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Abstract

Objective: To estimate the implant surface temperature at titanium dental implants

during calibrated irradiation using double wavelength laser.

Material and methods: A double wavelength laser, 2780 nm Er,Cr:YSGG and 940 nm

diode, was calibrated and used to irradiate pristine titanium dental implants,

OsseoSpeed, TiUnite and Roxolid SLActive, representing different surface modifica-

tions. Initial calibration (21 implants; 7 implants/group) intended to identify optimal

wavelength/specific output power/energy that not critically increased the tempera-

ture or altered the micro-texture of the implant surface. Subsequent experimental

study (30 implants; 10 implants/group) evaluated implant surface temperature

changes over 190 s. Irradiation using a computerized robotic setup.

Results: Based on the initial calibration, the following output powers/energies were

employed: Er,Cr:YSGG laser 18.4 mJ/pulse (7.3 J/cm2)–36.2 mJ/pulse (14.4 J/cm2)

depending on implant surface; diode laser 3.3 W (1321.0 W/cm2). During double

wavelength irradiation, implant surface temperatures dropped over the first 20 s

from baseline 37�C to mean temperatures ranging between 25.7 and 26.3�C. Differ-

ences in mean temperatures between OsseoSpeed and TiUnite implants were statis-

tically significant (p < 0.001). After the initial 20 s, mean temperatures continued to

decrease for all implant surfaces. The decrease was significantly greater for TiUnite

and Roxolid SLActive compared with OsseoSpeed implants (p < 0.001).

Conclusion: Calibrated double wavelength laser irradiation did not critically influence

the implant surface temperature. During laser irradiation the temperature decreased

rapidly to steady-state levels, close to the water/air-spray temperature.
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1 | INTRODUCTION

Titanium surface decontamination using various laser systems have

been advocated (Kamel et al., 2014). Thus Er:YAG (2940 nm) and

Er,Cr:YSGG (2780 nm) lasers have been deemed suitable for biofilm

and calculus removal producing minimal, if any, surface alterations

(Taniguchi et al., 2013; Takagi et al., 2018; Larsen et al., 2017), decon-

tamination directly proportional to applied energy (J) and fluence

(J/cm2) (Ercan et al., 2014; Al-Hashedi et al., 2017; Monzani et al.

2018). Moreover, diode lasers of different wavelengths have been
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shown to yield high antimicrobial effects following irradiation of cul-

tured biofilm on titanium surfaces without modifying the surface

topography (Bach et al., 2000; Deppe & Horch, 2007).

However, irradiation of titanium dental implants using laser

energy may lead to unintended heating of the implant potentially

compromising osseointegration. Animal studies suggest a 47�C

exposure over 1 min a critical threshold to inflict damage to bone

(Eriksson & Albrektsson, 1983, 1984). Only a few studies examining

Er,Cr:YSGG lasers and none the 940 nm diode laser or double

wavelength laser have been presented relative to their thermal

effects on titanium dental implants (Gomez-Santos et al., 2010;

Romanos et al., 2017) or titanium discs (Ercan et al., 2014; Strever

et al., 2017). By contrast, in several studies, thermal effects on

different titanium surfaces have been evaluated during or after

irradiation of pulsed 2940 nm Er:YAG laser (Monzani et al. 2018;

Hakki et al., 2017) and diode lasers of 810, 980 and 1064 nm

(Geminiani et al., 2012; Leja et al., 2013; Matys et al., 2016; Valente

et al., 2017). These studies suggest that by using water-spray

cooling, the implant temperature may not exceed 47�C. As each

wavelength has a unique curve for the absorption coefficient in dif-

ferent tissues and substances, a comparison between the properties

of two neighboring lasers in the electromagnetic spectrum is only

approximate (Valente et al., 2017). Moreover, a study on titanium

dental implants placed in porcine bone concluded that thermal con-

ductivity as well depends on the chemical composition and diameter

of the implant (Matys et al., 2016).

Literature reviews fail to consent on preferred protocols for safe

laser debridement and disinfection of contaminated dental implants.

Heterogeneity in protocol, variation in included parameters, and lack

of information concerning calibration of the laser equipment and

measuring instruments hamper comparisons between studies (Kamel

et al., 2014; Smeo et al., 2018). Most laser systems report a discrep-

ancy between device power/energy setting and actual output

power/energy. Variables including laser light transmission system,

output power/energy, pulse rate, laser beam area and divergence

(spread), and distance to irradiated surface need to be identified and

optimized prior to clinical application (Takagi et al., 2018; Tunér &

Jenkins, 2016).

The effect of double wavelength laser irradiation has to our

knowledge not been reported for titanium dental implants. Acknowl-

edging the lack of laser specific information, the overall aim of this

study was to investigate whether double wavelength laser irradiation

critically increases the implant surface temperature above the critical

threshold of 47�C for different implant systems using a validated

in vitro protocol. We hypothesized that surface temperature would

rapidly increase, but not above the critical threshold of 47�C. The

null hypothesis was that the final temperature would be similar for

the different implant systems. This study consists of two parts: First,

to identify the output handpiece fiber tip power and energy for each

implant system that do not produce thermal heating or surface

micro-texture alterations, and second, to evaluate implant surface

temperature for principal implant systems using calibrated

irradiation.

2 | MATERIAL AND METHODS

2.1 | Titanium dental implants

Titanium dental implants, representing three principal implant systems

featuring different surface characteristics, were evaluated in vitro.

The sample size for the experimental part of the study, was based on

findings obtained from the calibration part. To account for unex-

pected implant variation, we aimed at n = 10.

Twenty-one implants, seven for each system, were used for cali-

bration. Thirty implants, 10 for each system, were used for the experi-

mental study (Figure 1). All implants were received sterile in the

manufacturers original packaging: Nobel Biocare, TiUnite dental

implants (D, 4.0 mm; L 13.0 mm; Replace Select TC, RP; Nobel Bio-

care AG, Kloten, Switzerland); Straumann SLA dental implants (D,

4.0 mm; L 12.0 mm; Roxolid SLActive, BL, Straumann AG, Basel, Swit-

zerland); and Astra Tech dental implants (D, 4.0 mm; L 13.0 mm;

OsseoSpeed TX; Dentsply Sirona Implants, AG, Salzburg, Switzerland).

2.2 | Laser system

This study used a double laser that combines two wavelengths of

laser light; one free running pulsed 2780 nm Er,Cr:YSGG laser and

one 940 nm diode laser operating in continuous wave mode (Table 1;

Biolase Inc., Irvine, CA).

The following settings were used during calibration and the

experimental study: Er,Cr:YSGG–pulse duration 60 μs, repetition rate

F IGURE 1 Flow chart of study. Part 1: Calibrations of the double
wavelength laser irradiation; Part 2: Experimental study using double
wavelength laser irradiation
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50 Hz (Al-Karadaghi et al., 2015; Gutknecht et al., 2016); 940 nm

diode laser–continuous wave mode (CW). When water/air spray

cooling was used, the device setting was 80% water–20% air.

2.3 | Calibration

2.3.1 | Output power

A calibrated thermal sensor (FL250A-BB-50, Ophir Photonics, Darm-

stadt, Germany) and universal power meter (Vega Standard, P/N

7Z01560, Ophir Photonics) were used to measure the output power

from the laser handpiece fiber tip at a 1-mm distance without water/

air spray. With one laser wavelength (single) activated at each time,

output power was measured for the pulsed Er,Cr:YSGG laser and for

the 940 nm diode laser (CW) using 10 different power settings

(1.0–4.25 W). Double wavelength irradiation was measured at

10 power settings for Er,Cr:YSGG laser from 1.0 to 4.25 W in combi-

nation with three diode laser settings (1.0 W; 2.25 W; 4.25 W) and

compared to the same settings as single wavelength irradiation. In

total, 50 different power settings repeated thrice were tested.

2.3.2 | Initial implant body temperature

One implant from each system was used for body temperature mea-

surements following irradiation with Er,Cr:YSGG and 940 nm diode

laser as single and double wavelength laser. An oscillating movement

in a half turn pattern at a speed of approximately 8.2 mm/s over an

area of 24 mm2 was used to approximate clinical settings. The

implants, attached to a hollow pin, were driven by an endodontic

handpiece connected to an electric motor. One thermo-coupler was

fixed in the center of the implant and the implant temperature

adjusted to 37�C using a fan. Final temperature following a 30-s irra-

diation was displayed on a thermometer logger.

Three power settings for each laser wavelength (1.0 W; 2.25 W;

4.25 W) were tested at the fixed distance of 1.0 (±0.2) mm. The two

wavelengths were tested as single and double. Water/air-spray was

activated at all Er,Cr:YSGG irradiations. Diode laser irradiations were

tested with and without water/air-spray. In total, for each implant,

18 settings repeated thrice were performed for the implant body tem-

perature measurements.

2.3.3 | Implant surface micro-texture

A scanning electron microscope (SEM, Jeol JSM-7400F, Tokyo, Japan)

was used to evaluate surface micro-texture alterations following irra-

diation with four (0.75 W–3.0 W) and two (1.00 W; 4.25 W) different

power settings for the Er,Cr:YSGG and the 940 nm diode laser,

respectively. Areas of non-irradiated implant were used as control.

The two lasers were tested for single and double irradiation.

Each implant was divided into four areas (Takagi et al., 2018). The

1.0-mm distance between the fiber tip end and implant surface was

controlled using a calibrated USB-microscope (Dino-Lite/Europe,

Naarden, Netherlands) and output power controlled using the cali-

brated thermal sensor/power meter. A Computer Numerical Control

(CNC) (Lase-o-Matic, Viking; ILSD Sweden AB, Stockholm, Sweden)

prototype device was used for repeatable oscillation of the implants.

The fixed laser handpiece in the CNC device had an angle of 90� rela-

tive to the implant surface, and a repeatable vertical movement pat-

tern simulating clinical debridement. The speed of movement was

calibrated to 3.3 mm/s, and each vertical step of every half turn was

0.5 mm. Irradiated area was 21 mm2 (3 × 7 mm, height × width). The

setup was designed to ensure that each mm2 of implant surface was

exposed to a minimum of 32 pulses from the Er,Cr:YSGG laser and 5 s

of the continuous wave diode laser.

For the SEM evaluation, the implants were placed on sample

studs and fully inspected at 5–10 kV at a magnification of ×50, ×190,

and ×1500. Representative surface areas were recorded. Implant

areas were then allocated into two groups based on the following sur-

face descriptions: areas with no alteration (No surface alteration group)

compared with control areas; areas with infractions, cracks, melting or

ablations (Surface alteration group).

2.4 | Experiment

The experimental study was conducted under validated settings based

on the calibrations. All implants were irradiated at an angle of 90�, four

turns in horizontal-vertical direction on one side of the implants covering

42 mm2 (7 × 6 mm, height × width). The speed of movement was hori-

zontally 3.3 mm/s, and each vertical step of every half turn was 0.5 mm.

The start position of the fiber tip and the distance to the implant

surfaces were adjusted, images recorded using the calibrated USB-

TABLE 1 Properties of the lasers (manufacturer's information)

Laser properties Laser 1 Laser 2

Laser wavelength

(nm)

2780 940 ± 10

Mode of

operation

Free running

pulsed

Continuous wave (CW)

Number of

emitters

1 1

Emitter type Er;Cr:YSGG InGaAsP, semi-conductor,

diode

Power accuracy ± 20% ± 20%

Laser beam delivery system

Beam delivery Optical fibre

Beam profile Gaussian beam

Handpiece Gold, for fibre tips

Fibre tip MZ8, length 6 mm, diameter 800 μm

Divergence angle fibre tip 8�

Numerical aperture, fibre tip 0.14
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microscope fixed in the CNC-device (Figure 2). Control of the fiber tip

quality was recorded at ×200 using a USB microscope (Figure 2;

DigiMicro Profi, DNT, Conrad Electronic International, Hirschau,

Bavaria, Germany). Two calibrated thermo-coupler K-types

(TC 309 S/N 151206276, SWEMA AB, Farsta, Sweden) with a

ø0.5 mm contact tip and error rate of 0.5% were used to record the

implant surface temperature.

A data logger thermometer (SWEMA AB, Farsta, Sweden) and a

software interface (TestLink SE-309-USB, Norwalk, CT) had the ability

to record the temperature at 1-s intervals. The thermo-couplers were

attached by two layers of removable foam tape (3 M High-

Temperature Acrylic Adhesive, 4658f, 0.8 mm, Maplewood, TX) on

the opposite side of the irradiated area and vertically positioned 2 mm

above and below the midline of the implant. The dimension of the

tape was adjusted to 8 × 6 mm (height × width) (Figure 2). A

600 × 600 mm acrylic chamber with a hatch in the front was used to

control the thermal conditions.

Prior to irradiation, the temperature of the mounted implant, laser

handpiece and CNC-device were adjusted to 36.0–38.0�C using an air

heater fan and thermostat in the chamber. At the time of irradiation,

the temperature of the water in the tank for water/air-spray and vol-

ume of applied water per min was recorded. Before and after each

irradiation, output power from the fiber tip was recorded using the

thermal sensor/power meter.

Each implant underwent five irradiations, each implant system irra-

diated 50 times (10 × 5). Activation of the double wavelength laser irra-

diation and recording of temperature started when the implant reached

the baseline 36.0–38.0�C temperature and stopped after four com-

pleted turns of irradiated area. The air temperature in the chamber was

controlled and maintained at 36.0–38.0�C throughout the test. A total

irradiation period of 190 s was applied (Goncalves et al., 2010).

2.5 | Statistical analysis

The methodology, results, statistical analysis and conclusions were

reviewed, and all statistical analysis was performed blindly, by a pro-

fessional statistician (SAL) who is also one of the study authors.

For calibration, mean output power for each power setting of

double irradiation was compared with the sum of mean output power

F IGURE 2 (a) Laboratory
setup for the experimental study.
(b) CNC-robot unit
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of single irradiation from the two wavelength lasers. The mean, stan-

dard error and p-value of the differences were calculated. Intraclass

correlations coefficients (ICCs), measuring the dependency between

measures within each power setting, was calculated based on linear

mixed effects models.

In the experiment, for each single implant, mean and max temper-

atures (measured after the first 20 s) were recorded. For comparison

of max temperature between the implant systems, mixed effects

models were applied. In this model, the implant system was entered

as a fixed effect, while the implant number was entered as a random

effect accounting for a possible dependency between measures. Post-

hoc analyses for comparisons of differences between treatment

groups were adjusted using Scheffe's method. Results were consid-

ered statistically significant for p < 0.05. Based on the linear mixed

effects models, ICCs measuring dependency within each individual

implant was calculated. For the complete measures during the 190-s

interval, a mixed effects regression model was used to calculate mean

effects and mean change (slope). The results from this model were

presented graphically. For the maximum and mean temperature for

each irradiation, mean, standard deviation and range were calculated,

followed by a post-hoc sample size calculation, based on the observed

parameters using t-tests. Data were analyzed using STATA version

15 (Stata Corp, Collage Station, TX).

3 | RESULTS

3.1 | Calibration

3.1.1 | Output power

Irrespective of power setting, estimated fiber tip output power was

consistently lower than the device setting. The discrepancy ranged

between 9.3% and 20.3% (mean = 17.3%) for Er,Cr:YSGG and between

13.0% and 23.8% (mean = 20.0%) for 940 nm diode laser. Mean differ-

ences in output power between double wavelength and the sum of

two single wavelength irradiations for each power setting were small

(mean = 0.02, SE = 0.39, p = 0.021). The ICC was high (0.99).

3.1.2 | Initial implant temperature

After 30 s irradiation with water/air-spray, mean internal implant tem-

perature ranged from 22.2 to 25.8�C below the critical 47�C tempera-

ture. Differences between the implant systems at same output power

ranged from 1.5 to 1.7�C. The lowest temperature (21.2�C) was

recorded for OsseoSpeed following single irradiation using the

940 nm diode laser at an output power of 0.9 W (setting 1.0 W),

whereas the highest temperature (24.8�C) was recorded for TiUnite at

3.3 W (setting 4.25 W) following double wavelength irradiation.

For single diode laser irradiation without water/air-spray, the tem-

perature ranged between 6.4 and 105.4�C above 47�C. Differences in

temperature between implant systems with the same output power

ranged between 11.8 and 45.4�C. The lowest temperature was recorded

for the diode laser irradiation with a 0.89 W output power (Roxolid

SLActive 53.4�C, OsseoSpeed 63.2�C, and TiUnite 65.2�C), whereas the

highest temperature was recorded with a 3.3 W output power (TiUnite

152.4�C, OsseoSpeed 150.0�C, and Roxolid SLActive 107.0�C).

3.1.3 | Implant surface micro-texture

The SEM evaluation of the implants following diode laser irradiation

did not reveal any alterations of the surface texture at any power set-

ting; two surface areas for each implant system in No surface alteration

group (output power 0.9 and 3.3 W).

For Er,Cr:YSGG laser irradiation, surface micro-texture alterations

appeared at different output powers pending implant system. In the No

surface alteration group, there were one OsseoSpeed (1.1 W), one Roxolid

SLActive (1.8 W) and two TiUnite areas (0.7 W and 0.9 W) (Table 2).

In the Surface alteration group, there were three OsseoSpeed and

Roxolid SLActive areas and two TiUnite areas. The area of altered sur-

face increased, following an increase of output power (Figure 3). The

first signs of alteration were minor and at different output powers,

depending on implant system: OsseoSpeed (1.2 W) displayed melted

TiO2 particles with rounded edges confined to the crests of the

threads; TiUnite (1.1 W) displayed cracks and areas of total ablation

of the TiO2 layer at the crest of the threads; Roxolid SLActive (2.0 W)

disclosed droplet formed areas of Ti in the range of 2–10 μm on the

prominent parts of the threads. At higher output power, more exten-

sive alterations such as areas of melting TiO2 particles, totally ablated

oxide layer and melted titanium droplets were observed.

3.2 | Temperature experiment

For the experimental part, calibrated laser settings (Table 2) were

used. From baseline temperature of 36.0–38.2�C, following 20 s of

irradiation, the surface temperature for all implants dropped approxi-

mately 10�C (Figure 4).

After 20 s, mean temperatures continued to decrease for all

implant systems. The decrease was significantly greater for TiUnite

and Roxolid SLActive compared with OsseoSpeed implants

(p < 0.001). Based on 50 recordings for each implant system, mean

max temperature for OsseoSpeed was 27.9�C (SD = 1.3), TiUnite

27.0�C (SD = 0.7), and Roxolid SLActive 27.8�C (SD = 1.0) (Figure 6).

There was a variation in the calculated ICCs for the implant systems

(0.25–0.70) (Table 3, Figure 5).

Differences in mean max temperature and mean temperature

between OsseoSpeed and TiUnite implants were statistically signifi-

cant (p < 0.001). Based on 51.250 recordings (at 1-s intervals) from

the two thermo-couplers, there was a probability of less than 0.1% to

reach a temperature greater or equal to 28.7�C for TiUnite, 29.2�C for

Roxolid SLActive, and 31.5�C for OsseoSpeed implants. Quality con-

trol of the fiber tip revealed minor damages for 5 out of 150 irradia-

tions not affecting the power output. For the post hoc sample size

FAHLSTEDT ET AL. 5



calculation, using the observed study parameters (ma = 28.50,

SD = 1.24), a significance level of 1.0% (α = 0.010) and a power of

99.0% (1-β = 0.990), we calculated that three (3) implants would be

sufficient to provide statistical relevant temperature differences com-

pared with 47�C.

4 | DISCUSSION

The main aim of this study was to investigate whether calibrated dou-

ble wavelength laser irradiation using 2780 nm Er,Cr:YSGG and

940 nm diode lasers might critically influence the implant surface tem-

perature. The results did not demonstrate an increase in surface tem-

perature from the 37�C at baseline, indicating that calibrated double

wavelength laser irradiation safely can be used in vitro of titanium

dental implants. However, after an initial phase of temperature drop,

the temperature slowly decreased over time and significant tempera-

ture differences were observed among the implant systems. There-

fore, the null hypothesis, that the final temperature would be similar

for the different implant systems, was rejected. Based on observed

study parameters, we found that a sample size less than the number

of implants included in the present study would be sufficient to obtain

an adequate study power.

4.1 | Calibration

The laser devices use optical fiber for light energy transmission with

losses of light energy. In the calibration part, mean measured output

power compared with device setting was approximately 20% lower for

both Er,Cr:YSGG and 940 nm diode lasers. This is in accordance with

manufacturer information and recent studies (Al-Karadaghi et al., 2015;

Gutknecht et al., 2016). Nevertheless, we found differences related to

power settings. At low power the differences were only 10% and at

high power up to 24%, indicating that every output power/energy

needs to be controlled and calibrated for each irradiation.

For the calibration of the Er,Cr:YSGG laser, only small differences

were observed in initial temperature at different power settings fol-

lowing a 30-s irradiation. An inside implant temperature variation

between 22 and 25�C was recorded. The findings are congruent to

those in an in vitro study where a temperature of 20�C was measured

following Er,Cr:YSGG laser irradiation on SLA titanium discs at a

power setting of 0.5, 1.0 and 1.5 W and a distance of 0.5 mm when

water/air-spray was activated (Strever et al., 2017).

With water/air-spray, 940 nm diode laser irradiation with differ-

ent power settings only slightly influenced the surface temperature. In

F IGURE 3 (a) Control and calibration of start position and
distance between fibre tip end and outer line of implant at ×40. Laser
handpiece fibre tip perpendicular to implant surface. (b) Quality
control of the laser fibre tip at ×200. Diameter of the fibre tip
0.8 mm. New tip. (c) Used, slightly damaged tip. (d) Tight mounting of
the thermal couplers by acrylic foam tape for optimal, durable
adhesion and thermal isolation

TABLE 2 Maximum laser settings and calculated power/energy based on calibrations not causing thermal heating or surface micro-texture
alterations

Laser/implant

system

Device setting,

power (W)

Output

powera (W)

Peak

powerb (W)

Pulse energy

(mJ/pulse)

Fluence/

pulsec (J/cm2)

Fluence/

pulsed (J/cm2)

Er,Cr:YSGG laser

OsseoSpeed 1.3 1.1 360.0 21.6 8.6 4.3

TiUnite 1.0 0.9 306.7 18.4 7.3 3.7

Roxolid SLActive 2.3 1.8 603.3 36.2 14.4 7.2

Intensity (W/cm2) Intensity (W/cm2)

940 nm diode laser

All implants 4.3 3.3 - - 1321.0 660.5

Note: water/air-spray volume: 29.2 ml/min.
aMeasured value.
bCalculated values from output power.
cGaussian beam.
dFlat beam (for compare).
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contrast, without water cooling, a rapid increase in temperature was

observed following increased output energy for all implant systems.

OsseoSpeed and TiUnite reached a temperature 45�C higher than

Roxolid SLActive at output power of 3.3 W (power setting 4.25 W).

The laser energy absorption coefficient of the surface and the thermal

conductivity of the core titanium material differ between the implant

systems. Core material of OsseoSpeed and TiU are pure Grade IV tita-

nium, whereas Roxolid SLActive is a titanium-zirconium alloy with a

F IGURE 4 SEM images of surface micro-texture alterations following single and double wavelength irradiation at different output powers of
the Er,Cr:YSGG laser. Device setting in brackets. The 940 nm diode laser did not cause surface alterations at any output power. Minor observed
signs of alteration (white circles); extensive alterations (white arrows). Magnification ×1500

TABLE 3 Statistical analysis of mean max, mean temperatures, confidence interval and ICC values for five irradiations on 10 implants for each
system, measured in the 20–190 s interval of double wavelength irradiation

OsseoSpeed TiUnite Roxolid SLActive

Mean max temp Mean temp Mean max temp Mean temp Mean max temp Mean temp

1 27.9 26.4 27.3 26.3 28.3 26.9

2 27.1 25.6 27.3 26.3 28.9 26.7

3 26.7 25.3 27.5 26.4 27.6 26.2

4 26.0 24.9 26.9 26.0 28.2 26.3

5 28.7 26.2 26.0 24.6 28.3 26.4

6 28.3 26.2 26.3 25.2 27.1 25.9

7 28.9 26.8 27.1 25.6 27.3 26.2

8 28.8 27.6 27.0 25.8 27.2 26.0

9 28.7 27.5 26.7 25.6 26.7 26.0

10 27.3 26.1 26.9 25.4 27.1 26.0

Mean CI 27.9 (27.6;28.2) 26.3 (26.1;26.5) 27.0 (26.6;27.3) 25.7 (25.5;26.0) 27.8 (27.4;27.9) 26.2 (26.0;26.4)

ICC 0.61 0.63 0.46 0.70 0.38 0.25

Note: Temperature in �C, CI = 95% confidence interval (W) based on 50 irradiations/ implant system, ICC = Intraclass correlation coefficient based on five

irradiations on 10 implants for each implant system.
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lower thermal conductivity. These findings confirm previous studies

showing that the temperature is affected by the laser wavelength

(Valente et al., 2017; Leja et al., 2013; Geminiani et al., 2012) and tita-

nium surface composition (Giannelli et al., 2015; Matys et al., 2016).

These studies also report a positive association between increased

power/energy density and increased temperature without water-

cooling, underlining the importance of water-cooling during irradiation

of Er:YAG, Er,Cr:YSGG and /or diode lasers on titanium surfaces.

The highest Er,Cr:YSGG laser output power not causing micro-

texture alterations was 1.8 W for the Roxolid SLActive, 0.9 W for

TiUnite, and 1.1 W for the OsseoSpeed surface. These findings indi-

cate an implant system specific interaction between output laser

energy and implant surface composition. In still another study, evalu-

ating the effect of different laser wavelength on titanium discs, similar

interaction between wavelength, surface alteration, surface chemistry

and output energy was observed (Park et al., 2012).

To study thermal and decontamination effects of Er,Cr:YSGG

(Gholami et al., 2018; Takagi et al., 2018) or Er:YAG lasers (Al-Hashedi

et al., 2017; Larsen et al., 2017; Matys et al., 2016) on titanium sur-

faces, a distance of 0.5–1.5 mm between fiber tip end and implant

surface has been used. Diode laser has been tested at a distance of

2–5 mm (Geminiani et al., 2012; Leja et al., 2013; Valente

et al., 2017). These differences may greatly impact outcomes. In one

study, robotic guidance used a custom computer-controlled program

to regulate the movement in a bidirectional raster scan pattern for

handpiece positioning and movement at a 0.5 mm distance (Strever

et al., 2017). The present study used a computer numerical control

(CNC) device with ability to program movement of the laser hand-

piece and implant in a reproducible pattern. By mounting the laser

handpiece on a sliding board, the distance was adjusted in the range

of 0.995–1.005 mm. The laboratory setup was intended to replicate a

clinical setting of free access to the implant surface, potentially irradi-

ating different implant systems perpendicular to the surface (Hauser-

Gerspach et al., 2010; Park et al., 2012; Ercan et al., 2014; Larsen

et al., 2017) and at the same time controlling the distance between

the fiber tip and the implant.

4.2 | Experiment

In the experimental part, following 190 s of irradiation, mean tempera-

ture for each of the three implant systems decreased to approximately

10�C below the 37�C baseline. Initially, surface temperature dropped

consistently, flattening out after 20 s to slightly above the water/air-

spray temperature. Recent in vitro studies demonstrate comparable

temperature endpoints following Er,Cr:YSGG laser irradiation of

F IGURE 5 Surface temperature for OsseoSpeed, TiUnite and Roxolid SLActive dental implants during 50 double wavelength laser irradiations
recorded using two thermocouples (2 × 50 lines) with max temperatures marked (magenta dots) for each irradiation and mean temperature
(horizontal turquoise/light line). Over the first 20 s, initial temperature, 36.0–38.2�C, dropped 8–12�C for all implants (dashed vertical line)

F IGURE 6 Dot-plot showing mean of mean maxi and mean temperature for each implant (big dots) and overall variation (small dots)
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titanium surfaces (Romanos et al., 2017; Strever et al., 2017). Even

though power/energy output was not reported, principal findings are

congruent with the present study. Addressing the efficacy of debride-

ment and disinfection of titanium surfaces described in recent studies

on Er,Cr:YSGG (Ercan et al., 2014; Takagi et al., 2018) and diode lasers

(Bach et al., 2000; Deppe & Horch, 2007), the present findings have

clinical relevance where longer duration irradiation of contaminated

implants might be needed.

After 20 s minor temperature differences were observed among

the implant systems. Differences in absorption coefficients and reflec-

tivity or the use of different output powers/energies can probably

explain these observations. Similar variations have been shown in

other laboratory studies comparing thermal conductivity of different

titanium alloys following Er:YAG and diode laser irradiation (Matys

et al., 2016) and Er,Cr:YSGG laser irradiation (Gomez-Santos

et al., 2010) on different implant surfaces. Other possibly influencing

factors are differences in temperature of the water/air-spray (range

22.7–23.7�C) and isolation and fixation of the thermo-couplers. The

transmission through the fiber tip may decrease due to damages cau-

sed by disrupted particles from the titanium surface, and conse-

quently, reduction of output energy may occur (Taniguchi

et al., 2013). However, in the present study, evaluation of the fiber tip

revealed only few cases with minor damage not affecting the output

energy.

The authors acknowledge several limitations of the study. First,

the calibration revealed that specific implant system breakdown

thresholds and applied laser energies are not immediately applicable

for other lasers or implant systems. Second, only three titanium dental

implant surfaces out of a plethora of commercially available surface

modifications were examined limiting the general applicability of the

observations. Included implants were selected based on frequent use

worldwide and representing different surface modifications. Third, a

small sample size was applied during the calibration and the evaluation

not qualitatively validated, the empirical value of the calibration is lim-

ited. In contrary, the sample size for the experimental study was over-

sized compared with the post-hoc sample size calculation. Moreover,

surface micro-texture evaluation by SEM depicts only 2-d surface

characteristics (Wennerberg & Albrektsson, 2009). However, in the

context of no available literature on double wavelength laser energy

irradiation on titanium implant surfaces, the information from the cali-

bration was critical for the experimental part of the study. Finally, a

repeatable movement pattern and constant distance between the

fiber tip end and the implant surface were ensured by the robotic lab-

oratory setup. These standardized in vitro setups are not obtainable in

a clinical setting, given the design of today's commercially available

fiber tips.

Within the limitations of the study, the following observations

can be summarized: Calibrated double wavelength laser irradiation of

2780 nm Er,Cr:YSGG and 940 nm diode lasers did not, under in vitro

conditions, critically influence the implant surface temperature for

included principal implant systems. During laser irradiation, the tem-

perature decreased rapidly from 37�C to steady-state levels, of

25.7–26.2�C, close to the water/air-spray temperature.

Further in vitro and preclinical studies need to be undertaken

before double wavelength laser irradiation is deemed reliable to be

tested in clinical settings. A laboratory 3-d implant surface evaluation

of the debridement and decontamination efficacy, as well as the bio-

compatibility of contaminated implants following the double wave-

length laser irradiation, are warranted. In addition, improved fiber tip

design, ensuring an optimized distance between the tip end and

implant surface under sufficient water cooling, is also motivated.
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