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Abstract

In this thesis we study the mass-transport and mean-water level for various

waves. By expanding linear wave theory up to second order , we study the mass-

transport for wave groups in deep and shallow water. Numerical experiments

show that this expansion causes a negative mean water level. This has a great

influence on the mass-transport in shallow water. However, for deep water this

effect is negligible. We also calculate the mass-transport for shoaling waves using

experimental data from a wave flume. As the water gets too shallow for linear

theory to be valid, non-linear theory has to be applied. Finally, we compare

particle paths and mean-water level from field measurements with theory. By

using the KdV-equation, the theory explains the measurements well. A strong

correlation between mass-transport and mean-water level is also observed.
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Introduction and thesis

outline

As a wave propagates, the fluid particles experience a net transport. This

transport is called the Stokes drift and was first described around 170 years ago

[9, 21]. The magnitude of the transport is largest at the surface and decays with

depth [11]. This established theory concerns waves where the mean water level

equals zero, meaning the wave is centred around the equilibrium level. How-

ever, this is not always true. Low-frequency waves called infra-gravity waves

can be induced by wave-groups of higher frequency. It was first observed by

Munk in 1948 [16] and two years later Tucker found a positive correlation be-

tween the wave height of the wave group and the infra-gravity wave [20]. The

infra-gravity wave propagate with the same velocity as the wave group and are

therefore called bound infra-gravity waves [1]. The trough is aligned with the

wave group’s crest. This causes a negative mean-water level for the highest

waves. By using second order wave theory, we want to understand how the

mean water level changes the Stokes drift. This was done for wave groups with

different wave lengths in both shallow and deep water. This method contains

uncertainty as the velocity potential is not uniquely defined [12]. A similar

study of the mass transport was done by Bremer and Taylor in 2016 where they

calculated the Lagrangian trajectories for wave groups at different depths [22].

Several wave flume experiments regarding mass-transport have been done over

the years. Measuring mass-transport in a closed wave flume is hard because the

total mass-transport obviously has to be zero. Hence, there is disagreement as

to what actually happens [21].
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To understand more about the mass-transport and mean water level we have also

studied what happens to shoaling waves. As a wave approaches a sloping beach,

it gets steeper and the wave height increases [17]. Before the wave breaks, the

mean water level is lowered [13]. This was confirmed in a wave flume experiment

done by Bowen et al. in 1968 [4]. In this thesis we are not going into breaking

waves. By using data from recent field experiments near the surf zone [2], we

are also trying to find a theory modelling the measured particle trajectories and

mean water levels.

Thesis outline

Chapter 1: The thesis starts out with some basic wave theory [11]. This theory

is based on the Euler equation and conservation of mass. By adding boundary

conditions to the fluid we are able to define the free surface problem. By lin-

earizing, the problem is solved exactly. The Stokes drift is also defined.

Chapter 2: Linear wave theory is expanded up to second order using Longuet-

Higgins’ article [12]. For a wave group, the second order effect creates a low-

frequency wave, often called the infra-gravity wave. We are running numerical

experiments calculating the Stokes drift for wave groups consisting of different

wave lengths.

Chapter 3: Based on the boundary conditions already defined, we derive the

KdV-equation and it’s periodic wave solution called the ”cnoidal wave”.

Chapter 4: The mass-transport for shoaling waves using linear and non-linear

theory is compared to experimental data from [4]. This chapter is written like

an article and will be submitted.

Chapter 5: In this chapter we present field experiments measuring the mean-

water level and particle paths. The linear and non-linear theory derived in

the earlier chapters are used to compare theoretical particle paths with the

measured.

Chapter 6: The main results from the thesis are summarized and concludes

the work.
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Chapter 1

Wave Theory

In this chapter we are going to derive the free surface problem and can be found

in Chapter 13 of [23]. We are then linearizing theory and finding the Stokes

drift. This is found in Chapter 8 of [11].

When water waves are generated, take for example wind blowing on the ocean

making a wave, gravity is mostly the restoring force. They are called interface

waves and travel most often on the air-water interface. Other waves like internal

waves or compression and expansion waves are not explained in this thesis. Our

coordinate system is two-dimensional where x is the horizontal direction and z

the vertical. The depth is given by h and η is the free surface. The velocity

field is defined as u(x, z, t) = (u,w), where u is the horizontal velocity and w

is the vertical. The parameters used to define a wave are the amplitude a, the

spatial frequency k, also called wave number, and the circular frequency ω. The

wave length λ is the distance from wave crest to crest and is defined as λ = 2π
k .

The period is denoted T and could also be defined as T = 2π
ω . The wave travels

with phase speed c = ω
k . Note that later in the thesis we use the wave height

H. This is the distance from crest to trough, whereas the amplitude a is the

distance from the still water line to the crest.

We start out with the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0 (1.1)

which states the principle of conservation of mass. We are only concerned about
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incompressible flow with constant density ρ, meaning the equation reduces to

∇ · u = 0. (1.2)

The other equation describing describing a fluid is the Navier-Stokes momentum

equation. For incompressible and inviscid flow it is reduced to

Du

Dt
=
∂u

∂t
+ u · ∇u = −∇p

ρ
+ g (1.3)

and named the Euler equation, which is a simplification of the Navier-Stokes

momentum equation.

Lastly, we assume ω = ∇×u = 0, meaning the flow is irrotational. This makes

it possible to define a velocity potential φ:

u = ∇φ. (1.4)

Substituting the velocity potential into (1.2) leads to the Laplace’s equation

∆φ = 0. (1.5)

The free surface problem has three boundary conditions. Two of the are kine-

matic boundary conditions and the last one is dynamic. The first one says that

water can’t go trough the bottom. This means that the normal velocity there

has to zero:

w = ∂φ/∂z = 0 on z = −h. (1.6)

The second boundary condition says that the fluid particles at the free surface

must have the same normal velocity as the normal velocity of the surface itself.

This means that the fluid particles that make up the interface can’t leave the

free surface and is written mathematically as

(n · u)z=η = n · us (1.7)

where n is the surface normal and us is the velocity of the free surface. The

surface can be defined as f(x, z, t) = z−η(x, t) = 0. The normal surface is then

defined as n = ∇f and using (1.7) leads to(
− u∂η

∂x
+ w

)
z=η

=
∂η

∂t
. (1.8)

The boundary condition can also be written in terms of the velocity potential:(
− ∂φ

∂x

∂η

∂x
+
∂φ

∂z

)
z=η

=
∂η

∂t
. (1.9)
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It is assumed that the surface has a purely vertical velocity us = ∂η/∂tez.

For the last boundary condition we need to re-write the Euler equation (1.3),

into the Bernoulli equation:

∂φ

∂t
+

1

2
|∇φ|2 +

p

ρ
+ gz = 0. (1.10)

This is possible because the flow is irrotational, inviscid and incompressible. By

saying that the pressure p just below the surface is the same pressure as p0 just

above, the Bernoulli equation is reduced to(∂φ
∂t

+
1

2
|∇φ|2 + gz

)
z=η

= 0. (1.11)

and we have the last boundary condition called the dynamic boundary condi-

tions.

To summarize, the partial derivatives are written in a more compact form and

the free surface problem then looks like:

φxx + φzz = 0

φz = 0 on z = −h

ηt + φxηx − φz = 0 on z = η

φt +
1

2
(φ2
x + φ2

z) + gη = 0 on z = η

(1.12)
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1.1 Linear Theory

For waves with small amplitudes and slopes the problem can be linearized. The

goal is to solve for the velocity potential φ. It is assumed that the components u,

w and η are all of the same order and higher order terms will then be neglected.

The kinematic boundary condition (1.8) simplifies to(∂φ
∂z

)
z=η

=
∂η

∂t
. (1.13)

The left hand side is expanded around z = 0 leading to(∂φ
∂z

)
z=η

=
(∂φ
∂z

)
z=0

+ η
(∂2φ

∂z2

)
z=0

+ ... ≈ ∂η

∂t
(1.14)

where the higher order terms are neglected and we are left with the linearized

form of the kinematic boundary condition:(∂φ
∂z

)
z=0

=
∂η

∂t
. (1.15)

The dynamic boundary condition (1.11) is simplified by dropping the non-linear

terms and expanding around z = 0. The linear condition then looks like this(∂φ
∂t

)
z=0

+ gη = 0. (1.16)

Since the free surface problem now is defined for the linear case, the velocity

potential φ can be found. We assume that the wave takes the shape:

η(x, t) = a cos
(
kx− ωt

)
. (1.17)

Looking at the boundary conditions we see that the solution needs to be a sine

function of phase (kx−ωt) for η to be correct. Therefore a solution is ”guessed”

in the form of

φ(x, z, t) = f(z) sin(kx− ωt) (1.18)

where f(z) needs to be found. Substituting (1.18) into (1.5) leads to

d2f

dz2
− k2f = 0 (1.19)
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which has the solution f(z) = Aekz +Be−kz where A and B are constants. The

velocity potential becomes

φ(x, z, t) = (Aekz +Be−kz) sin(kx− ωt). (1.20)

The constants are found by substituting (1.20) into the no flow trough condition

(1.6):

k(Ae−kh −Bekh) sin(kx− ωt) = 0 =⇒ B = Ae−2kh (1.21)

and using the kinematic boundary condition gives

k(A−B) sin(kx− ωt) = ωa sin(kx− ωt) =⇒ k(A−B) = ωa. (1.22)

The constants are then found to be

A =
aω

k(1− e−2kh)
and B =

aωe−2kh

k(1− e−2kh)
(1.23)

and the velocity potential can then finally be defined as

φ(x, z, t) =
aω

k

cosh(k(z + h))

sinh(kh)
sin(kx− ωt). (1.24)

The velocities in the x and z-direction then easy to find:

u =
∂φ

∂x
= aω

cosh(k(z + h))

sinh(kh)
cos(kx− ωt) (1.25)

w =
∂φ

∂z
= aω

sinh(k(z + h))

sinh(kh)
sin(kx− ωt). (1.26)

Until now, the dynamic boundary condition has not been used. Inserting φ and

η into (1.11) produces

− aω2

k

cosh(kh)

sinh(kh)
cos(kx− ωt) = −ga cos(kx− ωt) (1.27)

which simplifies to what is called the dispersion relation:

ω =
√
gk tanh(kh). (1.28)

The dispersion relation explains how the temporal and spatial frequency are

connected. Since the phase speed of the waves is given by c = ω/k it can by

using this relation be written

c =

√
g

k
tanh(kh) =

√
gλ

2π
tanh

(2πh

λ

)
. (1.29)

Waves with larger wavelength λ will then travel faster compared to shorter

waves.
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1.2 Stokes Drift

For the linearized particle paths, the motion is closed circles or ellipses. The

mean velocity of a particle will then be zero. If something is thrown into the

ocean, it will slowly drift in the direction of propagation. Thus the mean velocity

is not zero and this slow movement is called Stokes drift. By keeping higher

order terms in the Taylor series of the velocity of the particle

dx

dt
= u(x, z, t) = u(x0, z0, t)+(x−x0)

(∂u
∂x

)
x0,z0

+(z−z0)
(∂u
∂z

)
x0,z0

+ ... (1.30)

dz

dt
= w(x, z, t) = w(x0, z0, t) + (x− x0)

(∂w
∂x

)
x0,z0

+ (z − z0)
(∂w
∂z

)
x0,z0

+ ...,

(1.31)

the Stokes drift can be obtained. The position (x0, z0) is the fluid’s location

if there was no waves. The velocities are defined in (1.25) and (1.26). The

horizontal and vertical distances in the Taylor series are defined like

x− x0 =

∫ t

0

u(x0, z0, t
′)dt′ (1.32)

=− acosh(k(z0 +H))

sinh(kH)
sin(kx0 − ωt) (1.33)

z − z0 =

∫ t

0

w(x0, z0, t
′)dt′ (1.34)

=a
sinh(k(z0 +H))

sinh(kH)
cos(kx0 + ωt). (1.35)

Integrating (1.30) and (1.31) over a period T and then dividing by T , the time

averages are found:

ūS = a2ωk
cosh(2k(z0 + h))

2 sinh2(kh)
(1.36)

w̄S = 0 . (1.37)

As seen, there is no Stokes drift in the vertical direction. As the particles moves

in the direction of wave propagation, it causes mass transport. Another word

for Stokes drift is mass transport velocity. The Stokes drift is also the difference

between Eulerian and Lagrangian velocity [21]:

Stokes drift= Lagrangian - Eulerian (1.38)
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Chapter 2

Second order wave theory

The derivations of the theory done in this chapter are based on Longuet-Higgins

and Stewart’s article ”Radiation stress and mass transport in gravity waves, with

application to ’surf beats’ ” [12].

2.1 The Stokes Approximation

An expansion of the variables u, φ, η and p are made in the Stokes’ method of

approximation as

u =u(1) + u(2) + ....

φ =φ(1) + φ(2) + ....

η =η(1) + η(2) + ....

p+ ρgz =p(1) + p(2) + ....

(2.1)

where the first terms, u(1), φ(1) etc., satisfy the first order equations and bound-

ary conditions. Then u(1) + u(2), φ(1) + φ(2) etc. satisfy the equations and

boundary conditions up to second order. The first order variables, like φ(1),

were found in Chapter 1. For this chapter we want to expand and define the

problem up to second order.
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The velocity potential φ(2) is defined like

∇2φ(2) = 0,

(∂φ(2)/∂z)z=−h = 0(
∂2φ(2)

∂t2
+ g

∂φ(2)

∂z

)
z=0

= −
{ ∂
∂t

(u(1)2) + η(1) ∂

∂z

(
∂2φ(1)

∂t2
+ g

∂φ(1)

∂z

)}
z=0

.

(2.2)

When φ(2) is found, the rest of the variable u(2), p(2) and η(2) may also be found

through these equations:

u(2) = ∇φ(2),

p(2)/ρ = −(
∂φ(2)

∂t
+

1

2
u(1)2),

gη(2) = −
(∂φ(2)

∂t
+

1

2
u(1)2 + η(1) ∂

2φ(1)

∂z∂t

)
z=0

(2.3)

For one single wave these equations can be solved relatively easy and the solution

for φ(2) is

φ(2) =
3a2ω

8 sinh4 kh
cosh 2k(z + h) sin 2(kx− ωt) + Cx+Dt. (2.4)

For a group of waves, it is more difficult finding the solution. The next section

will solve the problem for a wave group of two waves at uniform depth, but it

is possible to expand to n waves.

2.2 Method for solving the second order theory

This method systematically uses the expansion method explained above. A

wave group consisting of two waves is defined by

η(1) = a1 cos(k1x− ω1t) + a2 cos(k2x− ω2t) (2.5)

where an is the amplitude, kn is the wave number and ωn is the radian frequency.

The frequency and wave number are related through the dispersion relation

ω2
n = gkn tanh(knh). (2.6)

The first-order potential corresponding to (2.5) is

φ(1) =
a1ω1 cosh k1(z + h)

k1 sinh k1h
sin(k1x−ω1t)+

a2ω2 cosh k2(z + h)

k2 sinh k2h
sin(k2x−ω2t).

(2.7)
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To define the problem up to second-order, (2.2) is solved for φ(2). The right

hand side needs to be defined and the first step is to find (u(1))2 evaluated in

z = 0. This is written as

(u(1))2 = u2 + w2 |z=0. (2.8)

First u2 is calculated

u2 =

( 2∑
n=1

anωn cosh(knh)

sinh(knh)
cos(knx− ωnt)

)2

(2.9)

=
2∑

n,m=1

anamωnωm cosh(knh) cosh(kmh)

sinh(knh) sinh(kmh)
cos(knx− ωnt) cos(kmx− ωmt)

(2.10)

and then w2

w2 =

( 2∑
n=1

anωn sin(knx− ωnt)
)2

(2.11)

=

2∑
n,m=1

anamωnωm sin(knx− ωnt) sin(kmx− ωmt). (2.12)

Adding these together will give a summation in terms of (kn−km) and (kn+km).

Then φ(2) and η(2) are also going to contain these terms. The summation terms

in the cosine-function will be neglected since only the averaged values over

several wavelengths are of interest. Then

u2 + w2 =

2∑
n,m=1

anamωnωm
sinh(knh) sinh(kmh)

[
cosh(knh) cosh(kmh) cos(knx− ωnt) cos(kmx− ωmt)

(2.13)

+ sinh(knh) sinh(kmh) sin(knx− ωnt) sin(kmx− ωmt)
]

(∗)
=

2∑
n,m=1

anamωnωm
sinh(knh) sinh(kmh)

[
cosh(knh) cosh(kmh)

cos((kn − km)x− (ωn − ωm)t)

2

+ sinh(knh) sinh(kmh)
cos((kn − km)x− (ωn − ωm)t)

2

]
(∗∗)
=

2∑
n,m=1

anamωnωm cosh((kn + km)h)

2 sinh(knh) sinh(kmh)
cos((kn − km)x− (ωn − ωm)t)

(2.14)
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where the identities

(∗) : cos(α) cos(β) =
cos(α− β) + cos(α+ β)

2
(2.15)

sin(α) sin(β) =
cos(α− β)− cos(α+ β)

2
(2.16)

(∗∗) : cosh(α+ β) = cosh(α) cosh(β) + sinh(α) sinh(β) (2.17)

are used. Writing (kn − km), (ωn − ωm) = ∆k, ∆ω finally gives:

(u(1))2 =

2∑
n,m=1

anamωnωm cosh((kn + km)h)

2 sinh(knh) sinh(kmh)
cos(∆kx−∆ωt) (2.18)

Taking the time derivative of (2.18) and using averaged values k and ω to

simplify gives

∂

∂t
(u(1))2 =

2∑
n,m=1

anamω
2 cosh(2kh)

2 sinh2(kh)
∆ω sin(∆kx−∆ωt) (2.19)

Next, we have

∂

∂z

(
∂2

∂t2
+ g

∂

∂z

)
φ

(1)
z=0 =

2∑
n=1

−anω3
n sin(knx− ωnt) +

2∑
n=1

anωngkn cosh(knh)

sinh(knh)
sin(knx− ωnt)

(2.20)

=

2∑
n=1

anωn sin(knx− ωnt)(−ω2
n +

gkn
tanh(knh)

) (2.21)

=

2∑
n=1

anω
3
n sin(knx− ωnt)(−1 +

1

tanh2(knh)
) (2.22)

=
2∑

n=1

anω
3
n sin(knx− ωnt)(

− sinh2(knh)

sinh2(knh)
+

cosh2(knh)

sinh2(knh)
)

(2.23)

=

2∑
n=1

anω
3
n sin(knx− ωnt)
sinh2(knh)

. (2.24)

where the dispersion relation (2.6) is used. Thus

η(1) ∂

∂z

(
∂2

∂t2
+ g

∂

∂z

)
φ

(1)
z=0 =

2∑
m=1

am cos(kmx− ωmt) ·
2∑

n=1

anω
3
n sin(knx− ωnt)
sinh2(knh)

(∗)
=

2∑
n,m=1

anamω
3
m

2 sinh2(kmh)
sin(∆kx−∆ωt) (2.25)
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where the identity

(∗) : sin(α) cos(β) =
sin(α+ β) + sin(α− β)

2
(2.26)

is used and only the difference terms are kept. Splitting the equation up in two

halves and reversing n and m for the second half makes the right-hand side of

(2.25) look like:

2∑
n,m=1

1

2

anamω
3
n

2 sinh2(knh)
sin(∆kx−∆ωt) +

2∑
m,n=1

1

2

anamω
3
m

2 sinh2(kmh)
sin(−∆kx+ ∆ωt)

(2.27)

=

2∑
n,m=1

1

2

anamω
3
n

2 sinh2(knh)
sin(∆kx−∆ωt)−

2∑
m,n=1

1

2

anamω
3
m

2 sinh2(kmh)
sin(∆kx−∆ωt)

(2.28)

=

2∑
n,m=1

anam
4

(
ω3
n

sinh2 knh
− ω3

m

sinh2 kmh

)
sin(∆kx−∆ωt) (2.29)

Using Taylor’s expansion to the first order, this can be written as

2∑
n,m=1

anam
4

∆ω
d

dω

(
ω3

sinh2 kh

)
sin(∆kx−∆ωt) (2.30)

After all these calculations, (2.2) can be defined as(
∂2φ(2)

∂t2
+ g

∂φ(2)

∂z

)
z=0

= −
∑
n,m=1

(Kaman∆ω) sin(∆kx−∆ωt) (2.31)

where

K =
ω2 cosh 2kh

2 sinh2 kh
+

1

4

d

dω

(
ω3

sinh2 kh

)
. (2.32)

The solution of φ(2) is

φ(2) = −K
2∑

n,m=1

amancg
ghθ − c2g

cosh ∆k(z + h)

cosh ∆kh

sin(∆kx−∆ωt)

∆k
(2.33)

where

θ =
tanh ∆kh

∆kh
. (2.34)

It is worth mentioning that it is possible to add terms like Cx + Dt to the

velocity potential and the solution will still be correct. However, just to not
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complicate things more, this is not done. From (2.33) it is easy to find the

horizontal velocity component

u(2) =
∂φ(2)

∂x
= −K

2∑
n,m=1

amancg
ghθ − c2g

cosh(∆k(z + h))

cosh ∆kh
cos(∆kx−∆ωt). (2.35)

The second order equation for the free surface is defined by (2.3). Now we have

all the variables needed and it is just to plug in:

gη(2) =−
[
K

2∑
n,m=1

anamc
2
g

ghθ − c2g
cos(∆kx−∆ωt) +

2∑
n,m=1

1

4

anamω
2 cosh(2kh)

sinh2(kh)
cos(∆kx−∆ωt)

−
2∑

n,m=1

anamω
2

2
cos(∆kx−∆ωt)

]

=−K
2∑

n,m=1

anamc
2
g

ghθ − c2g
cos(∆kx−∆ωt) +

2∑
n,m=1

1

2
anamω

2 cos(∆kx−∆ωt)(−1

2

cosh(2kh)

sinh2(kh)
+ 1)

=−K
2∑

n,m=1

anamc
2
g

ghθ − c2g
cos(∆kx−∆ωt)−

2∑
n,m=1

anamω
2

4 sinh2(kh)
cos(∆kx−∆ωt).

(2.36)

The final calculation is to rewrite the constant K. Since k = k(ω), the calcula-

tion is a bit lengthy and some steps are skipped. Hence

K =
ω2 cosh(2kh)

2 sinh2(kh)
+

1

4

[
3ω2

sinh2(kh)
+

d

dk

(
ω3

sinh2(kh)

)
∂k

∂ω

]
=
ω2 cosh(2kh)

2 sinh2(kh)
+

1

4

[
3ω2

sinh2(kh)
+

d

dk

(
ω3

sinh2(kh)

)
1
∂ω
∂k

]
=
(
...
)

=
ω2

4 sinh2(kh)

sinh(4kh) + 3 sinh(2kh) + 2kh

sinh(2kh) + 2kh

(2.37)

and the wave problem up to second order is now defined.

In Figure 2.1, we have plotted η(1) and η(2) for a arbitrary wave group. The

second order effect is called the bounded infra-gravity wave as it propagates

with the wave group. The crest of the wave group is where the trough of the

infra-gravity wave is, causing a negative mean water level.
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Figure 2.1: The free surface of a wave group where the first and second order

are plotted separately.

2.2.1 Stokes Drift

To find the Stokes drift, the exactly same procedure as for 1.2 is followed with

the Taylor approximation:

u(x, z, t) = u(x0, z0, t) + (x− x0)
∂u

∂x

∣∣∣∣
x0,z0

+ (z − z0)
∂u

∂z

∣∣∣∣
x0,z0

(2.38)

The only difference in the calculation is that there are more terms. The hori-

zontal velocity up to second order for a wave-group consisting of two waves is

defined as

u(x, z, t) =
a1ω1 cosh(k1(z + h))

sinh(k1h)
cos(k1x− ω1t)

+
a2ω2 cosh(k2(z + h))

sinh(k2h)
cos(k2x− ω2t)

(2.39)

−Kcg
[a2

1 + a2
2

gh− c2g
+

2a1a2

ghθ − c2g
cosh ∆k(z + h)

cosh ∆kh
cos(∆kx−∆ωt)

]
. (2.40)

The velocity is divided into two parts, (2.39) and (2.40), where the Stokes drift

is calculated for each one and then added together. For (2.39), it is just to use

the Stokes drift formula found in (1.36):

ūS =a2ω1k1
cosh 2k1(z0 + h)

2 sinh2 k1h
+ a2ω2k2

cosh 2k2(z0 + h)

2 sinh2 k2h
. (2.41)

Then the next step is to find the Taylor approximation of (2.40). The horizontal

19



distance looks like

x− x0 =

∫ t

0

u(x0, z0, t
′)dt′ (2.42)

=

∫ t

0

−Kcg
[a2

1 + a2
2

gh− c2g
+

2a1a2

ghθ − c2g
cosh ∆k(z0 + h)

cosh ∆kh
cos(∆kx0 −∆ωt′)

]
dt′

(2.43)

=−Kcg
[a2

1 + a2
2

gh− c2g
t+

2a1a2

ghθ − c2g
cosh ∆k(z0 + h)

cosh ∆kh

sin(∆kx0 −∆ωt)

∆k

]
(2.44)

It is noticed that O(a4) will be obtained in the first order Taylor approximation

(assuming that O(a1) ∼ O(a2)). Since the amplitudes are small, it will be

neglected. We are then left with the terms of O(a2). After time-averaging we

obtain

ūS = −Kcg
a2

1 + a2
2

gh− c2g
+O(a4) (2.45)

and the total Stokes drift is then

ūS =a2
1ω1k1

cosh(2k1(z0 + h))

2 sinh2(k1h)
+ a2

2ω2k2
cosh(2k2(z0 + h))

2 sinh2(k2h)
(2.46)

−Kcg
a2

1 + a2
2

gh− c2g
+O(a4). (2.47)

2.3 Numerical experiment

In this section, results from numerical experiments are presented. Everything

is calculated in MatLab. First, to understand how a wave group consisting of

two waves with different wave lengths can look, it is plotted a few examples

in Figure 2.2. Just to simplify a bit, the waves all have the same amplitude,

a1 = a2 = 0.05 m.
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Figure 2.2: Wave groups with different wave lengths at depth h = 100 m .
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If a = a1 = a2, the wave group is defined

η(x, t) = a cos(k1x− ω1t) + a cos(k2x− ω2t) (2.48)

= 2a cos(
1

2
∆kx− 1

2
∆ωt) cos(kx− ωt) (2.49)

and as before ∆k = k1−k2, k = (k1 +k2/)2, ∆ω = ω1−ω2 and ω = (ω1 +ω2)/2.

It consists of one slowly varying wave and one progressive wave. The slow prop-

agating wave 2a cos( 1
2∆kx − 1

2∆ωt) defines the envelope of the wave group.

This wave has a long period: Tenv = 2π/(2∆ω) = 4π/∆ω. The carrier wave has

a shorter period: Tcar = 2π/ω [11]. These two periods are calculated for the six

different wave groups from Figure 2.2. In addition do we calculate the Stokes

drift (with second order effects included) at the free surface. The results are

presented in Table 2.1 and 2.2, evaluated at shallow and deep water respectively.

λ1 λ2 Tcar Tenv ūS |z=η
4 m 4.5 m 1.73 s 45.12 s 0.0156 m/s

4 m 5 m 1.79 s 24.07 s 0.0135 m/s

5 m 7 m 2.07 s 17.26 s 0.0025 m/s

5 m 8 m 2.17 s 12.70 s 0.0005 m/s

7 m 9 m 2.76 s 26.35 s -0.0105 m/s

7 m 11 m 2.96 s 15.54 s -0.0145 m/s

Table 2.1: Period Tcar, Tenv and Stokes drift ūS for different wave groups at

depth h = 1 m.

λ1 λ2 Tcar Tenv ūS |z=η
4 m 4.5 m 1.65 s 55.97 s 0.0282 m/s

4 m 5 m 1.69 s 30.32 s 0.0264 m/s

5 m 7 m 1.93 s 23.11 s 0.0176 m/s

5 m 8 m 1.99 s 17.09 s 0.0164 m/s

7 m 9 m 2.25 s 36.86 s 0.0112 m/s

7 m 11 m 2.34 s 20.94 s 0.0100 m/s

Table 2.2: Period Tcar, Tenv and Stokes drift ūS for different wave groups at

depth h = 100 m.
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The Stokes drift is clearly larger for the waves in deeper water compared to the

shallow water waves. The reason is due to the last term, −Kcg a
2
1+a22
gh−c2g

, when cal-

culating the Stokes drift. Since we divide by the depth h this term will decrease

as the depth increase. In shallow water the second order effect is greater and

cause the particles to drift slower. For wave lengths λ1,2 = 7, 9 and λ1,2 = 7, 11

the particles at the free surface are even drifting backwards even though the

wave is propagating forward.

To understand more how the particles travel, particle trajectories also under the

free surface are plotted. All four plots have end-time t = 2 ∗ Tenv, meaning the

end-times are different for each wave. The particle trajectories in shallow water

are plotted in Figure 2.3. These are found by using a ODE45-solver in MatLab.
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Figure 2.3: Shallow water (h = 1 m) particle trajectories at z = η, −0.4, −0.8

m. The light gray dot show the initial position and the black dot the end.
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For the wave-group with λ1,2 = 4, 5, the particles at the free surface have a pos-

itive Stokes drift and are propagating in the same direction as the wave. Below

the surface, the particles starts traveling in the opposite direction. Closer to

the bottom, the negative Stokes drift is even larger.

Then the depth is changed to h = 100 m, but keeping the wave-lengths un-

changed:
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-0.6

-0.4
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-0.4
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Figure 2.4: Deep water (h = 100 m) particle trajectories at z = η, −0.4, −0.8

m. The light gray dot show the initial position and the black dot the end.

All the particle trajectories show that the particles are drifting in the same

direction as the wave. The Stokes drift is strongest at the free surface and

decays with depth. It seems like the infra-gravity wave is insignificant regarding

the mass-transport and Stokes drift in deep water. To understand this better
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the Stokes drift ūS as a function of depth z is plotted in Figure 2.5. The black

lines show the Stokes drift when the second theory is used. The red lines are

the Stokes drift using only first order theory.
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Figure 2.5: The Stokes drift as a function of depth z for the four waves in Figure

2.3 and 2.4. The black lines show the Stokes drift for the second order theory,

which is the theory being used in this chapter. For comparison is also the first

order theory Stokes drift plotted in red.

As seen in the two upper plots, which is for shallow water, there is a remarkable

difference between using first or second order theory. For the two lower plots

the difference between including the second order or not are of no consequence.

This emphasizes the point made earlier, that the depth h decides how influential

the infra-gravity wave will be. A last remark is that the velocity potential is

not uniquely defined. It is possible to add a arbitrary function of x, meaning

we can’t know the true mass-transport just by doing numerical experiments.
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Chapter 3

Non-linear theory

The linear theory which we defined in Chapter 1 is a good approximation in

many cases. However, in shallow water this theory does not include dispersive

effects. That means the waveform stays unchanged while propagation. We

are therefore deriving the KdV-equation to model weakly non-linear dispersive

waves [11].

3.1 The KdV-equation

The derivation of the KdV-equation is following Chapter 13 of [23].

In Chapter 1, we defined the free surface problem. The Laplace equation

φxx + φZZ = 0 (3.1)

has to be solved where Z now are the vertical distance from the bottom and

φZ = 0 at Z = 0. The velocity potential is written like

φ =

∞∑
n=0

Zn fn(x, t). (3.2)

We then substitute (3.2) into (3.1):

∂2

∂x2

∞∑
n=0

Znfn(x, t) +
∂2

∂Z2

∞∑
n=0

Znfn(x, t) = (3.3)

∞∑
n=0

Zn
∂2fn(x, t)

∂x2
+

∞∑
n=2

n(n− 1)Zn−2fn(x, t) = 0 (3.4)
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This is re-written by factoring out Zn and changing the lower limit for the

summation:

∞∑
n=0

Zn
[∂2fn(x, t)

∂x2
+ (n+ 2)(n+ 1)fn+2(x, t)

]
= 0 (3.5)

=⇒ fn+2 =
−1

(n+ 2)(n+ 1)

∂2fn
∂x2

. (3.6)

The solution to this recursion function is

f2n =
−1

2n(2n− 1)

∂2f2n−2

∂x2
(3.7)

=
−1

2n(2n− 1)

∂2

∂x2

( −1

(2n− 2)(2n− 3)

∂2f2n−4

∂x2

)
(3.8)

=
1

2n(2n− 1)(2n− 2)(2n− 3)

∂4f2n−4

∂x4
= ... =

(−1)n

(2n)!

∂2nf0

∂x2n
(3.9)

where only even terms are kept because f1 = 0 due to the boundary conditions.

Then, (3.2) is written as

φ =

∞∑
n=0

(−1)n
Z2n

(2n)!

∂2nf

∂x2n
(3.10)

where f = f0. The next step is to substitute this expression into the boundary

conditions. Before it is done, the variables are normalized:

x′ = lx, Z ′ = h0Z, t′ =
lt

c0
, η′ = aη, φ′ =

glaφ

c0
(3.11)

where the original variables are primed. To make the analysis easier, the terms

will be ordered by the dimensionless parameters α = a/h0 and β = h2
0/l

2. Using

the normalized variables, the Laplace equation is defined as:

∇2φ =
gla

c0l2
∂φ

∂x2
+

gla

c0h2
0

∂2φ

∂Z2
= 0

=⇒ β
∂2φ

∂x2
+
∂2φ

∂Z2
= 0 (3.12)

The same thing is done with the boundary conditions (1.12):

φZ = 0, Z = 0

ηt + αφxηx −
1

β
φZ = 0, Y = 1 + αη (3.13)

η + φt +
1

2
αφ2

x +
1

2

α

β
φ2
Z = 0, Y = 1 + αη
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The last thing to normalize is the expansion of φ which then looks like

φ =

∞∑
n=0

(−1)n
Z2n

(2n)!

∂2nf

∂x2n
βn. (3.14)

This is substituted into the kinematic boundary condition:

ηt + α
∂

∂x

( ∞∑
n=0

(−1)n
Z2n

(2n)!

∂2nf

∂x2n
βn
)
ηx −

1

β

∂

∂Z

( ∞∑
n=0

(−1)n
Z2n

(2n)!

∂2nf

∂x2n
βn
)

(3.15)

= ηt + α
( ∞∑
n=0

(−1)n
Z2n

(2n)!

∂2n+1f

∂x2n+1
βn
)
ηx −

1

β

( ∞∑
n=1

(−1)n
Z2n−1

(2n− 1)!

∂2nf

∂x2n
βn
)

= 0

(3.16)

The terms are then ordered by powers of β. Since it is a surface boundary

condition is Z = 1 + αη. That leads to

ηt+
(
(1+αη)fx

)
x
−
[1
6

(1+αη)3fxxxx+
1

2
α(1+αη)2fxxxηx

]
β+O(β2) = 0 (3.17)

For the dynamic boundary condition, the same approach is used and

η + ft +
1

2
αf2

x −
1

2
(1 + αη)2

[
fxxt + αfxfxxx − αf2

xx

]
β +O(β2) = 0. (3.18)

Next all terms of O(β) for (3.17) and (3.18) are kept, but terms of O(αβ) are

being dropped. The dynamic boundary condition is also differentiated with

respect to x. This gives the normalized Boussinesq-equations which looks like

ηt +
[
(1 + αη)w

]
x

+O(αβ, β2) = 0

wt + αwwx + ηx −
1

2
βwxxt +O(αβ, β2) = 0

(3.19)

where w = fx is the first term in the expansion of the velocity in the horizontal

direction:

u = φx = w − βZ
2

2
wxx+O(β2). (3.20)

By just keeping the lowest orders of (3.19) we yield

ηt + wx +O(α, β) = 0 (3.21)

wt + ηx +O(α, β) = 0. (3.22)

The KdV-equation is a uni-directional wave, so we are only interested in the

right going solution which looks like:

w = η, ηt + ηx = 0. (3.23)
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Hence, a solution of (3.19) up to first order in α and β in the form

w = η + αA+ βB +O(α2 + β2) (3.24)

is looked for. A and B are functions of η and its x-derivatives. Inserting this

into (3.19) gives

ηt + ηx + α
[
Ax + 2ηηx

]
+ β

[
Bx −

1

6
ηxxx

]
+O(α2 + β2) =0 (3.25)

ηt + ηx + α
[
At + ηηx

]
+ β

[
Bt −

1

2
ηxxt

]
+O(α2 + β2) =0 (3.26)

The two equations are consistent if A = − 1
4η

2 and B = 1
3ηxx. Inserting this

into the upper of the equations gives the normalized Korteweg-deVries equation

ηt + ηx +
3

2
αηηx +

1

6
βηxxx +O(α2 + β2) = 0 (3.27)

which in the dimensional form is expressed as

ηt + c0ηx +
3

2

c0
h0
ηηx +

1

6
h2

0ηxxx = 0. (3.28)

By setting h0 = 1 and g = 1, we have the

ηt + ηx +
3

2
ηηx +

1

6
ηxxx = 0 (3.29)

where h0 is a unit of distance and
√
h0/g as a unit of time [5].
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3.2 Periodic solution of the KdV

The KdV-equation can be solved exactly for both solitary and periodic waves.

The solitary wave is the easiest equation to obtain from the KdV-equation, but

we are going to solve for the periodic solution called the cnoidal wave. This

wave is known for sharper crests and flatter troughs than the sinusoidal-wave.

The derivation of the cnoidal wave uses [5], [8] and[14] as a reference. Assuming

the cnoidal wave is of constant shape, we make the guess

η(x, t) = f(ξ) , ξ = x− ct. (3.30)

This can be substituted into the KdV-equation (3.29) and we obtain an ordinary

differential equation

− cf ′ + f ′ +
3

2
ff ′ +

1

6
f ′′′ = 0. (3.31)

Integrating once yields

(1− c)f +
3

4
f2 +

1

6
f ′′ =

1

4
A (3.32)

where A is an integration constant. We then multiply by f ′ and integrate again

1

3
(f ′)2 = −f3 + 2(c− 1)f2 +Af +B = F (f) (3.33)

where B is an integration constant which has to be positive for the solution to

be periodic. Since this is a third order polynomial, it can be written

F (f) = −(f − f1)(f − f2)(f − f3) (3.34)

where f1, f2 and f3 are the roots. By comparing (3.33) and (3.34) we have

these relations:
f1 + f2 + f3 =2(c− 1)

f1f2 + f2f3 + f3f1 =−A

f1f2f3 =B > 0

(3.35)

The last expression gives three options for f1, f2 and f3:

� All three roots are positive

� One root is positive, while two roots are complex conjugate

� One root is positive and two are negative
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The first option is not possible because it would mean η > 0 and therefore lie

above the mean water level for all values. The second option would result in

unbounded values for η. We are then left with the third option.

Figure 3.1: The function F (f) with two negative roots and one positive.

It is necessary that

f2 ≤ f ≤ f1 (3.36)

for the derivative f ′ to be real and bounded. We can then conclude that f1 is

the crest’s amplitude and f2 of the trough. A solution for f which is periodic

and inside this range is given as

f(ξ) = f1 cos2 χ(ξ) + f2 sin2 χ(ξ) (3.37)

This expression is then substituted into the left hand side of (3.33):

1

3

(∂f
∂ξ

)2

=
4

3

(∂χ
∂ξ

)2

cos2 χ(ξ) sin2 χ(ξ) (f1 − f2)2 (3.38)

and into (3.34). By some re-writing we yield

F (f) = (f1 − f2)2 cos2 χ(ξ) sin2 χ(ξ)[(f1 − f3)− (f1 − f2) sin2 χ(ξ)]. (3.39)

Putting the equations together, we obtain

4

3

(∂χ
∂ξ

)2

= (f1 − f3)− (f1 − f2) sin2 χ(ξ). (3.40)

This is re-written as

σ2
(∂χ
∂ξ

)2

= 1−m sin2 χ(ξ) (3.41)
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where the abbreviations are defined as

σ2 =
4

3(f1 − f3)
, m =

f1 − f2

f1 − f3
. (3.42)

We know that f3 < f2 < f1, which means 0 < m < 1. Then (3.41) is integrated

and we get
1

σ

∫ ξ

ξ0

dξ̃ = ±
∫ χ

χ(ξ0)=0

dχ̃√
1−m sin2 χ̃

. (3.43)

The right hand side is called the incomplete elliptic integral of the first kind,

where m is called the elliptic parameter. If we call the integral F(χ|m), we have

ξ − ξ0
σ

= F(χ|m). (3.44)

The phase ξ is given as a function of χ. The inverse functions are called the

cosine-elliptic and sine-elliptic functions and are defined as

cosχ =cn(
ξ − ξ0
σ
|m)

sinχ =sn(
ξ − ξ0
σ
|m).

(3.45)

The elliptic integrals are called complete when χ = π/2. The complete integrals

of first and second kind are defined

K(m) =

∫ π/2

0

dχ̃√
1−m sin2 χ̃

, E(m) =

∫ π/2

0

√
1−m sin2 χ̃dχ̃. (3.46)

Finally, substituting (3.45) back into (3.37) and changing the variables back

yields

η(x, t) = f2 + (f1 − f2)cn2
(√3(f1 − f3)

2
(x− ct− x0)

∣∣m) (3.47)

where the fact that cn2 + sn2 = 1 is used. We then obtained what is called the

cnoidal wave, which is the periodic solution of the KdV-equation. Hence, we

see that f2 has to be the lowest point and f1 the highest since 0 < cn2 < 1.

The wave height is then simply defined as H = f1 − f2. We also want to find

an expression for the wave length λ and phase speed c.

If we look at (3.37), when χ(ξ1) = 0, 2π, .. we obtain the crest and the trough

at χ = π/2, 3π/2, ... The distance from crest to trough is π/2 in terms of χ(ξ2),

which means λ would be twice of this. Using (3.43) we find the wave length to

be

λ = 2

∫ ξ2

ξ1

dξ̃ = 2σ

∫ π/2

0

dχ̃√
1−m sin2 χ̃

= 2σK(m). (3.48)
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The phase speed c is found by comparing (3.33) and (3.34):

2(c− 1)f2 = (f1 + f2 + f3)f2

=⇒ c = 1 +
1

2
(f1 + f2 + f3) (3.49)

Finally, it is seen that the cnoidal wave is fully defined by the three parameters

f1, f2 and f3. However, the wave can also be defined by the wave height H,

elliptic parameter m and mean-water level η̄0.

We start with∫ λ

0

η(x, t)dx = 2

∫ ξ2

ξ1

f2 + (f1 − f2)cn2
( ξ
σ
|m
)
dξ = η̄0λ (3.50)

By changing the variables from ξ to χ using (3.37) and (3.41) we obtain

η̄0λ = 2

∫ χ(ξ2)=π/2

χ(ξ1)=0

(f1 cos2 χ+ f2 sin2 χ)
dξ

dχ
dχ

= 2σ

∫ π/2

0

f1(1− sin2 χ) + f2 sin2 χ√
1−m sin2 χ

dχ

= 2σ

∫ π/2

0

f1 − (f1 − f2) sin2 χ√
1−m sin2 χ

dχ

= 2σ

∫ π/2

0

f1 −m(f1 − f3) sin2 χ√
1−m sin2 χ

dχ

= 2σ

∫ π/2

0

(f1 − f3)

√
1−m sin2 χ+

f3√
1−m sin2 χ

dχ

= 2σ
(

(f1 − f3)E(m) + f3K(m)
)

We are then left with

η̄0 = (f1 − f3)E(m) + f3K(m) (3.51)

which in addition to H = f1 − f2 and m = (f1 − f2)/(f1 − f3) enables us to

define the parameters f1, f2 and f3 by H, m and η̄0:

f1 =
H

m

(
1− E(m)

K(m)

)
+ η̄0

f2 =
H

m

(
1−m− E(m)

K(m)

)
+ η̄0 (3.52)

f3 =− H

m

E(m)

K(m)
+ η̄0

The wave is now defined if the wave height H, elliptic parameter m and mean-

water level η̄0 is known.
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Chapter 4

Comparing mass-transport

for linear and non-linear

shoaling waves

This chapter is using a code written by H. Kalisch and H. Borluk [3] to calcu-

late the particle paths for the cnoidal wave. The code was later modified and

improved by Olufemi E. Ige.

4.1 Introduction

As waves approach a sloping beach, the waves are getting shorter and steeper

until they eventually break. Decreasing depth h also leads to a change in the

mean water level η̄0. Before the break point a set-down occurs, meaning a

negative mean water level. As there is no energy loss, the radiation stress

increases. Theory presented by Longuet-Higgings and Stewart [13] gives the

magnitude of this set-down. It is defined as

η̄0 = −1

8
H2

0k0
coth2(kh)

2kh+ sinh 2kh
. (4.1)

In 1968, Bowen et al. [4] did an experiment where they compared measurements

of the mean water level to (4.1). They find the theory to match the results well,

before the wave becomes too steep and breaks due to the sloping beach. Non-

linear waves approaching a beach are more complicated as the velocity depends
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on the wave height in lowest order of approximation. A method for the change

of wave height as the cnoidal wave is getting closer to the shore was done by

Svendsen and Brink-Kjær in 1973 [18]. The Svendsen and Brink-Kjær’s article

was some of the groundwork for Khorsand and Kalisch as they continued work-

ing on the change of wave height for a shoaling solitary wave [10]. There has also

been experiments on the particle paths regarding the cnoidal wave. Chen et al.

[7]) did an experiment where particles were traced and compared to fifth-order

theory. This was however calculated for a uniform depth. The velocity field

and particle paths for the KdV-equation were in 2012 derived by Borluk and

Kalisch [3], that we are using in this article. Recently a study on the shoaling

waves using the KdV-equation was done by Paulsen [17].

This article will combine the shoaling and particle paths of linear and non-linear

waves. The wave height and wave number are found at different depths. Then

the particle paths are calculated. The Stokes drift of both linear and non-linear

waves are calculated for comparison. The waves are all evaluated before they

break down. The wave height, period and mean water level will be experimental

data from Bowen et al. [4].

The experiment was done in a wave tank that was 40 meters long, 0.75 meter

deep and 0.5 meter wide. A wave with known height, frequency and wave

length is approaching a smooth beach with slope 4.7◦ (tan β = 0.082). As

seen in Figure 4.1, the wave then experiences a small set-down before the set-

up and breaking. The mean water level η̄0 was found by using manometer to

calculate the static pressure. The theory corresponds well with the actual mean

water level up until the wave is getting close to breaking. Then theory and

measurement start to diverge.
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Figure 4.1: Upper: The measured mean water level η̄0 compared to the theo-

retical. Lower: The measured η̄0, crest and trough for the same wave as above.

We want to know about the wave and the associated mass-transport when the

theory is still valid. Since the linear theory explains the set-down, a sinusoidal-

wave is first found.

4.2 Linear theory

The linear wave looks like

η = a cos(kx− ωt) + η̄0 (4.2)

where η̄0 is the mean water level. The goal is to find a wave that matches the

data from the experiment.

At x = 110 cm = 1.10 m the experimental and theoretical η̄0 are still the same.

The depth at this position is found to be h = 0.090 m. The period of the

wave is given as T = 1.14 s. The frequency ω = 2π/1.14 s is assumed to be

constant [10], even though the wave is approaching the beach. Using MatLab,
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the wave-number k is found using the dispersion relation:

ω2 −
√
kh tanh(kh) = 0. (4.3)

The wave height before the shoaling is H0 = 0.0645 m. The wave height H at

a given depth is

H = H0

√
Cg,0
Cg

(4.4)

where Cg,0 is the velocity before the wave approaches the beach. The local

velocity at the given depth is Cg [10]. By using the formula to find η̄0 (4.1), we

have all the variables needed to define a linear wave:

η = 0.0335 cos(6.1043x− 5.4722t)− 0.0027. (4.5)

4.2.1 Mass-transport for the linear wave

To find the mass-transport, it is necessary to figure out how the mean water

level η̄0 affects the velocity field. It could be thought of as an infinitely long

wave:

lim
k→0

η̄0 cos(kx− ωt) = η̄0 cos(0) = η̄0. (4.6)

The horizontal and vertical velocity are then defined as

lim
k→0

u = lim
k→0

η̄0

√
gk tanh(kh)

cosh(k(z + h))

sinh(kh)
cos(kx− ωt)

= η̄0

√
gk kh

1

kh
cos(0) (4.7)

= η̄0

√
g

h

lim
k→0

w = lim
k→0

η̄0

√
gk tanh(kh)

sinh(k(z + h))

sinh(kh)
sin(kx− ωt)

= η̄0

√
gk kh

k(z + h)

kh
sin(0) (4.8)

= 0.

The mean-water level changes the horizontal velocity only. We can see that the

effect of a set-up or a set-down will be larger for small depths. For deep water,

we see that η̄0

√
g/h ≈ 0.

The wave is plotted in Figure 4.2. In addition did we plot the same wave, but

without any set down. Then their respective particle trajectories are plotted.
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Even though the difference in mean water level seems small, it impacts the

particle paths. After t = 5T , the surface particles from the wave with no set

down have clearly drifted furthest.
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Figure 4.2: Upper: Linear waves with the same period T = 1.14 s, but different

η̄0. Lower: The surface particle paths for the waves above.

Then the Stokes drift ūS for the two waves is calculated. It is defined as

ūS = a2ωk
cosh(2k(z0 + h))

2 sinh2(kh)
+ η̄0

√
g

h
. (4.9)

The wave with a set down has Stokes drift ūS = 0.0628 m/s at the surface. The

other wave is drifting at a velocity of ūS = 0.0934 m/s. This means that in

this case a set down of only −0.0027 m reduces the velocity by ≈ 30%. With

a larger set-down, the particles could drift backwards even though the wave is

propagating forward.
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4.3 Non-linear theory

The linear theory could explains the mean water level well. We also found the

amplitude and mass-transport by using linear theory. However, by looking at

Figure 4.1 we see that the wave can’t be linear. If the wave was a cosine-wave

and had a set-down, the magnitude of the crest would have to be less than the

trough. Here it is opposite, meaning the wave has a different shape. The cnoidal

wave is a non-linear wave with sharp crests and flat troughs. It is possible for

the wave to have a set-down even though the crest is larger than the trough,

meaning it could fit to our problem. This wave is found by an exact solution of

the KdV-equation.

The KdV-equation is an equation describing waves at the surface where the

fluid is inviscid and incompressible. The equation is derived under some certain

conditions. The waves are assumed to have a small amplitude a and long wave-

length λ compared to the undisturbed depth h. To be more precise it means

that the parameters α = a/h and β = h2/λ2 should be of the same order, along

with being small. This is the Boussinesq regime. Additionally the motion of

the wave has to be in one direction. The equation is non-dimensional where h

is a unit of distance and
√
h/g a unit of time. It then looks like:

ηt + ηx +
3

2
ηηx +

1

6
ηxxx = 0. (4.10)

The periodic wave solution to (4.10) gives the cnoidal wave. It is defined by

three parameters f1, f2 and f3. The surface is given as

η(x, t) = f2 + (f1 − f2)cn2
(√3(f1 − f3)

2
(x− ct− x0)

)
(4.11)

where the wave height is defined as H = f1−f2. This means that f1 is the crest

and f2 is the trough. The wave speed is c = 1 + 1
2 (f1 + f2 + f3) and m = f1−f2

f1−f3
is the elliptic parameter. The wave length is defined as λ = 2σK(m) where

σ2 = 4
3(f1−f3) [5].

It is also possible to define the three parameters f1, f2 and f3 by the wave height
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H, the elliptic parameter m and the equilibrium level η̄0 [17]:

f1 =
H

m

(
1− E(m)

K(m)

)
+ η̄0

f2 =
H

m

(
1−m− E(m)

K(m)

)
+ η̄0

f3 =− H

m

E(m)

K(m)
+ η̄0.

(4.12)

The goal is to find a cnoidal wave that is equivalent to the experiment regarding

the period, depth and set-down.

We see from Figure 4.1, that f1 and f2 are already given. The wave height at

x = 1.10 m from shore and depth h = 0.09 m is then

H = f1 − f2 = 0.0546− (−0.0200) m = 0.0746 m. (4.13)

We then need to find the elliptic parameter m. If we choose m so that the period

gets correct, T = 1.14 s, there is not enough freedom to choose η̄0. We prioritize

to get the right period and find m = 0.99937. This gives η̄0 = −0.0053, which

does not match up with the experimental set-down. The reason is that the wave

height is too big compared to the depth, which violates the Boussinesq regime.

We are still calculating the mass-transport using this theory, even though a

higher-order non-linear theory would be more correct to use.

In the linear case, the set down only shifts the wave down. As seen in Figure

4.3, this is not the case for the non-linear theory. The two waves have the same

period and wave height, but because of the non-linearity different wave lengths

and phase speeds.
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Figure 4.3: Upper: Cnoidal wave with the same period T = 1.14 s, but different

η̄0. Lower: The particle paths at the surface for the waves.

4.3.1 Mass-transport for the cnoidal wave

To find the Stokes drift of the two cnoidal waves the Lagrangian period TL

needs to be found. This is calculated by finding the time where the particle

reaches the same z-value as the initial one. When the Lagrangian period is

found, it is possible to find the x-value at this time. Then the Stokes drift will

be ūs = ∆x/TL.

For the wave with no set down, the particles are drifting ūs = 0.1887 m/s. For

the other wave, which has η̄0 = −0.0053 m, the Stokes drift is ūs = 0.1345 m/s.

The set down is slowing the wave down by around ≈ 30%.

4.4 Discussion

We now used both linear and non-linear theory to reconstruct the experimental

wave from Bowen, Simmons and Inman [4] at one specific depth. The result is

summarized in Table 4.1. The two waves have the same period, T = 1.14 s.
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H (m) η̄0 (m) ūS (m/s)

Linear wave 0.0670 -0.0027 0.0628

0.0670 0 0.0934

Non-linear wave 0.0746 -0.0053 0.1345

0.0746 0 0.1887

Table 4.1: Wave height H, mean water level η̄0 and Stokes drift ūS for the wave

at h = 0.090 m.

From the table, we see that the linear and non-linear wave give two different

results. The wave height for the linear wave is found theoretically by equation

(4.4). The non-linear wave’s wave height is from the experimental data, using

the crest and trough. This means that the linear wave height estimate is too

low at this depth. Regarding the mean water level η̄0, the linear theory works

well as seen in Figure 4.1. The non-linear theory evaluates the set-down to be

approximately twice of the experimental. The Stokes drift ūS using non-linear

theory gives a mass-transport that’s double compared to the linear theory. What

causes this difference, is hard to tell. On the one hand the cnoidal wave has

a larger amplitude, which could mean a larger mass-transport. On the other

hand, it has a larger set-down which slows the mass-transport down. The shape

of the two waves are different, which affects the way the particles move.

Up until now we only looked at the wave right before it starts to break. At this

depth the linear and non-linear theory are not in agreement.

To understand more of the wave shoaling, we find the wave heights and Stokes

drift at different depths. In Figure 4.4, the experimental wave height H is

compared with linear theory at different depths.

42



0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0.055

0.06

0.065

0.07

0.075

Figure 4.4: Comparison of the non-linear wave height H found from the crest

and trough (Figure 4.1) and the theoretical wave height using linear theory,

equation (4.4).

We see that the non-linear and experimental wave height are the same. This

is because we use the measured crest and trough when we define the cnoidal

wave. The random variations in wave height might be due to measuring er-

rors. Still, we see that with decreasing depth the wave heights are increasing

overall. Using linear theory results in a steadily increasing wave height. For

0.12 m < h < 0.26 m, the wave heights don’t differ too much between the two

theories. For h < 0.12 m, we see that the experimental wave height grows more

rapidly compared to the linear theory approximations. The wave gets steeper

right before it breaks and linear theory is no longer valid.

In Figure 4.5, we find the Stokes drift for linear and non-linear waves at different

depths. It is found using the same procedure as in Section 4.2.1 and 4.3.1.
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Figure 4.5: Stokes drift at different depths using both linear and non-linear

theory.
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The result resembles the comparison of wave heights in Figure 4.4. The non-

linear theory gives a slightly larger mass-transport for all depths, but the two

curves follow each other up until h ≈ 0.11 m. As the wave travels even closer

to the beach, the difference between linear and non-linear theory gets bigger. If

we look at how the wave changes with depth, this makes sense. In Figure 4.6,

the wave from the experiment is plotted at three different depths.
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Figure 4.6: The wave profile of the linear and cnoidal wave for three different

depths. The upper plot uses linear theory and the lower non-linear.

From the figure, we observe that the shape of the linear and cnoidal wave are

quite similar for h = 0.22 m and h = 0.16 m. The cnoidal wave is a bit steeper

with a somewhat larger mass-transport. At h = 0.10 m, the cnoidal wave has

sharper crests and flatter troughs. The shape do no longer look like a sinusoidal-

wave.

To summarize, the linear theory explains the mean water level for shoaling

waves up until the wave starts to break well. However, the linear theory is not

sufficient to explain the wave’s amplitude and mass-transport close to the break

zone. The waves are too steep and simply not linear. The non-linear theory
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used in this article could explain the mass-transport to some degree. Thus, the

water gets too shallow for this theory to be completely correct. Further from

shore, the linear theory is enough to find the mass-transport. We did also see

that a small change in the mean water level impacts the mass-transport.
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Chapter 5

Field experiment

In this chapter, a field experiment done in September 2019 will be presented.

The project was done in collaboration with the Institute of Coastal Research in

Helmholtz-Zentrum Geesthacht, which supplied all the equipment. Before we

get into the details, an overview and context of the experiment will be given.

The location for the experiment was Sylt in Germany, which is an island close to

the border of Denmark. We were three people from University of Bergen and six

from Helmholtz-Zentrum Geestacht, which is a German research institute. The

project was mainly planned by Henrik Kalisch (University of Bergen) and Marc

Buckley (Helmholtz-Zentrum Geestacht). The goal was to understand more

about what impacts the mass-transport by doing both Lagrangian and Eulerian

measurements. To do the Lagrangian measurements, you would need some sort

of particle tracer. The idea of berries first came to mind, but it was quickly

figured out they would be too small and hard to track. The decision landed on

using oranges instead. Even though the orange has inertia, it is floating at the

free surface. In addition, the round shape is convenient and the bright color

makes it easier to see. The measurements were done at a beach on the western

coast of the island. Doing field experiments are really unpredictable and strong

wind was a huge challenge for these measurements. However, the last day gave

us good weather just in time and was enough to collect the data needed.
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Figure 5.1: Upper: Group photo of the people from the field study. Lower: The

beach were the experiments took place.

The results from the field experiment are to be found in the submitted paper

”Lagrangian Measurements of Orbital Velocities in the Surf Zone” [2]. In this

chapter my contributions to the paper are explained. The work of transforming

the raw data into usable data sets was done by Maria Bjørnestad and Michael

Streßer. But, firstly the experimental set-up will be explained in more details.

47



5.1 Experimental set-up and data analysis

The set-up of the experiment is shown in Figure 5.2. Six poles were installed into

the sand. The distance between the poles varied from 8.4 to 12.6 meters. Pole

1 was approximately 80 meters from the shoreline and furthest away. At every

pole, there was also placed a pressure gauge (PG). This makes it possible to

measure the surface elevation. Close to pole 2, an acoustic Doppler velocimeter

(ADV) was put in place to measure the Eulerian flow. Two pairs of cameras,

CMOS digital cameras with Canon 50 mm and 400 mm lenses, were placed on

a hill watching over the surf zone. The distance between the cameras was about

40 meters. The field of view for the two cameras is overlapping and shown in

the figure. The oranges, being the particle tracers, were deployed between pole

1 and 2 by a swimmer.

Figure 5.2: Set-up of the experiment. The poles are numbered with 1 being the

furthest from the beach and 6 the closest. The particle tracers were deployed

between pole 1 and 2. The coordinate-system sets sea bottom at pole 2 to be

the origin. This figure was made by Marc Buckley.

As the oranges were deployed into the sea, the cameras took pictures at 30

frames/second. Through data analysis done by Maria Bjørnestad, the positions

of the oranges were projected onto the xz-plane. The coordinate-system has

origin at bottom of pole 2. The x-axis is then showing the distance from pole

2, with positive direction being shoreward. The z-axis shows the distance from

the sea bottom to the free surface.
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In the upper part of Figure 5.3, the surface elevation of four waves is plotted. It is

constructed from the pressure gauge installed at pole 2. To get the waves centred

around zero, the mean over a 10 minute period is subtracted. The waves are

then zero-crossed upwards. For each wave the average is found and represented

by the black lines. The lower part of Figure 5.3 shows the Lagrangian motion

of one orange riding on three waves. The three paths correspond to the three

waves in the same color in the upper part of the figure.
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Figure 5.3: Upper: The time-series of the surface elevation at pole 2. It was

constructed from the pressure gauge measurements. The time series is zero-

crossed upwards and the black lines show the mean water level for each wave.

Lower: The Lagrangian motion of one orange. The particle path of the orange

is color coded, where the wave in the upper plot correspond to the path in the

same color. The black circles show where the path starts. The black dot show

where the path stops for the blue wave. The data analysis was done by Michael

Streßer and Maria Bjørnestad.
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The oranges were located close to the middle between pole 1 and 2. The distance

between the two poles is 11.11 meters. From GPS-positions it is known that

the depth at pole 1 is 0.36 meters greater than at pole 2. The depth in between

is not known exactly, but if the beach was a straight line, the slope would be

1.85◦. In addition to the x and z-positions, the timestamp for each position was

also given.

Before analyzing the oranges, the z-axis is adjusted. This was done individually

for every wave by adding ∆h = 0.36
11.11 |x̄| to the z-positions of the oranges, where

x̄ is the mean of the horizontal orange position for each wave.

The goal of the next section is to investigate how well a theoretical wave matches

the particle tracer of the experiment. The methods of finding these theoretical

particle paths are described in the following section. Both linear and non-linear

theory are used.

5.2 Methods for finding particle tracer path

5.2.1 Linear theory

The linear wave is defined like

η(x, t) =
H

2
cos(kx− ωt) + (h+ η̄0) (5.1)

where η now is the distance from the sea bottom to the free surface. When the

wave is defined, the particle path at a given position can be found.

The first thing to be done, is finding the maximum zmax and minimum zmin of

the orange path. From those values the wave height H and average depth z̄ are

defined:

H = zmax − zmin (5.2)

z̄ =
zmax + zmin

2
(5.3)

The depth h and mean water level η̄0 are unknown. They are defined by the

known value z̄:

z̄ = h+ η̄0. (5.4)

This means that it is enough to find either h or η̄0. The last parameter to be

found is the period T . From this the radian frequency ω is defined. The spatial

frequency k can also be found if T is known, through the dispersion relation.
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In MatLab T and η̄0 are found such that

min
T,η̄0
||(ξ, ζ)− (x, z)||2, (5.5)

where (ξ, ζ) are the positions of the theoretical particle path and (x, z) are the

positions of the oranges for one given path.

The function minimizing the distance needs an initial point for the parameters to

be fitted. For the period T , the fact that we have the timestamp for each orange

is taken advantage of. As the orange goes for approximately one Lagrangian

period, the end time of the path will give an estimate of that. The Lagrangian

period is known to be a bit longer than the Eulerian, but it is still a valid initial

guess. From zero-crossing analysis of the waves at pole 2, a mean water level is

given. This will then be the initial point of η̄0.

5.2.2 Non-linear theory

For the non-linear theory, a similar procedure is used to find a cnoidal wave.

The wave height H is defined in the same way as for the linear theory, by

finding the maximum and minimum z−position. Since the KdV-equation is

used in non-dimensional form, the wave heights are divided by the depth h:

H = f1 − f2 = zmax−zmin

h . Like before, the depth h is not known and needs

to be found. The last parameter needed to define a cnoidal wave is f3 which is

depending on the elliptic parameter m: f3 = f1 − H
m .

Then the problem is again solved in MatLab to find the particle path closest to

the oranges:

min
h,m
||(ξ, ζ)− (x, z)||2. (5.6)

The code for calculating the theoretical particle path (ξ, ζ) was written by Bor-

luk and Kalisch [3]. It was later modified and improved by Olufemi E. Ige. For

the initial value of the depth, the average depth z̄ is used. With the elliptic

parameter m, the initial guess was adjusted for each wave depending on the

shape of the orange path. When the depth h and elliptic parameter m were

found, everything was scaled back to the original dimensions again.
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5.3 Comparing linear and non-linear particle paths

In this section, the green, pink and blue paths from Figure 5.3 will be compared

with both linear and non-linear waves. The grey dot indicates the starting point

of the path. The black dot shows the end point. The measured positions of the

particle tracer are plotted in orange. The black line is the theoretical particle

path.
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Figure 5.4: Particle paths calculated from linear theory (upper) and non-linear

theory (lower). The orange circles are the measured positions of the particle

tracer.
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For each time step, the distance from the orange to the theoretical path is

calculated. This difference is then plotted in Figure 5.5 below:
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Figure 5.5: Comparison of the deviation between the observed and theoretical

path, for linear and non-linear waves. The deviation is the distance between the

orange and the estimated particle path for each time step.

The non-linear theory gives a smaller deviation for all three waves. For the green

wave, the non-linear theory fits almost perfect. The error is small throughout

the whole path. The elliptic parameter m decides the shape of the cnoidal wave.

For m → 0+, it becomes a cosine-wave. The non-linear limit m → 1, gives a

solitary wave [5]. The cnoidal wave approximating the green particle path has

m = 0.62. This means the wave will have sharper crests and wider troughs than

the linear cosine wave. With a relatively high elliptic parameter, it makes sense

that linear and non-linear theory give different results.

The particle path belonging to the pink wave is more messy than the two others.

It goes slow at the top and has a bump in the middle of the path. This makes

it hard to fit with both linear and non-linear theory.

Similar to the green wave the deviation is small when using non-linear theory

to approximate the blue wave’s particle path. The linear theory also gives a

smaller deviation compared to the two waves above. This might be because the
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elliptic parameter is m = 0.30 and closer to the linear limit m = 0.

For the linear and cnoidal waves found above, we know the wave lengths and

mean water level η̄0. These numbers will be compared in Table 5.1 with values

from the actual data. To find the wave length, this formula is used: λ = cT . The

phase speed c for each wave is found by measuring the time the wave takes from

pole 1 to pole 2. Since the distance between the poles is known, an estimate

of the phase speed can be found. The period T is not known, but set to be

the time of one full orange path. That is an over-estimate meaning the actual

wave length might be a bit shorter. At the other hand, the phase speed is also

an estimate so it is impossible to get an exact answer. The observed η̄0 is the

average value for each wave from the surface elevation at pole 2.

Measured Linear theory Non-linear theory

Green wave λ 17.996 m 13.623 m 15.327 m

η̄0 0.117 m 0.115 m 0.133 m

Pink wave λ 17.604 m 17.189 m 16.076 m

η̄0 -0.052 m -0.057 m -0.052 m

Blue wave λ 13.908 m 9.708 m 10.677 m

η̄0 0.074 m 0.081 m 0.100 m

Table 5.1: Comparing wavelengths and mean water level

The measured wave lengths are longer compared to the wave lengths calculated

from theory. This makes sense because the period used is probably too high.

It is reasonable that the wave lengths differ by a few meters as the method

contains a lot of uncertainty.

The values for the mean water level are quite consistent for all three waves. A

variation of a few centimeters can be explained by many reasons. The pressure

measurements and the oranges are a few meters apart. This means that the wave

can change a bit from the oranges to where the mean water level is measured.

We don’t know the depth either, so the still water level for the surface elevation

might be wrong by a few centimeters.
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5.4 Total mass-transport

Until now only the free surface particle paths have been studied. To understand

more of the total mass-transport, we calculate the particle paths further down in

the water column as well. Since the non-linear theory was better to approximate

the orange paths, this is the theory being proceeded. In Figure 5.6, theoretical

particle paths are plotted further down in the water column.
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Figure 5.6: Particle paths calculated from non-linear theory at different depths

in the water column.

From the figure it is seen that the green and blue wave experience a large forward

drift throughout the water column. In contrast, the pink wave’s particles are

drifting backwards. This is connected to the mean-water level η̄0. A positive

η̄0 makes the particle drift faster forward. For a negative η̄0 it is opposite.

Calculating the correlation r between the mean water level and average flow

halfway trough the water column measured by the ADV, gave r ≈ 0.70 [2].

Thus, the mean water level has a great impact on the total mass-transport
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5.5 Fourier analysis

This section uses Chapter 5.8 of [19] as a reference.

The three waves analyzed above were parts of a 10 minute time-series of the

surface elevation. This is plotted in Figure 5.7.
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Figure 5.7: Ten minute time-series of the surface elevation.

We want to see if there are any lower-frequency waves in the record that cause

the different mean water levels, like in Chapter 2. Here we also saw that the

low-frequency wave was in phase with the wave group. By doing a Fourier

Analysis, we can find the most influential frequencies for the time-series which

is hard to find by just looking at it.

The sampling period for the pressure gauge was ∆t = 0.1 s. This means that the

highest detectable frequency, named the Nyquist frequency, is fN = 1/2∆t =

1/(2 · 0.1 s) = 5 Hz. The lowest frequency, called the fundamental frequency, is

found to be f0 = 1/N∆t = 1/(5999 · 0.1 s) = 0.0017 Hz.

The discrete, finite Fourier series looks like

y(tn) =
1

2
A0 +

N/2∑
p=1

[
Ap cos(2πpn/N) +Bp sin(2πpn/N)

]
(5.7)
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with the coefficients

Ap =
2

N

N∑
n=1

yn cos(2πpn/N), (5.8)

Bp =
2

N

N∑
n=1

yn sin(2πpn/N), (5.9)

p =0, 1, 2 , ...., N/2. (5.10)

It is possible to write the Fourier series in a more compact form

y(tn) =
1

2
C0 +

N/2∑
p=1

Cp cos
[
(2πpn/N)− θp

]
(5.11)

where

Cp =
(
A2
p +B2

p

)1/2
, θp = tan−1[Bp/Ap]. (5.12)

Accordingly, each frequency f has an amplitude Cp. This gives the importance

of that specific frequency in the signal. The amplitudes are relative and can only

be understood in context of each other. To find the dominant frequencies, a Fast

Fourier Transform function in MatLab is applied. In Figure 5.8 the amplitude

Cp for each frequency is plotted. The figure only includes 0 < f < 1 Hz because

the frequencies higher have Cp ≈ 0 and are therefore not interesting.
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Figure 5.8: The amplitude Cp for each frequency between 0 and 1 Hz.
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From this figure, we see that most waves are in the range 0.1 < f < 0.4 Hz,

or in other words 2.5 < T < 10 s. The highest amplitudes are centered around

f = 0.15 Hz, which corresponds to T = 6.67 s. We want to filter out the high

frequency signal in the time series by using a lowpass-filter in MatLab. The

frequency response of the filter being used on the time-series is shown in Figure

5.9.
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Figure 5.9: The filter being used on the time-series. The cut-off frequency was

set to f = 0.08 Hz.

This shows how the filter attenuate the high-frequencies. The dB-scale is defined

as

dB = 20 log10

Cfilt

Cp
. (5.13)

where Cfilt is the amplitude of a frequency f after the filtering and Cp is the

amplitude found by the Fourier analysis. If the amplitude remains unchanged

like we want for the low frequencies, Cfilt = Cp and dB = 20 log10
Cp

Cp
= 0. If

dB = −20, the filter has attenuated the amplitude at that specific frequency

by a factor of 10. The filter used here, keeps the frequencies up until about

f = 0.06 Hz unchanged. At f = 0.08 Hz, Cfilt = 0.5Cp. The result of the

filtering is showed in Figure 5.10. The red line shows the filtered time-series on

the original data in black.
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Figure 5.10: The time-series after a low-pass filter is applied. The lower plot is

a zoomed-in version, which shows the waves analyzed earlier in this chapter.

From the filtering, an infra-gravity wave causing the differences in set-up and

set-down is not seen. The low-frequency signal in red appears a bit random. In

the lower picture we see the waves we have analyzed in this chapter. It is not

possible to tell the mean-water level from this signal. Outgoing infra-gravity

waves are created by the oscillations of the surf zone [6], meaning there could

be low-frequency waves traveling in both directions. These might cancel or in-

teract with each other, leaving us without a clear low-frequency signal.

To make sure the filtering works, we compare with the wave-groups from Chap-

ter 2. We see that the filtering returns a clear low-frequency signal which is

showed in Figure 5.11.
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Figure 5.11: The filtered wave-group from Chapter 2 in red using a low-pass

filter. The un-filtered data are plotted in black.
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Chapter 6

Conclusion

To conclude this thesis, we summarize the main results. We first calculated

the Stokes drift for different wave-groups. The wave-groups consisted of two

waves added together with different wave lengths. The distance in wave length

between the two waves was also differing. For shallow water the second order

current was slowing the particles down compared to if it was not included. For

some of the wave groups surface particles did even drift in the opposite direction

to the wave propagation. When we compared the mass-transport using first and

second-order in deep water, there was no difference.

For the shoaling waves it was seen that the linear theory predicted the set-down

of the wave before breaking well. However, the shape of wave was clearly not

linear. By using non-linear theory instead, we tried to fit a cnoidal wave to the

given data. The crest, trough, period and mean-water level were given from

the experiment. We were not able to model a cnoidal wave matching the mean

water level to the experimental data while keeping the period and wave height

correct. For future work, a higher order non-liner theory that also could match

the mean-water level should be used to calculate the mass-transport.

The field-experiments were done in the surf zone meaning the waves are shoaling.

The waves did not have a consistent set-down like before they were breaking,

like we saw in Chapter 4. Neither did we see a bounded infra-gravity wave

when we filtered the surface elevation time-series. There could be low-frequency
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waves traveling in both directions caused by the oscillating surf-zone canceling

each other. Nevertheless, it was clear that the mass-transport increased with

increasing mean-water level and opposite. This is in agreement with the other

results in this thesis.
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