowed the voltage-dependence to be lumped into the 
parameter di. In most situations one treats the constants Ri and Ci as 
fitting constants, and the type of equivalent circuit seen in fig.1 resulting 
from the semi-empirical arguments above has been used extensively to 
model supercapacitors [24, 26, 27, 37], and can also be justified by 
linearization of the microscopic equations governing drift and diffusion. 
For these reasons, the equivalent circuit of Fig. 1 is selected as the 
starting point of finding the capacitance of a supercapacitor in the cur
rent study. A key observation is that Eq. (1) is a sum of two terms, one 
dissipative and one capacitive. The capacitance should only be related to 
the latter one, and one should be careful not to mix these two contri
butions when extracting this property. 

It must be mentioned that nonlinear contributions might occur for 
higher fields. It is also clear that additional contribution occurs if redox- 
reactions are present such as in pseudocapacitors. Recent works have 
put emphasis on the distinction between capacitive and battery-like 
behavior from the current-voltage diagrams [46,47], and the near 
linearity between current and applied electric field or voltage has been 
used as an indicator of capacitive or pseudocapacitive behavior [46]. 
However, there is still a need to know how to extract capacitance for 
such energy storage systems. In ref. [48] a careful comparison between 
two methods yielded considerable differences, which could be inter
preted using a five-branch ladder equivalent circuit. In the current work, 
a different approach is proposed utilizing the equivalent circuit of Fig. 1, 
where the resistive contributions are explicitly removed before 
extracting the capacitance. 

To see how the standard definitions of capacitance may lead to 
trouble, a situation with only one (i=1) of the elemental circuits in Fig. 1 
is considered. Setting U1(t=0)=0 and U1(t)=U, gives the following total 
charge accumulated and passed through the supercapacitor upon inte
grating Eq. (1), 

q =
1
R1

∫t

0

U(t)dt + C1U. (2)  

One can now define the integral capacitance as 

Cint =
q
U

=
1
R1

∫ t
0 U(t)dt

U
+ C1, (3)  

and the differential capacitance as 

Cdiff =
dq
dU

=
1
R1

U
dU
dt
+ C1. (4) 

From Eqs. (3) and (4) it is seen that unless R→∞, one obtains 
Cdiff∕=Cint. Thus, the definitions of integral and differential capacitances 
cannot be directly used to extract values of the capacitance that can be 
compared with what we normally associate with the term, since they 
both mix together resistive and displacement contributions. One could 
argue that one should subtract the second term in Eqs. (3) and (4) to get 
rid of the resistive contribution. That is, in the case of Eq. (4) one could 
use C1=Cdiff - U/(R1dU/dt) instead of Cdiff as a measure of the capaci
tance. Similarly, for Eq. (3). One problem with this approach is that 
while U and dU/dt are directly measurable quantities, R1 must be 
deduced from the experiments based on some model. Another issue is 
that each measurement technique relies on unique measurement pro
cedures that might not be optimally suited to this definition. In the 
following, it will be shown alternative and perhaps more direct manners 
to extract capacitance directly using the equivalent circuit in Fig. 1 in the 
case of galvanostatic charging, cyclic voltammetry and impedance 
spectroscopy. To this end, it should also be mentioned that at high fre
quencies sometimes encountered in impedance spectroscopy, one also 
has to account for a serial inductance L, not shown in Fig. 1. 

3. Experimental details 

The goal of this work is to detail the methods for extracting capaci
tance, not to do extensive testing of a range of devices. Therefore, a 
GoldCap supercapacitor of nominal capacitance 10 F and voltage 2.5 V 
was used to demonstrate the methods proposed. Current and voltage 
measurements were done with either a Biologic SP050 or a Gamry 
Ref. 600. During galvanostatic charging currents ranging from 0.1 A to 
0.8 A were imposed, while the current fluctuations remained below 
±0.1 mA and the voltage fluctuations about ±0.1 mV. Cyclic voltam
metry was undertaken at 50 mV/s. Galvanostatic impedance 

Fig. 1. Schematic drawing of the interior of a supercapacitor (top) and the corresponding equivalent circuit used in this study (bottom).  
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spectroscopy done in the frequency range 2 mHz to 1 MHz with 50 mA 
root-mean-square about zero average current. 

4. Galvanostatic charging 

The capacitance is often extracted during galvanostatic charging 
where the current I0=dq/dt is held constant while the voltage is 
measured. If one neglects non-capacitive behavior and assumes that the 
charge at any point in time is given by q=CintVc, where Cint is the integral 
capacitance and Vc is the symbol for the voltage over the capacitor to 
distinguish from the voltage U used in Eqs. (3) and (4). It follows that 
both the integral and differential capacitance can be given by Cint=

Cdiff=I0/(dVc/dt) for any measured voltage rate dVc/dt>0. A significant 
problem with this approach is that it assumes that all the charge is 
associated with the capacitive element, thus neglecting any resistive 
losses. To find the capacitance, one needs to consider the resistive ele
ments as well. 

Fig. 2 a) shows the measured voltage Vc over the supercapacitor used 
in this study as it is exposed to a constant current I0=0.1 A (red line), 
I0=0.3 A (green line) and I0=0.7 A (blue line) starting at t=0 s. In the 
inset of Fig. 2 a) it is seen that there is an initial jump Vb in the voltage 
when current is applied, and this is associated with a series resistor Rs as 
has been detailed in previous works [13, 33, 49]. In Fig. 2 c) it is seen 
that the voltage jump Vb is directly proportional to the applied current 
I0, thus suggesting a relationship Vb=RsI0 for this particular super
capacitor, with Rs=(37±1) mΩ. 

Except for the initial jump Vb, the voltage Vc versus time curves in 
Fig. 2 a) appear to have a constant slope if one observes it only over a 
limited initial time interval, which means that at small times it might be 
useful to model the supercapacitor as an ideal capacitor in series with a 
resistor Rs. However, if one monitors the voltage over the supercapacitor 
over a longer period of time, as in Fig. 2 a), it is observed that the curve is 
no longer linear in time, but instead exhibit a nonlinear behavior indi
cating deviation from the simple model of an ideal capacitor in series 
with a resistor. An estimate of the capacitance based on the formula 
Cint=Cdiff=I0/(dVc/dt) may then lead to systematic errors if sufficient 
care is not taken. That is, it is seen from Fig. 2 c) that the rate dVc/dt 
decreases with time, and one needs to know if any of the time intervals 
are more appropriate than others when estimating the capacitance. 

One way to extract the capacitance is to consider the dynamic 
equivalent model shown in Fig. 1. First consider a capacitance Cj and a 
resistance Rj, in parallel. The supercapacitor can be represented by N 
such parallel-connected elements in series, and they are also series- 
connected to the resistance Rs. The charges Qi on each of the capaci
tors are assumed to follow a linear charge-voltage relationship, and the 
voltage over the capacitors Ci and resistors Ri can be given by 

Qi

Ci
= RiIRi , (5)  

where IRi is the current through resistor Ri. The total constant current I0 
is then found to be the sum of the current through one capacitor Ci and 
one resistor Ri such that 

I0 = ICi + IRi =
dQi

dt
+

Qi

RiCi
. (6)  

Solving this differential equation gives the charge on each capacitive 
element after a time t as 

Qi(t) = Qi(0)e−
t

τi + I0τi

⎛

⎝1 − e−
t

τi

⎞

⎠, τi = RiCi (7)  

In the current study the galvanostatic charging starts when Qi(t=0)=0, 
such that the voltage Vc(t) =

∑N
i=1

Qi
Ci
+ RsI0 over the entire super

capacitor is given by 

Vc(t) = I0

∑N

i=1
Ri
(
1 − e− t/τi

)
+ RsI0. (8)  

The rate of change can then be written as 

dVc(t)
dt

=
∑N

i=1

I0

Ci
e− t/τi . (9)  

For small times, t<<τi, the equivalent capacitance Ceq can be deter
mined from the constant current and the voltage rate as 

Fig. 2. In a) the voltage measured during gal
vanostatic charging is seen for I0=0.1 A (red 
line), 0.3 A (green line) and 0.7 A (blue line). 
The black, dashed lines are corresponding fits 
using Eq. (11). The inset in a) shows the short- 
time dynamics the first 2.5 seconds along with 
the initial voltage jump Vb. In b) the parallel 
resistance R1 is shown as function of current. In 
c) the squares show the voltage jump Vb is 
shown as function of current, and the dashed 
line is a linear fit Vb=RsI0 with Rs=(37±1) mΩ. 
In d), the capacitance extracted using Eq. (10) 
(squares) and the capacitance extracted using 
the average slope <dVc/dt> (circles) is shown 
(For interpretation of the references to color in 
this figure legend, the reader is referred to the 
web version of this article.).   
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1
∑N

i=1
1
Ci

= Ceq ≈
I0

(
dVc(t)

dt

)

t≪τi

. (10)  

From Eq. (10) it is seen that the equivalent capacitance Ceq due to series- 
connected capacitors Ci is what we find when evaluating the ratio of the 
current and the initial slope (dVc/dt)t<<τi. By computing the average 
voltage rate over the first second after applying a current, the equivalent 
capacitance was found to be Ceq=10.28, 10.11, 10.59, 10.15, 10.29 and 
10.50 F for I0=0.1 A, 0.2 A, 0.3 A, 0.5 A, 0.7 A and 0.8 A. Thus, for the six 
different currents the average capacitance was 10.3 F with a standard 
deviation 0.2 F, thus demonstrating that Ceq remains constant as the 
current changes. It should be clear that this approach does not allow one 
to estimate the individual capacitances Ci. Moreover, one must be 
considering the initial voltage rate (dVc/dt)t<<τi only. One can compare 
these values with those obtained using the standard approach for 
extracting the capacitance based on the formula Ceq=I0/(<dVc/dt>), 
where <dVc/dt> is the average slope over the entire measured time 
interval. The values obtained using this formula are shown in Fig. 2 d) as 
circles, along with the capacitance values extracted from Eq. (10) as 
squares. It is noted that the standard approach results in erroneously low 
slopes since resistive contributions are neglected, and therefore about 4 
F higher capacitances than the approach using Eq. (10). When 
comparing the data with other techniques in the subsequent sections, it 
will further be shown that the approach based on Eq. (10) is superior to 
the standard technique, thus avoiding unnecessary systematic errors. 

In order to understand the long-term behavior of the voltage Vc 
during galvanostatic charging, one needs to know the number of circuits 
N in Eq. (8). However, without additional information, it is impossible to 
extract this information from the voltage data alone. One could make a 
sequential fit with gradually increasing N until one gets the accuracy one 
is looking for. That is, one starts with N=1 and observe how well it fits 
the experimental data. In that case, Eq. (8) reduces to 

Vc(t) = I0R1
(
1 − e− t/τ1

)
+ RsI0. (11)  

where τ1=R1C1 and it will be assumed that the obtained values for Ceq 
above can be used to determine C1. Rs is already determined from Fig. 2 
c). By fitting Eq. (11) to the curves like those of Fig. 2 a) with R2>0.99, 
the values for R1 were obtained as shown in Fig. 2 b). If one wishes to 
obtain an even better fit, one has to use the fitted values for R1, C1 and Rs 
obtained with N=1, and insert into Eq. (8) with N=2 to obtain two new 
fitting constants R2 and C2. Furthermore, if the obtained fit is still not 
good enough, one has to continue this procedure until one obtains the 
value of R2 one is looking for. In the example of Fig. 2 a) a fit with 
R2>0.99 is deemed good enough for a proper comparison of capacitance 
values between techniques, thus allowing use of only one fitting round 
with N=1. 

From Fig. 2 a) it can be seen that the voltage Vc initially follows a 
linear curve represented by Eq. (11) for t<<τ1 as Vc≈I0t/C1. For larger 
values of t, it is found that dVc/dt decreases with time due to the fact that 
R1 starts to play a role, such that Vc deviates from its initial linear 
behavior. The larger the charging current, the faster the decrease in the 
slope dVc/dt. 

The approach proposed here to analyze galvanostatic charging al
lows one to extract a current-independent capacitance Ceq≈C1, while the 
parallel resistance R1 decreases with increasing current before it reaches 
a limiting value of about 5 Ω as the current approaches 1 A. This can be 
interpreted as the time constant for charge transfer into and out of the 
pores in the supercapacitor decreases the stronger the applied current is. 
We note that the approach used here for galvanostatic charging is 
similar to the traditional approach in most respects, except one. For Eq. 
(10) to be valid, only small times (t<<τi) should be considered. If one 
wants to apply the equation for larger times one needs to include a 
correction factor according to Eq. (9). 

5. Cyclic voltammetry 

Cyclic voltammetry is another popular method for determining the 
capacitance of a supercapacitor. It is often used to study single elec
trodes using three-electrode arrangement, but also fully assembled two- 
electrode supercapacitors have been studied [44]. When determining 
capacitance using cyclic voltammetry, one applies a sawtooth voltage 
across the capacitor and simultaneously measure the resulting current. 

A typical cyclic voltammogram of the nominal 10 F supercapacitor is 
shown in Fig. 3 a) for a rate dVc/dt=50 mV/s. The current is measured 
while the voltage reaches a maximum value of 0.1 V (red curve), 0.3 V 
(orange curve), 0.5 V (brown curve), 0.7 V (black curve), 1.0 V (green 
curve), 1.3 V (blue curve) and 1.5 V (violet curve). 

The most common approach to find the capacitance using cyclic 
voltammetry is to assume that the entire charge q is deposited on the 
capacitive element, such that the charge, the integral capacitance and 
the voltage measured are related as q=CintVc. Assuming a constant in
tegral capacitance during charging by a constant rate dVc/dt, the current 
can be written as I=CintdVc/dt. The integral capacitance is therefore 
given by Cint=I/(dVc/dt), which is a formula often used in the literature 
to determine capacitance in supercapacitors and pseudocapacitors 
[50–54]. A problem with this approach is that the current is hardly ever 
constant during a cyclic voltammogram. It has therefore been suggested 
to use low voltage rates or certain voltage regions to obtain more ac
curate values of the capacitance [16]. However, this is not always 
feasible, and one way that is sometimes used to account for this problem 
is to find the average current <I> in a certain voltage range where it 
appears not to change too much, resulting in a capacitance given by 

Ceff =
〈I〉
dVc
dt

. (12)  

Here, the denotation Ceff is used to distinguish the capacitance obtained 
from Ceq using galvanostatic charging. The green triangles in Fig. 3 b) 

Fig. 3. In a), the cyclic voltammogram is shown as a function of current for a 
rate dVc/dt=50 mV/s while the voltage reaches a maximum value of 0.1 V (red 
curve), 0.3 V (orange curve), 0.5 V (brown curve), 0.7 V (black curve), 1.0 V 
(green curve), 1.3 V (blue curve) and 1.5 V (violet curve). 
In b) the effective capacitance Ceff extracted using the methods described in the 
text. The dashed brown line is the capacitance of 10.3 F extracted from gal
vanostatic charging(For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.). 
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show the extracted effective capacitance Ceff obtained from the cyclic 
voltammograms in Fig. 3 a). The capacitance was extracted by 
computing the average value of the current in the upper right quadrant 
between zero and maximum voltage. Since the current increases with 
applied voltage Vc, the average current and therefore also the effective 
capacitance increases as well. It is seen that the effective capacitance 
varies between about 10 F and 14 F, and that systematic deviations occur 
from the value of (10.3±0.2) F obtained using galvanostatic charging 
shown as a dashed brown line. 

The large systematic errors in the obtained effective capacitance 
using the simple averaging method is mainly due to the fact that it ne
glects the resistive elements which cause an increase in the current with 
applied voltage. The question is whether one can find a simple method 
using cyclic voltammetry to determine the capacitance without intro
ducing systematic errors. To this end, it is convenient to return to the 
dynamic equivalent circuit model of Fig. 1, where the voltage over the 
supercapacitor is given by 

Vc =
∑N

i=1

Qi

Ci
+ RsI. (13)  

Assume now that one applies a constant rate dVc/dt over the super
capacitor, where dVc

dt =
∑N

i=1
Ii
Ci
+ Rs

dI
dt. In general, one does not know the 

currents through the various branches, and then the full formula is 
required. However, as demonstrated in the previous section, N=1 is 
often a good approximation. It will also be assumed that the voltage over 
the parallel resistor R1 is much larger than the series resistor, R1IR1 ≫IRs, 
which is reasonable when the series resistance is of the order of 0.04 Ω as 
seen in the previous section. If these conditions are fulfilled, one can 
write 

1
Rs

dVc

dt
+

Vc

RsR1C1
=

dI
dt

+
I

RsC1
. (14)  

Assuming that the initial current is I(t=0)=0, this first-order differential 
equation has solution 

I(t) = C1
dVc

dt
(
1 − e− t/τs

)
+

1
R1

dVc

dt
[
t − τs

(
1 − e− t/τs

)]
, τs = RsC1 (15)  

The solid line in Fig. 4 is a plot of the measured current over the 
supercapacitor as a function of time during a cyclic voltammogram, 
whereas the dashed line is a fit to Eq. (15) with C1=10.3 F and R1=6.5 Ω 
and Rs=50 mΩ. It should be noted that initially the term containing 
C1dVc/dt dominates. The voltage increases linearly with time according 

to Vc=(dVc/dt)t, and eventually the second term containing (1/R1)dVc/ 
dt becomes important. When t>>τs ≈ 0.4s, the black dashed line in Fig. 3 
a) suggests that the current increases with voltage as I(t)=C1dVc/ 
dt+Vc(t)/R1. 

From the equation I(t)=C1dVc/dt+Vc(t)/R1, which is analogous to 
Eq. (1), the capacitance can be estimated as 

Ceff = C1 ≈
I(t) − Vc(t)

R1
dVc
dt

. (16)  

Here, the resistive contribution has been explicitly removed such that 
only the capacitive part remains. The effective capacitance in Eq. (16) 
can be computed for every current-voltage data point in the cyclic vol
tammogram, although one cannot use the data points near the turning 
points where the voltage rate dVc/dt changes sign. Thus, a continuous 
curve of effective capacitances can be obtained. It is noted that these 
effective capacitances only converge to a given value when t>>τs, for 
which I(t)=C1dVc/dt+Vc(t)/R1 is valid. As an example, the red solid line 
in Fig. 3 b) shows the effective capacitance computed from Eq. (16) 
using the upper right quadrant of the 1.5 V curve (violet curve) in Fig. 3 
a). The values obtained converge to 10.3 F when Vc,max > 1 V (t>>τs), 
which is consistent with the value (10.3±0.2) F found using galvano
static charging. 

In many situations it might be more convenient to deal with the area 
of the cyclic voltammogram directly, as reported in e.g. refs [53,55]. In 
ref. [53] a better practice for evaluating supercapacitor performance 
was suggested by evaluating the total power or energy using the cyclic 
voltammogram. The idea is to use the area of a cyclic voltammogram 
instead of some value of the current as in Eq. (13). The total power used 

is given by P =
∫Vc

0
IdVc. It is common to assume that all this power is 

associated with the capacitance Ceff, such that the charge accumulated is 

q=CeffVc. If this is the case, the one may write P =

∫Vc

0

IdVc = dVc
dt q =

Ceff Vc
dVc
dt , and the capacitance can be found according to 

Ceff =

∫ Vc
0 IdVc

Vc
dVc
dt

(17)  

The blue circles in Fig. 3 b) show the computed Ceff from Eq. (17) for the 
cyclic voltammograms in Fig. 3 a). It is noted that the value of the 
capacitance increases monotonously from about 8 F to about 13 F, thus 
suggesting that this method gives significant systematic errors. Again, 
the errors occur since the resistive parts of the equivalent circuit are not 
considered. Thus, the method suggested in ref. [53] needs revision to 
function well. Assuming t>>τs, a simple first-order correction can be 
made by noting that the current and voltage are related according to 
I=C1dVc/dt+Vc/R1. The area under the curve of a cyclic voltammogram 

is then found by integration, 
∫Vc

0
IdVc ≈ C1Vc

dVc
dt +

V2
c

2R1
, which allows us to 

extract the capacitance as 

Ceff = C1 ≈

∫ Vc
0 IdVc −

V2
c

2R1

Vc
dVc
dt

(18)  

Simply subtracting the power dissipated in the parallel resistor is 
therefore a good approximation if the series resistance Rs is small and 
can be neglected. The blue squares in Fig. 3 b) have been computed 
using Eq. (18), and a value of about 10.1 F occurs for Vc,max > 1 V, which 
is consistent with the value (10.3±0.2) F found using galvanostatic 
charging. 

Fig. 4. The solid line is the measured current as a function of time during a 
cyclic voltammogram, whereas the dashed line is a fit to Eq. (15) with C1=10.3 
F and R1=6.5 Ω and Rs=50 mΩ. 
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6. Impedance spectroscopy 

Impedance spectroscopy is based on applying a small, sinusoidally 
varying voltage V=V0eiωt across the supercapacitor, where i =

̅̅̅̅̅̅̅
− 1

√
, ω is 

the angular frequency and t is the time. The applied voltage variations 
are small about a zero mean, such that the current-voltage relationship is 
linear for all the frequencies considered. The current through the 
supercapacitor is then I=I0eiωt, and the impedance is measured as Z=V/I. 

According to the dynamic model of Fig. 1, one assumes that the 
supercapacitor can modelled as series of elements, where each element 
is a resistor Ri and a capacitor Ci in parallel. Each parallel circuit has 
impedance Ri/(1+jωRiCi) at a given angular frequency, and the total 
impedance a circuit consisting of N series-connected elements is 

Z = Rs +
∑N

i=1

Ri

1 + jωRiCi
, (19)  

where Rs is the series resistance. In the general case, one may transform 
this into a distribution of relaxation times τi=RiCi in order to describe the 
impedance of the supercapacitors, as was detailed in ref. [37]. In the 
current work a Randles-like circuit with N=1 as described in the two 
previous sections can be used to represent the supercapacitor studied 
here rather well, and the real and imaginary parts of the impedance can 
be written as 

ZRe = Rs +
R1

1 + (ωτ1)
2,ZIm = −

ωτ1R1

1 + (ωτ1)
2, (20)  

where the modulus is |Z| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Z2
Re + Z2

Im

√

and the phase is ϕ =

tan− 1[ZIm /ZRe]. The blue squares in Fig. 5 show |Z| and ϕ for the 
supercapacitor considered in this study obtained from galvanostatic 
impedance spectroscopy done in the frequency range 2 mHz to 1 MHz 
with 50 mA root-mean-square about zero average current. 

The black lines in Fig. 5 a) and b) show the fit of |Z| and ϕ, respec
tively, to the experimental data with Rs=40±4 mΩ, R1=60±10 Ω and 

C1=11±1 F with R2 = 0.9958. In order to be able to describe the high- 
frequency experimental data, a reactive component ωL was added to 
ZIm, where the inductance was L=131±2 nH. It should be noted from 
Fig. 5 that nearly pure capacitive behavior is displayed at frequencies 
below 0.5 Hz. When making a theoretical fit to the experimental data, 
one could either choose to extract the capacitance entirely from the low- 
frequency behavior of ZIm, or make a fit of the entire impedance curve 
which also takes into account the resistive behaviour that starts to 
display itself at frequencies 0.5 Hz or above. The latter is displayed in 
Fig. 5 a) and gives a capacitance C1=11±1 F which is in agreement with 
the values obtained for both galvanostatic charging and cyclic voltam
metry, if uncertainties are accounted for. However, it should be pointed 
out that the uncertainty of the capacitance obtained using impedance 
spectroscopy in this manner is rather large, simply because all the data 
in the impedance spectrogram are equally weighted during the fit. In ref. 
[16] it was also pointed out that the frequencies used are of outmost 
important. 

From Eq. (19) it follows that for small frequencies, but as a long as 
ωτi>>1, the equivalent capacitance can be obtained as 

1
∑N

i=1
1
Ci

= Ceq ≈ −
1

ωZIm
. (21)  

Eq. (21) or similar expressions is often used in the literature to determine 
the capacitance, and can be considered the traditional method [26]. 
Applied to the measured low-frequency part of the impedance spectrum 
between 0.01 Hz and 0.1 Hz where at the same time ωR1C1>>1, a value 
of the capacitance C1=11.6±0.2 F is obtained with R2 = 0.9996. As seen 
above, the uncertainty of the capacitance estimate based on the whole 
impedance spectrum is apparently 5 times higher than that obtained 
using the low frequency region only, and one might be tempted to 
conclude that the traditional approach using Eq. (21) is therefore most 
suitable. However, there are two problems. First, Eq. (21) entirely ne
glects the real part of the measured impedance. One could argue that the 
real and imaginary parts of the impedance should fulfill the 
Kramers-Kronig relationship anyway, thus making the real part redun
dant. However, this is erroneous, since Eq. (21) is not exact for all fre
quencies. Therefore, using Eq. (21) might lead to systematic errors 
which cannot be revealed unless one compares the capacitance with the 
value obtained using galvanostatic charging and cyclic voltammetry. 
Indeed, the fact that the value obtained using these two latter methods 
both give about 10.3 F, which is about one Farad lower than the value 
obtained using Eq. (21), may suggest that Eq. (21) is not as accurate as 
one could wish. From a measurement perspective, the deviation repre
sents a systematic error. However, it is likely that the deviation could be 
due to the difference in frequencies (rates) applied. It makes little sense 
to restrict the measurements to low frequencies where the capacitances 
cannot be compared with other methods in a reliable manner. A better 
approach is to do a fit of the theoretical formula, Eq. (19), to all the 
experimental data. This can be done by fitting the modulus and phase, or 
the real and imaginary parts, of Eq. (19) to the experimental data 
simultaneously. In doing so, one must expect larger uncertainties in the 
obtained value of the capacitance, because the model fit needs to ac
count properly for all the parts of the impedance spectrum by assigning 
different resistive and capacitive elements. 

It should be noted that the capacitance value obtained using the low- 
frequency part of the impedance data may not necessarily be consistent 
with the data obtained from galvanostatic charging and cyclic voltam
metry, since the latter approaches apply much faster voltage variations. 
In Figs. 2 and 3 the voltage rate is of the order 10 mV/s to 50 mV/s, while 
for the low frequencies between 0.01 Hz and 0.1 Hz in Fig. 5 the voltage 
rate is roughly two orders of magnitude smaller. Within the equivalent 
circuit of Fig. 1, this can be interpreted as follows: While fast changes 
allow a relatively broad distribution of relaxation constants to take part 
in the process, only the larger time constants remain during slow 
charging [37], which may alter the capacitance. Thus, when comparing 

Fig. 5. Measured impedance spectrograms of the modulus (a) and phase (b) are 
shown as blue squares, whereas the black lines are theoretical fits to Eq. (20) 
with Rs=40±4 mΩ, R1=60±10 Ω, C1=11±1 F and L=131±2 nH(For interpre
tation of the references to color in this figure legend, the reader is referred to the web 
version of this article.). 
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the different techniques such as galvanostatic charging, cyclic voltam
metry and impedance spectroscopy, one should be careful only reporting 
capacitance values that have been obtained using comparable applied 
voltage rates. 

Rather slow voltage rates are investigated using impedance spec
troscopy, but even slower rates occur in the case of self-discharge. The 
self-discharge of supercapacitors is often observed as a very slow drop in 
voltage after charging, and is known to be governed by slow dynamics 
due to for example redox-reactions, leakage currents or internal charge 
redistribution [56,67]. While this work has analyzed three techniques 
that are often used to determine capacitance, future work might also 
address in detail the capacitance of a supercapacitor when the slowest 
relaxation rates are governing the system. 

7. Guidelines for extraction of capacitance of a supercapacitor 

The work presented in the previous sections can be condensed into 
guidelines on how to extract capacitance of a supercapacitor. There are 
three methods; galvanostatic charging, cyclic voltammetry and imped
ance spectroscopy. Each technique utilizes the corresponding formulas 
listed in Table 1 to extract capacitance. 

To this author, it appears that galvanostatic charging allows the most 
straightforward and easily implementable method, while both cyclic 
voltammetry and impedance spectroscopy require more care when 
extracting capacitance. The results obtained using the different tech
niques can only be compared if taken under similar conditions with 
respect to charge condition and rate of change. 

Galvanostatic charging: Before galvanostatic charging is 
commenced, the capacitor should first be cycled a few times if it is new, 
and then be short-circuited without overloading it for a sufficiently long 
time to ensure that the voltage remains at a level comparable to the 
uncertainty with which measurements can be taken repeatedly (typi
cally in the μV - mV range). One then needs to plan which current is to be 
used to ensure that the results are comparable to measurements ob
tained using cyclic voltammetry and impedance spectroscopy. To 
determine the capacitance using galvanostatic charging, it is recom
mended that one determines the initial slope of the voltage-versus-time- 
curve, (dVc/dt)t<<τi. Then one needs to divide the applied current I0 
with this slope to get the capacitance according to Eq. (10). Note that 
this procedure is different from the one usually applied. If one for 
example uses the average slope of the charging curve at arbitrary time 
intervals, one fails to include the resistive contribution. Moreover, if one 
decides to use any other parts of the slope at which the supercapacitor is 
already charged, one needs to account for the resistive contribution. A 
consequence of this observation is that one should be careful using the 
discharge curve for finding the capacitance. Discharge curves allow one 
to estimate the charge extracted, as opposed to charging curves which 
tells how much charge is put into a supercapacitor. Discharge curves 
have therefore often been assumed to be best suited for estimating the 
capacitance. For example, in ref. [68], the capacitance is found by 
dividing the applied current with slope of the discharge curve. However, 
by doing there is a danger that one might neglect the resistive contri
bution. If one really wishes to use the discharge curve to extract the 

capacitance, a suitable formula can be obtained by modifying Eq. (9) 
using Eq. (7) such that 

dVc(t)
dt

=
∑N

i=1

I0 −
Qi(0)

τi

Ci
e− t/τi , (22)  

where it should be remembered that I0<0 and dVc/dt < 0 for dis
charging. It is seen from Eq. (22) that the voltage-time curve becomes 
steeper for larger initial charges or lower time constants. That is, a 
discharge curve, which in general is described by Eq. (22) does not allow 
an easy estimate of the capacitance even for the initial part of the 
discharge curve t<<τi unless I0>>Qi(0)/τi or the time constants τi are 
already known. If these latter conditions are fulfilled, one may use Eq. 
(10) to extract the capacitance. However, this requires knowledge about 
τi, and the logical choice of method for extracting the capacitance is 
therefore galvanostatic charging starting from an uncharged state. 

Cyclic voltammetry: There are no particular prerequisites prepar
ing a supercapacitor before cyclic voltammetry, since the supercapacitor 
is usually cycled several times during measurement. However, one needs 
to make sure that Faradaic charge transfer does not appear in the cyclic 
voltammogram. A further discussion of this is given in the next section. 
The capacitance can be extracted from a cyclic voltammogram using Eq. 
(16), which is valid as long as the supercapacitor can be described 
adequately using a Randle-type equivalent circuit (N=1) and one wait 
sufficiently long time such that the current can be described by I(t)=
C1dVc/dt+Vc(t)/R1. If one instead wishes to use the area of the cyclic 
voltammogram to extract capacitance, it is appropriate to apply Eq. 
(18). For online purposes of fast capacitance evaluation, Eq. (16) might 
be more useful since it allows continuous monitoring of capacitance as 
the cyclic voltammogram is traced. On the other hand, Eq. (18) only 
outputs singular values of the capacitance after each complete cycle. 

Impedance spectroscopy: Galvanostatic impedance spectroscopy is 
an impedance technique often used to study supercapacitors, and the 
sinusoidal current variations are usually small (e.g. in the mA range). 
The standard approach utilizing the imaginary part of the impedance in 
Eq. (21) works well as long as one is only interested in the capacitance at 
low frequencies, corresponding to very small voltage rates in galvano
static charging or cyclic voltammetry. However, if one is interested in 
comparing the capacitance extracted at higher voltage rates with those 
of impedance spectroscopy, the higher frequency part of the spectrum 
above must also be taken into account. Under such circumstances, one 
should use Eq. (19) to fit the full impedance spectrum. Since the ob
tained capacitance is somehow a compromise of fitting the model to the 
full impedance spectrum, one might expect larger uncertainty in the 
obtained value than using Eq. (21). If Eq. (19) with N=1 does not pro
vide an adequate fit to the experimental data, one should extract the 
distribution of relaxation times, as detailed in Ref. [37]. However, it 
should be emphasized that this is sometimes a numerically challenging 
task, which does not lead to singular capacitance that be used to assess 
supercapacitors. Under such circumstances, it might therefore be more 
convenient resorting to either galvanostatic charging or cyclic 
voltammetry. 

8. Extension to pseudocapacitors 

The guidelines presented in the previous section were made under 
the assumption that charge storage is governed by the electrical double 
layer. This is the case in many carbon-based supercapacitors. Under 
some circumstances redox-reactions might be present in carbon-based 
supercapacitors, due to for example the presence of minor amounts of 
oxygen [61], but these are most often parasitic and therefore do not 
contribute to charge storage. Such parasitic redox-reactions can be 
modelled using resistors in the equivalent circuit of Fig. 1 as long as the 
response is linear. Under circumstances where linearity fails, one needs 
to subtract the nonlinear contribution. 

Pseudocapacitors are supercapacitors based on for example 

Table 1 
Essential formulas for extracting capacitance of a supercapacitor.  

Method Equation for capacitance 

Galvanostatic 
charging 

I0
(

dVc(t)
dt

)

t≪τi

Eq. (10)  

Cyclic voltammetry 
I(t) −

Vc(t)
R1

dVc

dt

Eq. (16), 

∫ Vc
0 IdVc −

V2
c

2R1

Vc
dVc

dt

Eq. (18)  

Impedance 
spectroscopy 

Fit Eq. (19) to experimental data, Rs +
∑N

i=1
Ri

1 + jωRiCi 
Eq. (19)   
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conducting polymers, nitrides or transition-metal oxides, where the 
charge can be stored either in a non-Faradaic manner in the electrical 
double layer as well as through Faradaic electron transfer associated 
with redox-reactions. It should also be pointed out that by for example 
treating carbon nanostructures with acids has been suggested as a 
method to increase the charge storage possibly in a Faradaic manner 
[69], although it has not entirely been ruled out that an increased 
contribution of the electrical double layer could contribute as well. In 
general, it is challenging to use a single measurement technique based 
on current-voltage measurements to differentiate between parasitic 
redox-reactions that do not contribute to charge storage, and 
redox-reaction that do contribute to charge storage. One therefore needs 
common ways to describe charge storage in a pseudocapacitor. To this 
end, a good question is whether capacitance is a suitable way to repre
sent the charge storage capability, or if it instead should be measured 
directly as the charge that can be extracted from a loaded 
pseudocapacitor. 

It has been stated that both non-Faradaic charge storage in the 
electrical double layer as well as Faradaic charge transfer associated 
with redox-reactions give rise to a current that is proportional to the 
charge rate [45,46]. The model in Section 2 demonstrated how this 
works for the electrical double layer. A simple near-equilibrium model 
valid for redox-reactions based on localized electrons and low scanning 
rates can be used to illustrate the contribution of Faradaic charge 
transfer to the current during cyclic voltammetry [70,71]. Consider a 
redox-reaction where ox+ne− ↔red, where ox is the oxidized species, 
red is the reduced species, and n is the moles of electrons e− . If the 
standard redox-potential is E0 and the mole-fractions of oxidized and 
reduced species are Xox and Xred, respectively, the potential of the 
redox-reaction can be approximated by the Nernst equation 

E = E0 +
RT
nF

ln
(

Xox

Xred

)

, (22)  

and the current can be found as [70,71] 

Iredox = a
dVc

dt
e

nF
RT (E− E0)

⎡

⎣1 + e
nF
RT (E− E0)

⎤

⎦

2, (23)  

where a is a constant, R is the universal gas constant and T is the tem
perature. It is seen that the current due to this redox-reaction is pro
portional to the scan rate dVc/dt during cyclic voltammetry, which is the 
same behavior one expects from a electrical double layer supercapacitor. 
However, the nonlinear peak-shaped behavior associated with a single 
peak such as that exhibited by Eq. (23) does not allow extraction of a 
reliable capacitance value. 

As pointed out in ref. [71], the galvanostatic charge-discharge curve 
can be obtained by linking the mole fraction of the reduced or oxidated 
species to the current passed in Eq. (22). This gives rise to voltage versus 
time curves which first quickly grow with time, then remain almost 
constant for a while, before quickly growing again. This is very far from 
the behavior normally associated with a capacitor, and a capacitance 
cannot be reliably determined if the redox-reaction is due to localized 
electrons governed by Nernstian dynamics as described by Eq. (22). For 
such situations where localized electrons govern the behavior it is 
probably more convenient and accurate to directly let the charge 
extracted out of the device to be a measure of its ability to store charge. 

In some cases, the redox-reactions might be governed by delocalized 
electrons [70], which allow a large number of peaks which eventually 
sum up to a very broad peak which gives rise to cyclic voltammograms 
and charging curves that resemble those of electrical double layer 
supercapacitors. The cyclic voltammogram as well as the galvanostatic 
charging curve will now look almost like that of a supercapacitor based 
on an electrical double layer charge storage. Examples of such curves are 

shown in Fig. 6. 
Let us first try to analyze the case of cyclic voltammetry as depicted 

in Fig. 6 a). In analogy with Eqs. (1) and (16), the current is given 
I=CpseudodVc/dt+Vc(t)/R1 + Iredox + Ip, where Iredox is the Faradaic charge 
transfer rate associated with localized electrons which in some cases can 
be described using Eq. (23), while Ip is due to parasitic redox-reactions 
near the end of the potential window. The two latter are nonlinear 
contributions that must be added to the linearized Eq. (1) to get a 
reasonable model of the system. By doing so, one assumes that the 
currents are additive, which is a simplifying model assumption that must 
be checked independently by experiments. The parasitic current repre
sented by Ip is often described phenomenologically by the Butler-Volmer 
equation [70]. 

The solid, black line in Fig. 6 a) shows a typical cyclic voltammogram 
for a pseudocapacitor, containing both singular peaks due to redox- 
reactions of localized electrons as well as a broad distribution of peaks 
due to delocalized electrons. Upon subtracting the singular redox-peak 
and the parasitic contribution, i.e. finding I- (Iredox+Ip), the dotted red 
curve in Fig. 6 a) remains. One now has I- (Iredox+Ip)=CpseudodVc/ 
dt+Vc(t)/R1, where the capacitance Cpseudo can be found in the same 
manner as described in the previous section electrical double layer 
supercapacitors. The blue, dashed curve in Fig. 6 a) illustrates the final 
curve resembling that of an electrical double-layer supercapacitor 
without resistive contributions. However, one should note that both 
Faradaic and non-Faradaic charge storage mechanisms might both be 
governing the behavior, despite its apparent similarity with that of an 
ideal capacitor. Thus, if one is going to use the procedure for cyclic 
voltammetry described in the previous section on pseudocapacitors, one 
first has to remove the contributions that are due to both isolated redox 
centers as well as parasitic contributions. A problem with this approach 
is that it is hard to extract both Iredox and Ip independently and in a 
reliable manner, thus leaving the remaining determination of Cpseudo 
prone to systematic errors. In ref. [71] both Iredox and Ip, in addition to 
the ohmic contributions were associated with a ‘contribution’ to the 
capacitance as obtained from a single cyclic voltammogram. Here, I 
argue that comparing contributions to capacitance in this manner would 
be misleading, since technically one can only speak about capacitance in 
a manner that allows comparison between techniques if the cyclic vol
tammogram has the shape that allows proper comparison. If this is not 
case, one should instead identify the charge storage mechanisms sepa
rately, and rather report the charge stored instead of the capacitance. 

Based on the observations made for cyclic voltammetry, it is now 
possible to discuss the case of the galvanostatic charging as depicted in 
Fig. 6 b). Eq. (10) can be used also in this case if it is known that the 
contribution is due to the delocalized electrons causing Faradaic charge 

Fig. 6. In a) the full cyclic voltammogram is shown as a solid, black line. The 
dotted, red line is obtained by subtracting the current due to redox peaks 
associated with localized electrons as well as parasitic redox reactions. The 
blue, dashed line is obtained after subtracting the resistive contribution from 
the red, dotted line. In b), the solid black line is the full galvanostatic charge- 
discharge curve, whereas the blue dashed line is a linear fit to the initial 
charging curve(For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.). 
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transfer as discussed above. To this end, it is often possible to select a 
potential window wherein the contribution from redox peaks or other 
parasitic contributions are negligible. The method utilizing galvano
static charging and Eq. (10) works at low potentials, which means that 
this procedure should in many cases be directly applicable also to 
pseudocapacitors as well. However, again it is important to stress that 
the obtained value of capacitance from Eq. (10) does not take into ac
count singular redox-peaks, which should be reported separately as 
charge stored. 

Finally, it could be mentioned that the assumptions of small polari
zation discussed above should also allow Eq. (19) to be applicable for 
extraction of capacitance using impedance spectroscopy. However, 
pseudocapacitors will most likely require N>1 and therefore be repre
sented by more than a single capacitance value. However, a further 
discussion of this is outside the scope of the current work. 

8. Conclusion 

The aim of this work has been to propose methods for consistently 
extracting capacitance values associated with an equivalent circuit using 
galvanostatic charging, cyclic voltammetry and impedance spectros
copy. Several different methods are considered, and their benefits and 
shortcomings are discussed. While the current work is concerned with 
carbon-based supercapacitors utilizing charge storage associated with 
the electrical double layer, it is discussed how the methods can be 
extended to pseudocapacitors as well, thus providing a tool for consis
tently reporting capacitance of such devices. 
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