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Abstract

The enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily count more

than 870 000 members through all kingdoms of life and share the same structural fold.

GNAT enzymes transfer an acyl moiety from acyl coenzyme A to a wide range of substrates

including aminoglycosides, serotonin, glucosamine-6-phosphate, protein N-termini and

lysine residues of histones and other proteins. The GNAT subtype of protein N-terminal

acetyltransferases (NATs) alone targets a majority of all eukaryotic proteins stressing the

omnipresence of the GNAT enzymes. Despite the highly conserved GNAT fold, sequence

similarity is quite low between members of this superfamily even when substrates are simi-

lar. Furthermore, this superfamily is phylogenetically not well characterized. Thus functional

annotation based on sequence similarity is unreliable and strongly hampered for thousands

of GNAT members that remain biochemically uncharacterized. Here we used sequence

similarity networks to map the sequence space and propose a new classification for eukary-

otic GNAT acetyltransferases. Using the new classification, we built a phylogenetic tree,

representing the entire GNAT acetyltransferase superfamily. Our results show that protein

NATs have evolved more than once on the GNAT acetylation scaffold. We use our classifi-

cation to predict the function of uncharacterized sequences and verify by in vitro protein

assays that two fungal genes encode NAT enzymes targeting specific protein N-terminal

sequences, showing that even slight changes on the GNAT fold can lead to change in sub-

strate specificity. In addition to providing a new map of the relationship between eukaryotic

acetyltransferases the classification proposed constitutes a tool to improve functional anno-

tation of GNAT acetyltransferases.

Author summary

Enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily transfer an acetyl

group from one molecule to another. This reaction is called acetylation and is one of the

most common reactions inside the cell. The GNAT superfamily counts more than 870 000
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members through all kingdoms of life. Despite sharing the same fold the GNAT superfam-

ily is very diverse in terms of amino acid sequence and substrates. The eight N-terminal

acetyltransferases (NatA, NatB, etc. to NatH) are a GNAT subtype which acetylates the

free amine group of polypeptide chains. This modification is called N-terminal acetylation

and is one of the most abundant protein modifications in eukaryotic cells. This subtype is

also characterized by a high sequence diversity even though they share the same substrate.

In addition, the phylogeny of the superfamily is not characterized. This hampers func-

tional annotation based on sequence similarity, and discovery of novel NATs. In this

work we set out to solve the problem of the classification of eukaryotic GCN5-related acet-

yltransferases and report the first classification framework of the superfamily. This frame-

work can be used as a tool for annotation of all GCN5-related acetyltransferases. As an

example of what can be achieved we report in this paper the computational prediction

and in vitro verification of the function of two previously uncharacterized N-terminal

acetyltransferases. We also report the first acetyltransferase phylogenetic tree of the GCN5

superfamily. It indicates that N-terminal acetyltransferases do not constitute one homoge-

neous protein family, but that the ability to bind and acetylate protein N-termini had

evolved more than once on the same acetylation scaffold. We also show that even small

changes in key positions can lead to altered enzyme specificity.

Introduction

Transfer of an acetyl group from one molecule to another is one of the most common reac-

tions inside the cell. The rich and diverse, but structurally highly conserved, superfamily of

GCN5-related acetyltransferases is one of the enzyme superfamilies able to catalyze the acetyla-

tion reaction [1–3]. Members of the GCN5-related acetyltransferase superfamily are able to

accommodate numerous types of substrates including lysine sidechains [4–6] and N-termini

of proteins [7], serotonin [8], glucosamine 6-phosphate [9], polyamines [10] and others. N-ter-

minal acetylation is one of the most abundant protein modifications in eukaryotic cells, with

over 80% of proteins susceptible to acetylation in multicellular eukaryotes [11]. The reaction

entails transfer of an acetyl group from a substrate donor, most often acetyl coenzyme A, to a

substrate acceptor, which is the N-terminus of the acetylated protein [12]. The abundance of

N-terminal acetylation implies numerous effects of this modification on normal cell function-

ing and, indeed, it has been shown that N-terminal acetylation affects protein synthesis indi-

rectly [13], protein folding [14, 15], protein half-life [16], protein-protein [17] and protein-

lipid interactions [18], protein targeting [19], apoptosis [20, 21], cancer [22], a variety of con-

genital anomalies and autism spectrum disorder [23–26]. The importance of N-terminal acety-

lation is also striking in plants, where it is involved in plant defense and development [27],

response to abiotic stressors like osmotic and high-salt stress [28] and response to other vari-

ous types of biotic and abiotic stressors [29–32]. Despite the importance of N-terminal acetyla-

tion the number of N-terminal acetylating enzymes and cellular pathways remain unclear.

Thus far eight N-terminal acetyltransferases (NATs) have been discovered in eukaryotes

with the last one identified in 2018 [33–48]. NATs are named NatA-NatH, by convention, and

their catalytic subunits, which are the focus of this work, are named NAA10-NAA80. Each of

the catalytic subunits has the same fold, called the GNAT fold. GNAT is the acetylation scaf-

fold in the entire GCN5-related acetyltransferase superfamily [2, 3]. It is an α-β-α layered

structure with a characteristic V-shaped splay between the two core parallel β-strands (usually

β4 and β5 strands) (Fig 1). Together with the core strands, two loops (usually α1-α2 and β6-β7
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loops) are involved in catalysis and substrate binding. They are located on one side of the

splay. On the other side an α-helix (usually α3) common to all acetyltransferases binds Ac-

CoA [2, 3] (Fig 1). While the β4 and β5 strands and the loops α1-α2 and β6-β7, are structurally

quite conserved, their amino acid sequence varies with ligand specificity [2, 3, 49–56]. Conse-

quently, the key determinants of the ligand specificity of an acetyltransferase are sequence

motifs in the crucial positions on the GNAT fold.

Some NATs are more promiscuous than others when it comes to substrate specificity [7].

NatA is the most promiscuous NAT and it acetylates N-termini starting with A, S, T, C, V and

G in fungi, plants and animals after the initial methionine is cleaved off [11, 12, 30]. NatD and

NatH, on the other hand, have only one type of substrate. NatD acetylates N-terminal serine

[35, 57], while NatH acetylates acidic N-terminus of processed actin [42, 56]. NatB, NatC,

NatE, NatF and NatG have more relaxed specificity compared to NatD and NatH but are less

promiscuous than NatA [58]. Usually the first two residues of a substrate protein determine

whether the protein can be acetylated [11]. There is some overlap between in vitro specificities

of NATs [59] and interestingly, it has been shown that some non-NAT acetyltransferases have

the ability to N-terminally acetylate polypeptide chains. Glucosamine 6-phosphate acetyltrans-

ferases are one such example and were recently shown to in vitro acetylate N-terminal serine

[60]. Besides Glucosamine 6-phosphate acetyltransferases, dual N-terminal activity has been

demonstrated in plant plastids, where 8 GNAT acetyltransferases have been shown to be able

to acetylate side chain lysines and protein N-termini [61]. The conservation of specificity from

fungi to animals is high for some NATs but is not fully established for all eight identified

Fig 1. GNAT fold is the acetylation scaffold in the acetyltransferase superfamily. The fold positions the two

substrates in such a way that the acetyl group of Ac-CoA approaches the N-terminus of the protein acceptor in the

middle of the V-shaped splay between β4 and β5 strands–marked with the red circle. Four structural motifs have been

identified in the GNAT fold: motif A consists of the β4 strand and α3 helix, motif B is the β5 strand and α4 helix, motif

C includes the β1 strand and α1 helix, and motif D consists in the β2 and β3 strands [2].

https://doi.org/10.1371/journal.pcbi.1007988.g001
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NATs. NatA and NatB, for example, have a quite well conserved specificity in all eukaryotes

[11, 12, 30]. NatE has been shown to be catalytically inactive in yeast, unlike in multicellular

eukaryotes where its specificity is well conserved [12, 17, 30, 53]. This has been shown only for

yeast NAA50, however and it is unclear if all fungi NAA50s are catalytically inactive. NatC

activity has been demonstrated in all eukaryotes [12, 30] with specificity conservation between

yeast and human [36, 48] but plant NatC substrates still haven’t been identified [62]. While

some NATs are present in all eukaryotic kingdoms, some NATs are not; NatF is not present in

fungi, for example [38]. NatG is located only in plastids of plant cells [41] and NatH has been

identified only in animals [42]. NATs are referred to as a family of enzymes since they all acety-

late the same type of substrate, namely protein N-termini, but the fact is that there is no deeper

classification than at the superfamily level for all GNAT acetyltransferases.

The majority of all known types of acetyltransferases are members of the same Pfam [63]

family (Acetyltransf_1, code: PF00583) which contains almost 50% of the entire acetyltransfer-

ase clan (Pfam code: CL0257). The Acetyltransf_1 Pfam family contains 120,379 sequences out

of the 280,421 sequences of the acetyltransferase clan and consists of numerous types of acetyl-

transferases. PROSITE [64] does not differentiate between different types of acetyltransferases

either and recognizes four types of GNAT fold: GNAT (PS51186), GNAT_ATAT (PS51730),

GNAT_NAGS (PS51731) and GNAT_YJDJ (PS51729). The CATH database [65] offers a

slightly better classification than Pfam or PROSITE, but CATH does not accurately differenti-

ate between all known NAT sequences. As a result, and despite extensive efforts on the experi-

mental front, the current classification of acetyltransferases is based on a collection of ligand

specificity assays which can only sparsely cover the variety of enzymes in the superfamily.

Several studies have identified a large number of proteins that can be N-terminally acety-

lated [33, 39, 66–69]. Much of the identified acetylated N-termini can be explained by cur-

rently known NATs [11, 66]. However, we do not know whether or not known NATs acetylate

other exotic N-termini found to be N-terminally acetylated in cells, such as those with acety-

lated initial tyrosine (PCD23_HUMAN, KS6A5_HUMAN, etc) [66]. N-terminal acetylation

events following post-translational protease action are not well characterized either; known

NATs except NatF, NatG and NatH sit on the ribosome and catalyze cotranslational acetyla-

tion [58]. Therefore, there might be unidentified NATs in eukaryotes responsible for such

events. The lack of a classification of acetyltransferases at the family level hinders functional

annotation based on sequence similarity, and hence slows down the identification of new

NATs.

In order to create a better classification framework for the eukaryotic acetyltransferase

superfamily we used a combination of bioinformatics sequence analysis consisting in sequence

similarity networks (SSNs), motif discovery and phylogenetic analysis. We showed that N-ter-

minal acetyltransferases do not constitute one homogeneous family, even though they acetylate

the same type of substrate. Our analyses all converge to the conclusion that NATs evolved

more than once. Finally, we could predict and experimentally verify that two uncharacterized

sequences from fungi closely related to two known NATs, NAA50 and NAA60, encode NAT

enzymes targeting specific protein N-terminal sequences. This experimental validation gives

us confidence that our classification will be a valuable tool for identification and annotation of

new superfamily members.

Results and discussion

Sequence similarity networks (SSNs)

We collected from UniProt all eukaryotic sequences matching the GNAT signature defined by

PROSITE. The collected sequences were then filtered at 70% identity to reduce the size of the
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dataset, using h-cd-hit [70], which resulted in a dataset of 14,396 sequences. We also collected

a second dataset restricted to the sequence of the GNAT-domains. We generated SSNs for

each of the datasets using EFI-EST [71]. By adjusting the E-value and alignment score thresh-

old for drawing SSN edges (S1A Text), we created an SSN with the highest probability of hav-

ing isofunctional clusters. Both SSNs resulted in a sparse topology indicating a high sequence

diversity in the acetyltransferase superfamily (S1B Text). The convergence ratio of the SSN

built from the full-length sequences is 0,008 and it is equal to 0,009 for the network build from

the GNAT domains only. This illustrates the high level of divergence between

acetyltransferases.

We used the clusterONE algorithm [72] through Cytoscape [73] to determine the bound-

aries between each cluster in our SSNs. We identified 232 clusters in the full-length sequence

SSN and 221 clusters in the GNAT domain SSN. Since the results for both networks are highly

similar, we opted to use the full-sequence SSN for further analyses. When applying clusterONE

to SSNs, we used the percentage of sequence identity as edge weight to make sure that clusters

are identified based on a reliable measure of similarity. Dense regions thus correspond to very

similar sequences. We also observe that, with few exceptions, known acetyltransferases of one

particular function never appear in multiple clusters. We can thus reasonably assume that the

clusters in our SSN are isofunctional.

In order to better visualize the relationships between clusters we represented the SSNs as

simplified, “pivot”, networks. Each cluster of the original SSN is represented by a single node.

An edge between nodes in the simplified network is drawn where there was at least one edge

between any nodes of the two corresponding clusters in the original SSN (Fig 2 and S1C Text).

The main topological characteristics of the SSNs are network sparsity, the resulting absence of

SSN hubs, several connected components that contain a varying number of clusters, and a

large number of isolated clusters (Fig 2). We identified 48 clusters with known acetyltrans-

ferases and 184 completely uncharacterized clusters. The majority of proteins in our SSN are

from fungi (S1C Text), but all eukaryotic kingdoms are represented. There is a total of 80

Homo sapiens proteins in the SSN, spread into 21 clusters. The observed clustering is not

based on taxonomy, but instead correlates with ligand specificity (S2 Text). Interestingly, acet-

yltransferases that acetylate the same type of substrate (e.g. either N-termini of proteins or his-

tones) are not necessarily found within the same connected component but are scattered over

the SSN. This is the case with NATs, which are found clustering together with other types of

acetyltransferases rather than forming one homogeneous group. This is the first indicator that

NATs do not constitute one homogeneous family but have, rather, evolved more than once on

the same scaffold.

Identification of five NAT groups: sequence motif fingerprints and

structure comparison

Sequence fingerprints. Known NATs do not all inhabit the same connected components

of the SSN (Fig 2), which indicates NATs are not one homogeneous family of acetyltrans-

ferases. We used MEME [74] from the MEME suite [75] to identify motifs in each of the SSN

clusters. Sequence motifs of highly conserved residues were detectable for each of the clusters.

Based on the similarity between motifs and on the clustering of the NATs in the SSN, we

defined five different groups of NATs (Fig 2). We subsequently calculated sequence motifs for

each of these groups. The motifs are shown in Fig 3 and Table 1.

Group 1 consists of Group 1a with NAA10 and NAA20, and Group 1b that contains

NAA30 of all eukaryotic kingdoms. NAA10 and NAA20 are in the same connected compo-

nent, while NAA30 is found in a single isolated cluster. Sequence motifs that are important for

PLOS COMPUTATIONAL BIOLOGY Classification of the eukaryotic GNAT acetyltransferases superfamily
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binding of substrate and acetylation in both subgroups of Group 1 NATs are localized on the

α1-α2 loop, the β4 and β5 strands and the β6-β7 loop [51, 52, 54] (S3A Text) and this is true

for groups 2 and 3 as well. Group 2 consists of NAA50 and NAA60. NAA50 and NAA60 do

not cluster together in the SSN but the resemblance between their key sequence motifs (S3B

Text) justifies placing them in the same group. Group 2 also contains a catalytically inactive

yeast NAA50, a member of the fungal Sacharomicetaceae family (S3C Text). This inactive

NAA50 forms a separate cluster, numbered 135, in the SSN (Fig 2). Sequence motifs on key

secondary structure elements are not strictly conserved between cluster 135 and the catalyti-

cally active NAA50 (cluster 9). This explains why the inactive enzyme clusters separately from

cluster 9. It is important to mention that NAA60 of animals and plants do not share the same

cluster (S2C Text). Plant NAA60 bears some slight, but potentially important differences on

the α1-α2 loop, where a negatively charged E in animals is replaced by a positively charged K

in plants. The key tyrosine of β6-β7 loop is still present in plants, but unlike animal NAA60

which has thee tyrosines in this loop, plant NAA60 only has one. We define Group 3 around

NAA40. Some plant NAA40 form a separate cluster and some others share the same cluster as

animal NAA40 sequences. A striking characteristic of NAA40 is its long α0 helix and the posi-

tion of its α1-α2 loop [55] which extends over and covers the binding site where the β6-β7

loop lies in other NATs. Group 4 is defined around NAA80 which is structurally different

Fig 2. Simplified view of the resulting sequence similarity network. Each node represents one cluster from the original network. Edges connect two nodes in the

simplified network if there is at least one edge between any nodes of the corresponding clusters in the full network. Node colors correspond to their degree, i.e. the

number of connections to the neighboring nodes. Each node in the network has a unique number assigned by clusterONE [72]. The numbers serve as cluster names in

cases where the cluster is uncharacterized. All nodes circled in red are known and experimentally confirmed N-terminal acetyltransferases (10 –NAA10, 8 –NAA20, 2 –

NAA30, 20 –NAA40, 9 –NAA50, 24 –NAA60, 97 –NAA70 and 63 –NAA80). Of importance is also cluster 135, which contains the catalytically inactive yeast NAA50.

The network shows four NAT groups. Group 1 consists of two subgroups–Group 1a which contains NAA10 and NAA20 and Group 1b which contains NAA30.

https://doi.org/10.1371/journal.pcbi.1007988.g002
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from the first three groups. Its surface shows a large cleft which is covered by loops in all other

NAT structures available to date [56]. The need for a larger ligand binding site is explained by

the fact that NAA80 has evolved to catalyze N-terminal acetylation of fully folded actin and

harbors an extensive binding surface to actin [76]. Finally, Group 5 contains NAA70 which is

a chloroplast NAT discovered in Arabidopsis thaliana [41]. NAA70 is closer to bacterial acetyl-

transferases than to the eukaryotic ones in Groups 1 to 4. A BLAST search against the NCBI

non-redundant database [77] and excluding green plants, suggests that NAA70 is most similar

to cyanobacterial proteins with the best hit being a protein from Gleocapsa sp (29,7%id over

62% query cover). We also found that NAA70 shares a high percentage of sequence identity

with Enterococcus faecalis acetyltransferase whose structure has been solved (PDB code

1U6M). Unfortunately, there is not enough reliable structure information on NAA70 to be

able to map the position of the key sequence motifs onto the secondary structure elements.

While there are important differences between each of the groups in terms of sequence

motifs, some similarities emerge (Fig 3). They are especially obvious between groups 1a, 1b

and 2, where we can observe a well conserved tyrosine in the α1-α2 loop (Fig 3 and S3D Text)

and most importantly, another conserved tyrosine in the β6-β7 loop (Fig 3 and S3D Text).

This tyrosine is essential for function and is strictly conserved in all members of groups 1 and

2 [49–51, 54, 78] with the exception of the catalytically inactive fungal Sacchormycetaceae

Fig 3. Characteristic sequence motif fingerprints of NAT Groups 1 to 4. Sequence motifs were calculated as described in the Material and Methods section and using

sequences from the SSN clusters. Each position in the motif is represented by a colored bar and a one-letter code for the amino acid frequently found at that position in the

GNAT fold. The height of colored bar is proportional to the frequency of the corresponding amino acid. The colors correspond to the type of amino acid (blue: R, H, K;

red: D, E; green: C, S, G, Y, T; black: P, F, V, L, I, A; orange: M, W; purple: N, Q). Group 5 is not shown as there is no structure of NAA70 available.

https://doi.org/10.1371/journal.pcbi.1007988.g003

Table 1. Regular expressions for key sequence motifs of NATs Groups 1 to 4. All regular expressions were calculated using MEME from MEME Suite [75].

Group / ss element α1-α2 β4 β5 β6-β7

Group 1a [CV]NLD[CN]L[PT]E[NT]Y [WP]HGH[IV]T[SA][LV][STA]V [FY]V[DS]L[FH]VR[VK]SN [VI]X[ED][VI]E[KP]KYYA

Group 1b L[IV][DQ]K[DE]LSEPY RGYIAMLAVD E[VI]VLETE[VI][TD]N R[DE]KRL[FH]RYYL

Group 2 FP[VI]XY[PNS][DE][KS][FW]Y LYI [ML][TS]LGVLAPYR A[IV][YF]LHV[QL][TV][ST]N HS[FY]LPYYYSI

Group 3 YEQSSWGW[DN][DE] VLYCYE[IL]Q[LV]E KV[MV]LTV[FL]KHN

Group 4 CA[DE]L[LI]N[ES][EQ]W[PK] [SA][LC][FL]VE[ST]VVV[AS] L[TS]THDKQHFY

https://doi.org/10.1371/journal.pcbi.1007988.t001
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NAA50 where this tyrosine is lost [53]. The tyrosine in the α1-α2 loop is conserved in all

NATs of Group 1a, Group 1b and Group 2 [49, 50, 79] except for NAA20 where it can be

replaced by phenylalanine [51]. Group 3 and group 4 motifs clearly differ from those of Group

1 (Fig 3). Compared to the other groups, strands β4 and β5 stand out in groups 3 and 4 where

they play a major role in substrate binding and catalysis. Interestingly their sequence motifs

and key residue positions differ between the two groups [55, 56].

Structure comparison. We compared structures of acetyltransferases to one another

using the DALI server [80]. DALI computes and compares intramolecular distance from each

structure, and no sequence information is used. Our dataset consists of structures of 38 cata-

lytic subunits of acetyltransferases, all belonging to our SSN. The resulting dendrogram (Fig 4)

illustrates the degree of similarity between all structures in the dataset. It shows a classification

that overlaps with that of the SSN. In addition, it highlights that Group 1a and Group 2 are

Fig 4. DALI dendrogram for structural similarity between acetyltransferases. The dendrogram is the result of hierarchical clustering of structures. The known NATs

are closer to one another than to the rest of the superfamily. Note the non-NAT acetyltransferases located close to known NATs.

https://doi.org/10.1371/journal.pcbi.1007988.g004
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more similar to one another than to the other NATs, and to the rest of the entire superfamily.

Structure of NAA30, around which we built Group 1b, has not been solved, but based on the

sequence similarity it is safe to assume that it would be found in the same part of the dendro-

gram as Group 1a and Group 2. NAA40 (Group 3) is the NAT closest to NAA80 (Group 4), to

the histone acetyltransferase GCN5, to the dopamine N-acetyltransferase and to the arylalkyla-

mine N-acetyltransferase. The proximity of NAA40 and NAA80 is only observed in the struc-

ture-based classification and was not observed in the sequence similarity network, although

NAA40 and NAA80 are closer to one another than to other known NATs in the SSN. NAA80

is also close to the histone acetyltransferase GCN5. Groups 1a, 2, 3 and 4 of NATs are more

similar to one another than to the rest of the superfamily when structures are compared, but

this is not the case when sequences are compared. In-between these 4 groups one finds non-

NAT acetyltransferases, namely the histone acetyltransferase GCN5 (cluster 1) and serotonin

acetyltransferases (cluster 122).

It is important to mention that while we can see differences in structures of different acetyl-

transferases, they are still quite similar to one another. We verified the proximity of the struc-

tures by building a network based on a structure similarity matrix. The resulting network is

random with all nodes connected to all nodes when we use a Z-score higher than 2, which is

considered to be significant as a threshold for an edge between two nodes [81]. The Z-score

threshold needs to be increased to at least 15 for cluster separation in the similarity network to

appear (S1 Fig).

Similarities and differences between groups. Groups 1 and 2 are highly similar. Because

of the similarities between NAA10 in one hand, and NAA30 in the other hand, we placed

them in the same group of NATs but defined two subgroups (1a and 1b), as the NAA30 cluster

is not connected to those of NAA10 and NAA20. Sequence motifs on the α1-α2 loop, β4 and

β5 strands and β6-β7 loop are characteristic to both subgroups and represent its signature.

Protein N-termini starting with a small residue, which is exposed after removal of the initial

methionine, and protein termini with the initial methionine can be acetylated by this group of

NATs [7]. Even though these enzymes are obviously closely related, they employ different

solutions to bind and acetylate substrates. Slight changes are sufficient to shift the substrate

specificity of the GNAT fold. The same GNAT elements in Group 2 of NATs, which contains

NAA50 and NAA60, are important for substrate binding and catalysis [49, 50]. Group 2 NATs

acetylate protein N-termini starting with a methionine [49, 50]. Interestingly, Group 2 of

NATs contains an inactive yeast NAA50 (found in cluster 135), which does not contain the

characteristic β6-β7 tyrosine involved in substrate binding and which is present in Group 1

and Group 2 NATs [53]. The inactive yeast NAA50 does not have the Ac-CoA binding motif

either [53]. It is therefore expected that its function is not the same as the function of NAA50

sequences which have all substrate interaction sites conserved. By comparing sequences and

available structures we found that these important binding sequence motifs are absent only in

the Saccharomycetaceae from the fungal Ascomycota phylum. Other families from this phy-

lum and members of other fungal phyla seem to have conserved substrate binding sequence

motifs when compared to NAA50 of other eukaryotic kingdoms. Large differences between

Group 1a and Group 2 exist in the way the substrate binds to the enzyme and also in the posi-

tion of the catalytic residue on the fold. The difference in catalytic strategy between Group 1a

and Group 2 enzymes can be illustrated by drawing a horizontal line through the middle of the

V-shaped splay across the β4 and β5 strands (Cf Fig 1); in Group 1a the active site would be

above the line, while it would be below the line in Group 2. Interestingly, catalytic residues of

Group 2 are conserved in Group 1a, but they are not catalytically active in Group 1a [54]. The

two groups share two conserved tyrosines in each of the β6-β7 and α1-α2 loop. Both are

involved in substrate binding. In Group 1a of NATs, residues at positions upstream of the
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mentioned tyrosine (positions -2 and -4 with respect to the Tyr) are also involved in substrate

binding, but the same positions in Group 2 do not seem to be as important for binding the

substrate, even though position -4 shows mutational sensitivity [51].

There are important differences between groups 3 and 4, and each is very different from the

other groups. Group 3 contains NAA40, the NAT with the specificity towards the histone H4

and H2A N-termini (sequence: SGRG) [55]. The first major difference between NAA40 and

Group 1 and 2 NATs is the fact that the β6-β7 loop in NAA40 has no role in determining sub-

strate specificity [55] and does not carry an invariable tyrosine. While the α1-α2 loop of

NAA40 plays a role in substrate binding [55], just like in groups 1 and 2 NATs, it has a differ-

ent position in the 3D structure and its sequence motif does not bear any resemblance with the

conserved motifs of groups 1 and 2. Our SSNs and phylogenetic tree all show a large distance

between Group 3 and Groups 1 and 2.

Group 4 is defined by NAA80, the most recently discovered N-terminal acetyltransferase

[42]. The β6-β7 loop of NAA80 is not conserved and does not play an important role in acety-

lation. As in most other NATs the α1-α2 loop plays an important role in substrate binding and

is well conserved [56]. The α1-α2 loop sequence motif is different from those of other NATs.

Moreover, NAA80 has a wider substrate binding groove between the α1-α2 and β6-β7 loops.

This structural feature supports classifying NAA80 into a different NAT type. In addition

NAA80 does not have the α1-α2 and β6-β7 tyrosines found in Groups 1 and 2. Our results

confirm, over a larger set of sequences, an observation that has been reported earlier [56].

Phylogeny

We used the clustering information obtained from the smallworld SSN (S4A Text) to generate

the dataset for phylogeny. We selected 3 random sequences per SSN cluster and created an

MSA for the structural motifs A (β4 and α3) and B (β5 and α4) of the GNAT fold (See Fig 1

and S5A Text). They are the most conserved structural motifs across the superfamily [2] and

their alignment yields a better MSA than a whole-sequence alignment would. Note that

NAA70 was not included in the MSA because it is not found in the connected component of

the SSN used to generate the phylogeny dataset. The constructed tree is not rooted because of

the lack of a good outgroup and it does not inform on the direction of evolution within the

superfamily. It therefore represents a network of similarity of acetyltransferases which reflects

well the classification of NATs presented above and obtained from the SSN, the analyses of the

sequence motifs and evidence from the literature.

The phylogenetic tree is shown in Fig 5. The branching in the tree yields five categories of

NATs, without taking into account the group built around NAA70 which is not represented in

the tree. These five categories correspond to the Groups 1a, 1b, 2, 3 and 4 obtained based on

the SSN and motif similarity (Cf Fig 2). NATs from Group 1a (NAA10, NAA20), Group 1b

(NAA30) and Group 2 (NAA50 and NAA60) are closely related according to the tree (Fig 5)

and according to the smallworld SSN (S4A Text). This is in agreement with evidence that

NAA10 and NAA50 have evolved from the same archaeal ancestor [82]. An archaeal N-termi-

nal acetyltransferase, whose structure was solved by Liszczak and Marmorstein [82], can acety-

late substrates of both NAA10 and NAA50. The archaeal enzyme employs catalytic strategies

from both of these enzymes. It is most likely, as the authors suggested, that NAA10 and

NAA50 evolved from this common ancestor. NAA10 and NAA20 do not share the same

branch with NAA30 despite the similarity between their sequence motifs on key secondary

structure elements of the GNAT fold. Groups 3 and 4 appear close to each other; NAA40 and

NAA80 are close to one another. Several distinct branches of the tree carry a particular type of

acetyltransferases (Fig 5), but even within some of these branches we see acetyltransferases
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acetylating different types of substrates. We have mapped the SSN clusters to the tree in order

to observe relationships between NATs and other identified acetyltransferases.

The tree shows several acetyltransferases, annotated as non-NAT enzymes, close to the

Group 1a NATs (red branches). For example, a histone acetyltransferase (KAT14 –cluster 18)

is found close to Group 1a of NATs (NAA10 and NAA20) and these sequences are the closest

relatives according to the tree. An MSA of these acetyltransferases (S5B Text) reveals that

KAT14 and sequences in Group 1a share sequence motifs. Indeed, the best conserved sequence

motif found in Groups 1 and 2, located on the β6-β7 loop, is conserved in KAT14, as well. The

β6-β7 loop motif contains a tyrosine present in all Group 1 and Group 2 N-terminal acetyl-

transferases (NAA10, NAA20, NAA30, NAA50 and NAA60), with the exception of the fungal

Saccharomycetaceae family. The same tyrosine is present in the KAT14 β6-β7 loop (S5B Text).

This tyrosine has been shown to be essential for substrate binding [49, 54, 78] and it has been

suggested that the size and flexibility of the β6-β7 loop plays an important role in substrate rec-

ognition [2, 83]. Based on similarity between the β6-β7 loop of KAT14 and the NATs from

Groups 1 and 2 and given the fact that the β6-β7 loop differs in size and primary sequence in

other acetyltransferases, it is not excluded that KAT14 might be able to accommodate the

same type of substrate as NATs and acetylate N-termini of proteins.

Fig 5. Unrooted phylogenetic tree of the acetyltransferase superfamily. The tree contains only those sequences for which we could find significant

relationships in the SSN. A gray background is used to highlight the branches on the tree that are populated exclusively by uncharacterized sequences.

https://doi.org/10.1371/journal.pcbi.1007988.g005
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Looking now more specifically at the branches around Group 2 (green branches), we can

see that clusters 49, 120, 128, 135, 136 and 212 are found close to NAA50 (cluster 9) (Fig 5).

Clusters 83 and 209 are found close to NAA60 in the phylogenetic tree as well (Fig 5). Addi-

tionally, according to the tree, clusters 122, 78, 16 and 37 are closely related to NAA60. Cluster

122 is a serotonin N-acetyltransferase [84] and forms a single cluster in the stringent SSN.

There are similarities between serotonin N-acetyltransferase and NAA60. Like NAA60, seroto-

nin acetyltransferase has a long β3-β4 loop, unlike other NATs [50] (S5C Text). Catalytic resi-

dues are positioned similarly in both enzymes. Tyr97 in NAA60 and His 120 in serotonin

acetyltransferase have equivalent positions in on the GNAT fold (S5C Text). The other cata-

lytic residue of NAA60 (His138) and cluster 122 serotonin acetyltransferase (His122) are both

located in the core of the GNAT fold (S5C Text) even if their positions are not equivalent.

Cluster 16 is annotated as a polyamine acetyltransferase [85, 86] and it establishes weak con-

nections with, among few others, cluster 14 (diamine acetyltransferases) in the stringent SSN.

Cluster 161 is close to NAA50, NAA60 and their surrounding clusters and the MSA of

NAA50, NAA60 and sequences in cluster 161 shows many conserved key residues (S5D Text).

Cluster 161 contains only sequences of Caenorhabditis tropicalis and is highly similar to both

NAA50 and NAA60. It might therefore acetylate substrates similar to those acetylated by

NAA50 and NAA60.

In Group 3 clusters 104, 222, 13 and 47 are close to NAA40 (ochre branches) (Fig 5). Addi-

tionally, clusters 111 and 176 are close to NAA40 and surrounding clusters (Fig 5). Sequences

in cluster 176 are annotated as NAA40. It is unclear whether cluster 111 is also a NAA40 or if

it has a different substrate specificity.

In Group 4 of NATs (dark blue branches), clusters 94, 106, 226 and 232 are close to NAA80

(cluster 63) (Fig 5), This group of sequences is close to cluster 32. Another branch, branching

from the NAA80 branch, contains clusters 14 (Diamine acetyltransferases), 15 and 53 (Tyra-

mine N-feruloyl transferase 4/11). In addition, on the same branch, but closer to clusters 14,

15 and 53 than to NAA80, lie uncharacterized clusters 29, 152 and 218. Clusters 29, 152 and

218 are closely related, according to our tree, with cluster 68 (Histone acetyltransferase HPA2

[87]) and 194.

Histone acetyltransferase GCN5 (cluster 1) is found on the same branch as NAA40 on the

phylogenetic tree and, also, close to NAA40 and NAA80 on the structure similarity dendro-

gram (Fig 4). The MSA between NAA40 and acetyltransferases from cluster 1 shows some

conservation between these two types of acetyltransferases, but none of the functional key resi-

dues for NAA40 are conserved in sequences from cluster 1 (S5E Text). Judging by the branch-

ing of our tree, NAA40 and NAA80 are closer to one another than to other NATs (Fig 5).

Indeed, these two NATs do not share any of the characteristics of Group 1 and Group 2 NATs.

Their separate branching is in agreement with the assumptions we made about N-terminal

acetyltransferases evolving more than once, which was based on the topology of our SSNs and

on the sequence motif composition.

Eight enzymes in A. thalianamitochondria and chloroplasts have been shown to be able to

acetylate protein N-termini [61]. Three out of those eight enzymes are present in our phyloge-

netic tree (cyan branches) (Fig 5). Clusters 36, 71 and 82 are closely related according to our tree,

which is in agreement with observations made by Bienvenut and colleagues in their study [61],

where they group these three enzymes into the same subgroup. Interestingly, clusters 36, 71 and

82 are found branching close to Glucosamine -6-phosphate acetyltransferase (Fig 5), which has

also been shown to be able to acetylate protein N-termini [60]. The remaining five A. thaliana
plastid enzymes with demonstrated N-terminal acetylation activity are found in clusters 50, 73,

74, 88 and 97 but they are not present in the tree; their inclusion lowers the robustness of the phy-

logenetic tree because of their high dissimilarity to the rest of the superfamily.
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Prediction of new acetyltransferases

Predictions based on SSN and sequence motifs. The initial SSN (Fig 2) revealed clusters

containing uncharacterized sequences around clusters of known NATs. In what follows, we

investigate how similar or different from known NATs these uncharacterized clusters are. To

that goal, we checked for the presence in these sequences of the motifs we had characterized

for the groups of known NATs (Table 1). Proteins belonging to those clusters and displaying

sequence motifs close to the NAT motifs are likely to be NATs.

Around Groups 1a and 1b, no neighboring cluster showed sequence motifs close to those

found in clusters 2 (NAA30), 8 (NAA20) and 10 (NAA10). Therefore, none of the connected

clusters to either NAA10 or NAA20 were considered as potential new NATs. In group 2, the

connected components around clusters 9 (NAA50) and 24 (NAA60) contain uncharacterized

clusters numbered 49, 120, 128, 135, 136, 212 and 83 and 209, respectively (Cf Fig 3). All clus-

ters, in addition to an isolated cluster numbered 207, have sequence motifs resembling that of

group 2 (S6A Text) but also displaying significant differences. In the 6 clusters around cluster

9 (NAA50) (Fig 2), NAA50 is the only confirmed acetyltransferase and we found sequences

annotated as NAA50 both in clusters 9 and 135. There are X-ray structures available for both

of these clusters, and proteomics and biochemical data show that they may differ in their sub-

strate specificity [53, 88]. We observe a difference in sequence motifs; a mutation-sensitive

phenylalanine [49] in the α1-α2 loop of NAA50 (first Phe in the motif of group 2 shown on

Fig 3) is replaced by a less bulky leucine in sequences from cluster 135 (Fig 6A and 6C). We

observe the same differences in the α1-α2 loop between cluster 9 (NAA50) and uncharacter-

ized clusters 49, 120, 128 and 212 (Fig 6A). Two residues downstream from the leucine/phe-

nylalanine substitution, we observe a conserved isoleucine in cluster 120 instead of a highly

conserved valine in NAA50. This valine forms van der Waals contacts with the substrate in

NAA50 [49] and is, thus, important for substrate binding. Moreover, the α1-α2 loop in cluster

120 sequences contains two conserved prolines (Fig 6A) unlike NAA50 that contains only one

(Fig 3). The characteristic β6-β7 motif of NAA50 (Cf Table 1 and Fig 3) is not present in clus-

ter 135, which doesn’t have the conserved tyrosine in this loop (second tyrosine of the

sequence motif on Fig 3). Structurally, the differences between cluster 9 (NAA50) and cluster

135 enzymes are precisely in the β6-β7 loop, which is longer in cluster 135 structure (S6B

Text). Sequences from all other clusters around cluster 9, carry the same β6-β7 loop motif as

NAA50 (Fig 6A). Finally, there are differences in sequence motifs carried by the β4 strand; the

methionine responsible for interacting with the substrate in NAA50 (third position in β4 motif

on Fig 4) is substituted by a glutamine in clusters 49 and 128 and by a glutamate in clusters 135

and 136, while sequences in cluster 212 retain the conserved methionine. Based on the pre-

sented differences we predict that clusters 49, 120, 128, 136, and 212 have substrate specificities

different from that of NAA50. Sequences from clusters 49 and 120 were selected for experi-

mental verification (See section 4.2 below).

Sequences in clusters 83 and 209 around cluster 24 (NAA60) (Fig 2) could display substrate

specificities distinct from that of NAA60. The main difference is in the α1-α2 loop (Fig 6A); a

conserved acidic residue in NAA60 is substituted by a conserved positive residue four residues

downstream of the mutation-sensitive phenylalanine. Given the importance of the α1-α2 loop

[49–51, 54] this is likely to result in a change in ligand specificity for clusters 83 and 209. Clus-

ter 83 contains only plant sequences while cluster 24 contains only animal sequences. The dif-

ferences in sequence motifs we observe could indicate differences in specificities between plant

and animal NAA60.

In group 3, the component around cluster 20 (NAA40) also includes clusters 13, 47, 104

and 222 (Fig 2) which share NatD motifs to some extent. Crucial differences exist though.
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Sequences in clusters 13, 104 and 222 lack an aspartic acid conserved in cluster 20 and located

on the β3 strand of NAA40. Clusters 13, 47 and 222 lack a tryptophan conserved in the α1-α2

loop of NAA40 (S6C Text). Since both residues are crucial for substrate binding, the four

Fig 6. Variations of sequence motifs in key positions on the GNAT fold suggest novel NATs with different ligand specificities. When we compare the sequence

motifs of NAA50 (cluster 9) and NAA60 (cluster 24) to the corresponding motifs of their surrounding clusters, we notice a number of small but meaningful differences

(A). These differences occur on key positions of the GNAT fold and are illustrated here on the X-ray structure of NAA50 (PDB 3TFY) (B) The sequence differences

located on the α1-α2 loop, β4 and β5 strands and β6-β7 loop residues are likely to result in altered specificity. The structure superimposition between human NAA50 from

cluster 9 (orange, PDB 3TFY) and yeast NAA50 from cluster 135 (green, PDB 4XNH) highlights the small differences between residues involved in substrate binding in

these two proteins with reportedly different specificities [88] (C).

https://doi.org/10.1371/journal.pcbi.1007988.g006
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clusters around NAA40 might have different substrate similarities. In particular D127 in β3,

together with Y136 and Y138 in β4, and E129 located between β3 and β4, is involved in inter-

actions with the first 4 residues of the NatD substrate (H4 and H2A histones) and their muta-

tion greatly reduces the catalysis rate [55]. Interestingly cluster 20 contains not only the well

characterized animal NAA40 but also sequences from the plant phylum Chlorophyta. Other

plant sequences found in this group form cluster 104 and belong to the phylum Streptophyta.

Fungal sequences form cluster 47 and 222 and do not mix with plant and animal sequences.

The observed differences between cluster 20 and 104 indicate that fungal, plant and animal

NAA40 might have different specificities.

Even though there are four clusters around NAA80 (cluster 63, group 4) (Fig 2), we did not

find any variations in their key sequence motifs (S6D Text). The clustering in this case was

likely based on taxonomical differences.

Experimental verification of clusters 49 and 120. To evaluate the accuracy of our predic-

tions, we recombinantly expressed two candidates from the clusters 49 and 120, purified them

and tested their ability to acetylate N-termini from a selection of 24 amino acids-long synthetic

peptides (Fig 7). One of the candidate enzymes was N1Q410 from the fungus Dothistroma sep-
tosporum. After expression and subsequent purification of N1Q410 (S7A Text), we tested its

ability to acetylate N-termini of different sequences in a DTNB-based spectrophotometric

assay (Fig 7A). The first seven peptides represent typical substrates for the seven known NATs

in higher eukaryotes (NatA, SESS; NatB, MDEL; NatC, MLPG; NatD, SGRG; NatE, MLGP;

NatF, MLGP; NatH, DDDI) [7, 42]. The subsequent six peptides have been selected dependent

on the initial results for both proteins, resembling amino acid combinations that are potential

substrates. Although the overall activity of N1Q410 was relatively low, there was a clear prefer-

ence for methionine starting peptides, especially MDEL (21.09 ± 4.03 μM) and MEEE

(15.10 ± 0.25 μM) (Fig 7A). The putative NAT A0A194XTA9 from the fungus Phialocephala
scopiformis (S7A Text) showed a higher activity in general as well as a broader substrate speci-

ficity (Fig 7B). Similar to N1Q410 only peptides starting with a methionine were Nt-acetylated

by A0A194XTA9, with the peptides MAPL (50.92 ± 1.89 μM), MFGP (48.94 ± 2.50 μM) and

MVEL (148.74 ± 2.25 μM) showing the highest activities.

Group 2 also harbors clusters 9 and 24 containing known NATs NAA50 and NAA60,

respectively. Thus, we would expect that proteins from other Group 2 clusters would express

NAT-activity and further that these display a substrate specificity similar to what is observed

for NAA50 and NAA60. NAA50 and NAA60 have overlapping substrate specificities in vitro,

Fig 7. Purification and DTNB-based activity assays of the putative NATs N1Q410 and A0A194XTA9. Putative

NAT activities were tested by DTNB-based assays. 3μM of purified N1Q410 (A) and A0A194XTA9 (B) were incubated

with a selection of 24 amino acids-long synthetic peptides (300 μM), and Ac-CoA (300 μM) for 1 hour at 37˚C. The

formation of Nt-acetylated product was spectrophotometrically determined. Shown is the mean ± SD (n = 3).

https://doi.org/10.1371/journal.pcbi.1007988.g007
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but in vivo substrates are not likely to overlap since NAA50 is nuclear/cytosolic and partly

anchored to the ribosome via NAA15-NAA10 [89, 90] while NAA60 acetylates transmem-

brane proteins via anchoring to the cytosolic side of the Golgi-membrane and other cellular

membranes [33, 91]. Both enzymes may acetylate a variety of Met-starting N-termini, in par-

ticular Met-Leu, Met-Ala, Met-Val, Met-Lys, Met-Met [38, 92].

Both N1Q410 and A0A194XTA9 display clear N-terminal acetyltransferase activity con-

firming that these are true NATs (Fig 7). Furthermore, both enzymes prefer Met-starting N-

termini among the peptides tested. A0A194XTA9 has a clear preference for the NatE/NatF

(NAA50/NAA60) type of substrates strongly suggesting that this NAT is either a NAA50 or

NAA60 type of enzyme in P. scopiformis. For N1Q410, we observe a preference for N-terminal

peptides where Met is followed by an acidic residue at the second position, very similar to

NAA20/NatB activity [39] despite the fact that it harbours sequence motifs highly similar to

those of Group 2 NATs. This is an example of how sensitive N-acetyltransferase ligand speci-

ficity can be to subtle sequence changes. In this case they mainly consist in: (1) two substitu-

tions in the α1-α2 loop where the highly conserved F and V in the NAA50 motif are replaced

by an L and an I, respectively, (2) NAA50 has only one proline in the α1-α2 loop while cluster

120 has 2 and (3) the highly conserved M in the β4 strand of NAA50 is at a different position

in cluster 120 sequences. Thus, N1Q410 might be a NAA20 type enzyme which is clustered

among NAA50/NAA60 type enzymes in Group 2, or there might be other factors skewing the

substrate preference in vitro.

Conclusion

Using pairwise sequence comparisons and phylogenetic analyses we have mapped the

sequence space of the eukaryotic N-terminal acetyltransferases superfamily and the evolution-

ary relationship between its members.

NATs can be grouped into 5 groups in the highly diverse acetyltransferase

superfamily

Using information from the network topology together with the identification of sequence

motifs for each of the known NATs, we could classify NATs into 5 different groups: Groups 1

to 5. Even though NAA10 and NAA20 do not cluster together with NAA30 in the SSN, we

chose to place them in the same group because of the similarity between their sequence motifs.

Group 1 thus consists of two subgroups: Group 1a (NAA10, NAA20) and Group 1b (NAA30).

Groups 1a and 1b share a lot of similarities with Group 2 (NAA50 and NAA60) such as their

sequence motifs. Common ancestry of groups 1 and 2 is supported by the conserved sequence

motifs which interestingly do not all necessarily retain a significant functional role in each of

the NAT groups. A less stringent SSN also shows closer clustering of the Group 1 and Group 2

NATs. Our data also highlights the low sequence similarity between NAA40 and NAA80 on

one hand, and the other NATs on the other hand.

A recent study that demonstrates N-terminal acetylation activity of eight enzymes in A.

thaliana plastids [61] indicate the possible existence of more than 5 groups of NATs. We

refrain from assigning more NAT groups based on this most recent discovery since the ability

to acetylate N-termini does not necessarily mean N-terminal acetyltransferase function.

Different evolutionary paths

Each of the NAT groups have clear characteristics that distinguish them unequivocally from

one another. Our results indicate that N-terminal acetyltransferases evolved more than once

on the GNAT fold. The phylogenetic tree, which informs on the position of different NATs in
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the acetyltransferase superfamily and provides a useful perspective on the differences between

ligand specificities, confirms this. The relationships between enzymes revealed by the SSNs

and the structural comparison are also in agreement with the phylogenetic tree. Interestingly

NAT groups are found on the same branches as acetyltransferases known to have other func-

tions. N-terminal acetyltransferases are not one homogenous, uniform, family of enzymes and

the GNAT fold has evolved different specificities more than once.

Consequences for function and functional annotation of acetyltransferases

Because of this we cannot exclude that N-terminal acetyltransferases can acetylate other sub-

strates than N-terminal amines. NAA10 and NAA60 are suspected to be able to acetylate lysine

side chains in addition to protein N-termini [93, 94], even if this has been debated [95]. A

related consequence is that other acetyltransferases might be able to acetylate N-terminal

amino acids. One of the most recent findings is that glucosamine 6-phosphate acetyltrans-

ferases can acetylate protein N-termini [60]. Moreover, our results indicate that serotonin acet-

yltransferases could have the ability to acetylate protein N-termini and have a biological role as

N-terminal acetyltransferases, as well, which has been indicated in a recent finding that A.

thaliana serotonin acetyltransferase has weak N-terminal acetylation ability [61]. This is rele-

vant in the quest and characterization of yet-to-be discovered enzymes catalyzing N-terminal

acetylation of particular groups of protein N-termini (for instance those resulting from post-

translational protease action) or specific proteins (analog to NAA80 specifically acetylating

actins). Indeed, the currently known NATs are not yet defined as responsible for all cellular N-

terminal acetylation events though the major classes of co-translational acetylation have been

accounted for using S. cerevisiae genetics and proteomics [11, 39, 47]. In the human proteome

we could not find uncharacterized sequences qualifying as NATs as per the characteristics we

define in this study. It is therefore important to thoroughly inspect all close relatives to known

NATs for the discovery of new enzymes.

The fact that there is not one single catalytic site and mechanism for acetylation even for

the closest of NATs creates another conundrum. NAA10, for example, has a conserved gluta-

mate in α1-α2 loop which is involved in catalysis, but in the case of NAA20, NAA10’s closest

relative, the same conserved glutamate has no role in catalysis [51, 54]. This case became even

more puzzling when the study of NAA20 revealed no obvious catalytic residue. Furthermore,

NAA10 acetylates different substrate N-termini when in a monomeric form as compared to

when it is complexed with its auxiliary subunit NAA15 [54, 92]. It can look as if as long as a

substrate can bind properly to the GNAT, the chances are high it can be acetylated. It follows

that the impossibility to strictly define what makes N-terminal acetyltransferases acetylate N-

termini and no other substrates greatly limits our ability to predict NAT function from

sequence. We are left to only comparing key sequence motifs in order to detect similarities

and predict NAT function. Yet, subtle sequence changes might also affect substrate specificity.

Despite those difficulties we were able, using this approach, to predict two new NATs and con-

firm their function by acetylation assays in vitro.

About the use of the classification for functional annotation of

uncharacterized sequences

Representatives from the clusters 49 and 120 from Group 2, N1Q410 from the fungus D. sep-
tosporum and A0A194XTA9 from the fungus P. scopiformis were expressed, purified and sub-

jected to in vitroNAT assays. A0A194XTA9 has a clear preference for the same type of

substrates as NAA50/NAA60 but the substrate specificity of N1Q410 resembles that of
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NAA20, highlighting how sensitive the ligand specificity of NAA is to subtle sequence

substitutions.

The superfamily has highly diverged in primary structure, but secondary and tertiary struc-

tures remain largely intact. The GNAT is the scaffold on which numerous types of molecules can

get acetylated and it evolves different specificities by changes in sequence that do not affect the

overall structure. Our work shows that it is possible, within the limits discussed in “Consequences

for function and functional annotation of acetyltransferases”, to predict ligand specificity similar-

ity or differences between GNAT-containing sequences if they are closely related and by compar-

ing the key sequence motifs that we report here. Predicting the substrate specificity of an

uncharacterized GNAT sequence which doesn’t have close relatives with known function is prac-

tically impossible in silico. In vitro assays are necessary to map function and specificity of unchar-

acterized parts of the acetyltransferase superfamily. It is important to note that large portions of

the phylogenetic tree have exclusively uncharacterized sequences and it is impossible to say any-

thing about their substrate specificity. There are no human proteins in the uncharacterized parts

of the tree. While this work is restricted to eukaryotic GNAT-containing sequences and encom-

passes the majority of eukaryotic acetyltransferases it is important to mention that some non-

GNAT acetyltransferases like FrBf [96] were discovered as recently as in 2011. Members of the

MYST family [97] are also relevant non-GNAT acetyltransferases. New potential acetyltrans-

ferases could be found among those enzymes. Moreover recent studies have shown that most N-

terminal acetyltransferases evolved before eukaryotic cells [52] so it might be that looking at bac-

terial and archaeal proteomes would provide valuable information.

In summary our work provides the first classification and phylogenetic analysis of the

eukaryotic GNAT acetyltransferases superfamily. It reveals that NATs evolved more than once

on the GNAT fold and that they do not form a homogenous family. We provide sequence

motif signatures of known NATs that, together with this classification form a solid basis for

functional annotation and discovery of new NATs.

Material and methods

Sequence similarity networks (SSN)

Collection of sequence dataset. All members of GCN5-related acetyltransferase super-

family contain the GNAT fold. As there is no finer classification to aid dataset creation, we

retrieved all UniProt sequences that match the GNAT fold signature as defined by PROSITE

[64, 98]. According to PROSITE there are four types of GNAT fold–GNAT (code: PS51186),

GNAT_ATAT (code: PS51730), GNAT_NAGS (code: PS51731) and GNAT_YJDJ (code:

PS51729). These PROSITE signatures match sequences from all domains of life (around 900

000 sequences in UniProt). We restricted our dataset to only eukaryotic entries (more than

50000 sequences) in agreement with the focus of this work. We kept all SwissProt (manually

curated) sequences andHomo sapiens TrEMBL (not reviewed) sequences in the dataset. The

remaining TrEMBL sequences were filtered to reduce the size of the dataset. Filtering of

TrEMBL sequences was performed using h-cd-hit [70, 99] in three steps–a first run performed

at 90% identity, a second at 80% and a third at 70% identity. The threshold was set to be 70%

sequence identity as this usually indicates shared function [100–102]. We created two datasets

using this strategy: the full-sequence dataset (S1 Dataset) and the GNAT-domain dataset (S2

Dataset). We used the pfamscan tool from Pfam [103] together with HMMER3.2.1 [104] to

locate the GNAT fold boundaries in the full-sequence dataset in order to generate the GNAT-

domain dataset.

Generating the SSNs. The final, filtered, dataset (14396 sequences) was used to generate

the SSN using EFI-EST [71] with the following parameters: E-value of 10−15 and alignment
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score of 30 (S7 File). The chosen values ensured that sequences clustering together were closely

related (Cf S1A Text) with a minimal sequence identity equal to 40% yielding isofunctional

clusters. The shortest sequence kept in the network was 34 amino acids long. It is not known

yet what the minimal functional part of the GNAT fold is. The resulting network was analyzed

using Cytoscape [73]. To visualize the network in Cytoscape we used γfiles organic algorithm

by γWorks (https://www.yworks.com/). In addition to the network made from E-value thresh-

olds equal to 10−15 and alignment score equal to 30 we created several other networks, mainly

for the purpose of finding the best dataset for phylogenetic analyses (see Phylogeny section

below for more details). Parameters for these networks were: for E-value of 10−5, alignment

scores of 15, 20, 25, 30, 35 or 40; for E-value of 10−10, alignment scores of 15, 20, 25, 30, 35 or

40; for E-value of 10−15, alignment score 16, 25, 30, 35 or 40; for E-value equal to 10−20, align-

ment score equal to 20, 30, 35 or 40.

Identification of isofunctional clusters and their neighbours. In the resulting SSN (E-

value 10−15 and alignment score 30) there were no clear boundaries between different clusters.

In order to identify separate clusters, we applied the clusterONE algorithm [72] which is

designed to recognize dense and overlapping regions in a graph. The search for dense regions

in a network (clusters) was performed with the following parameters: minimum size of 10

sequences for a cluster to be considered, minimum density: auto, edge weights: percentage

identity, and the remaining settings were taken at their default values. Next, we identified

known NATs, and other non-NAT acetyltransferases, in their corresponding clusters (using

annotation details added to the network) and we let these clusters be defined by experimentally

confirmed enzymes (based on the assumption of cluster isofunctionality). Given the high per-

centage identity inside the identified clusters, we assumed cluster isofunctionality (i.e. similar

ligand specificity) and transferred annotation from experimentally confirmed proteins to

unknown ones within the same cluster. We also created a simplified network using the cluster-

ONE results as input. We represented each cluster defined by ClusterONE as a single node.

Nodes in the simplified network are connected by an edge if at least one edge exists between

nodes of two given clusters in the original network. After adding all nodes and edges to the

simplified network, we applied γFiles (https://www.yworks.com) orthogonal algorithm to get

the final view.

Network analyses. The topology of the simplified network was analyzed using Network

Analyzer through Cytoscape. Mainly, we used node degree and betweenness centrality, where

node degree tells how many neighbors a node has and betweenness centrality describes how

important is a given node for interactions between different parts of a network. Network ana-

lyzer calculates betweenness centrality using the algorithm by Brandes [105]. Betweenness cen-

trality was calculated on the representative, “pivot” network which is not weighted and not

directed.

Motif discovery. We used the MEME tool [74] to find characteristic sequence motifs

within clusters. Each motif search was performed on all sequences of a given cluster. Enriched

motifs were discovered relative to a random model based on frequencies of letters in the sup-

plied set of sequences. As we work with protein sequences, zero to one occurrence of each

motif per sequence was expected and searched for. A maximum of 25 unique motifs were

searched for per sequence set, with 5 to 10 amino acid width. Only motifs with e-value below 1

were taken onto account. All motifs were visualized using SequenceLogoVis [106].

Prediction of NATs among uncharacterized sequences

The prediction of NATs among uncharacterized sequences in the SSN started by the selection

of the 29 clusters (cluster numbers: 227, 3, 121, 42, 62, 36, 82, 40, 114, 25, 223, 168, 135, 136,
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212, 128, 49, 120, 83, 209, 106, 232, 104, 226, 104, 13, 222, 46, 47) neighboring the clusters con-

taining known NATs, namely clusters 10 (NAA10), 8 (NAA20), 2 (NAA30), 20 (NAA40), 9

(NAA50) 24 (NAA60), 97 (NAA70) and 63 (NAA80). We searched for occurrences of key

sequence motifs of known NATs (shown in Fig 4 of the Results section) in all sequences of the

29 selected clusters using MAST [107]. When we found in a cluster sequence motif similar to

that of a cluster of a known NAT, we generated a MSA using three random sequences from

the identified cluster and three sequences from the cluster of known NATs.

Structural comparison

We used the DALI server to perform an all-by-all structural comparison of 38 unique struc-

tures of Eukaryotic acetyltransferase catalytic subunits. The comparison was done between

selected intramolecular distances and no sequence information was used. The subunits are

ranked based on the calculated pairwise similarities (Dali Z-scores) and a dendrogram that

depicts the ranking was drawn [80, 81, 108]. The resulting dendrogram is the result of hierar-

chical clustering of structures based on the matrix of Dali Z-scores. The list of PDB codes used

for structural comparison is available in S6 File.

Phylogeny

Choice of sequence dataset for phylogeny. Since there are no clear boundaries between

different acetyltransferases, due to lack of detailed classification, we based our phylogeny anal-

ysis on our SSNs. We used the more stringent SSN (E-value = 10−15, alignment score = 30) and

selected three representative sequences for each cluster. In order to create the dataset for phy-

logenetic analyses, we created several networks that allowed for more connections between

nodes (and clusters) (see Table A in S4 Text) and looked for the SSN with the largest single

connected component (the largest group of clusters) exhibiting smallworld properties [109].

We calculated smallworldness for each of the largest connected components using NetworkX

Python library [110].

Sequence alignment for phylogeny. We selected three sequences per cluster to generate

the multiple sequence alignment (S2 File). If a cluster contained sequences from SwissProt,

those sequences were used in the alignment. Otherwise, TrEMBL sequences were randomly

selected as cluster representatives. As sequence divergence within the acetyltransferase super-

family is extremely high, we used only the highly conserved A and B motifs of the GNAT fold.

The alignment was generated using Clustal Omega [111] and the full alignment was con-

structed step by step. Sequences from closely related clusters were aligned first and different

alignments were then merged using MAFFT [112]. Merging two alignments using MAFFT

was always performed using “anchor” sequences and ensuring that both alignments had one

set of five sequences (i.e. one cluster) in common (“anchor” sequences). That also ensured that

corresponding secondary structure elements was kept intact after merging. Alignments gener-

ated for merging were manually edited, using acetyltransferases with known structures used as

reference to increase the alignment precision.

Model of evolution. To select the right amino acid replacement model, which describes

the probabilities of amino acid change in the sequence, we used ProtTest3 [113]. As input, we

used the previously generated multiple sequence alignment. Tested substitution model matri-

ces were JTT [114], LG [115], DCMut [116], Dayhoff [117], WAG [118] and VT [119]. All rate

variations were included in the calculation (allowing proportion of invariable sites or +I [120],

discrete gamma model or +G [121] (with 4 rate categories) and a combination of invariable

sites and discrete gamma model or +I+G [122]. Empirical amino acid frequencies were used.

We calculated a maximum likelihood tree to be used as starting topology.
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Construction and evaluation of the phylogenetic tree. Finally, a maximum likelihood

tree was calculated using RAxML [123] based on the generated alignment (S1 File). We used

LG+G+F model of evolution since it provided the best fit according to prottest3 [113] calcula-

tion (with AIC, AICc and BIC models selection strategies). Ten searches for the best tree were

conducted. Once the best tree was calculated, its robustness was assessed using bootstrap. As

stop criterion we used a frequency-based criterion, by calculating the Pearson’s correlation

coefficient [124]. After bootstrapping was complete, we used transfer bootstrap expectation

(TBE) [125] which has been shown to be more informative than Felsenstein’s bootstrap

method for larger trees built with less similar sequences.

Experimental

A detailed description of the material and methods is provided in S7 Text. In brief, the genes

N1Q410 and A0A194XTA9 were cloned into pETM11 vectors. The encoded proteins were

recombinantly expressed in E. coli BL21 Star (DE3) cells and purified using affinity and size

exclusion chromatography. The purity of the proteins was determined by SDS-PAGE and pro-

tein concentrations were determined spectrometrically. The enzyme activity was determined

via DTNB assay as described in [126].

Supporting information

S1 Text. General information about network construction and network topology.

(PDF)

S2 Text. Five groups of known N-terminal acetyltransferases.

(PDF)

S3 Text. Multiple sequence alignments in the N-terminal acetyltransferase family.

(PDF)

S4 Text. Small-world SSN.

(PDF)

S5 Text. Phylogenetic analyses.

(PDF)

S6 Text. Network analyses: predictions of new NATs.

(PDF)

S7 Text. Experimental verification of clusters 49 and 120.

(PDF)

S1 Fig. Structure similarity networks constructed based on similarity matrix obtained

from DALI. Acetyltransferases are structurally highly similar, which is reflected in the similar-

ity networks and how they change as a function of the threshold Z-score. Networks con-

structed with Z-score> 2 and Z-score > 10 are random. First separation between nodes into

different clusters is at Z-score > 15.

(TIF)

S1 Dataset. Sequences used to calculate the full-length sequence SSN, given in the FASTA

format.

(TXT)

PLOS COMPUTATIONAL BIOLOGY Classification of the eukaryotic GNAT acetyltransferases superfamily

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007988 December 23, 2020 21 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007988.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007988.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007988.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007988.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007988.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007988.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007988.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007988.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007988.s009
https://doi.org/10.1371/journal.pcbi.1007988


S2 Dataset. Sequences used to calculate SSNs for the GNAT domain portion of sequences.

All sequences are provided in the FASTA format.

(TXT)

S3 Dataset. Cluster 97 sequences. Sequences in FASTA format found in cluster 97 of our full-

sequence SSN. These sequences belong to the NAA70 plastid N-terminal acetyltransferase and

were used as the dataset for calculating Group 5 sequence motifs.

(TXT)

S1 File. Phylogenetic tree. Phylogenetic tree of the GNAT acetyltransferase superfamily calcu-

lated using RAxML in Newick format. Leaves of the tree are labeled with protein accession

number and a corresponding cluster number. Inner nodes of the tree are labeled with calcu-

lated support values for each node.

(TXT)

S2 File. Multiple sequence alignment used for calculating the phylogenetic tree.

(TXT)

S3 File. Sequence motifs for Group 5 of NATs calculated using MEME tool from MEME

Suite. The file contains 1) motif P-values; 2) block diagrams showing the position of the motifs

on the relevant sequences; 3) PSSM; 4) position-specific probability matrix; 5) regular expres-

sion for the given motif.

(TXT)

S4 File. Positions of Group 5 sequence motifs on the representative sequence calculated

using MAST from the MEME Suite.

(TXT)

S5 File. List of members of the SSN and their corresponding cluster numbers. This is the

table of all proteins from our SSN. The table contains accession numbers, Uniprot annotation

status (SwissProt/TrEMBL), description and a corresponding cluster number for each of the

proteins.

(XLS)

S6 File. List of PDB structures. List of all PDB structures used for structural comparison with

DALI. The list contains PDB codes, names of chains and protein names that were used for

comparison.

(XLSX)

S7 File. ZIP file of SSN in xgmml format. SSN calculated based on the full-length sequence

acetyltransferase dataset. Available also at http://doi.org/10.5281/zenodo.4288938

(ZIP)
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