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A B S T R A C T   

Supercapacitors are prone to self-discharging, which is most often measured as a voltage decrease with time 
under open circuit conditions. It is of substantial interest to find simple and general methods to extract infor-
mation about the processes going on in the supercapacitor during self-discharge. The current work fits a stretched 
exponential function to experimental data available in the literature, thus extracting parameters that allows one 
to probe the internal processes of the supercapacitor. In particular, experimental data related to charge holding 
time, charging rate before self-discharge and temperature dependence are investigated. It is demonstrated how 
the fitting data can be understood in terms of a kinetic model exhibiting a distribution of rate constants which are 
related to the fitting parameters. The current work therefore proposes a method that allows one to quickly map 
the internal processes of a self-discharging supercapacitors with only two variables, and might therefore become 
a useful tool.   

1. Introduction 

The Leyden jar was probably the first man-made capacitor, invented 
in 1745 [1]. Its ability to store electrical energy played a crucial role for 
the development of science and technology the following century. 
However, it was also known that the Leyden jar lost charge as time 
passed by. In 1854, Kolrausch investigated the decay of charge from a 
Leyden jar, and found that it did not follow a simple exponential decay 
law on the form exp(− t /τ1) with decay time τ1 as one might expect [2]. 
Instead, he introduced a stretched exponential function on the form 
exp[− (t/τ)β

] to explain the observed decay, where 0<β≤1 is a constant 
that sometimes has been denoted the Kolrausch parameter and τ is the 
decay time at which one has crossover from faster-than-exponential to 
slower-than-exponential decay. The stretched exponential function was 
‘reinvented’ in 1949 by Főrster to explain fluorescence resonance energy 
transfer [3] and then in 1970 by Williams and Watts to explain dielectric 
spectra [4]. Since then, the stretched exponential function has been used 
extensively to explain the behavior of glassy states, luminescence decay 
and electronic systems in terms of a distribution of relaxation times [5, 
6]. However, it should be pointed out that also models not requiring a 
distribution of relaxation times have been developed which give rise to a 
stretched exponential function. These latter models are either based on 
intermediate kinetic steps [7] or time-dependent rate constants associ-
ated with rate laws [8] or the equations of motion [9,10]. 

An interesting and timely question is whether stretched exponential 
functions can provide useful information about the self-discharging of 

supercapacitors. Supercapacitors were patented in 1957 and introduced 
to the commercial market in the late 1970s [11,12]. Supercapacitors 
utilize charge accumulation in dielectric double layers due to the use of 
appropriate electrolytes, combined with nanostructured surfaces to in-
crease the area available to store charge. They can be modelled using 
either microscopic models [13–18] or equivalent circuits [19–33], 
where the latter often are preferred in practical applications due to the 
smaller computational load and complexity. The self-discharge of 
supercapacitors is a considerable problem, and is often observed as a 
time-dependent drop in voltage after charging. This experimentally 
observed self-discharge could be due to internal redistribution of charge 
along the electrode surface, redox reactions at the electrode surface, or 
leakage currents [34–47]. Blocking layers on the carbon electrodes are 
known to reduce the problem of self-discharge, but often at the cost of 
reduced capacitance and energy storage [48,49]. It has also been 
demonstrated that the self-discharge can be altered by controlling the 
surface chemistry of a carbon surface [39,50], although much remains to 
be understood. Self-discharge can be used as a diagnostic tool, and has 
been found to be faster than conventional tools such as potential floating 
when determining the stability of supercapacitors based on ionic liquids 
[51]. 

To date, neither timescale or the shape of the voltage-decay curve 
have been reproduced suitably well using microscopic models. Such 
models for charge distribution in porous structures often rely on a range 
of assumptions that are very challenging to verify experimentally. To 
improve and understand supercapacitors, one needs not only complex 
microscopic simulations, but also simple tools that allow quick and 
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efficient mapping of crucial parameters. A stretched exponential func-
tion with β=0.5 was in Ref. [45] conjectured from diffusional dynamics 
and used to explain long-time self-discharging of supercapacitors. A 
further analysis of modelling self-discharge of supercapacitors using a 
distribution of relaxation times in an equivalent circuit network was 
given in Ref. [52], although no attempt was made to provide a sys-
tematic study of available data in the literature. The current study 
proposes the use of a kinetic model with a distribution of 
time-independent rate constants to fit to the experimental data for the 
self-discharge of supercapacitors. A systematic analysis of experimental 
data available in the literature for self-discharge of supercapacitors is 
made assuming that the voltage decay can be fitted to a stretched 
exponential function. Such a study is of interest as it allows one to 
quickly map some of the internal processes of a self-discharging super-
capacitors with only two parameters. 

2. Self-discharge due to a distribution of relaxation times 

A kinetic model should be based on the features that are known to 
characterize supercapacitors. As shown in Fig. 1, it is known that the 
electrolyte penetrates in between carbon pores of a range of different 
sizes, where redox reactions or charge redistribution takes place. A 
possible scenario is that there are many decay constants, each corre-
sponding to a set of sites or series of events each of a fixed decay 
constant. 

Each local region has a large number of ions taking part in the charge 
transfer reaction, and is assumed to be governed by first-order kinetics of 
the type dNfi/dt=-kfiNfi, where Nfi is the local density of charges at site i 
and kfi=kfi0exp(-ΔEi/kBT) is the local decay constant at that site that is 
assumed to follow a Eyring or Kramers type of activation [53,54]. Here 
kB is Boltzmann’s constant and T is the temperature, while ΔEi is the 
activation energy. This could be due to for example rearrangement of 
charge or redox-reactions, but here the detailed reaction mechanisms 
will not be required to develop the model. The charge then follows 
Qfi=Qi(0)exp(-kfit), where Qi(0) is the initial charge at the site. If we 
assume that the supercapacitor consists of a large number of sites that 
accumulate charge, and that each of these charges decay exponentially 
with time, the total charge is 

Q(t) =
∑N

i=1
Qi(0)e− kfi t. (1) 

As pointed out in Ref. [52], the voltage over a supercapacitor might 
be related to the charge by Vc =

∑N
i=1

Qi
Ci
+ RsI, where Qi and Ci are the 

charges and capacitances associated with particular site i, Rs is the series 
resistance and I the current through the supercapacitor. Since RsI is very 
small during self-discharge, it is convenient to write the voltage over the 
entire supercapacitor as 

Vc(t) =
∑N

i=1
Vi(0)e− kfi t, (2)  

where Vi(0)=Qi(0)/Ci can be interpreted as a local voltage for a 
particular site as it occurs with a certain probability fraction γi. That is, if 
the initial voltage at t=0 is V0, then Vi=γiV0 where 

∑N
i=1γi = 1. There-

fore, one can write 

Vc(t) = V0

∑N

i=1
γie− kfi t. (3) 

If one assumes that the number N is very large, a continuous distri-
bution can be assumed, such that the sum becomes an integral and 

Vc(t) = V0

∫ ∞

0
P
(
kf
)
e− kf tdkf , (4)  

where V0 is constant. Let us now define s=kf/kf0, where kf0 = 1/τ is a 
representative constant which the distribution of rate constants is 
distributed around. If one further defines P(s)=kf0P(kf), eq. (4) can be 
written as 

Vc(t) = V0

∫ ∞

0
P(s)e

−

(
t
τ

)
s
ds. (5) 

While the Laplace transform of eq. (5) can be fitted to any experi-
mental self-discharge data, obtaining the corresponding P(s) could be 
computationally challenging. However, one exception is the stretched 
exponential on the following form, 

Vc(t) = V0e
−

(
t
τ

)β

, (6)  

where β and τ are used as fitting constants. Here β can tell us something 
about the distribution P(s), in the sense that a small value of β gives a 
wide distribution whereas when β=1 represents a single decay rate. It 
should be emphasized that unless β=1, one cannot interpret τ as a 
representative or average decay rate [5]. In fact, τ should be understood 
as a fitting constant which provides information about the crossover 
from super-exponential to sub-exponential decay. The distribution of 
constants P(s) can be found by requiring 

Fig. 1. Schematic drawing of the construction of a supercapacitor.  
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∫ ∞

0
P(s)e

−

(
t
τ

)
s
ds = e− (t/τ)β

, (7)  

where the condition V(0)=V0 requires that 
∫∞

0 P(s)ds = 1. It should be 
emphasized that tabulated tables are available for different values of β 
[55], thus making the extraction of P(s) computationally very simple. 
The distribution function P(s) is clearly linked to a distribution of rate 
constants. However, to link it directly to microscopical geometrical 
parameters of the pores of the supercapacitor would require microscopic 
measurements of the charge decay processes, which is a topic outside the 
scope of the current work. Nonetheless, one may be able to use the 
knowledge about the fitted constant β and the distribution function P(s) 
as a diagnostic tool complementing already existing methods. 

Some studies have already demonstrated that an empirical expres-
sion two exponential constants could be fitted to the experimental data 
[37,38,49]. The current work extends that approach to a distribution of 
constants. Given that there have been no systematic studies of how the 
stretched exponential can be used to fit the experimental data for 
self-discharge in the literature, it was in this study decided to extract 
some of the available data in order to find out what can be learned from 
a fit of eq. (6) to those data. In the current study the MatLab program 
grabit.m was used extract data from different published experimental 
self-discharge curves, and the MatLab function nlinfit was used to make 
nonlinear fits of eq. (6) to the experimental data. 

2.1. Hold time 

Figure 2 a) shows eq. (6) fitted to the experimental data in Fig. 2 of 
Ref. [36] for different hold times. The hold time is the time period over 
which the capacitor is held at a certain voltage after charging, such that 

the charge has time to redistribute. In Fig. 2 a) the red line are data for a 
hold time of 15 min, and the corresponding dash-dotted line is a fit of 
eq. (6) with the parameters kf0 = 1/τ = 5.9∙10− 9 s− 1 and β=0.38. The fit 
is good as indicated both visually and by the value R2=0.9969. The 
green line is the experimental data for 2 h hold time, with the dotted line 
a fit of eq. (6) with kf0 = 1/τ = 5.8∙10− 8 s− 1, β=0.62 and R2=0.9988. 
The blue line corresponds to 5 days hold time, while the dashed line is a 
fit to eq. (6) with kf0 = 1/τ = 1.4∙10− 7 s− 1, β=0.90 and R2=0.9986. By 
comparing the three fits, it appears that both kf0 and β increase with the 
hold time, which is of interest as it suggests that these parameters are 
sensitive to the charge redistribution taking place in the supercapacitor. 

To obtain further insight, eq. (6) was fitted to the self-discharge 
voltage decay the data in Fig. 2 in Ref. [36] and Fig.7 in Ref. [40] to 
obtain values for β and τ=1/kf0, displayed in Fig. 3 a) and 3 b), 
respectively. The trend suggests that the stretching factor β increases 
with the hold time th, but appears to saturate close to single exponential 
decay behavior as β goes to 1. At holding times approaching 105 s there 
is a deviation in this trend obtained from the data in Ref. [40], but it does 
not alter the overall impression. On the other hand, the parameter τ 
appears to decrease with th, although one might speculate whether there 
is a limiting lower value based on the data. It should be emphasized 
strongly that τ is a fitting constant and cannot be associated with a decay 
constant in the same way as for single-exponential decay [5]. Thus, one 
cannot conclude from Fig. 3 b) that overall the decay constants decrease 
with the holding time. In fact, τ can only provide useful information 
about the crossover from super-exponential to sub-exponential decay, 
which means that the extracted parameters from Ref [36] in Fig. 3 b) 
suggests that the crossover happens more quickly as the holding time 
increases. The values of τ extracted from the data from Ref. [42] show 
significant fluctuations, and here one cannot clearly conclude whether 
there is indeed a decreasing trend similar to that obtained for the data 
from Ref. [36]. 

Since the trend in Fig. 3 a) is suggests strongly that β increases with 
the holding time, this should have implications for the distribution of 
rate constants P(s). Figure 3 c) shows the distribution function P(s) for 
β=0.38 (solid line), 0.62 (dashed line) and 0.90 (dash-dotted line), 
corresponding to the circles in Fig. 3 a). This distribution function might 
help us explain the results observed in Fig. 3 a). It is known that the fast 
charging and charge neutralization in the pores of a supercapacitor re-
sults in a non-equilibrium configuration of ions [56,57]. For small values 
of the holding time this results in a relatively fast self-discharge with a 
broad range of distributions constants, as seen in Fig. 3 c). As the holding 
time increases, the configuration of ions becomes more stable and 
possibly also reaching a larger range of the pores. This means that fewer 
of the decay modes are available for self-discharge, and in fact now the 
voltage follows more closely a single exponential decay curve. 

For comparison, it should be mentioned that the original data ob-
tained by Kolrausch can be fitted using β=0.43, and this particular value 
has found use in a range of systems [6]. However, in the case of 
supercapacitors the value of β varies according to the situation consid-
ered, and there is no unique or universal value. 

2.2. Current 

One interesting question is whether the observations of self- 
discharge decay for different holding times presented in Fig. 3 also 
coincide with the interpretation of other data available in the literature. 
In Ref. [25] it was systematically investigated how the voltage decay 
curve was influenced by the applied current I0 during charging. The 
holding time was here assumed to be the same in all the experiments. 
Equation (6) has been fitted to the experimental voltage decay data in 
Fig. 11 in Ref. [25], and the extracted values for β and τ=1/kf0 are 
presented in Fig. 4. The fits were obtained with R2 values 0.9984, 
0.9941, 0.9942 and 0.9650 for I0=0.012 A, 0.06 A, 0.3 A and 1.5 A 
respectively. Most of the fits are therefore rather good, perhaps except 
for the largest current, although the origin of the deviation is not known. 

Fig. 2. In a) the experimental data are extracted from Fig. 2 in ref. [36] for the 
voltage over the supercapacitor during self-discharge for different hold times 
after charging. The red line is for 15 min hold time, with the dash-dotted line a 
corresponding fit using eq. (6). The green line is for 2 h hold time, with the 
dotted line a corresponding fit using eq. (6). The blue line is for 5 days hold 
time, with the dashed line a corresponding fit using eq. (6). In b) the experi-
mental data are extracted from Fig. 5 in Ref. [36] for a self-discharging 
supercapacitor at T=313 K (red line), T=296 K (green line) and T=256 K 
(blue line). The dash-dotted, the dotted and the dashed lines are corresponding 
fits of eq. (6) to the experimental data. The experimental data are extracted 
from Ref. [36] and used with permission from Elsevier. 
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The squares in Fig. 4 correspond to the supercapacitor being charged 
by a current I0 =1.5 A to 1.2 V, 1.7, 2.2 V and 2.7 V. From the data 
presented in Fig. 4 a), it is seen that the fitting constant τ increases with 
applied current I0 during charging. It was found that τ decreases from 
4∙106 s for a final voltage V0=1.2 V to about 2∙106 s for a final voltage 
V0=2.7 V for a constant charging current I0 =1.5 A. The data for the 
other values of V0 (1.7V and 2.2 V) appear to be clustered around 3∙106 

s. This suggest that the crossover from super-exponential to sub- 
exponential decay happens more slowly as the current I0 increases, 
but is slowed down if the supercapacitor is charged for a longer time to 
higher final voltages. However, one should be extremely careful putting 
specific meaning to this, as it does not appear reasonable that merely 
altering the final voltage could change the crossover parameter τ. Most 

likely further measurement data over a longer period are needed to be 
able to conclude on the behavior of τ for different voltages, but the 
author was not able to identify such data in the literature. 

On the other hand, the Kolrausch parameter β decreases clearly with 
applied current, and appears to be independent of the final voltage V0 
for a given constant charging current. These observations suggest that as 
the current increases, the distribution of rate constants P(s) gets broader 
thus exciting more decay modes as the system is brought further out of 
equilibrium. 

2.3. Temperature 

The voltage over a self-discharging supercapacitors as a function of 
temperature has been reported in several studies [24,35,36,58]. Figure 2 
b) shows eq. (6) fitted to the experimental data in Ref. [36] for different 
temperatures. The red line is data for T=313 K, and the corresponding 
dash-dotted line a fit to eq. (6) with kf0 = 1/τ = 2.3∙10− 7 s− 1 and 
β=0.59. The green line is the data for T=296 K, with the corresponding 
dotted line a fit to eq. (6) with kf0 = 1/τ = 1.8∙10− 8 s− 1 and β=0.46. 
Finally, the blue line corresponds to experimental data taken at T=256 
K, and the dashed line is a fit of eq. (6) with kf0 = 1/τ == 7.44∙10− 9 s− 1 

and β=0.46. All the fits in Fig. 2 b) appear to be good with values 
R2>0.994. It is obvious from the difference in curve forms in Fig. 2 a) 
and 2 b), as well as the obtained fitted data, that the two parameters τ 
and β react differently to temperature and hold times. 

To obtain further insight, eq. (6) was fitted to the self-discharge 
voltage decay the data in Fig. 5 in Ref. [36], Fig. 17 in Ref. [24] and 
Fig. 14 in Ref. [58] to obtain values for β and τ=1/kf0. The values for 
τ=1/kf0 and β are displayed in Fig. 5 a) and 5 b), respectively. The data 
in Fig. 5 a) appear to indicate that the value of τ decreases with 
increasing temperature, thus suggesting that the crossover from 
super-exponential to sub-exponential decay happens more quickly as the 
temperature gets higher. The value of β extracted from Refs. [28,36] 
display values close to 0.5, consistent with a diffusional process as 
described in Ref. [45]. However, the value of β extracted from Ref. [58] 
is closer to 0.3, thus suggesting an even wider distribution of rate con-
stants. Interestingly, it is noted that in all the studies, β does not change 
much with temperature. Therefore, it is reasonable to conclude that the 
distribution of rate constants P(s) does not change much when the 
temperature of the supercapacitor increases. However, the decay modes 
are pushed from super-exponential to sub-exponential more quickly as 
indicated by a decreasing τ. 

Fig. 3. The values of β (a) and τ (b) are extracted from the experimental data in Fig. 2 of Ref. [36] (squares) and Fig. 7 of Ref. [40] (circles). In c) the distribution of 
rate constants is shown for β=0.38 (solid line), 0.62 (dashed line) and 0.90 (dash-dotted line), corresponding to the three black boxes in a). 

Fig. 4. The fitting parameters τ (a) and the β (b) as a function of current I0 
during charging to 2.7 V obtained fitting eq. (6) to the data in Ref. [25] and 
shown as circles. The black boxes are the values obtained when I0=1.5 A was 
used to charge the supercapacitor to 1.2 V, 1.7, 2.2 V and 2.7 V. 
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3. Self-discharge controlled by a single time-varying decay rate 

In the previous section it was assumed that the voltage decay 
observed during discharging was due to a distribution of rate constants. 
The approach taken on in this work is different from that of numerous 
previous studies, where it has been assumed that one or two rate con-
stants could be used to explain the results [33,35,48]. However, it is 
clear that if one is to interpret the self-discharge voltage in terms of a 
single exponential decay rate, this rate must be varying with time. At the 
same time, one should also note that experimental data at nominal [38] 
and excessive voltages indicate that activation takes place [59]. 

Let us see how an approach based on a single decay rate can be 
developed by redefining the basic assumptions. Assume now that all 
charges contribute, such that they are all in the final state and follow 
first order kinetics dNf(t)/dt=-k(t)Nf(t). We will also assume that the 
charges may dissociate from their position according to a Kramers - type 
thermal activation rate given by 

k(t) = k0e−
ΔE(t)
kB T , (8)  

where k0 is the dissociation rate in absence of forces, kB is Boltzmann’s 
constant and T is the temperature. Here ΔE(t) is the potential energy 
barrier which must be overcome to for the ions to dissociate. The energy 
barrier may change slowly with time as the charges are rearranged or 
driven from intermediate positions and into new positions where they 
cannot contribute to the charge effectively stored at the capacitor 
electrodes. The gradual dissociation of charges from the electrode is 
described by noting that each time a charge is removed, the energy ΔE 
decreases a little bit and therefore can be considered time-dependent if 
one view it over a longer time interval. From eq. (8) it is also seen that 
when the temperature increases or ΔE decreases, the rate kf increases. If 
the elemental charge is q and we assume that Q=qNf with initial charge 
Q0=qNf0, then 

dQ(t)
dt

= − k(t)Q(t), (9)  

which has a solution given by 

Q(t) = Q0e−
∫ t

0
k(t)dt

. (10) 

In most cases the voltage is measured over a self-discharging 
supercapacitor, and it is therefore of interest to find its time- 

dependency according to the theory presented here. Let us assume 
that the charge stored is proportional to the voltage according Q(t)=C(t) 
Vc(t), where C(t) is a time-dependent capacitance. The initial charge is 
Q0=C0V0, where C0 is the initial capacitance and V0 is the initial voltage. 
Equation (10) then gives 

Vc(t) =
C0V0

C(t)
e−

∫ t

0
k(t)dt

. (11) 

If the capacitance remains approximately constant, one may write C 
(t)≈C0. In order to proceed, one needs to know the details of the in-
teractions between the charges causing a specific time-dependence of 
the rate constant. In the special case that the decay rate follows a power 
law on the form k(t) = k0tβ− 1, with k0 a temperature-dependent con-
stant, corresponding to a logarithmic time-dependency ΔE(t)=-kBTln 
(k0/kf0)+kBT(1-β)ln(t), then the charge decay becomes a stretched 
exponential function 

Vc(t) = V0e
−

(
t
τ

)β

, τ =

(
β
k0

)1/β

(12) 

This is the same as eq. (6), but with different interpretations of β and 
τ. The main difference between the two approaches is that while the 
theory behind eq. (6) assumes a distribution of rate constants, the theory 
behind eq. (12) assumes a time-dependent rate constant. Equation (9) 
states that this time-dependent constant k(t) can be found according to 

k(t) = −

dQ(t)
dt

Q(t)
= −

I(t)
∫ t

0 I(t)dt
, (13)  

where I(t) is the current. Thus, the charge Q stored by the capacitor or 
the current I due to charge rearrangement or redox-reactions can be used 
to evaluate the rate constant and the aggregated barrier energy ΔE. 
However, in most cases the voltage is measured over a supercapacitor, 
which complicates the determination of the rate constant. The rate 
constant is given by 

k(t) = −

d[C(t)Vc(t)]
dt

C(t)Vc(t)
= −

dVc(t)
dt

Vc(t)
−

dC(t)
dt

C(t)
, (14)  

such that only when (dVc/dt)/Vc>>(dC/dt)/C the contribution from a 
changing capacitance can be neglected. Fortunately, the large capaci-
tance C of many supercapacitors, combined with the relatively small 
change in capacitance with self-discharge, allows one to neglect the 
second term of Eq. (14), thus giving easier access to the rate constant k(t) 
through voltage-time data. 

The black triangles (Δ and ∇) in Fig. 6 a) are the rate k(t) obtained 
from data of Fig.14 in Ref. [58] for T=248 K (∇) and T=338 K (Δ). The 
dashed and dash-dotted lines are fits of eq. (12) these data with 
k0=1.5∙10− 4 s− 1 and β=0.3386 (value from Fig. 5) for T=248 K (Δ), and 
with k0=2.5∙10− 3 s− 1 and β=0.2643 (value from Fig. 5) for T =338 K 
(Δ). It is noted that the overall agreement appears reasonable, but the R2 

is low (<0.9) due to significant fluctuations in the extracted rate con-
stants. The reason for these fluctuations, which occur particularly for 
small rate constants, is due to the sensitivity in the estimated rate con-
stant to small changes in the extracted data for the voltage from the 
published figures. Direct extraction of voltage data, as in Fig. 2, do not 
show the same fluctuations, and analysis is easier to do on extracted data 
as used here. 

The largest extracted rate constant which are the least influenced by 
the fluctuations associated with the extraction procedure, nominally k 
(t≈0)=kfA, was plotted as a function of temperature for data obtained 
from Ref. [36] (blue squares), Ref [58] (green circles) and Ref. [24] 
(green circles). It is interesting to know whether the data for kfA suggest 
Kramers-type activation barrier. To this end, eq. (8) was fitted to the 
blue squares (obtained from ref. [36]) to obtain k0=8.2∙10− 4 s− 1 and 
ΔE=0.16 eV (dashed line). Similarly, a fit of Eq. (8) to the black triangles 
obtained from Ref. [58] gives k0=9.0∙10− 3 s− 1 and ΔE=0.20 eV (dotted 

Fig. 5. The fitting parameters τ (a) and β (b) from the data in Ref. [35] (red 
boxes correspond to 1.3V, while blue boxes correspond to 2.7 V), the data from 
Ref. [24] (green circles) and the data from Ref. [58] (black triangles). 
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line), while a fit of Eq. (8) to the green circles obtained from Ref. [24]) 
gives k0=3.3∙10− 3 s− 1 and ΔE=0.07 eV. It is seen that the fit of Eq. (8) 
represents the extracted rate constants rather well, although some out-
liers of unknown origin do appear. The initial rate constants obtained 
typically fall within the range 10− 4 s− 1 to 10− 2 s− 1, while the energy 
activation barriers range are of the order 0.1 - 0.2 eV. 

It is possible to connect the two theories leading to eqs. (6) and (12). 
Assuming that the kinetics follows eq. (14) with (dV/dt)/V>>(dC/dt)/ 
C, it is seen that k(t)=-[dVc(t)/dt]/Vc(t). Inserting eq. (4) for Vc(t) gives 

k(t) =
∫∞

0 kf P
(
kf
)
e− kf tdkf

∫∞
0 P

(
kf
)
e− kf tdkf

. (15) 

Thus, it is seen that the phenomenological rate constant k(t) is given 
by the distribution of rate constants P(kf), although there might not be a 
unique correspondence. From eq. (15) it is also seen that k(t = 0) =

∫∞
0 

kf P(kf )dkf . The observation that the parameter β, and therefore also P 
(kf), does not change much with temperature as seen in Fig. 5 b) may 
explain why kfA can be modelled by a single Kramers-like activation 
barrier as seen in Fig. 6 b). 

The results in this and the previous section are connected by the fact 
that the single time-varying decay rate can be deduced from a distri-
bution of rate constants as in eq. (15). It should also be noted that the 
fact that the rate constant k(t) decreases with time can be understood by 
considering the slowly rearranging charge which gradually alters the 
energy barrier as time passes. 

4. Discussion 

Based on what we know about activation, charge transfer and ion 
movement in carbon pores, the approach based on a distribution of 
constants appears reasonable to the author. However, it must be 
emphasized that direct evidence for a distribution of rate constants is 
lacking. The measurements needed to find such a distribution would 

require local measurements of rate constants within the pores, and to the 
best knowledge of the author there are currently no systematic studies 
providing such information. With such data, the approach based on a 
distribution of rate constants may provide an additional source of in-
formation about the microscopic processes during self-discharge. 

The values of β and τ can help us understand how supercapacitors 
behave under certain circumstances. It is for example noted that the 
value of β is about 0.5 for small currents in Fig. 4 b), as is also the case for 
small hold times in Fig. 3 a). This is also consistent with other literature, 
where a value of β close to 0.5 has been found in the cases where the 
supercapacitor is not driven too far from equilibrium before let alone to 
self-discharge [45,52]. However, perhaps more interesting for future 
applications is the relative change in the constants when parameters are 
altered. In Fig. 3 a), an increase in hold time appears to favor a narrower 
distribution of rate constants. This is probably due to a re-arrangement 
of charge such that the reaction sites become more uniform, thus fa-
voring single-exponential decay. For applications, one might prefer the 
single-exponential decay to happen for shorter hold times. In Fig. 3 a) 
the data from ref. [40] (circles) appear to reach a narrow distribution of 
rate constants at much shorter hold times than the data from Fig. [36] 
(squares). However, from Fig. 3 b) it is also seen that the data from 
Ref. [40] (circles) exhibit a τ which is orders of magnitude lower than 
that of Ref. [36] (squares), which means that the self-discharge in the 
former is much faster despite the fact that a narrower distribution of 
rates is reached faster. A combination of both, i.e. β approaching 1 and a 
large τ, would be more optimal. In fact, much of the understanding of 
how to suppress self-discharge has been guided by single exponential 
decay models (β=1), and works to achieve this goal by altering the 
surface physics or chemistry has been discussed in Refs. [39,48–50]. 

The current study has demonstrated that also the distribution of rate 
constants plays a significant role in the self-discharge. For example, if 
the major goal is to keep the voltage constant for long-term storage, and 
a fast, initial voltage drop is of no concern, it would be beneficial to 
utilize a small β. A small β corresponds to a distribution peaking at small 
rates, but with a very extended tail at larger rates. Under such circum-
stances, there would be an initial rapid voltage drop to about 37 % 
(corresponding to 1/e) of the maximum vale when t=τ, after which the 
voltage remains nearly constant. In many cases the distribution of rate 
constants that can be obtained under different charging conditions is 
governed mainly by the pore distribution near the electrodes. A small β 
could possibly be manufactured using a pore distribution peaking at 
small pores, but with an extended tail also at higher pore sizes. This 
would be different from the standard approach where the pores are 
made as small as possible with a more or less random distribution about 
a mean. In general, it is highly likely that putting more efforts into en-
gineering pore size distributions would allow one to control the self- 
discharge behaviour in a more controlled way. 

Another issue of interest is to design supercapacitors which work 
over extended temperature regions. The results presented in Fig. 5 show 
that the distribution of rate constants does not change noticeably with 
temperature, while the time for crossover from superexponential to 
subexponential decay decreases as the temperature increases. Under 
these conditions, the maximum rate constant kfA in Fig. 6 b) exhibits a 
Kramers-type activation behaviour. In order to make the self-discharge 
of a supercapacitor even more temperature-independent, one solution 
would be to try to increase τ such that the crossover from super-
exponential to subexponential decay occurs as slowly as possible. 
However, this is a very challenging task requiring optimal combination 
of pore volume, surface physics and electrolyte chemistry. It might be 
easier to engineer β alone, as this parameter might be controlled more 
directly by charge-accessible pore size for the charge. Figure 3 a) implies 
that longer holding times allow charges to rearrange and access more of 
the pore volume. If one could design for example the temperature- 
dependency of the electrolyte or the pore size distribution itself such 
that charges could properly rearrange and access more of the pore vol-
ume with increasing temperature, then one might expect β to increase 

Fig. 6. In a) the time constant k(t) is displayed as function of time for T=248 K 
(∇) and T=338 K (Δ) using the data from data from Ref. [58] (black triangles). 
The dashed and dash-dotted lines are fits of k(t) = k0tβ− 1 to these data, 
respectively. In b) the maximum extracted rate constant kfA is plotted as a 
function of temperature from the data in Ref. [36] (blue squares), the data in 
Ref [58] (green circles) and the data in Ref. [24] (green circles). The dashed, 
the dotted and the dash-dotted lines are corresponding fits using eq. (8). 
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with temperature giving rise to a slower self-discharge. However, 
obtaining such a result without a corresponding decrease in τ is a very 
challenging task that is far outside the scope of this work. 

5. Conclusion 

A stretched exponential function is fitted to the experimentally ob-
tained voltages for self-discharging supercapacitors. The results are 
interpreted in terms of distribution of rate constants. In all the analyzed 
cases, a wide distribution appears to occur for supercapacitors that were 
initially quickly charged, whereas for slow charging a narrower distri-
bution appears. If the charging conditions are kept constant, the tem-
perature does not alter the relative distribution of rate constants 
noticeably, while at the same time the decay modes are pushed from 
super-exponential to sub-exponential more quickly with increasing 
temperature. The method presented here to analyze self-discharging 
data from a supercapacitor could provide a quick and easy method to 
access useful information that governs internal behavior during decay. 
As such, the method might therefore become a useful tool that com-
plement existing techniques. 
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