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1. Introduction

Let x1, . . . , xn be variables over a field. Systems of polynomial equations

P1(x1, . . . , xn) = 0, . . . , Pm(x1, . . . , xn) = 0 (1)

are a main object to study in algebraic geometry and commutative algebra. Several 
methods to find an explicit solution to (1) were developed. In particular, Macaulay 
[18] introduced multivariate resultants and used them to solve systems of polynomial 
equations by eliminating variables. The resultant of a system is the determinant of a 
matrix, obtained from the coefficients of the polynomials. Later, this construction was 
generalised so that a system has one such matrix for every degree (see e.g. [3,5]). These 
matrices are generally called Macaulay matrices and can be viewed as generalisations of 
the Sylvester Matrix, which is defined for two univariate polynomials [20]. Buchberger 
[4] defined the notion of a Gröbner basis for a polynomial ideal and showed how to 
construct such a basis. In some cases a solution to (1) may be instantly read from a 
reduced Gröbner basis. Lazard [16] showed that a Gröbner basis according to a total 
degree monomial ordering may also be constructed by triangulating a suitable Macaulay 
matrix.

For a finite ground field Fq, two problems are of special interest: how many Fq-rational 
solutions does the system allow, and how do we compute them? The number of solutions 
may be estimated using the Lang-Weil bound [17]. The second problem is reducible to 
a satisfiability problem and is generally NP-hard.

Applications in cryptography renewed interest in solving polynomial equations over 
finite fields. Finding a solution is equivalent to breaking a crypto-system. A particu-
larly successful example, due to Faugère and Joux [13], broke the HFE (Hidden Field 
Equations) cryptosystem with a Gröbner basis algorithm.

In some applications the problem may be reduced to overdetermined polynomial sys-
tems, where the number of equations m is larger than the number of variables n. For 
instance, one has to solve an overdetermined quadratic equation system over F2 to find an 
AES key given some plain-text and relevant cipher-text, [9]. In practice, among equation 
systems of the same degree, those which are overdetermined may be solved faster than 
those where m ≤ n using algorithms from Gröbner basis of XL families [2,6]. Hence, it is 
interesting to study the time-complexity of those algorithms for overdetermined polyno-
mial equation systems. However, the theoretical complexity of the Buchberger algorithm 
[8] for constructing Gröbner bases over finite fields, and its well-known variations as F4 
[12] and F5 [11], in general is unknown.

In order to avoid solutions in the extensions of the ground field we need to add 
xq
i −xi, i = 1, . . . , n to the system (1). So we may assume that every monomial xe1

1 . . . xen
n

in (1) with a non-zero coefficient satisfies ei < q for every i. In this work a new algorithm 
to construct a Gröbner basis according to a total degree monomial ordering for (1) is 
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presented. Its complexity is rigorously estimated through the degree of regularity for the 
leading forms of the polynomials.

Let f1, . . . , fm be the leading forms of the polynomials P1, . . . , Pm and let I be an ideal 
in Rh = Fq[x1, . . . , xn]/(xq

1, . . . , x
q
n) generated by f1, . . . , fm. By Id we denote a vector 

space over Fq containing all forms in I of degree d. The degree of regularity of I �= 0
is the smallest integer d ≥ 0 for which dimFq

Id = lq(n, d), the number of monomials in 
Rh of total degree d, and it is denoted dreg. It is easy to see that dreg exists for every 
non-zero ideal in Rh generated by forms and dreg ≤ (q−1)n. The expression “the degree 
of regularity” was first used in [2] and it is also called the index of Rh/I in [14].

Assume that the polynomials (1) are linearly independent and of degree at most dreg. 
If not, then the statement below is easy to adjust. In Theorem 2.1 we show that the 
time-complexity of constructing a total degree Gröbner basis for (1) is polynomial in 
Lq(n, dreg), where Lq(n, d) is the number of monomials in Rh of total degree at most d. 
At least one solution to (1) over Fq, if it exists, may then be computed faster than the 
Gröbner basis according to Theorem 2.2.

The notion of a semiregular system of polynomials (forms) was introduced by Bardet, 
Faugère, and Salvy in [2]. The degree of regularity for a particular semiregular polynomial 
system may be computed by expanding a Hilbert series defined by n, m, and the degree 
of Pi. It was also conjectured that a random system of polynomials over F2 is semiregular 
with probability tending to 1 as n increases. The conjecture, in that form, was disproved 
in [14]. Still it is believed that most systems behave like semiregular ones.

The present work gives an upper bound to the degree of regularity for an overdeter-
mined system of forms f1, . . . , fm of the same degree D with coefficients in Fq taken 
uniformly at random. The bound holds with probability tending to 1; in other words, 
the bound holds for almost all such systems of forms for sufficiently large n. We do not 
impose any other restrictions on the polynomials such as semiregularity.

Theorem 1.1. Let q ≥ 2 and let D be fixed, and let m ≥ lq(n, D + d)/lq(n, d), where 
D > d > 0. Then

P (dreg ≤ D + d) ≥ 1 − qlq(n,D+d)−mlq(n,d) −A(n,D, d),

where A(n, D, d) > 0 and A(n, D, d) = O(ndq−CnD) for a positive constant C as n → ∞.

The theorem implies that if m ≥ lq(n, D + d)/lq(n, d) + c for a positive constant c, 
then P (dreg ≤ D + d) ≥ 1 − q−clq(n,d) −A(n, D, d) → 1 as n → ∞.

Let q = 2. It is well known and easy to prove that almost all systems of m ≥ n(n−1)
2 +c

quadratic polynomials have dreg = 2.
Theorem 1.1 for D = 2, d = 1 implies that almost all systems of m ≥ (n−1)(n−2)

6 + c

quadratic polynomials have dreg ≤ 3. Similarly, for D = 3, d = 2, almost all systems of 
m ≥ (n−2)(n−3)(n−4)

60 +c cubic polynomials have dreg ≤ 5, etc. According to Theorems 2.1
and 2.2, a total degree Gröbner basis and a solution to a relevant equation system may 
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be then computed in polynomial time. In fact, our complexity bounds depend on the 
leading forms of the polynomials and do not depend on their lower degree terms.

Over F2 the bound on dreg is as predicted in [2] for a semiregular system with the same 
parameters (number of variables n, number of equations m, and of degree D). Modulo 
a conjecture from commutative algebra, a lower bound on the degree of regularity for 
homogeneous polynomial systems in Fq[x1, . . . , xn] is proved in [10]. Our result satisfies 
this bound as well.

The core of the proof of Theorem 1.1 is in Section 4, where we show that a Macaulay 
matrix of size m lq(n, d) × lq(n, d + D) constructed for the forms f1, . . . , fm has linearly 
independent columns with probability tending to 1. The rows of the matrix are coeffi-
cients of the leading forms of gfi ∈ Rh, where g runs over all monomials of degree d. For 
instance, let n = 4, m = 1, D = 2 and d = 1, and

f1 = c12x1x2 + c13x1x3 + c14x1x4 + c23x2x3 + c24x2x4 + c34x3x4

over F2. Then the Macaulay matrix is

M =

⎛
⎜⎜⎜⎝

c23 c24 c34 0
c13 c14 0 c34
c12 0 c14 c24
0 c12 c13 c23

⎞
⎟⎟⎟⎠

and detM = c12c34 +c13c24 +c14c23. So if the coefficients of f1 are chosen uniformly and 
independently, then the columns of M are linearly independent with probability 28/64, 
that is P (dreg = 3) = 28/64.

Section 3 contains an auxiliary combinatorial result used in the proof of the main The-
orem 1.1. Each monomial xa1

1 . . . xan
n of total degree d defines a d-multiset (a1, . . . , an), 

where 0 ≤ ai < q and 
∑n

i=1 ai = d. Let v be a natural number and A a family of mono-
mials of degree d such that |A| = v. By B we denote a family of monomials of degree 
d +D divisible by at least one monomial from A. Theorem 3.1 implies that |B| achieves 
its minimum when A is a family of the first (largest) v monomials of total degree d taken 
in a lexicographic order.

After this paper was submitted for possible publication, we realised that a statement 
equivalent to Theorem 3.1 was already proved in 1969 by Clements and Lindström [7]. 
The equivalent result is Corollary 1 in their paper. However, our proof is fundamentally 
different from theirs and we believe that it provides further insight into the problem.

Theorem 2.1 was proved by Semaev. The main idea of the proof of Theorem 1.1
belongs to Semaev too, who first proved it for F2 and D = 2, d = 1. The generalisation 
for every Fq and D > d is due to Tenti, who also proved Theorem 2.2. Tenti conjectured 
the statement of Theorem 3.1 for k = k1 = . . . = kn and proved it for k = 1, d = 2. With 
a different method, presented in Section 3, the theorem in its generality was proved by 
Semaev.

An extended abstract of this paper was presented at WCC2019 [19].
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2. Complexity of constructing Gröbner bases

Let

I = (P1, . . . , Pm, xq
1 − x1, . . . , x

q
n − xn) (2)

be an ideal in Fq[x1, . . . , xn] and R = Fq[x1, . . . , xn]/(xq
1 − x1, . . . , xq

n − xn). Let N =
Lq(n, dreg), the number of monomials in Rh of degree ≤ dreg as above.

In this section we show how to construct a Gröbner basis for I for a total degree 
monomial ordering and rigorously estimate the complexity of the construction in arith-
metic operations in Fq, where both the parameters n, q may grow. The new algorithm 
incorporates three stages.

1. Compute dreg for the leading forms f1, . . . , fm of P1, . . . , Pm. For every monomial h
of degree dreg, compute the forms t1, . . . , tm such that

h = t1f1 + . . . + tmfm

in Rh, where deg ti = dreg − deg fi or ti = 0. Compute g = t1P1 + . . . + tmPm in 
R. The degree of g is dreg and its leading form is the monomial h. One adds g to 
the initial basis of I and gets a new basis {U1, . . . , Ur, x

q
1 − x1, . . . , xq

n − xn} for I in 
Fq[x1, . . . , xn].

2. Compute a basis B of the ideal I with the following properties. First, deg g ≤ dreg
for every g ∈ B. Second, B incorporates lq(n, dreg) polynomials g = h + f such that 
deg f < dreg and their leading forms h are all possible monomials of degree dreg.

3. A Buchberger algorithm application to B gives a Gröbner basis for I.

The theoretical complexity of the algorithm is a function in dreg computed for the leading 
forms of the polynomials as this is explained below. Testing the algorithm on large 
instances and comparison with the plain Buchberger algorithm or F4 as implemented in 
Magma [1] is out of scope of this paper.

In order to simplify the argument and the complexity bound in Theorem 2.1 the poly-
nomials P1, . . . , Pm are assumed linearly independent and of degree ≤ dreg. Otherwise, 
the statement is easy to adjust. So m ≤ N and one may assume that there are at most 
lq(n, k) forms of degree k among f1, . . . , fm. To compute dreg, one gradually triangulates 
with elimination Macaulay matrices for the forms fi multiplied by monomials of degree 
d − deg fi in Rh for d ≤ dreg. The number of rows is at most

d∑
k=1

lq(n, k)lq(n, d− k) ≤ dN2

and the number of columns is lq(n, d) ≤ N . It takes O(dN4) operations in Fq to triangu-
late the matrix. The cost for all d ≤ dreg is O(d2

reg N
4) operations. Within the same cost 
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one constructs the polynomials U1, . . . , Ur of degree ≤ dreg according to the algorithm. 
Exactly lq(n, dreg) polynomials Ui are of degree dreg and their leading forms are all pos-
sible monomials of degree dreg. The polynomials {U1, . . . , Ur, x

q
1 − x1, . . . , xq

n − xn} give 
a basis for I in Fq[x1, . . . , xn].

If q ≤ dreg, then that basis is B. Let q > dreg. One replaces each xq
i − xi in the basis 

with its residue after division by the polynomials Uj = h + f , where h is a monomial of 
degree dreg and deg f < dreg. That produces the basis B. When computing the residue 
of xq

i − xi, it might be that the intermediate polynomials after each division by such 
Uj incorporate only monomials xb

ix
a1
1 . . . xan

n , where b < q and 
∑n

j=1 aj < dreg. So the 
number of monomials at each division step is at most qN . The division cost is O(qN2)
for each xq

i − xi and O(nqN2) overall.
However, B is not generally a Gröbner basis for I. For instance, the polynomial system

P1 = x1x2 + 1, P2 = x1x3, P3 = x2x3, x2
1 − x1, x2

2 − x2, x2
3 − x3

from F2[x1, x2, x3] has dreg = 2. However, that is not a Gröbner basis, as the ideal 
contains the polynomial x3 = x3P1 + x2P2 and its leading term is not divisible by the 
leading terms of the basis. So the argument in [2, Section 2.2] on the complexity of 
constructing a Gröbner basis is not valid. In order to compute a Gröbner basis one 
generally has to work with polynomials of degree > dreg as well. The following theorem, 
in particular, proves that with the basis B one can construct a Gröbner basis for I at 
maximum degree ≤ 2dreg by an application of the Buchberger algorithm. We estimate 
the complexity of the construction.

Theorem 2.1. Time-complexity of constructing a Gröbner basis for I is polynomial in N
and q.

Proof. One can make the polynomials in B linearly independent. It is then enough to 
prove that an application of the Buchberger algorithm to the polynomials B takes O(N6)
operations in Fq. For each Q1, Q2 ∈ B, the algorithm computes a residue T of the S-
polynomial S(Q1, Q2) after division by the polynomials B. Each monomial of degree dreg
occurs as a leading monomial of some polynomial in B, so the degree of the residue is less 
than dreg. If T �= 0, then B is augmented with T and the step repeats. If the residue is 0
for each pair, then B is a Gröbner basis. At each step of the algorithm the polynomials 
in B are linearly independent.

One has to examine ≤ N2 pairs before finding a non-zero residue or terminating. The 
number of possible linearly independent residues is ≤ N , so the number of divisions is 
≤ N3. The number of intermediate monomials is ≤ N2 when an S-polynomial is divided 
by the polynomials from B. So computing its residue takes O(N3) operations. Overall 
complexity is that stated. �

A more careful analysis shows that one can work with polynomials of degree ≤ 2dreg−2
and the time-complexity is
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O(N2 L2
q(n, dreg − 1)Lq(n, 2dreg − 2))

operations.

2.1. From a Gröbner basis to a solution of the system

Let Z(I) ⊆ Fn
q be the set of zeroes for the ideal I defined by (2). Here we show how to 

compute (a1, . . . , an) ∈ Z(I) and estimate the time complexity. Let G be a Gröbner basis 
for I according to a fixed total degree ordering computed as above. Then deg(g) ≤ dreg
for every g ∈ G.

Theorem 2.2. One can compute (a1, . . . , an) ∈ Z(I) or prove Z(I) = ∅ in O(nN3)
operations.

Proof. If G′ is a reduced Gröbner basis for I according to the total degree ordering, 
then G′ = {1} if and only if Z(I) = ∅. So the algorithm we employ is the following. 
First, we compute the reduced Gröbner basis G′ of I. If G′ = {1}, then the system has 
no solutions. Otherwise, we take an ∈ Fq and compute the reduced Gröbner basis G′ of 
I + (xn − an). If G′ = {1}, then we take another an and compute the reduced Gröbner 
basis, etc. Otherwise, if G′ �= {1}, we replace I with I+(xn−an) and repeat the previous 
step. This repeats until a solution (a1, . . . , an) is found.

Obviously, the algorithm produces a zero of I if it exists or proves Z(I) = ∅. One has 
to compute up to qn reduced Gröbner bases of ideals I + (xn − an). We will now prove 
that it is possible to compute the reduced Gröbner basis in O(N3) operations at any 
step. Let LT denote the leading term of a polynomial or the set of the leading terms of 
a set of polynomials.

According to [15], to reduce G we first remove from G all g such that LT (g) ∈ (LT (G \
{g})) and make the rest of the polynomials monic. As |G| ≤ N , it takes ≤ N2 monomial 
divisions. We call the new set G′, which is still a Gröbner basis for I. Next, for every 
g ∈ G′ one computes its residue g′ after division by G′\{g} and sets G′ = G′ \ {g}∪{g′}. 
As every polynomial in G′ incorporates ≤ N monomials, computing the residue takes 
O(N2) operations. Since LT (g) = LT (g′), once an element is modified, it does not change 
further. The overall cost is O(N3) operations.

Let G = {g1, . . . , gt} be a reduced Gröbner Basis for I according to a fixed total 
degree ordering constructed as above and let I≤d denote the space of polynomials in I
of degree ≤ d.

Lemma 2.3. The set of polynomials xαgi such that |α| + deg(gi) ≤ d generates I≤d as a 
vector space over Fq.

The lemma follows directly from the properties of polynomial division and Gröbner 
basis. For d = dreg one can extract a basis for I≤d from the generators in O(N2 logN)
operations by sorting their leading monomials.
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Lemma 2.4. Let g be a linear polynomial. The vector space (I + (g))≤dreg is generated by 
xαgi and xβg, with |α| + deg(gi) ≤ dreg and |β| < dreg.

Proof. First we show that every f ∈ (I +(g)) may be represented as f = p +gr for some 
p ∈ I and r with deg(r) < dreg. Obviously, f = f1 + f2g with f1 ∈ I, f2 ∈ Fq[x1, . . . , xn]. 
Let r be a residue of f2 after division by G. Then f2 = h + r, where h ∈ I and deg(r) <
dreg. Hence f = p + rg, with p = f1 + gh ∈ I.

Therefore, f = p + gr is in (I + (g))≤dreg if and only if deg(p) ≤ dreg. Hence

(I + (g))≤dreg ⊆ I≤dreg + (g)≤dreg .

The first vector space is generated by xαgi with |α| +deg(gi) ≤ dreg thanks to Lemma 2.3. 
On the other hand, (g)≤dreg is trivially generated by xβg with |β| + deg(g) ≤ dreg. The 
proof is complete. �
Corollary 2.5. Let B = {b1, . . . , bk} be a basis for the vector space (I + (g))≤dreg . Then 
G+ = {b1, . . . , bk, g1, . . . , gt} is a Gröbner basis for (I + (g)).

Proof. Obviously, G+ is a basis for I + (g). Let f ∈ I + (g). If deg(f) ≤ dreg, then 
LT (f) = LT (bi) for some bi ∈ B. If deg(f) > dreg, then LT (f) is divisible with some 
LT (gi) by the definition of dreg.

Therefore, every leading term of f ∈ I + (g) is divisible by the leading term of one of 
the elements in G+. Hence the latter is a Gröbner basis for I + (g). �

We can now complete the proof of Theorem 2.2. In order to compute B, one trian-
gulates a matrix with ≤ N columns and ≤ 2N rows (the first N are given by S and 
the second ones are given by xβg). The size of G+ is ≤ 2N . So each computation of 
a reduced Gröbner basis that we perform has a cost of O(N3) operations. In order to 
find one zero in Z(I), we need to perform at most qn iterations. Hence the total cost is 
O(nN3) as claimed. �
Remark 2.6. The algorithm just presented returns only one of the zeroes in Z(I). The 
entire set can be found by using the Shape Lemma [15] after a linear change of coordinates 
in an extension of Fq. This approach has the drawback that if the system has many 
solutions, then the extension is large. The full process is described in [15, Section 3.7].

3. Minimal covering family of multisets

Let {1, 2, . . . , n} be a set of n elements, equipped with the standard ordering ≤ and 
let k1, . . . , kn, d be non-zero integers. The tuple X = (x1, x2, . . . , xn) is a d-multiset if 
0 ≤ xi ≤ ki and 

∑n
i=1 xi = d. We say n is the length of X. The family of all d-multisets 

is denoted X = X d.
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Table 1
Ordered 2- and 3-multisets 
of length 3, with k1 = k2 =
k3 = 2.

X6 002
X5 011
X4 020
X3 101
X2 110
X1 200

Y7 012
Y6 021
Y5 102
Y4 111
Y3 120
Y2 201
Y1 210

Let Y = (y1, y2, . . . , yn) be a D-multiset for some D ≥ d. We say X is a subset of 
Y , denoted X ⊆ Y , if xi ≤ yi, 1 ≤ i ≤ n. If xi + yi ≤ ki for every i, one defines 
X + Y = (x1 + y1, . . . , xn + yn) and if X ⊆ Y , then Y \X = (y1 − x1, . . . , yn − xn).

The reverse ordering on {1, 2, . . . , n} induces a lexicographic ordering > on the family 
of all d-multisets X . Let Xv = {X1, . . . , Xv} denote the family of the first (largest) v
multisets according to that ordering, that is X1 > . . . > Xv. We call Xv a minimal 
family of size v. Let Y = YD denote the lexicographically ordered family of all D-
multisets. Then Yu denote the family of the first (largest) u elements in Y according to 
the ordering. For instance, ordered 2- and 3-multisets (d = 2 and D = 3) of length 3, 
where k1 = k2 = k3 = 2, are presented in Table 1.

By Y�(v) we denote the smallest D-multiset such that Y�(v) ⊇ Xv (we say covered by 
Xv). For instance, �(2) = 4 in Table 1. So Y�(v) = {Y1, . . . , Y�(v)} is the ordered family 
of Y ≥ Y�(v) in Y. Let A = {Xi1 , . . . , Xiv} be a family of d-multisets. By ||A|| we denote 
the number of D-multisets which contain at least one element from A (we say covered 
by A). The goal of this section is to prove

Theorem 3.1. If k1 ≤ k2 ≤ . . . ≤ kn and |A| = v, then ||A|| ≥ ||Xv|| = �(v).

If the condition k1 ≤ k2 ≤ . . . ≤ kn is not satisfied, then the theorem is not generally 
true. For example, let k1 = 3, k2 = 1, d = 1, D = 3, v = 1. Then (1, 0), (0, 1) are 
all 1-multisets and (3, 0), (2, 1) are all 3-multisets ordered lexicographically. The family 
A = {(0, 1)} covers only (2, 1), while the family X1 = {(1, 0)} covers (3, 0), (2, 1). So 
||A|| = 1 and ||Xv|| = 2. The statement does not hold.

We will prove several lemmas first. We can assume that d is sufficiently large, otherwise 
the proofs below may be easily adjusted.

Lemma 3.2. The family of D-multisets covered by Xv is Y�(v). In particular, ||Xv|| = �(v).

Proof. Let X ∈ Xv or, in other words, X ≥ Xv. First, we will prove that for every 
D-multiset Y ⊇ X we have Y ∈ Y�(v). If X = Xv, that holds by the definition of �(v). If 
X < Xv, then there exists i ∈ {1, . . . , n − 1} such that

Xv = (x1, . . . , xi−1, xi, . . . , xn), X = (x1, . . . , xi−1, x
′
i, . . . , x

′
n),
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where x′
i > xi and

Y�(v) = (y1, . . . , yi−1, yi, . . . , yn), Y = (y′1, . . . , y′i−1, y
′
i, . . . , y

′
n).

Let i > 1. If y′1 > y1, then Y > Y�(v) and there is nothing to prove. Assume y′1 ≤ y1. 
If y′1 < y1, then x1 ≤ y′1 ≤ y1 − 1. There exists a D-multiset Y ′ = (y1 − 1, y2 . . . , yj +
1, . . . , yn) for some j > 1 or Y�(v) = (y1, k2 . . . , kn). The latter is impossible as Y�(v)
and Y are both D-multisets. Therefore, Y ′ < Y�(v) and Xv ⊆ Y ′ which contradicts the 
definition of Y�(v). We conclude that y′1 = y1. By the same argument one proves y′j = yj
for all 1 ≤ j ≤ i − 1.

So we can assume i = 1 or i > 1 and y′j = yj for 1 ≤ j ≤ i − 1. If y′i > yi, then 
Y > Y�(v) and the statement holds. Otherwise, if y′i ≤ yi, then xi < x′

i ≤ y′i ≤ yi. As 
i < n, there exists a D-multiset Y ′ = (y1, . . . , yi−1, yi − 1, . . . , yj + 1, . . . , yn) for some j
such that Y ′ < Y�(v) and Xv ⊆ Y ′, a contradiction to the definition of �(v).

Secondly, it is easy to see that for every D-multiset Y ≥ Y�(v) there exists a d-multiset 
X ≥ Xv such that X ⊆ Y . Therefore, the family of D-multisets covered by Xv is exactly 
Y�(v). That proves the lemma. �
Lemma 3.3. It suffices to prove Theorem 3.1 for D = d + 1.

Proof. Let the theorem be true for D = d + 1 and every d. We prove it is true for 
D = d +2. Let �01, �12, �02 be the above function for d, d +1, and d +1, d +2, and d, d +2
respectively. Assume a family A of d-multisets covers a family B of (d +1)-multisets, and 
B covers a family C of (d + 2)-multisets. Then C consists of all (d + 2)-multisets covered 
by A. In particular, �12(�01(s)) = �02(s). Let |A| = s, |B| = r, |C| = t. Then

t ≥ �12(r), r ≥ �01(s)

as Theorem 3.1 holds for D = d + 1 by the assumption. Therefore, t ≥ �12(r) ≥
�12(�01(s)) = �02(s) and the lemma is true for D = d + 2. One uses the same argu-
ment to prove it for D > d + 2. �

Let s be a natural number and

fs(v) = |Y�(v+s) \ Y�(v)|

for 0 ≤ v ≤ |X | − s. The family Y�(v+s) \ Y�(v) incorporates all D-multisets covered by 
{Xv+1, . . . , Xv+s} and not covered by {X1, . . . , Xv}.

Lemma 3.4. fs(|X | − s) ≤ fs(v) ≤ fs(0).

Proof. We will only prove the right hand side inequality

|Y�(v+s) \ Y�(v)| ≤ |Y�(s)|. (3)
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The left hand side inequality is proved by a similar argument. The proof is by induction. 
The statement is correct for s = 0, any v, and v = 0, any s.

We will reduce (3) to a “smaller” problem |Y�(v1+s1) \ Y�(v1)| ≤ |Y�(s1)|, where s1 = s

and v1 < v or s1 < s. If v < s, then it is enough to prove |Y�(v+s) \ Y�(s)| ≤ |Y�(v)| as

|Y�(v+s) \ Y�(v)| = |Y�(v+s) \ Y�(s)| + |Y�(s) \ Y�(v)| ≤ |Y�(v)| + |Y�(s) \ Y�(v)| = |Y�(s)|.

So the problem is reduced to a “smaller” problem.
Assume v ≥ s. Let u be the largest index such that Xu = (1, 0, a3, . . . , an) for some 

a3, . . . , an. So z is the largest index such that Xz = (0, 1, a3, . . . , an) and therefore 
Xu > Xz. If such u does not exist, then the proof is easily reduced to one of the cases 
below.

1. First, u ≤ v. Then the first entry in each of {Xv+1, . . . , Xv+s} is 0. If u < v, then by 
induction (right hand side inequality of the lemma for a smaller n) |Y�(v+s) \Y�(v)| ≤
|Y�(u+s) \Y�(u)| and the problem is reduced to a “smaller” problem |Y�(u+s)\Y�(u)| ≤
|Y�(s)|.
So one can assume v = u. Let Xv+s = (0, x2, x3, . . . , xn). One defines a mapping

ϕ : (0, y2, y3, . . . , yn) → (1, y2 − 1, y3, . . . , yn). (4)

If x2 ≥ 1, then ϕ is well defined on {Xv+1, . . . , Xv+s} and maps it to {Xw+1, . . . ,

Xw+s} for some w < v. It is not difficult to see that ϕ is a bijection between 
Y�(v+s) \Y�(v) and Y�(w+s) \Y�(w). So |Y�(v+s) \Y�(v)| = |Y�(w+s) \Y�(w)|. We obtain 
a reduction to a “smaller” problem |Y�(w+s) \ Y�(w)| ≤ |Y�(s)|.
Let x2 = 0. So Xv+1 ≤ Xz < Xv+s. As ϕ(Xz) = Xu = Xv,

|Y�(v+s) \ Y�(v)| = |Y�(v+s) \ Y�(z)| + |Y�(z) \ Y�(v)|
≤ |Y�(2v+s−z) \ Y�(v)| + |Y�(v) \ Y�(w)|
= |Y�(w+s) \ Y�(w)|,

where |Y�(v+s) \ Y�(z)| ≤ |Y�(2v+s−z) \ Y�(v)| comes by induction (right hand side 
inequality of the lemma for a smaller n) and |Y�(z) \ Y�(u)| = |Y�(u) \ Y�(w)| for some 
w < v as ϕ is a bijection between these two sets. We obtain a reduction to a “smaller” 
problem |Y�(w+s) \ Y�(w)| ≤ |Y�(s)|.

2. Secondly, v < u. If v+s ≤ u, then the first entry in each of {Xv+1, . . . , Xv+s} is > 0. 
The statement follows by induction (right hand side inequality of the lemma for a 
smaller k1).
We may assume v < u < v+ s. By induction (left hand side inequality of the lemma 
for a smaller k1), |Y�(u) \ Y�(v)| ≤ |Y�(s) \ Y�(v+s−u)| as s ≤ v < u. It is enough now 
to show that |Y�(v+s) \ Y�(u)| ≤ |Y�(v+s−u)|, where 0 < v + s − u < s, and that is a 
“smaller” problem. It implies (3) as
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|Y�(v+s) \ Y�(v)| = |Y�(v+s) \ Y�(u)| + |Y�(u) \ Y�(v)|
≤ |Y�(v+s) \ Y�(u)| + |Y�(s) \ Y�(v+s−u)|
= |Y�(s)|.

That finishes the proof of the lemma. �
Proof. We will now prove Theorem 3.1 by induction. Let {1, 2, . . . , n} = {i1, . . . , ir} ∪
{j1, . . . , jn−r}, where 1 ≤ r < n.

One splits A =
⋃

Z AZ into subfamilies AZ , where Z are t-multisets (zi1 , . . . , zir ), 
0 ≤ t ≤ d. Each (x1, x2, . . . , xn) ∈ AZ satisfies (xi1 , . . . , xir) = Z and (xj1 , . . . , xjn−r

) is 
a (d − t)-multiset.

We construct a new family C of multisets of the same size as A. Let CZ be a family 
of d-multisets (x1, x2, . . . , xn), where (xi1 , . . . , xir) = Z and (xj1 , . . . , xjn−r

) are the first 
(largest) |AZ | (d − t)-multisets according to a lexicographic order. Then C =

⋃
Z CZ . 

Obviously, |C| = |A|. We say C satisfies the condition [i1, . . . , ir].

Lemma 3.5. ||C|| ≤ ||A||.

Proof. Let B be a family of D-multisets (y1, y2, . . . , yn) covered by A. One splits 
B =

⋃
U BU into subfamilies BU , where U runs over T -multisets (ui1 , . . . , uir ). Each 

D-multiset (y1, y2, . . . , yn) ∈ BU satisfies (yi1 , . . . , yir ) = U and (yj1 , . . . , yjn−r
) is a 

(D − T )-multiset. One further splits BU =
⋃

Z⊆U BU,Z into subfamilies BU,Z covered by 
AZ , where Z is a t-multiset and 0 ≤ t ≤ d.

Let �U,Z(s) be the number of (D− T )-multisets of length n − r covered by a minimal 
family of (d − t)-multisets of length n − r and of size s. By induction, Theorem 3.1 is 
true for multisets of length n −r < n. So |BU,Z | ≥ �U,Z(|AZ |) and therefore | 

⋃
Z BZ,U | ≥

maxZ �Z,U (|AZ |). Hence

||A|| = |
⋃
Z,U

BZ,U | =
∑
U

|
⋃

Z⊆U

BZ,U | ≥
∑
U

max
Z

�Z,U (|AZ |) = ||C||. �

If the family A does not satisfy a condition [i1, . . . , ir], then one transforms A into a 
family of d-multisets with the same size for which this condition is satisfied. Note ||A||
does not grow by Lemma 3.5. After each transformation, the members of A become 
larger (according to the lexicographic order), so this process stops at some point. We 
may assume A satisfies all the conditions [i1, . . . , ir] for 1 ≤ r < n.

The family A may be split into A =
⋃k1

z=0 Az, where Az incorporates multisets with 
the first entry z. As A satisfies the condition [1], each Az is a minimal family of (d − z)-
multisets of length n − 1.

Let s0 = |A0|, s1 = |Ak1 |, and u denote the number of all d-multisets the first entry 
of which is k1. If s0 = 0 or s1 = u, then the theorem is true by induction for a smaller 
k1. Assume s0 > 0 and s1 < u.
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Let A0 = {Xv−s0+1, . . . , Xv}, where Xv = (0, x2, x3, . . . , xn) for some x2, x3, . . . , xn. 
If x2 < k1, then A0 contains all d-multisets (0, k1, ∗, . . . , ∗) as A0 is a minimal family. By 
condition [3, . . . , n], the family A contains all d-multisets (k1, 0, ∗, . . . , ∗) and therefore 
all d-multisets (k1, ∗, ∗, . . . , ∗). The latter is impossible as s1 < u. So we can assume 
x2 ≥ k1. Consider a mapping

ϕ : (0, y2, y3, . . . , yn) → (k1, y2 − k1, y3, . . . , yn).

The mapping is well defined on A0. By condition [3, . . . , n], it maps A0 to

{Xw−s0+1, . . . , Xw} ⊆ Ak1

for some w ≤ u. It also maps Y�(v) \ Y�(v−s0) to Y�(w) \ Y�(w−s0). It is not difficult to see 
that ϕ is a bijection between those two sets. So |Y�(v) \ Y�(v−s0)| = |Y�(w) \ Y�(w−s0)|. 
This is also true for any subinterval of {Xv−s0+1, . . . , Xv}. We now consider two cases.

1. First, u ≥ s0 + s1. Then

|Y�(v) \ Y�(v−s0)| = |Y�(w) \ Y�(w−s0)| ≥ |Y�(s1+s0) \ Y�(s1)|.

The inequality comes from the left hand side inequality of Lemma 3.4 applied for 
(d − k1)-multisets of length n − 1 and defined by the numbers k2 − k1, k3, . . . , kn.
The multisets in A0 cover D-multisets in Y�(v) \ Y�(v−s0), the first entry of which 
is 0, and some other D-multisets, the first entry of which is > 0. The latter are 
covered by A \ A0 as well. By Lemma 3.3 it suffices to consider D = d + 1. If 
(0, y2, y3, . . . , yn) ∈ A0, then it covers D-multiset (1, y2, y3, . . . , yn). The latter is 
covered by (1, y2 − 1, y3, . . . , yn), which belongs to A1 by condition [3, . . . , n]. We 
define a new family

C = (A \ A0) ∪ {Xs1+1, . . . , Xs1+s0}.

Then |C| = |A| and ||C|| ≤ ||A|| by the inequality above. As |C0| = 0, the theorem 
follows as above.

2. Secondly, u < s0 + s1. As ϕ is a bijection between Y�(v) \ Y�(v−u+s1) and Y�(w) \
Y�(w−u+s1),

|Y�(v) \ Y�(v−u+s1)| = |Y�(w) \ Y�(w−u+s1)| ≥ |Y�(u) \ Y�(s1)|.

The inequality comes from the left hand side inequality of Lemma 3.4 applied for 
(d − k1)-multisets of length n − 1 and defined by the integers k2, k3, . . . , kn. The 
multisets in {Xv−u+s1+1, . . . , Xv} cover D-multisets in Y�(v) \ Y�(v−u+s1) and some 
other D-multisets. The latter are also covered by A \ {Xv−u+s1+1, . . . , Xv}, which 
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Table 2
The degree 3 Macaulay matrix for f .

012 021 102 111 120 201 210
001 c011 c020 c101 c110 0 c200 0
010 c002 c011 0 c101 c110 0 c200
100 0 0 c002 c011 c020 c101 c110

is easy to show under the condition [3, . . . , n] and D = d + 1 as above. We define a 
new family

C = (A \ {Xv−u+s1+1, . . . , Xv}) ∪ {Xs1+1. . . . , Xu}.

Then |C| = |A| and ||C|| ≤ ||A|| by the inequality above. As |Ck1 | = u, the theorem 
follows in this case.

The proof is now complete. �
4. Analysis of the probability

We consider a system of forms f1, . . . , fm of degree D. Let d be a natural number. The 
degree d + D Macaulay matrix of the system is the matrix M , whose rows are labelled 
by pairs (r, fi), where r is a monomial of degree d, and columns are labelled by the 
monomials t of degree d + D. The entry of the matrix M in row (r, fi) and column t is 
equal to the coefficient of the monomial t in rfi computed in Rh, see the Introduction. 
The size of the matrix M is m lq(n, d) × lq(n, d + D). If the columns of M are linearly 
independent, then dreg ≤ d + D.

Let f1, . . . , fm be taken independently and uniformly at random and let p denote the 
probability that the columns of M are linearly dependent. We prove that if d < D and 
m ≥ lq(n, d + D)/lq(n, d), then

p ≤ qlq(n,d+D)−mlq(n,d) + O(ndq−CnD

)

for a positive constant C as n tends to infinity. This implies Theorem 1.1.
The matrix M can be divided into m blocks M1, . . . , Mm, each with lq(n, d) rows. The 

matrix Mj is the Macaulay matrix for the single polynomial fj . Its rows are indexed by 
the multisets X d and the columns by the multisets X d+D. For instance, let q = 3, n =
3, D = 2 and

f = c200x
2
1 + c110x1x2 + c101x1x3 + c020x

2
2 + c011x2x3 + c002x

2
3.

The degree 3 Macaulay matrix for f is in Table 2.
As the fj are chosen independently, the matrices Mj are independent. Let u be a 

vector over Fq and of length lq(n, d +D). Its entries are indexed by the multisets X d+D. 
Then
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Table 3
Matrix Y (u).

002 011 020 101 110 200
001 0 u012 u021 u102 u111 u201
010 u012 u021 0 u111 u120 u210
100 u102 u111 u120 u201 u210 0

pu = P (Mu = 0) = pm1u,

where pju = P (Mju = 0). Therefore, p ≤
∑

u �=0 pu =
∑

u �=0 p
m
1u.

Let c denote a vector of coefficients of f1. It has length lq(n, D), and its entries cL are 
indexed by the multisets L ∈ XD. Let mJI denote the entry of M1 in the row J ∈ X d

and the column I ∈ X d+D. By the definition of M1, we have mJI = cI\J if J ⊆ I and 
mJI = 0 otherwise, see Table 2 for an example. So M1u = 0 is equivalent to the following 
equalities which hold for every row of M1 indexed by J ∈ X d. Observe that

∑
I∈Xd+D

mJI uI =
∑
J⊆I

cI\J uI =
∑

J+L∈Xd+D

cL uJ+L = 0, (5)

where the second sum is over I ∈ X d+D such that J ⊆ I, and the third sum is over 
L ∈ XD such that L + J ∈ X d+D.

Let Y (u) be a matrix of size lq(n, d) × lq(n, D) whose rows and columns are labelled 
by the multisets from X d and XD respectively. The entries of Y (u) are defined by

Y
(u)
J,L =

{
uJ+L if J + L ∈ X d+D,

0 otherwise.

For n = 3, q = 3, d = 1, and D = 2 the matrix Y (u) is in Table 3. By (5), the equality 
M1u = 0 is equivalent to Y (u)c = 0. So p1u = q−rank(Y (u)) and therefore

p ≤
∑
u �=0

q−m rank(Y (u)) =
lq(n,d)−1∑

v=0
Nvq

−m(lq(n,d)−v), (6)

where Nv denotes the number of vectors u such that rank(Y (u)) = lq(n, d) −v. The value 
Nv is bounded above by the size of

Sv =
{
u | rank(Y (u)) ≤ lq(n, d) − v

}
.

In particular, u ∈ Sv if and only if there exists a row vector subspace V ⊆ F
lq(n,d)
q of 

dimension v in the kernel of Y (u). Let B = (b1, . . . , bv) be a basis of this subspace. We 
index the coordinates of bi with J ∈ X d according to the lexicographic order from left 
to right. Then biY (u) = 0 is equivalent to the following equality which holds for every 
L ∈ XD:
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Table 4
Matrix Ai.

002 011 020 101 110 200
012 b010 b001 0 0 0 0
021 0 b010 b001 0 0 0
102 b100 0 0 b001 0 0
111 0 b100 0 b010 b001 0
120 0 0 b100 0 b010 0
201 0 0 0 b100 0 b001
210 0 0 0 0 b100 b010

∑
J+L∈Xd+D

bi,J uJ+L = 0, (7)

where the sum is over J ∈ X d such that J +L ∈ X d+D. The basis B may be represented 
as a matrix of size v × lq(n, d) in row echelon form, where every leading coefficient is 1:

B =
( 0 . . . 0 1 ∗ . . . ∗ 0 ∗ . . .

0 . . . 0 0 0 . . . 0 1 ∗ . . .
. . .

)
.

For each vector bi, i = 1, . . . , v, in the basis B we now define a matrix Ai. The matrix 
Ai has lq(n, d + D) rows and lq(n, D) columns, indexed by I ∈ X d+D and by L ∈ XD

respectively. The indices are ordered according to the lexicographic order from left to 
right and from top to bottom. The entry I, L of Ai is defined by

Ai,I,L =
{
bi,I\L if L ⊆ I,

0 otherwise.

For n = 3, q = 3 and d = 1, D = 2 the matrix Ai constructed for bi = (b100, b010, b001) is 
in Table 4. Let AV denote the horizontal concatenation of the matrices A1, . . . , Av, that 
is AV = A1|A2| . . . |Av. The equalities (7) are equivalent to uAV = 0 and therefore

|Sv| ≤
∑

dim(V )=v

qlq(n,d+D)−rank(AV ),

where the sum is over subspaces V of dimension v in F lq(n,d)
q . Let the multiset Ji ∈ X d

index the first nonzero entry of the vector bi ∈ B. As B is in row echelon form, the 
multisets J1, . . . , Jv are pairwise different. We denote I =

⋃v
i=1

{
I ∈ X d+D|I ⊇ Ji

}
.

Lemma 4.1. rank(AV ) ≥ |I|.

Proof. For I ∈ I we fix some multiset Jk ⊆ I and take a column in the block Ak indexed 
by L = I \ Jk. We show that those |I| columns in AV are linearly independent. It is 
enough to prove that the row with index I has 1 in the column L of the block Ak and 
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that Ak,I′,L = 0 if I ′ < I. First, Ak,I,L = bk,Jk
= 1 since Jk = I \ L. Let I ′ < I. We 

consider two cases.

1. Let I ′ � L, so Ak,I′,L = 0 by the definition of Ak.
2. Let I ′ ⊇ L, so I ′ = J+L for some d-multiset J . As I = Jk +L and I ′ < I, we deduce 

that J < Jk by the properties of the lexicographic order. Hence Ak,I′,L = bk,J = 0.

The lemma is proved. �
Similar to Section 3, let �(v) denote the minimal number of (d +D)-multisets covered 

by v of d-multisets. By Lemma 4.1 and Theorem 3.1, rank(AV ) ≥ |I| ≥ �(v). So

Nv ≤
∑

dim(V )=v

qlq(n,d+D)−rank(AV ) ≤ svq
lq(n,d+D)−�(v),

where sv is the number of subspaces of dimension v in F lq(n,d)
q . It is easy to see that 

sv ≤ q(lq(n,d)−v+1)v. By (6),

p ≤
lq(n,d)−1∑

v=0
q(lq(n,d)−v+1)v+lq(n,d+D)−�(v)−(lq(n,d)−v)m = qlq(n,d+D)−mlq(n,d)

+
lq(n,d)−1∑

v=1
q(lq(n,d)−v+1)v+lq(n,d+D)−�(v)−(lq(n,d)−v)m. (8)

In Section 5 we prove that the second term is O(ndq−CnD) for fixed d < D, q, a positive 
constant C and n tending to infinity. That will finish the proof of Theorem 1.1. �
Remark 4.2. If m < lq(n, d + D)/lq(n, d), then the regularity degree for m polynomials 
of degree D must be larger than d +D, for the Macaulay matrix of degree d +D cannot 
have linearly independent columns.

5. The second term

In this section we bound the second term in (8). In order to simplify notation we 
combine inequalities with O-notation in what follows. By convention, the expression 
f(n) ≤ g(n) + O(h(n)) means that there exists t(n) such that |t(n)| ≤ c|h(n)| and 
f(n) ≤ g(n) + t(n) for a positive constant c and all sufficiently large n. Similarly, f(n) ≥
g(n) + O(h(n)) means that there exists t(n) such that |t(n)| ≤ c|h(n)| and f(n) ≥
g(n) + t(n) for a positive constant c and all sufficiently large n.

Let d < D and q ≥ 2 be fixed and let n tend to infinity. Let X = {(a1, . . . , an)|0 ≤
ai < q, 

∑n
i=1 ai = d} be a family of d-multisets as defined in Section 3 for ki = q − 1. 

By �(v) we denote the number of (d + D)-multisets covered by the family of the first v
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of lexicographically ordered d-multisets X . Let S(t) =
∑∞

i=0 αit
i and [td]S(t) denote the 

coefficient at td. Obviously,

lq(n, d) = [td] (1 − tq)n

(1 − t)n . (9)

Let 
[
n
j

]
denote the number of solutions to j = x1 + . . . + xn in integer xi ≥ 0. Then 

1
(1−t)n =

∑∞
j=0

[
n
j

]
tj .

Lemma 5.1. lq(n, d) =
[
n
d

]
+ O(nd−q+1) as n → ∞.

Proof. By (9),

lq(n, d) = [td]

⎛
⎝ n∑

i=0
(−1)i

(
n

i

)
tqi ·

∞∑
j=0

[
n

j

]
tj

⎞
⎠ =

�d/q	∑
i=0

(−1)i
(
n

i

)[
n

d− iq

]

=
[n
d

]
+

�d/q	∑
i=1

(−1)i
(
n

i

)[
n

d− iq

]
=

[n
d

]
+ O(nd−q+1). �

Let s ≥ 1 and ls,q(n, d) denote the number of monomials of degree d in Fq[x1, . . . , xn]/
(xs

1, x
q
2, . . . , x

q
n). Obviously,

ls,q(n, d) =
s−1∑
i=0

lq(n− 1, d− i). (10)

Let S = {1, . . . , lq(n, d)} and let Xv denote the v-th largest multiset in the family of 
d-multisets X according to the lexicographic order. We will partition S into disjoint 
intervals.

Let 0 ≤ δ ≤ d. By division with remainder, d − δ = σ(q − 1) + t for some σ ≥ 0 and 
0 ≤ t < q − 1. We consider a family of all d-mutisets

(q − 1, . . . , q − 1, u, aσ+2, . . . , an),

where u ≥ t, for some aσ+2, . . . , an. Let vδ denote the largest index v such that Xv belongs 
to that family. If that does not exist, then we put vδ = vδ−1, where v−1 = 0. Obviously, 
vδ = lq−t,q(n − σ, δ). In particular, v0 = 1, vd = lq(n, d), and v−1 < v0 ≤ v1 ≤ . . . ≤ vd.

Let Iδ denote all v such that vδ−1 < v ≤ vδ. Clearly, v ∈ Iδ if and only if Xv belongs 
to the family of d-multisets

(q − 1, . . . , q − 1, t, aσ+2, . . . , an)

for some aσ+2, . . . , an. So |Iδ| = vδ − vδ−1 = lq(n − σ − 1, δ). Observe S =
⋃d

δ=0 Iδ. Let 
0 ≤ x ≤ n − σ − 1. We consider a family of all d-multisets
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(q − 1, . . . , q − 1, t, 0, . . . , 0, aσ+x+2, . . . , an),

where aσ+x+2 �= 0. Let vδ,x denote the largest v such that Xv belongs to that family. If 
the family is empty, then we put vδ,x = vδ,x−1, where vδ,−1 = vδ−1. Then vδ−1 = vδ,−1 ≤
vδ,0 ≤ . . . ≤ vδ,n−σ−1 = vδ. Obviously, vδ,x = vδ − lq(n − σ − x − 2, δ). Let Iδ,x denote 
the set of all v such that vδ,x−1 < v ≤ vδ,x. Then Iδ =

⋃n−σ−1
x=0 Iδ,x.

Proposition 5.2. If δ = 0, then �(v0,n−σ−1) = lq−t,q(n − σ, δ + D), and �(v0,x) = 0 for 
x < n − σ − 1. If δ > 0, then

�(vδ,x) = lq−t,q(n− σ, δ + D) − lq(n− σ − x− 2, δ + D).

Proof. For δ = 0 the statement is obviously correct. Let δ > 0. We notice that the family 
of d-multisets Xv, where 1 ≤ v ≤ vδ,x, consists of d-multisets

(q − 1, . . . , q − 1, t + aσ+1, aσ+2, . . . , an),

where at least one among aσ+1, . . . , aσ+x+2 is non-zero and 
∑

ai = δ. That family covers 
precisely all (d + D)-multisets of the form

(q − 1, . . . , q − 1, t + aσ+1, aσ+2, . . . , an),

where at least one among aσ+1, . . . , aσ+x+2 is non-zero and 
∑

ai = δ + D. The number 
of such (d + D)-multisets is

lq−t,q(n− σ, δ + D) − lq(n− σ − x− 2, δ + D).

That implies the statement for δ > 0. �
Lemma 5.3. If v ∈ Iδ,x, then �(v + 1) − �(v) ≤ lq(n − σ − x − 2, D).

Proof. Since v ∈ Iδ,x,

Xv = (q − 1, . . . , q − 1, t, 0, . . . , 0, aσ+x+2, . . . , an),

for some aσ+x+2, . . . , an, where aσ+x+2 �= 0. It follows that

Xv+1 = (q − 1, . . . , q − 1, t, 0, . . . , 0, aσ+x+2, . . . , aj−1, aj − 1, bj+1, . . . , bn),

for j ≥ σ + x + 2 and some bj+1, . . . , bn. Every (d + D)-multiset covered by Xv+1 and 
not covered by {X1, . . . Xv} is in the family of (d + D)-multisets

(q − 1, . . . , q − 1, t, 0, . . . , 0, aσ+x+2, . . . , aj−1, aj − 1, cj+1, . . . , cn),
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for some cj+1, . . . , cn. The size of that family is at most lq(n −σ−x −2, D). That implies 
the lemma. �
Lemma 5.4. Let 1 < s ≤ q.

1. ls,q(n, δ) − lq(n − x, δ) ≥ xlq(n − x, δ − 1).
2. For x ≤ √

n and sufficiently large n,

ls,q(n, δ) − lq(n− x, δ) ≤ x(lq(n− 1, δ − 1) + (q − 2)lq(n− 1, δ − 2)).

Proof. By (10),

ls,q(n, δ) − lq(n− x, δ)

= (ls,q(n, δ) − lq(n− 1, δ)) +
x−1∑
i=1

(lq(n− i, δ) − lq(n− i− 1, δ))

=
s−1∑
j=1

lq(n− 1, δ − j) +
x−1∑
i=1

q−1∑
j=1

lq(n− i− 1, δ − j) ≥ xlq(n− x, δ − 1)

by considering only summands for j = 1. On the other hand, for x <
√
n and sufficiently 

large n, lq(n − x, δ − i) > lq(n − x, δ − i − 1). Therefore,

ls,q(n, δ) − lq(n− x, δ) =
s−1∑
j=1

lq(n− 1, δ − j) +
x−1∑
i=1

q−1∑
j=1

lq(n− i− 1, δ − j)

≤
x−1∑
i=0

q−1∑
j=1

lq(n− i− 1, δ − j)

≤ xlq(n− 1, δ − 1) + (q − 2)
x−1∑
i=0

lq(n− i− 1, δ − 2)

≤ x(lq(n− 1, δ − 1) + (q − 2)lq(n− 1, δ − 2)). �
We consider the exponent in the second term of (8). As m ≥ lq(n,d+D)

lq(n,d) ,

(lq(n, d) − v + 1) v + lq(n, d + D) − �(v) − (lq(n, d) − v)m ≤ En(v),

where En(v) = Pv − v2 − �(v) and P =
(
lq(n, d) + 1 + lq(n,d+D)

lq(n,d)

)
. Assume v ∈ Iδ, that 

is vδ−1 < v ≤ vδ. First, if δ = 0, then v = 1 and

En(1) = lq(n, d) + lq(n, d + D)
lq(n, d)

− �(1),



I. Semaev, A. Tenti / Journal of Algebra 565 (2021) 651–674 671
where, by Proposition 5.2, �(1) = lt,q(n − σ, D) = nD

D! +O(nD−1) for large n. Therefore,

En(1) = −nD

(
1
D! −

d!
(d + D)!

)
+ O(nD−1). (11)

Let δ > 0 and v ∈ Iδ,x. This implies that vδ,x−1 < v ≤ vδ,x.

Lemma 5.5. Let 0 < α < D

√
d!D!

(d+D)! . For x > n(1 −α) and v ∈ Iδ,x, we have En(v + 1) −
En(v) > 0 for all sufficiently large n. In particular, the maximum on the given intervals 
of the function En can be found at v = vδ.

Proof. Using Lemma 5.3, we can see that

En(v + 1) − En(v) = P − 2v − 1 − �(v + 1) + �(v)

≥ lq(n, d + D)
lq(n, d)

− lq(n, d) − lq(n− σ − x− 2, D).

As x > n(1 − α0),

En(v + 1) − En(v) ≥

[
n

d+D

]
[
n
d

] −
[
αn− σ − 2

D

]
+ O(nD−1)

≥ nD

(
d!

(d + D)! −
αD

D!

)
+ O(nD−1).

So, for sufficiently large n, En(v + 1) −En(v) > 0 for v ∈ Iδ,x and x > n(1 − α). �
Proposition 5.6. There exists positive C and n0 such that En(v) < −CnD for n ≥ n0
and 1 ≤ v ≤ lq(n, d) − 1.

Proof. Let v ∈ Iδ,x, that is vδ,x−1 < v ≤ vδ,x. Then En(v) < Pvδ,x − �(vδ,x−1). Let 
0 < α < D

√
d!D!

(d+D)! be fixed. We will divide Iδ into three intervals: 0 ≤ x ≤ √
n, 

√
n < x ≤ n(1 − α), n(1 − α) < x ≤ n − σ − 1 and bound En(v) from above on each of 

them.
Case 1. Let 0 ≤ x ≤ √

n. By Lemma 5.4,

En(v) ≤ P vδ,x − �(vδ,x−1) ≤ P (x + 2)(lq(n− σ − 1, δ − 1)+

+ (q − 2)lq(n− σ − 1, δ − 2)) − (x + 1)lq(n− σ − x− 1, δ + D − 1))

≤ (x + 1)
(
nδ+D−1

(
2d!

(d + D)!(δ − 1)! −
1

(δ + D − 1)!

)
+

+ O(nδ+D−3/2)
)
. (12)
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The summand with the highest power of n of the last expression is negative for every 
x ≥ 0, since

2(δ + D − 1)! = (2δ)(δ + D − 1) . . . (δ + 1)(δ − 1)! < (d + D) . . . (d + 1)(δ − 1)!

Hence, for n sufficiently large the maximum of (12) is achieved for x = 0.
Case 2. Let 

√
n < x ≤ n(1 − α0). For simplicity, we replace n − σ − x − 2 = y, so 

α0n − 2 − σ ≤ y < n −√
n− 2 − σ. By rearranging the terms,

En(v) ≤ P vδ,x − �(vδ,x−1)

= P lq−t,q(n− σ, δ) − lq−t,q(n− σ, δ + D) − P lq(y, δ) + lq(y + 1, δ + D).

Hence

Plq−t,q(n− σ, δ) − lq−t,q(n− σ, δ + D) = nδ+D

(
d!

(D + d)!δ! −
1

(D + δ)!

)
+

+ O(nδ+D−1). (13)

Then

− Plq(y, δ) + lq(y + 1, δ + D) =
[y
δ

]⎛⎝−

[
n

d+D

]
[
n
d

] +

[
y

δ+D

]
[
y
δ

]
⎞
⎠ + O(nδ+D−1)

≤
[y
δ

](
− nDd!

(D + d)! + (n−√
n)Dδ!

(D + δ)!

)
+ O(nδ+D−1)

=
[y
δ

]( nDδ!
(D + δ)! −

nDd!
(D + d)! −

nD−1/2Dδ!
(δ + D)!

)
+ O(nδ+D−1).

We notice that for sufficiently large n (this choice depends only on δ, d, and D) the 
sum in the parenthesis is positive if δ < d and negative if δ = d. If δ < d, then

−Plq(y, δ) + lq(y + 1, δ + D)

≤ nδ+D

(
1

(δ + D)! −
d!

(D + d)!δ!

)
− nδ+D−1/2D

(δ + D)! + O(nδ+D−1). (14)

If δ = d, then

−Plq(y, d) + lq(y + 1, d + D) ≤ −nd+D−1/2Dαd

(d + D)! + O(nd+D−1). (15)

Overall for δ < d, by putting together (13) and (14),
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En(v) ≤ −nδ+D−1/2D

(δ + D)! + O(nδ+D−1) (16)

for sufficiently large n. For δ = d, by putting together (13) and (15),

En(v) ≤ −nd+D−1/2Dαd

(d + D)! + O(nd+D−1) (17)

for sufficiently large n.
Case 3. Let n(1 − α) < x ≤ n − σ − 1. By Lemma 5.5, En(v) ≤ En(vδ).
For δ = d, since vd = lq(n, d) is not in the domain of En, we use En(vd − 1) as an 

upper bound, where

En(vd − 1) = 2lq(n, d) − 2 − lq(n, d + D)
lq(n, d)

= − nDd!
(d + D)! + O(nD−1) (18)

since lq(n, d +D) = �(vd − 1). For δ < d, the maximum of En on the interval is achieved 
at vδ:

En(vδ) ≤ P lq−t,q(n− σ, δ) − lq−t,q(n− σ, δ + D)

= −nδ+D

(
1

(δ + D)! −
d!

(D + d)!δ!

)
+ O(nδ+D−1). (19)

Overall, by combining (11), (12), (16), (17), (18), (19), we get En(v) < −CnD for 
a positive C, and sufficiently large n uniformly in v ∈ {1, . . . , lq(v, d) − 1} (that means 
n ≥ n0 and n0 is independent of v). �

We conclude the proof of Theorem 1.1:

p ≤ qlq(n,d+D)−mlq(n,d) +
lq(n,d)−1∑

v=1
qEn(v) ≤ qlq(n,d+D)−mlq(n,d) + O(ndq−CnD

).
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