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Abstract We employ a 2.5D particle-in-cell simulation to study a scenario where the reconnection
process captures cold streaming protons. As soon as the tailward streaming protons become involved, they
contribute to the overall momentum balance, altering the initially symmetric dynamics. Adding
tailward-directed momentum to the reconnection process results in a tailward propagation of the
reconnection site. We investigate how the reconnection process reorganizes itself due to the changing
momentum conditions on the kinetic scale and how the reconnection rate is affected. We find that adding
tailward momentum does not result in a significantly different reconnection rate compared to the case
without cold streaming protons, when scaled to the total Alfvén velocity. This implies that the effect of
changing inflow conditions due to the motion of the reconnection site appears to be minimal. The
dynamics of the particles are, however, significantly different depending on whether they enter on the
tailward or Earthward side of the reconnection site. On the Earthward side they are reflected and
thermalized, while on the tailward side they are picked up and accelerated. The cold proton density and Ez
on the Earthward side are turbulent, while the tailward side has laminar cold proton density striations and
an embedded Ez layer. Also, since the initial plasma sheet population is swept up on one side and flushed
out on the other, asymmetries in the densities and strength of Hall fields emerge. Our results are important
for understanding the development and dynamics of magnetospheric substorms and storms.

1. Introduction
Magnetic reconnection describes the process facilitating the release of stored electromagnetic energy into
mechanical (kinetic and thermal) energy of the plasma, producing a global change of the magnetic config-
uration due to local decoupling of plasma from the magnetic field. In many plasma systems this intricate
interaction between the fields and particles includes populations with different properties, such as heavy
ions, cold ions, streaming populations, or a combination of these (Kistler & Mouikis, 2016). The presence
of additional ion populations can, if magnetized, mass load the system, and the resulting reduction of the
Alfvén velocity is believed to be a mechanism, which can slow down reconnection (Hesse & Birn, 2004;
Shay & Swisdak, 2004). In addition to the mass-loading effect, other mechanisms such as the effect of heavy
ions on the tearing growth rate (Karimabadi et al., 2011) and induced ambipolar (charge separation) electric
fields (Liang et al., 2016, 2017) have been suggested. Heavy ions, such as O+ (and their accompanying elec-
trons), have been found to affect the reconnection process by extracting energy from the system that would
otherwise go to the protons, thereby significantly reducing the reconnection rate, but less than expected by
mass loading (Kolstø et al., 2020; Tenfjord et al., 2018, 2019).

Magnetic reconnection in the presence of shear (oppositely directed) flow has previously been investigated
in detail (Cassak, 2011; Cassak & Otto, 2011; Mitchell & Kan, 1978). Reconnection occurs for such con-
figurations in, for instance, tokamaks, at the dayside magnetopause (especially during northward directed
interplanetary magnetic field) (e.g., Gosling et al., 1986; La Belle-Hamer et al., 1995) and in the magne-
tosheath (Eriksson et al., 2018). Based on theoretical arguments and fluid simulations, it is believed that
such flow will reduce the reconnection rate by effectively reducing part of the magnetic tension that drives
the outflow (Cassak, 2011). It has also been observed that shear flow causes the outflow jet and current
sheet to tilt (La Belle-Hamer et al., 1994) and causes a configuration that is susceptible to tearing mode and
Kelvin-Helmholtz instabilities (Chen et al., 1997; Li & Ma, 2010; Roytershteyn & Daughton, 2008).
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Varying conditions in the inflow regions, such as different plasma populations or plasma properties, can also
have an impact on the reconnection process. On the dayside, the effect of plasmaspheric drainage plumes
has been found to mass load the reconnection site, thereby reducing the effective solar wind magnetosphere
coupling (Borovsky & Denton, 2006; Dargent et al., 2020). However, the effect of ions originating from the
ring current and warm plasma cloak has been observed not to greatly affect the reconnection rate (Fuselier
et al., 2016; Wang et al., 2015). Another source of heavy ions on the dayside is O+ originating from the
high-latitude ionosphere. During northward directed IMF Bz dual-lobe reconnection can trap O+ and mass
load the dayside magnetopause boundary, which may affect the reconnection rate (Fuselier et al., 2019). On
both the dayside and nightside, observations show that the involvement of additional cold, dense plasma or
plasma beams can alter the dynamics of the reconnection process, affect the reconnection rate, and modify
the Hall term in Ohms law (Li et al., 2017; Toledo-Redondo et al., 2018; Xu et al., 2019). Since the Larmor
radius depends on the mass and velocity, these different ion populations will lead to a different kinetic
behavior and additional scale lengths in the system (Alm et al., 2019; André et al., 2016; Dargent et al., 2019;
Divin et al., 2016; Toledo-Redondo et al., 2015).

In this manuscript we study how a streaming population is captured by the reconnection process and what
the effects are. This scenario is studied using a 2.5D particle-in-cell (PIC) simulation where a cold streaming
population is inserted in the two lobes and eventually is captured by the reconnection process. Scenar-
ios where streaming populations interact with magnetic reconnection can be attributed to ionospheric ion
outflow (characteristically observed as cold ions with a parallel velocity), streaming mantle interaction,
or high-latitude magnetopause reconnection where streaming magnetosheath interacts with the magne-
topause. Ion outflow from the high-latitude ionosphere is believed to be a significant source of plasma for
the terrestrial magnetosphere (Chappell et al., 1980; Haaland, Svenes, et al., 2012). These ions (mostly O+

and H+) flow parallel to the magnetic field and fill the lobes with streaming low-energy ions. The outward
velocity is typically observed to be up to ≈50 km/s (André et al., 2015; Haaland, Li, et al., 2012). The Earth's
plasma mantle is one of the major suppliers of particles for the plasma sheet. The plasma mantle was first
reported by Rosenbauer et al. (1975), as a persistent layer of tailward-flowing magnetosheath-like plasma
inside of and adjacent to the magnetopause. The tailward-directed parallel flow speed was found to usu-
ally lie between 100–200 km/s and always less than the adjacent magnetosheath flow velocity. Observations
from ARTEMIS reported an average temperature of about ≈0.05–0.2 keV and density ≈0.1–1 cm−3 (Wang et
al., 2014). Magnetotail observations have revealed that the distant plasma mantle can occur even near the
equatorial plane (Schillings et al., 2019; Siscoe et al., 1994; Taguchi et al., 2001). In our simulation we have
chosen the streaming velocity of v = 0.5VA, which should be considered as an extreme (based on a lobe mag-
netic field of B0 = 20 nT and a current sheet density of n0 = 0.2 cm−3, the Alfvén velocity is 1,000 km/s,
which would correspond to a streaming velocity of 500 km/s).

The manuscript is organized as follows: In Section 2 we describe the simulation setup. Section 3 describes
the motion of the X line as the streaming cold plasma interacts with the reconnection process. In Section
4 we show specific velocity distributions, representative ion particle trajectories, and describe which forces
these particles experience during their evolution. In Section 5 we discuss the asymmetries in the Hall electric
field and the additional scale length introduced by the cold plasma population. In Section 6 we compare the
reconnection rate of our simulation to a separate simulation without cold streaming ions and discuss how
the streaming plasma population affects the rate. A discussion and a summary are given in Section 7.

2. Simulation Setup
The simulation is designed to study how a streaming population is captured by the reconnection pro-
cess. The streaming protons and electrons are chosen to have zero temperature and a streaming velocity
of vx = 0.5VA on both sides of the neutral sheet. We employ a 2.5D (two spatial dimensions [x and z] and
three velocity dimensions [x, y, and z]) PIC, which has previously been applied to a variety of reconnection
problems (e.g., Hesse et al., 2001, 2018; Tenfjord et al., 2018, 2019). The initial magnetic field configuration
is a two-dimensional generalized Harris-type equilibrium (see Hesse & Bern, 2004, for details) with zero
guide field (By = 0). It is defined as Bx = B0 tanh(z∕𝜆), where 𝜆 = 2dp is the half-width of the current sheet
layer. Lengths are normalized to the proton inertial length: dp = c∕𝜔pi. Time is normalized to the inverse
of the proton cyclotron frequency: Ω−1

p . All calculations use a proton/electron mass ratio of mp∕me = 25.
A total of ∼1·1010 macroparticles are employed, divided equally between the four species (warm protons,
warm electrons, streaming cold protons, and streaming cold electrons). Boundary conditions are periodic at
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x = 0 and x = xmax. At the upper and lower boundaries, we employ specular reflection for particles, and the
out-of-plane electric field is set to 0, implying flux conservation in the simulation domain. Our simulation
domain size is 400×50dp, divided into a grid of 6, 400×1, 600 cells. The grid is extended in the x-direction to
account for the X-line propagation. A time step of 𝜔pe𝛿t = 0.5 is employed. The density is normalized to the
foreground current sheet density n0 (unity), which supports the initial Harris sheet equilibrium. The veloc-
ity is normalized to the proton Alfvén speed, based on n0, and the electric field is normalized by VAB0. The
foreground temperatures fulfill Tp + Te = 0.5mpV 2

A, and proton-to-electron temperature ratio is Tp∕Te = 5.
The ratio between the electron plasma frequency and gyrofrequency is 𝜔pe∕Ωce = 2. The presented data are
displayed in normalized units. A uniformly distributed proton (H+) background with np = 0.2 is added to
the Harris sheet density distribution, which leads to a peak density of n = 1.2. In addition to the uniform
H+ population, the cold streaming population with number density nc = 0.8 is added to the inflow regions
(“lobes”), above and below a specific field line, approximately at |z| > 3di where the initial magnetic field
perturbation is centered. We use the term “cold protons” (and the accompanying cold electrons) for the ini-
tially cold species inserted in the beginning of the simulation, even though they thermalize throughout the
simulation and get heated. The cold protons do not contribute to the total pressure, so the plasma 𝛽 = 0.2
remains unchanged at 0.2 in the inflow. In our simulation we reserved the first 40 time steps for the system
to equilibrate. During this period the cold electrons are somewhat heated numerically. For comparisons we
also use output from a previous simulation used in Tenfjord et al. (2018).

3. Motion of X line
Reconnection initiates with warm nonstreaming populations only, and the reconnection site does not move.
When the momentum-laden streaming cold ions are captured by the reconnection process, the momentum
balance of the system is altered, causing a motion of the reconnection site in the direction of the streaming
plasma. Figure 1 shows the cold streaming proton density, warm proton density, and the Hall electric field
Ez at four different times (a video of the evolution is provided as supporting information). In Figure 1, t = 0
represents the initial configuration, showing how the cold protons are distributed at the beginning of the
simulation. At t = 72 the cold protons become involved in the reconnection process, and in the following
time steps a tailward (toward the right) motion of the X line is apparent. This shows that once a sufficient
amount of tailward-directed plasma has been captured by the reconnection process, the system reorganizes
itself to incorporate the additional x-directed momentum by facilitating a tailward-directed motion of the X
line. The Earthward (toward left) outflow region is stretched by the motion of the X line. On the opposite
side, the outflow region is compressed, and the Hall field is broader in the z-direction. The x-directed velocity
of the X line is determined by the total mass velocity:

vmass =
∑

msnsvs∑
msns

= 0.35, (1)

where the sum is taken over all plasma populations (warm protons, streaming protons, and the electrons)
over the entire simulation domain. As seen in Figure 1, the streaming population gets involved around
t = 72. After a short transition period (∼5 Ω−1

p ) the X line moves at a constant velocity determined by the
total mass velocity. Such a convection velocity is expected based on fluid arguments; see Doss et al. (2015)
for expected convection velocities and densities in the case of asymmetric magnetic reconnection.

In Figure 2 we show the in-plane velocity vectors and the x-directed velocity as background color. The top
row shows the velocities in the simulation frame for the warm protons, cold streaming protons, and the total
mass flow. The bottom row shows the same quantities transformed into the frame moving with the recon-
nection site (equal to total mass velocity). From these panels it is apparent that the reconnection process has
facilitated the tailward propagation of the reconnection site so that in its frame of reference the inflow and
outflow remain symmetric. In the next section we look in greater detail at the dynamics of the particles and
how they lead to the tailward motion of the X line.

4. Particle Interactions
In Figure 3 we show velocity distributions of the cold protons taken at z = 0 and seven different x locations.
At this time, t = 100, the X line is located at approximately x ∼ 215. On the right side of the X line the
distributions consist of two cold counterstreaming populations. At this location and further tailward, the
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Figure 1. Cold streaming proton density, warm proton density, and Ez electric shown for four different times. The cold population is streaming in the positive
x-direction with a velocity of v = 0.5VA. See text for details.

cold population undergoes meandering motions as they are streaming tailward. Thus, if a particle enters
the exhaust to the right of the X line, it gets picked up and accelerated in the positive x-direction, while per-
forming meandering motions. This behavior is seen in Figure 4 for the rightmost particle, where the particle
enters the diffusion region from the southern lobe and is ejected to the tailward exhaust. This motion results
in cold proton density striations (see Figure 4), visible above and below the current sheet. The striations
extend in the tailward direction with a velocity that corresponds to the flux velocity (frozen in). Downstream,
the density striations become progressively weaker and eventually disappear due to particle scattering in
the curved magnetic field.

These clear density striations in the tailward exhaust are a signature that the cold streaming protons are
confined and that the vertical distance corresponds to their meandering width (which in turn is related to
their thermal energy). This layer and the asymmetries between the two exhaust regions will be discussed in
Section 5.

On the Earthward (left) side of the X line the velocity distributions are different. Figure 3 for x = 195 shows
cold protons with both positive and negative vx. By following a test particle from this region, we see that
the particles that have a negative vx represent incoming particles that have been reflected (Figure 4), while
the population with positive x-velocity is inbound, not yet reflected. Compared to the tailward side, the
distribution here becomes largely thermalized, which produces a more turbulent region with fluctuations
in both density and Ez (discussed in Section 5).

To understand which forces cause a particle to reverse its x-velocity we show, in Figure 5, the forces acting
on the particle, which passes through x = 213 at t = 100. At t = 100 (indicated by the black vertical line),
the particle has the velocity: (vx, vy, vz) = (0.3,−0.1, 0.5). From this time the particle is traced forward and
backward in time based on interpolations of the dynamically changing fields, which are updated every 0.2
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Figure 2. In-plane velocities of the warm, cold, and combined ion populations in the simulation frame (top row) and the frame moving with the X line at
t = 100. The quivers show the in-plane velocity as wind vectors (the amplitude v = 0.5 is indicated in the top left panel), while the color map shows vx . In the
frame moving with the reconnection site, the total mass velocity of the inflow and outflow remains symmetric.

Ω−1
p . Once the particle enters the diffusion region (t > 100), it gets a significant y-directed velocity by the

reconnection electric field. Meanwhile, in the x-direction, a combination of Ex and, to a lesser degree, vyBz
reverses vx from positive to negative (seen in Figure 5 at t > 100).

Ions that reverse their x-directed velocity all experience a significant Ex field, as for the particle analyzed
in Figure 5. Figure 6 shows the smoothed magnitude of Ex and ∫ Exdx along x for z = 0. At this time, the
X line is at x = 219. A significant negative Ex exists in the range x = 195 − 215, which coincides with
the location where the cold protons are turned around, at this time. To the right of the X-line location, at
x = 225−240, a positive but weaker Ex exists. The asymmetry of Ex between the tailward and Earthward side
is a consequence of the streaming motion of the cold plasma. In contrast to the ions, the electrons that enter
the exhaust left of the X line will get magnetized and will be “picked up” by flux tubes moving Earthward.
A relatively strong Ex will then be induced in order to turn around the tailward streaming protons and to

Figure 3. Velocity distributions of the cold streaming population taken at different x-location along z = 0 at t = 100. A bin size of (dx, dz) = (0.5,0.5) is used to
accumulate the distribution.
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Figure 4. Cold proton density (left) and Ez electric field (right) with particle trajectories overlaid. The trajectories
are color coded corresponding to their x-directed velocity. The particles are traced 20 Ω−1

p backward and 10 Ω−1
p

forward from the white circles. A video of how the fields evolve during the particles evolution can be found
in the supporting information.

Figure 5. Forces acting on particle that passes through x = 213 and z = −0.5 at t = 100 (marked by the vertical line).
The particle starts in the southern lobe with an x-directed velocity of approximately 0.5; after performing a couple of
bounces its positive x-directed motion is turned into a negative vx , primarily by a negative Ex . In the time it spent
inside the diffusion region it also gained a positive y-directed motion, and the force from vyBz also has a net
contribution in the negative direction in the later stage of the evolution.
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Figure 6. Cut through z = 0 at t = 110, showing asymmetry in Ex between the right and left outflow locations. The Ex
on the left side is necessarily stronger so that the tailward momentum of the streaming cold protons can be turned
into Earthward motion. Contrary to the tailward side where the cold protons enter with a tailward momentum,
which only gets further increased by Ex .

accelerate the cold protons that have been turned around so that quasineutrality is maintained. The particles
that enter to the right of the X line are to a much lesser degree affected by the above effect, since they already
carry a tailward direction motion. Only a relatively small Ex is therefore needed to sustain the outflow.

5. Asymmetries in Ez

As seen in Figure 1 (also seen in Figure 4), the tailward side has a smaller Ez region embedded in the larger
Hall structure, whose width is comparable to the Earthward-side Hall field. This embedded Ez region is not
unique to this simulation and was produced on both sides prior to the involvement of the cold streaming
protons. These electron-scale structures have been seen in numerous simulations (Chen et al., 2011; Liang
et al., 2017; Shay et al., 1998; Zhou et al., 2012) and are attributed to electron meandering motions (Drake
et al., 2008; Shuster et al., 2015). However, when the cold streaming protons get involved, an asymmetry
between the two sides of the exhaust emerges. The density and Ez electric field on the Earthward side are
turbulent, while the tailward side has laminar cold proton density striations and an embedded Ez layer.

The larger Hall region on the tailward side, extending up toward and along the separatrices, is generated
by the warm protons and is a result of the tailward motion of the X line sweeping up warm plasma sheet
protons that were originally part of the initial plasma sheet population. This is in contrast to the Earthward
side where the warm plasma sheet population is flushed out and replaced with the cold proton population.
This can be seen in Figure 1. On the Earthward side the cold protons now dominate the number density.

In Figure 4 we see the rightmost, tailward-directed particle entering the diffusion region from the southern
lobe with a streaming velocity of vx = 0.5VA. In Figure 3 at X = 215 and x = 220, we see that the cold protons
found within the embedded Ez layer form two cold counterstreaming beams. The density striations seen in
Figure 4 are therefore a result of the cold protons being confined and bouncing in this preexisting Ez layer.
The thermal energy of the cold protons confined in this embedded layer (−0.5 ≲ z ≲ 0.5) is comparable
to the convection corrected potential (Φ ∼ ∫ E′

zdz = ∫ (Ez + vxB𝑦 − v𝑦Bx)dz) they experience in the frame
moving with the average velocities.

Since the thermal energy of the cold protons confined in this layer is comparable to the convection corrected
potential, it appears that the inner Ez layer is shaped by a combination of electron and cold ion bounce
motion (after being established by electrons alone).

On the Earthward side this influence is prominent. The electron-scale Ez layer, which existed prior to the
cold protons involvement, has disappeared and been replaced by a much broader, turbulent structure. Figure
3 shows that the cold proton population to the left of the X line (X < 215) is more thermalized. Their thermal
energy is too high to confine them in the same way as on the tailward side, and the laminar embedded Ez
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Figure 7. Momentum balance for each species at two z cuts at t = 110. The inertia terms (calculated with time step 0.2 Ω−1
p ) are small and not shown but

included in the sum. The figure shows significant asymmetries in the strength and width of the Hall Ez electric field between the Earthward (top row) and
tailward (bottom row) side. On the Earthward side (panels a–d) the warm plasma population has been flushed out and replaced by lobe densities (mostly cold
streaming protons), resulting in a narrow and weaker Hall field. On the tailward side (panels e–h) the warm plasma sheet has been swept up by the motion of
the X line, resulting in a thicker Hall region, with a smaller region embedded inside, whose width corresponds to the cold proton meandering width.

layer that existed earlier has broken up and evolved into a turbulent region. This occurs in combination
with the warm population having been flushed out by the motion of the X line, and the new “Hall” layer is
primarily due to thermalized cold protons.

In Figure 7 we show the momentum balance for the warm and cold streaming protons (Ez + vi
xB𝑦 − vi

𝑦
Bx −

𝜕

ni𝜕z
Pi

zz − inertia = 0) and the combined electron population (Ez + ve
xB𝑦 − ve

𝑦
Bx + 𝜕

ne𝜕z
Pe

zz + inertia = 0)
at x = 207 and x = 228. These two locations are about 10di to each side from the active X line at t =
110. For the cold protons at the Earthward side (Figure 7c), the Hall electric field is balanced mainly by
the thermal pressure. This shows that the cold protons get thermalized by the complicated motion, which
includes reversing the x-directed motion (Figures 4 and 5). Since the majority of the warm plasma sheet
protons, which initially preserved force balance, have been pushed out and replaced by cold protons, the
vertical spatial extent of the Hall electric field has therefore decreased to a characteristic length dominated
by the cold protons meandering width.

On the tailward side (Figure 7g), the cold streaming protons have not thermalized much, as seen in Figure 3
for X = 220. They continue with their tailward motion performing meandering motions as they are picked
up by the outflow. At the same time, the warm plasma sheet protons are being swept up by the motion of
the X line in the tailward direction. Therefore, contrary to the Earthward side, here the spatial extent of the
Hall Ez is still dominated by the warm protons' characteristic scale length (Figure 7f), with the embedded Ez
layer corresponding to the confined and bouncing cold protons. Figure 7g shows that for the cold protons Ez
is balanced by v × B forces in the broader diffusion region, while the thermal pressure becomes significant
at |z| < 0.5, corresponding to the strong peak in Ez seen at these locations. In Figure 7f, Ez is balanced by
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the warm protons thermal pressure, which has a significantly larger scale length
on the tailward side (∼3di) compared to the Earthward side (≤ 1di).

Figure 8. Comparing the mass-loading-corrected reconnection rate
to a baseline run without cold protons. The blue line shows the
reconnection rate the simulation with streaming cold, scaled by√

(np + nc)∕(np) = 2.23 (mass loading corrected). After correcting
for the additional mass, there is no significant effect of the streaming
cold proton population on the reconnection rate.

Figures 7d and 7h also show the location where each species is no longer frozen
in, denoted by the violation of the condition E′ = E+v×B = 0. As expected, the
warm population violates the frozen-in condition over a larger region, while the
electrons and the cold protons both violate the frozen-in condition over smaller
regions. The fact that the cold protons and electrons appear to have comparable
scale lengths is related to the cold protons being confined in the electron-scale
embedded Ez. Additionally, it could also be influenced by our mass ratio and
may be related to the heating of electrons during the period when the system
equilibrates (see Section 2).

6. Reconnection Rate
In Figure 8 we show the mass-corrected reconnection rate and compare it to the
reconnection rate of a simulation without cold plasma but otherwise identical.
The reconnection rate is first calculated as d

dt
Φrec = ∫ E𝑦d𝑦 and thereafter scaled

to vA(n = nc + np)∕vA(n = nc) =
√

(nc + np)∕np = 2.23 (ratio between Alfvén
velocities with and without including cold ions). The x-axis is the change of
magnetic energy from the initial magnetic state. Presenting the reconnection
rate as a function of spent magnetic energy allows us to compare the rates when

the two different simulations are at the same evolutionary stage. The blue line is the reconnection rate for
the simulation discussed in this manuscript. If we compare the rate of the streaming cold protons run to the
baseline run there is a slight offset, but in general, the difference in the reconnection rate is well explained
by simple mass loading. This is in agreement with previous numerical simulation of cold ions, which are
not streaming (Dargent et al., 2017, 2020; Divin et al., 2016). This study shows that there does not appear to
be any additional effect of streaming proton-reconnection interaction on the reconnection rate.

Thus, even though the motion of the X line causes the reconnection site to propagate downstream, into a
region of unperturbed inflow conditions, it appears that this does not lead to an additional decrease in the
reconnection rate.

7. Discussion and Summary
In this study we have found that the addition of a tailward propagating cold species causes the reconnec-
tion site to move tailward with a velocity corresponding to the total mass velocity. This means that once
a sufficient amount of tailward-directed plasma has been captured by the reconnection process, the sys-
tem reorganizes itself to incorporate the additional x-directed momentum by facilitating a tailward-directed
motion of the X line. In the frame of the moving X line, both the inflow and outflow are then organized
symmetrically.

As the propagating cold species is captured by the reconnection process, they are either turned around if
they enter some distance to the left of the X line or further accelerated if they enter some distance to the
right of the X line. The velocity distributions (Figure 3) show that particles coming into the outflow region
with a positive vx are mixed with particles that have previously entered and turned around. This results in
circular vx-vz distributions (Figure 3).

The tailward motion causes asymmetries in the reconnection geometry, elongating the current sheet on one
side and broadening it on the opposite side. Large asymmetries between the two outflow directions arise due
to the presence of cold streaming proton population. The tailward propagation of the X line sweeps up the
warm plasma on the tailward side, while it is flushed out on the opposite side. This results in a thicker Hall
region on the side where warm protons are present. In addition to this extended Hall layer, an embedded Ez
layer with a significant smaller vertical extent is present. Cold protons are confined and meandering inside
this structure, producing laminar density striations. On the Earthward side, the streaming cold protons are
thermalized by the complicated motion, which includes reversing the x-directed motion. This leads to a
smeared out, more turbulent region with fluctuations in both density and Ez. An additional asymmetry in
Ex between the two outflow regions arises as a result of the tailward streaming cold protons getting reflected
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in the x-direction on the Earthward side, causing a larger charge imbalance compared to the tailward side,
where they experience an acceleration in the same direction they were initially streaming in. By comparing
our simulation to a simulation that did not include cold streaming protons, we found that the inclusion
of an additional cold species reduces the reconnection rate as predicted by mass loading, regardless of the
species tailward propagation. Although we simulate a cold streaming population, we expect that similar
effects would occur for a warm streaming population. We would however expect the kinetic substructures
to be more smeared out.

Our results are important for understanding the development and dynamics of magnetospheric substorms
and storms. We have shown that streaming plasma can effectively move the reconnection site. In both the
magnetotail and on the dayside streaming protons can move the reconnection site into regions where the
magnetic field is weaker, which would result in effective reduction or even cessation of reconnection. In
addition, especially for the magnetotail, the Earthward outflow velocity is reduced (by a factor corresponding
the mass velocity) leading to a potential reduction of the ionospheric response.
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