
Type theoretical databases

HENRIK FORSSELL, Department of Informatics, University of Oslo, PO Box
1080, Blindern N-0316 Oslo, Norway.

HÅKON ROBBESTAD GYLTERUD, Department of Informatics, University of
Oslo, PO Box 1080, Blindern N-0316 Oslo, Norway.

DAVID I. SPIVAK, Department of Mathematics, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA.
E-mail: hakon.gylterud@uib.no

Abstract
We show how the display-map category of finite (symmetric) simplicial complexes can be seen as representing the totality of
database schemas and instances in a single mathematical structure. We give a sound interpretation of a certain dependent type
theory in this model and show how it allows for the syntactic specification of schemas and instances and the manipulation of
the same with the usual type-theoretic operations.

Keywords: Dependent type theory, Simplicial sets, Relational databases

1 Introduction

Databases being, essentially, collections of (possibly interrelated) tables of data, a foundational
question is how to best represent such collections of tables mathematically in order to study their
properties and ways of manipulating them. The relational model, essentially treating tables as
structures of first-order relational signatures, is a simple and powerful representation. Nevertheless,
areas exist in which the relational model is less adequate than in others. One familiar example is
the question of how to represent partially filled out rows or missing information. Another, more
fundamental perhaps, is how to relate instances of different schemas, as opposed to the relatively well
understood relations between instances of the same schema. Adding to this, an increasing need to
improve the ability to relate and map data structured in different ways suggests looking for alternative
and supplemental ways of modelling tables, more suitable to ‘dynamic’ settings. It seems natural,
in that case, to try to model tables of different shapes as living in a single mathematical structure,
facilitating their manipulation across different schemas.

We investigate, here, a novel way of representing data structured in systems of tables which is
based on simplicial sets and type theory rather than sets of relations and first-order logic.1 Formally,
we present a soundness theorem (Theorem 1) for a certain dependent type theory with respect to a
rather simple category of (finite, abstract) simplicial complexes. An interesting type-theoretic feature
of this is that the type theory has context constants, mirroring that our choice of ‘display maps’ does
not include all maps to the terminal object. From the database perspective, however, the interesting

1We thank an anonymous referee for pointing out that using the categorical semantics of type theory to structure data was
an explicit motivation even at its very conception (see (2; 3)).

Vol. 30, No. 1, © The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
Advance Access Publication on 26 February 2020 doi:10.1093/logcom/exaa009

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

218 Type theoretical databases

aspect is that this category can in a natural way be seen as a category of tables, collecting in a single
mathematical structure—an indexed or fibered category—the totality of schemas and instances. It is
the database perspective that motivates, or forces, our choice of display maps.

The representation can be introduced as follows. Let a schema S be presented as a finite set A
of attributes and a set of relation variables over those attributes. One way of allowing for partially
filled out rows is to assume that whenever the schema has a relation variable R, say over attributes
A0, . . . , An, it also has relation variables over all non-empty subsets of {A0, . . . , An}. So a partially
filled out row over R is a full row over such a ‘partial’ relation, or ‘part-relation’, of R. To this, we
add the requirement that the schema does not have two relation variables over exactly the same
attributes. This requirement means that a relation variable can be identified with the set of its
attributes. Together with the first condition, this means that the schema can be seen as a downward
closed sub-poset of the positive power set of the set of attributes A. Thus a schema is an (abstract)
simplicial complex—a combinatorial and geometric object familiar from algebraic topology.

The key observation is now that an instance of the schema S can also be regarded as a simplicial
complex, by regarding the data as attributes and the tuples as relation variables. Accordingly, an
instance over S is a schema of its own, and the fact that it is an instance of S is ‘displayed’ by a
certain projection to S. Thus the category S of finite simplicial complexes and morphisms between
them form a category of schemas which includes, at the same time, all instances of those schemas;
where the connection between schema and instance is given by a collection D of maps in S called
display maps.

We show, essentially, that S together with this collection D of maps form a so-called display-map
category (8), a notion originally developed in connection with categorical models of dependent type
theory. First, this means that the category S has a rich variety of ready-made operations that can be
applied to schemas and instances. For example, the so-called dependent product operation can be
seen as a generalization of the natural join operation. Second, it is a model of dependent type theory.
We specify a dependent type theory and a sound interpretation that interprets contexts as schemas
and types as instances. This interpretation is with respect to the display-map category (S, D) in its
equivalent form as an indexed category. We introduce context constants interpreted as distinguished
single relation variable schemas (or relation schemas in the terminology of (1)), ref lecting the special
status of such schemas.

The type theory allows for the syntactic specification of both schemas and instances. The elements
of type-theoretically defined operations on these, such as the natural join, can be formally derived
in the type theory. Accordingly, we see this work as being among first steps towards establishing
closer links between databases and programming languages—here in the form of dependent theories.
Towards this end, we put some emphasis on showing that the model can be equipped with a type-
theoretic universe. An infinite instance coding all finite instances of a schema, the universe allows
reasoning generically about classes of instances of in the type theory itself, without having to resort
to the metalanguage. Thus it provides the basis for precise, formal definitions and analyses of further
database-theoretic notions (such as query).

The representation of tables of data presented here takes the view that tables are collections
of tuples, as in the relational model. Here, this is tightly linked (in the sense of Lemma 2) with
the requirement that a schema does not have more than one relation variable over a given set of
attributes.2 An alternate view that tables are collections of ‘keys’, with the possibility that two
keys can represent the same data, and that schemas can have any number of relation variables

2We do not believe that this restriction is of major practical significance, see Example 16.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

Type theoretical databases 219

with the same attributes, can be pursued by using (semi-)simplicial sets rather than simplicial
complexes (see (11)). We take the former view in this paper as it gives a rather clear and simple
picture of the representation of collections of tuples ‘simplicially’. Also, we do not discuss extra
levels of structure, like data types (as is done in (11)), but focus on the representation of schemas
and instances as simplicial complexes and their type-theoretic aspects. Section 2 introduces the
category of simplicial complexes and display maps and the representation of tables in that setting.
We strive for the presentation to be as self-contained as possible and assume for the most part
only knowledge of the very basic notions of category theory, such as category, functor and natural
transformation. Section 2.2 contains the essential constructions and lemmas needed for the proof of
the main soundness theorem (Theorem 1). That theorem and the presentation of the type theory
is given in Section 3. Section 4 presents the Universe, type-theoretically and semantically, and
gives some illustration of its use. Finally, Section 5 contains some additional examples, informally
presented. These examples are intended to supplement Section 2, to give a feel for the ‘simplicial’
representation of tables. and to indicate uses of this representation to model such things as updates
or missing data. This section can be read in parallel with Section 2.

2 The model

2.1 Complexes, schemas and instances

We fix the following terminology and notation, adjusting the standard terminology somewhat for our
purposes. A background on simplicial complexes and simplicial sets can be found in e.g. (5; 6). For
symmetric simplicial sets, see (7).

A simplicial complex can be thought of as a set of vertices together with a collection of faces,
where the set of faces is a downward closed set of finite non-empty, non-singleton subsets of vertices.
More formally, we use the following definitions.

Based poset. Let X be a poset. A subset B ⊆ X is called a basis of X if the following hold:

1. for all x, y ∈ X , one has x ≤ yif and only if B≤x ⊆ B≤y, where B≤x = (↓ x) ∩ B =
{z ∈ B|z ≤ x};

2. for all g, h ∈ B, one has g ≤ h ⇒ g = h; and
3. B≤x is inhabited and of bounded finite size for all x ∈ X . That is, there exists an n ∈ N such

that for all x ∈ X , 1 ≤ |B≤x| ≤ n.

If X has a basis, one sees easily that the basis is unique, and we say that X is a based poset.
Dimension. Let X be a based poset with basis B. Then define Xn := {

x ∈ X |B≤x| = n + 1
}

to be
the set of faces of dimension n. In particular, the set of vertices X0 = B can be considered as faces
of dimension 0.
Simplicial complex. A based poset X is called a simplicial complex if for all x ∈ X and Y ⊆ B≤x
there exists y ∈ X such that B≤y = Y .

EXAMPLE 2.1
For a set S, the poset P≤n

+ (S) of non-empty subsets of S of cardinality at most n is a simplicial
complex. So is any downward closed subposet of P≤n

+ (S). If X is a simplicial complex, it is
isomorphic to one of this (latter) form by the map x �→ B≤x.

Simplicial schema. We say that a poset X is a simplicial schema if X op—the poset obtained by
reversing the ordering—is a simplicial complex. The elements of X0 are called attributes and the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

220 Type theoretical databases

elements of Xn+1 are called relation variables. We consider a simplicial schema as a category and
use arrows δx

y : x −→ y to indicate order. Thus the arrow δx
y exists iff y ≤ x in the simplicial complex

X op. We reserve the use of arrows to indicate order in the schema X and ≤ to indicate the order in the
complex X op. We use the notation B≤x also in connection with schemas, where it means, accordingly,
the set of attributes A such that there is an arrow δx

A.

Morphisms. Suppose that X and Y are based posets with bases B and C, respectively. A poset
morphism f : X −→ Y is called based if for all x ∈ X , we have f (B≤x) = C≤f (x). A morphism of
simplicial complexes is a based poset morphism. A morphism of simplicial schemas is a morphism
of posets f : X −→ Y such that f op : X op −→ Y op is a morphism of simplicial complexes. Note
that a based poset morphism f : X −→ Y is completely determined by its restriction to the basis
f0 : X0 −→ Y0.

Display maps. A morphism f : X −→ Y of simplicial schemas is a display map if f restricts to a
family of maps fn : Xn → Yn (one could say that it ‘preserves dimension’). It is straightforward to see
that this is equivalent to the condition that for all x ∈ X op, the restriction f �(↓x): (↓ x) → (↓ f (x))
is an isomorphism of sets (equivalently, of simplicial complexes).

REMARK 2.2
With respect to the usual notion of schema, a simplicial schema X can be thought of as given in
the usual way by a finite set of attributes X0 = {A0, . . . , An−1} and a set of relational variables
X = {R0, . . . Rm−1}, each with a specification of column names in the form of a subset of X0, but
with the restrictions (i) that no two relation variables are over exactly the same attributes and (ii)
for any nonempty subset of the attributes of a relation variable there exists a relation variable over
(exactly) those attributes.

Large and small, the categories S and Sd . Since we aim to represent database schemas and
instances, we are interested primarily in the finite case. However, we shall need to consider the
infinite case in connection with type theoretical universes. Say that a simplicial schema or complex
is small if it is finite and large otherwise. For simplicity of presentation, we restrict to the finite case
in the rest of this section. The restriction is, however, mostly inessential, the definitions and lemmas
generalize to the infinite case. Let S be the category of small simplicial schemas and morphisms
and Sd the subcategory of small schemas and display maps. In the sequel, we shall drop the word
‘simplicial’ and simply say ‘complex’ and ‘schema’.

Simplices. The category Sd contains in particular (the opposites of) the n-simplices Δn and the
face maps. Recall that the n-simplex Δn is the complex given by the full positive power set on
[n] = {0, . . . , n}. A face map dn

i : Δn −→ Δn+1 between two simplices is the based poset
morphism defined by k �→ k, if k < i and k �→ k + 1 else. These satisfy the simplicial identity
dn+1

i ◦ dn
j = dn+1

j−1 ◦ dn
i if i < j. As a schema, Δn is the schema of a single relation on n + 1 attributes

named by numbers 0, . . . , n (and all its ‘generated’ sub-relations). A face map dn
i : Δn −→ Δn+1 is

the inclusion of the relation [n + 1] − {i} into [n + 1]. These schemas and morphisms play a special
role in Section 3 where they are used to specify general schemas and instances. The permutations of
Δn are also in Sd; we have not assumed that attributes are ordered and that (display) maps preserve
order.

EXAMPLE 2.3
Let S be the schema with attributes A, B, C and relation variables R : AB and Q : BC. From
a ‘simplicial’ point of view, S is the category given below left. It can also be regarded, more

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

Type theoretical databases 221

geometrically, as the ‘horn’ below right.

For another example, the 2-simplex Δ2 can be seen as a schema on attributes 0,1 and 2, with relation
variables {0, 1, 2}, {0, 1}, {0, 2} and {1, 2}. The function f0 given by A �→ 0, B �→ 1 and C �→ 2
defines a morphism f : S −→ Δ2 of schemas/complexes. f is a display map. For an example of a
display map that is not an inclusion, consider the morphism f ′ :S −→ Δ1 defined by A �→ 0, B �→ 1
and C �→ 0

Relational instances, the categories Rel(X). Let X be a schema. A functor F : X −→ FinSet from
X to the category of finite sets and functions can be regarded as an instance of the schema X . The
set F(x) can be regarded as a set of ‘keys’ or ‘row-names’; for A ∈ B≤x the ‘value’ k[A] of such a
key k ∈ F(x) at attribute A is the element k[A] := F(dx

A)(k) ∈ F(A). Accordingly, there is a mapping
F(x) −→ ∏

A∈B≤x
F(A) defined by mapping k to the function A �→ k[A]. For arbitrary F, this

mapping is not 1–1, that is, there can be distinct keys with the same values at all attributes. We say
that F is a relational instance if this does not happen. That is to say, a relational instance is a functor
F : X −→ FinSet such that for all x ∈ X , the functions

{
F(δx

A) A ∈ B≤x
}

are jointly injective. Let
Rel(X) be the category of relational instances and natural transformations between them. (Notice
that a natural transformation between relational instances is the same thing as a homomorphism.)

EXAMPLE 2.4
Let S be the schema of Example 2.3. Let an instance I be given by

R A B
1 a b
2 a′ b

Q B C
1 b c
2 d e

Then I is the functor

with I(δR
A)(1) = a, I(δR

B)(1) = b and so on.

EXAMPLE 2.5
Let J be the instance J : Δ2 −→ FinSet given by J({0, 1, 2}) = {〈a, b, c〉}, J({0, 1}) =
{〈a, b〉, 〈

a′, b
〉}, J({1, 2}) = {〈b, c〉, 〈d, e〉}, J({0, 2}) = {〈a, c〉, 〈a′, c

〉}, J(0) = {a, a′}, J(1) =
{b, d}, J(2) = {c, e} and functions J(δ−−) the expected projections. Writing this up in table form, we
obtain:

0 1 2
a b c

0 1
a b
a′ b

0 2
a c
a′ c

1 2
b c
d e

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

222 Type theoretical databases

0
a
a′

1
b
d

2
c
e

Strict relational instances and strictification. Say that a relational instance is tuplified or strict
if the keys are tuples and the δ’s are (mapped to) projections. Accordingly, in a strict instance I on
schema X , we have that I(x) ⊆ ∏

A∈B≤x
I(A). (We reserve the product symbol

∏
for the dependent

product in the category Set of sets. The dependent product in the type theory will be denoted by Π .)
Thus Example 2.5 is strict. It is clear that a relational instance is naturally isomorphic to exactly
one strict relational instance with the same values. We say that the latter is the tuplification or
strictification of the former.

Working with relational instances up to strictification, or restricting to the strict ones, resolves
the coherence issues so typical of categorical models of type theory. To have the ‘strict’ instances
be those ‘on tuple form’ presents itself as a natural choice, not least because of the connection to
the relational model. Thus, formally we shall consider ourselves to work in the category of strict
relational instances. We proceed informally, however, by allowing arbitrary relational instances but
not distinguishing between relational instances that are equal up to tuplification.
Substitution. Let f : X −→ Y be a morphism of schemas, and let I : Y −→ FinSet be a relational
instance. Then it is easily seen that the composite I ◦ f : X −→ FinSet is a relational instance. We
write I[f] := I ◦ f and say it is the substitution of I along f .

Substitution does not preserve strict instances. If f : X −→ Y is display, however, and I : Y −→
FinSet is strict, then we have that I ◦ f (x) ⊆ ∏

A′∈B≤f (x)
∼= ∏

A∈B≤x
. The strictification of I[f] is

then just the reindexing of the tuples along the bijection f0 : B≤x −→ B≤f (x) (for all faces x). In
contrast, if f is not display then there must exist a face, say {A, B}, such that f (A) = f (B) = f (x),
and then f ◦ I(x) need not be a set of tuples at all. (Accordingly, if we took an ordered perspective
on schemas and morphisms and defined strict instances in terms of cartesian products, then display
morphisms would be exactly the morphisms that preserve strict instances on the nose.) We display
this for emphasis.

LEMMA 2.6
Let f : X −→ Y be a morphism of schemas. Then f is display if and only if substitution along f
preserves instances on tuple form (up to reindexing).

EXAMPLE 2.7
Consider the morphism f :S −→ Δ2 of Example 2.3 and the instances I and J of Example 2.4. Then
J [f] is the strictification of I , modulo the reindexing given by f0.

The schema induced by an instance The connection between display maps, relational instances and
simplicial schemas is given by the following. Let X be a schema and F : X −→ FinSet an arbitrary
functor. Recall, e.g. from (9), that the category of elements

∫
X F has objects 〈x, a〉 with x ∈ X and

a ∈ F(x). A morphism δ
〈x,a〉
〈y,b〉 : 〈x, a〉 −→ 〈y, b〉 is a morphism δx

y : x −→ y with F(δx
y)(a) = b. The

projection p :
∫

X F −→ X is defined by 〈x, a〉 �→ x and δ
〈x,a〉
〈y,b〉 �→ δx

y . We then have

LEMMA 2.8
Let X be a simplicial schema and F : X −→ FinSet be a functor. Then F is a relational instance if
and only if

∫
X F is a simplicial schema and p :

∫
X F → X is a display morphism.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

Type theoretical databases 223

PROOF. Let F be a relational instance. It is clear that there is at most one morphism between
any two objects in

∫
X F, and it is easy to see that (

∫
X F)op is a based poset with base

{〈A, a〉 |A ∈ X0, a ∈ F(A)}, satisfying the condition for being a simplicial complex. Furthermore,
(
∫

X F)
op
n = {〈x, c〉 |x ∈ Xn, c ∈ F(x)} so the projection p :

∫
X F → X is a display morphism.

Conversely, if F is not relational, then the first condition for being a based poset is violated by any
two keys with the same data. �

When F is a relational instance, we write X .F for
∫

X F and refer to it as the canonical schema of
F. We refer to p as the canonical projection.

EXAMPLE 2.9
The instance J of Example 2.4 has the canonical schema given by the attribute set {〈0, a〉 ,

〈
0, a′〉 ,

〈1, b〉 , 〈1, d〉 , 〈2, e〉 , 〈2, c〉} and relation variables, e.g. 〈{0, 1, 2}, 〈a, b, c〉〉.
Terminal instances. A schema X induces a canonical instance of itself by filling out the relations
by a single row each, consisting of the attributes of the relation. This instance is terminal in the
category of instances of X ; that is, every other instance of X has a unique morphism to it. It is of
course isomorphic to the strict instance defined by A �→ 1, for A ∈ X0 and 1 = {∗} a fixed singleton
set and x �→ ! : B≤x −→ 1 for x ∈ X \ X0. We take this (latter) instance to be the terminal instance
1X : X −→ FinSet. For notational reasons, however, we allow ourself below to think of it and write
it as the functor defined by x �→ {x}.
Full tuples and induced sections. A full or matching tuple t of an instance I over schema X is a
natural transformation t : 1X ⇒ I . We write TrmX (I) for the set of full tuples (indicating that we see
them as terms type-theoretically). A full tuple t of a strict instance can be considered as an element
in

∏
A∈X0

I(A) satisfying the condition that for all x ∈ X , we have that t �B≤x∈ I(x).
Given a full tuple t : 1X ⇒ I , the induced section is the morphism t̂ : X −→ X .I defined by

x �→ 〈x, tx(x)〉. Notice that the induced section is always a display morphism.

EXAMPLE 2.10
The instance I of Example 2.4 has precisely two full tuples, one of which is given by R �→ 1, Q �→ 1,
A �→ a, B �→ b and C �→ c. A full tuple can be seen as a tuple over the full attribute set of the schema
with the property that for all relation variables, the projection of the tuple is a row of that relation.
The two full tuples of I are, then, 〈a, b, c〉 and

〈
a′, b, c

〉
. The instance J of Example 2.4 has precisely

one full tuple 〈a, b, c〉.

2.2 Structure of the model

We have a functor Rel(−) : Sd
op −→ Cat that maps X to Rel(X) and f : X −→ Y to Rel(f) =

(−)[f] : Rel(Y) −→ Rel(X). We denote this indexed category by R and think of it as a ‘category
of databases’ in which the totality of databases and schemas are collected. It is a model of a certain
dependent type theory with context constants that we give in Section 3. We brief ly outline some of
the relevant structure available in R.

DEFINITION 2.11
For f : X −→ Y in Sd and J ∈ Rel(Y) and t :1Y ⇒ J in TrmY (J):

1. Define t[f] ∈ TrmX (J [f]) by x �→ t(f (x)) ∈ J [f](x). Note that t[f][g] = t[f ◦ g].
2. With pJ :Y .J −→ Y the canonical projection, let vJ :1Y .J ⇒ J [pJ] be the full tuple defined by

〈y, a〉 �→ a. (We elsewhere leave subscripts on v and p determined by context.)

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

224 Type theoretical databases

3. Denote by f̃ : X .J [f] −→ Y .J , the schema morphism defined by 〈x, a〉 �→ 〈f (x), a〉. Notice
that since f is display, so is f̃ .

LEMMA 2.12
The following equations hold:

1. For X in Sd and I ∈ Rel(X) and t ∈ TrmX (I), we have p ◦ t̂ = idX and t = v[t̂].
2. For f : X −→ Y in Sd and J ∈ Rel(Y) and t ∈ TrmY (J), we have

a. p ◦ f̃ = f ◦ p :X .J [f] −→ Y ;
b. f̃ ◦ t̂[f] = t̂ ◦ f :X −→ Y .J ; and
c. vJ [f̃] = vJ [f] :1X .J [f] ⇒ J [f][p].

3. For f : X −→ Y and g : Y −→ Z in Sd and J ∈ Rel(Z), we have g̃ ◦ f = g̃ ◦ f̃ .
4. For X ∈ Sd and I ∈ Rel(X), we have p̃ ◦ v̂ = IdX .I .

PROOF. 1) v[t̂] is the full tuple of J [p][t̂] = J [p◦ t̂] = J [idX] defined by x �→ v(t̂(x)) = v(〈x, t(x)〉) =
t(x). 2.a) We have p◦ f̃ (x, a) = p(f (x), a) = f (x) = f ◦p(x, a). 2.b) We have f̃ ◦ t̂[f](x) = f̃ (x, t(fx)) =
〈f (x), t(fx)〉 = t̂(fx) = t̂ ◦ f (x). 2.c) vJ [f̃](x, a) = vJ (fx, a) = a = vJ [f](x, a). 3) We have g̃(f̃ (x, a)) =
g̃(fx, a) = (gfx, a) = g̃ ◦ f (x, a). 4) We have p̃ ◦ v̂(x, a) = p̃(〈x, a〉 , a) = 〈x, a〉. �

Finally, we present the instance-forming operations of dependent product, dependent sum, 0 and
1, identity and disjoint product.
Dependent product. Let X ∈ S, I ∈ Rel(X) and J ∈ Rel(X .J). We define the instance ΠJ I :X −→
FinSet as the right Kan-extension of J along p. Explicitly, we define the following strict instance
(assuming also I and J strict).

For A in X0 define

ΠJ I(A) =
∏

a∈I(A)

J(A, a)

Let x ∈ X , f ∈ ∏
A∈B≤x

∏
a∈I(A) J(A, a), y ≤ x and s ∈ I(y). Define

f̂y,s ∈
∏

{〈A,a〉 A∈B≤y,a=s(A)}
J(A, a)

by 〈A, a〉 �→ f (A)(a)). For x ∈ X define

ΠI J(x) =
⎧⎨⎩f ∈

∏
A∈B≤x

∏
a∈I(A)

J(A, a) ∀y ≤ x. ∀s ∈ I(y). f̂y,s ∈ J(y, s)

⎫⎬⎭ .

Next, let f ∈ TrmX (ΠI J) be a full tuple of the dependent product. We consider f as an element
in

∏
A∈X0

ΠI J(A) satisfying the condition that for all x ∈ X , we have that f �B≤x∈ ΠI J(x). Consider
the element Apf ∈ ∏

〈A,a〉∈(X .I)0
J(A, a) given by 〈A, a〉 �→ f (A)(a). Then for any 〈y, s〉 ∈ X .I , we

have Apf �B≤〈y,s〉∈ J(y, s) by the definition of ΠJ I(x), so Apf ∈ TrmX .I (J).
Finally, let t ∈ TrmX .I (J), considered as an element of

∏
〈A,a〉∈(X .I)0

J(A, a). Define the element
λt of

∏
A∈X0

ΠI J(A) by λt(A)(a) = t(A, a). Then for all x ∈ X , we have that λt �B≤x∈ ΠI J(x) since
t is a full tuple.

LEMMA 2.13
Let f : X −→ Y be a display morphism in S, I ∈ Rel(Y), J ∈ Rel(Y .I), g ∈ TrmY (ΠI J) and
t ∈ Trm(Y .I)(J).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

Type theoretical databases 225

1. Apλt = t and λ Apg = g.

2. (ΠI J)[f] = ΠI[f]J [f̃].
3. (λt)[f] = λ(t[f̃]).
4. Apg[f] = Apg[f].

PROOF. Tedious but straightforward. �

EXAMPLE 2.14
Consider the schema S and instance I of Examples 2.3 and 2.4. Corresponding to the display map
f : S −→ Δ2, we can present S an instance of Δ2 as (ignoring strictification for readability) S :
Δ2 −→ FinSet by S(0) = {A}, S(1) = {B}, S(2) = {C}, S(01) = {R}, S(12) = {Q} and S(02) =
S(012) = ∅. Notice that, modulo the isomorphism between S as presented in Example 2.3 and Δ2.S,
the morphism f : S −→ Δ2 is the canonical projection p : Δ2.S −→ Δ2. Similarly, we have
I ∈ Δ2.S as (in tabular form, using subscript instead of pairing for elements in Δ2.S, and omitting
the three single-column tables)

R01 A0 B1

a b
a′ b

Q12 B1 C2

b c
d e

Then ΠSI is, in tabular form,

0 1 2
a b c
a′ b c

0 1
a b
a′ b

0 2
a c
a′ c
a e
a′ e

1 2
b c
d e

0
a
a′

1
b
d

2
c
e

Notice that the three-column ‘top’ table of ΠSI is the natural join R01 �� Q12. The type theory of the
next section will syntactically derive the rows of this table from the syntactic specification of S and
I and the rules for the dependent product.

We present the remaining instance-forming operations more brief ly. In particular, we omit
the statements and (straightforward) proofs that all defined instances and terms are stable under
substitution.
0 and 1 instances. Given X ∈ S the terminal instance 1X has already been defined. The initial
instance 0X is the constant 0 functor, x �→ ∅. Note that X .0X is the empty schema.
Dependent sum. Let X ∈ S, I ∈ Rel(X) and J ∈ Rel(X .I). We define the instance ΣI J : X −→
FinSet (up to tuplification) by x �→ {〈a, b〉 |a ∈ I(x), b ∈ J(x, a)}. For δx

y in X , ΣI J(δx
y)(a, b) =

〈δx
y(a), δx,a

y,δx
y(a)(b)〉.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

226 Type theoretical databases

Identity. Given X ∈ S and J ∈ Rel(X) the Identity instance IdJ ∈ Rel(X .J .J [p]) is defined,
up to tuplification, by 〈〈x, a〉 , b〉 �→ 1 if a = b and 〈〈x, a〉 , b〉 �→ ∅ else. The full tuple ref l ∈
Trm(X .J)(IdJ [v̂]) is defined by 〈x, a〉 �→ ∗.
Disjoint union. Given X ∈ S and I , J ∈ Rel(X), the instance I + J ∈ Rel(X) is defined by x �→
{〈n, a〉 Either n = 0 ∧ a ∈ I(x) or n = 1 ∧ a ∈ J(x)}. We have full tuples left ∈ TrmX .I ((I +J)[p])
defined by 〈x, a〉 �→ 〈0, a〉 and right ∈ TrmX .J ((I + J)[p]) defined by 〈x, a〉 �→ 〈1, a〉.

3 The type theory

We introduce a Martin-Löf style type theory (10), with explicit substitutions (in the style of (4)),
extended with context and substitution constants representing simplices and face maps. The type
theory contains familiar constructs such as Σ- and Π -types. It contains a universe that is closed
under the other constructions, which we will describe in more detail in the next section. For this
type theory, we give an interpretation in the indexed category R of the previous section. The goal
is to use the type theory as a formal language for databases. We give examples how to specify
instances and schemas formally in the theory and remark on how to use the universe to talk about
queries.

3.1 The type theory T
The type system has the following eight judgements, with intended interpretations.

Judgement Interpretation
− : Context �−� is a schema
− : Type(Γ) �−� is an instance of the schema Γ

− : Elem(A) �−� is an full tuple in the instance A
− : Γ −→ Λ �−� is a (display) schema morphism
Γ ≡ Λ �Γ � and �Λ� are equal schemas
A ≡ B : Type(Γ) �A� and �B� are equal instances of �Γ �
t ≡ u : Elem(A) �t� and �u� are equal full tuples in �A�
σ ≡ τ : Γ −→ Λ the morphisms �σ � and �τ� are equal

The type theory T has the rules listed in Figure 1. The interpretation of these are given by the
constructions in the previous section and summarized in Figure 2.

Each rule introduces a context, substitution, type or element. We will apply usual abbrevi-
ations such as A −→ B for ΠAB[↓A] and A × B for ΣAB[↓A]. In addition to these term
introducing rules, there are a number of equalities which should hold, such as the simplicial
identities dn+1

i ◦ dn
j ≡ dn+1

j−1 ◦ dn
i : Δn −→ Δn+2. We list the definitional equalities in

Figure 3.
These all hold in our model. (The equalities for substitution are verified in Lemma 3. The

remaining equations are mostly routine verifications.) We display this for reference.

THEOREM 3.1
The intended interpretation �−� yields a sound interpretation of the type theory T in R.

3.2 Instance specification as type introduction

The intended interpretation of Γ � A type is that A is an instance of the schema Γ . But context
extension allows us to view every instance as a schema in its own right; for every instance Γ �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

Type theoretical databases 227

FIGURE 1 Rules of the type theory.

A type, we get a schema Γ .A. It turns out that the most convenient way to specify a schema is by
introducing a new type/instance over one of the simplex schemas Δn. To specify a schema, with a
maximum of n attributes, may be seen as introducing a type in the context Δn. A relation variable

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

228 Type theoretical databases

FIGURE 2 Interpretation of the type theory

FIGURE 3 Definitional equalities in the type theory.

with k attributes in the schema is introduced as an element of the schema substituted into Δk . Names
of attributes are given as elements of the schema substituted down to Δ0.

EXAMPLE 3.2
We construct the rules of the schema S presented as an instance of Δ2 as in Example 2.14. The
introduction rules tells us the names of tables and attributes in S.

S : Type(Δ2) A ≡ R[d1] : Elem(S[d2 ◦ d1])
A : Elem(S[d2 ◦ d1]) B ≡ R[d0] : Elem(S[d2 ◦ d0])
B : Elem(S[d2 ◦ d0]) B ≡ Q[d1] : Elem(S[d0 ◦ d1])
C : Elem(S[d0 ◦ d0]) C ≡ Q[d0] : Elem(S[d2 ◦ d0])
R : Elem(S[d2])
Q : Elem(S[d0])

From these introduction rules, we can generate an elimination rule. The elimination rule tells
us how to construct full tuples in an instance over the schema S. Another interpretation of the
elimination rule is that it formulates that the schema S contains only what is specified by the above

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

Type theoretical databases 229

introduction rules, it specifies the schema up to isomorphism.

I : Type(Δ2.S), a : Elem(Δ0, I[(d2 ◦ d1).S][A↑]),

b : Elem(Δ0, I[(d2 ◦ d0).S][B↑]), c : Elem(Δ0, I[(d0 ◦ d0).S][C↑]),

r : Elem(Δ1, I[d2.S][R↑]), q : Elem(Δ1, I[d0.S][Q↑]),

r[d1] ≡ a, r[d0] ≡ b, q[d1] ≡ b, q[d0] ≡ c

� recS a b c r q : Elem(Δ2.S, I).

An instance of a schema is a type depending in the context of the schema. Therefore, instance
specification is analogous to schema specification.

EXAMPLE 3.3
Let S be the schema from the previous example. The following set of introductions presents an
instance I of S.

Δ2.S � Itype
� a : Elem(Δ0, I[(d2 ◦ d1).S][A↑]) � r0[d1] ≡ a
� a′ : Elem(Δ0, I[(d2 ◦ d1).S][A↑]) � r0[d0] ≡ b
� b : Elem(Δ0, I[(d2 ◦ d0).S][B↑]) � r1[d1] ≡ a′
� d : Elem(Δ0, I[(d2 ◦ d0).S][B↑]) � r1[d0] ≡ b
� c : Elem(Δ0, I[(d0 ◦ d0).S][C↑]) � q0[d1] ≡ b
� e : Elem(Δ0, I[(d0 ◦ d0).S][C↑]) � q0[d0] ≡ c
� r0 : Elem(Δ1, I[(d2).S][R↑]) � q1[d1] ≡ d
� r1 : Elem(Δ1, I[(d2).S][R↑]) � q1[d0] ≡ e
� q0 : Elem(Δ1, I[(d0).S][Q↑])
� q1 : Elem(Δ1, I[(d0).S][Q↑])

The above is clearly very verbose, and can be compressed, at the cost of loosing control over the
naming of attributes, into the following.

� I : Type(Δ2.S)

� r0 : Elem(Δ1, I[(d2).S][R↑]) � r0[d0] ≡ r1[d0]
� r1 : Elem(Δ1, I[(d2).S][R↑]) � q0[d1] ≡ r0[d0]
� q0 : Elem(Δ1, I[(d0).S][Q↑])
� q1 : Elem(Δ1, I[(d0).S][Q↑])

We omit the elimination rule.

4 Universe

We construct the universe of finite instances of a schema. This is a large instance (in the sense of the
small/large distinction of Section 2). Thus we allow in this section that schemas and instances can
be large, i.e. have infinitely many attributes, tables and rows.

4.1 Constructing the universe

An essential part of type theory is the notion of a universe of types. A universe of types is a family
of types that is closed under some set of type constructors. This allows powerful reasoning about

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

230 Type theoretical databases

types in type theory itself. In this section we will, for each schema X , construct a universe of finite
instances of X .

More precisely, a universe in type theory, in a context Γ , consists of a type U : type(Γ) and a
family T : type(Γ .U). We think of the type U as the type of codes for types in the universe and the
family T as decoding the codes into actual types (by substitution).

An important feature of a type-theoretic universe is its closure under typeforming operations such as
Π - and Σ-types. This is what allows reasoning about types internally in the type theory.

In order to encode the collection of finite instances into an instance of its own, we need a small set
of tuples to work with. Let us therefore fix a set of values V closed under making lists, in the sense
that V i ⊆ V for every finite subset i ⊆ V . This allows us to iterate tuple forming constructions such
as Π and Σ .

DEFINITION 4.4
Define Dn(V) to be the set of strict instances of the schema Δn that have values in V .

DEFINITION 4.5
Given a schema X , we define UX : X → Set by

UX (A) = {〈n, k, I〉 | n ∈ N ∧ k ∈ [n] ∧ I ∈ Dn(V)} for attributesA

UX (x) =
⎧⎨⎩t :

∏
A∈B≤x

UX (A) | π1 ◦ t injective ∧ π2 ◦ t constant} ∧ π2 ◦ t constant

⎫⎬⎭
for faces x.

In order to define the decoding instance of the universe, which takes a code to its instance, we
need easy access to the instances on attribute level.

DEFINITION 4.6
Given a schema X , a face x in X and an element t ∈ UX (x), we denote by d(x, t) : N the unique
number such that π0(t(A)) = d(x, t) for all attributes A of x. Let I(x, t) be the uniquely defined
instance such that π2(t(A)) = I(x, t) for all attributes A of x. We denote by α(x, t) : � x → Δd(x,t),
the morphism defined by α(x, t)(A) = π1(tA) on attributes.

Lemma 4.7
Given σ : X → Y then for all x ∈ X and t ∈ UX (x), we have that

1. d(σ (x), t ◦ σ) = d(x, t)
2. I(σ (x), t ◦ σ) = I(x, t)
3. α(σ(x), t ◦ σ) = α(x, t) ◦ σ .

PROOF. 1. and 2. follows since UX (A) = UX (σ (A)) for all attributes. 3. is evident since α(σ(x), t ◦
σ)(A) = π1((t ◦ σ)A) = π1(t(σ (A)) = α(x, t)(σ (A)), by definition for all A �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

Type theoretical databases 231

DEFINITION 4.8
Given a schema X , define TX : X .UX → Set by,

TX (x, t) = I(x, t) ◦ α(x, t).

PROPOSITION 4.9
The constructions U− and T− are invariant under substitution.

PROOF. U− is invariant by construction; it is a strict instance that is constant on attributes.
T− is invariant by the calculation, given σ : X → Y

TY (σ (x), t ◦ σ) = I(σ (x), t ◦ σ) ◦ α(σ(x), t ◦ σ)

= I(x, t) ◦ α(x, t) ◦ σ

= TX (x, t) ◦ σ . �
PROPOSITION 4.10
Given a schema X , a full tuple a : 1 ⇒ UX and a full tuple b : 1 ⇒ UX .TX [â], there is a full tuple

σ : 1 ⇒ UX such that TX [σ̂] = ΣTX [â](TX .TX [â][b̂]).

PROOF. Let Q = ΣTX [â](TX .TX [â][b̂])
For any face x of X , define an instance Sx : Δd(x,ax(∗)) → Set

Sx(k) =
{

Q(x′) where x′ is such that ∃x′′ x ≤ x′′ ∧ x′ ≤ x′′ ∧ α(x′, ax′(∗))(x′) = k

∅ if no such x′ exists.

Let σx(∗)(A) = 〈d(x, ax(∗)), α(x, ax(∗))(A), Sx〉. This defines a term in UX , since ΣTX [â](TX [â][b̂])
has values in V , and the definition of Sx is constant upwards and downwards in X .

Furthermore: TX [σ̂] = ΣTX [â](TX [â][b̂]), by construction. �
PROPOSITION 4.11
Given a schema X , a full tuple a : 1 ⇒ UX and a full tuple b : 1 ⇒ UX .TX [â], there is a full tuple

π : 1 ⇒ UX such that TX [π̂] = ΠTX [â](TX .TX [â][b̂]).

PROOF. Let Q = ΠTX [â](TX .TX [â][b̂])
For any face x of X , define an instance Sx : Δd(x,ax(∗)) → Set

Sx(k) =
{

Q(x′) where x′ is such that ∃x′′ x ≤ x′′ ∧ x′ ≤ x′′ ∧ α(x′, ax′(∗))(x′) = k

∅ if no such x′ exists.

Let πx(∗)(A) = 〈d(x, ax(∗)), α(x, ax(∗))(A), Sx〉. This defines a term in UX , since ΠTX [â](TX [â][b̂])
has values in V , and the definition of Sx is constant upwards and downwards in X .

Furthermore: TX [π̂] = ΠTX [â](TX [â][b̂]), by construction. �

4.2 Using the universe in the type theory

The rules for the universe in the type theory itself can be summarized as

Γ : Context � U : Type(Γ)

Γ : Context � T : Type(Γ .U),

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

232 Type theoretical databases

along with rules for invariance under substitution and closure rules for each type-formation rule we
previously had. For instance, the closure rule for Π is the following:

Γ : Context � πΓ : Elem(U[↓U][↓T−→U])

a : Elem(U),

f : Elem(T[a↑] −→ U) � π [a↑.(T −→ U)][f ↑] ≡ ΠT[a↑]T[applyf ↑] : Type(Γ).

The universe, UΓ : Type(Γ) along with TΓ : Type(Γ .UΓ), allows reasoning generically about
classes of instances of Γ in the type theory itself, without having to resort to the metalanguage. Since
schemas can be though of as instances, they too can be constructed using the universe. In particular,
given a schema Γ , the type ΩΓ := ΣUΓ ΠTΓ ΠTΓ [↓TΓ

]IdTΓ is the large type of subschemas of Γ . Its
elements are decoded to instances by the family OΓ := T[↓Ω .U][π0↑]. Given t : Elem(ΩΓ), the
subschema it encodes is Γ .O[t↑].

A query can then be seen as an operation that takes an instance of a schema to another instance
of a related schema. Given codes for a source subschema t : Elem(Ω) and a target subschema
u : Elem(Ω), the type of queries from t to u is thus (O[t↑] −→ U) −→ (O[u↑] −→ U). Having
given a concrete type of queries leads the way to investigations as to exactly which queries can be
expressed in the language. For illustration, we present an example query formulated in this way.

EXAMPLE 4.12
In the spirit of Example 2.14, let a : Elem(Ω) be the code for a subschema covering the schema
Γ , in the sense that the set of attributes are the same. The query taking the dependent product, or
natural join, of an instance of this subschema is expressed by the term

q = λλ(π[(↓Ω .U) ◦ (π0↑)][a↑.(T −→ U)][↓1]) : Elem((O[a↑] −→ U) −→ (1Γ −→ U)).

5 Representing data simplicially

We collect in this section some further examples of tables of data organized ‘simplicially’ and
discuss brief ly certain aspects of this representation. The sparse examples of Section 2 were meant to
illustrate the technical definitions and were kept rather to a minimum. To begin with, the following
examples give some further illustrations of context extension and Σ and Π -types. (We exploit in
these examples, to simplify them a bit, the rather immediate back-and-forth translation between ‘sim-
plicial’ schemas/instances and the traditional schemas/instances of the relational model. We omit
part-relation tables when they can be assumed to be projections, for instance. We also make some
cosmetic simplifications such as not necessarily writing the attributes of induced schemas as pairs.)

EXAMPLE 5.1
Let S be the schema and I the instance as follows:

State Head of state
Monarchy King
Monarchy Queen
Republic President

We write S � I for ‘S is a schema and I is an instance over S’. Then the schema S.I induced by I
(p. 16) is:

Monarchy King Monarchy Queen Republic President

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

Type theoretical databases 233

Now let S.I � J be defined as follows:

Monarchy Queen
United Kingdom Elizabeth II
Denmark Margrethe II

Monarchy King
Norway Harald V
Sweden Carl XVI Gustav

Republic President
Finland Sauli Niinistö
Iceland Ȯlafur Ragnar Grímsson

The dependent sum S � ΣI J (p. 26) is then the instance collecting all the tables into the table of the
original schema S:

State Head of state
〈 Monarchy, Norway〉 〈 King, Harald V〉
〈 Monarchy, Sweden〉 〈 King, Carl XVI Gustav〉
〈 Monarchy, United Kingdom〉 〈 Queen, Elizabeth II〉
〈 Monarchy, Denmark〉 〈 Queen, Margretha II〉
〈 Republic, Finland〉 〈 President, Sauli Niinistö〉
〈 Republic, Iceland〉 〈 President, Ólafur Ragnar Grímsson〉

EXAMPLE 5.2
Let R � K be the schema and instance

Vehicle Type Wheels

Vehicle Type
Vehicle Type

Vehicle Wheels Type Wheels
Type Wheels

K is a ‘subsingleton’ or ‘subterminal’ instance. It has not more than one row in every table and
is thereby a subinstance of the terminal instance 1R that has exactly one row in each table (p. 16).
Accordingly, K can be regarded as a subschema of R.

We form the induced schema R.K. Let R.K � L be the following instance:

Vehicle Type
Ford Model T Car
Triumph Tiger 100 Motorcycle
Peugeot Type 3 Car

Type Wheels
Car 4
Motorcycle 2

The dependent product R � ΠAB (p. 20) can in this case be computed by instantiating the tables
given by R in ascending order by taking the natural join of the tables in L lying (not necessarily
properly) below it, thus the attribute level tables are those of L

Vehicle
Ford Model T
Triumph Tiger 100
Peugeot Type 3

Type
Car
Motorcycle

Wheels
2
4

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

234 Type theoretical databases

And, similarly, the [Vehicle | Type] and [Type | Wheels] tables are those of L. While the
[Vehicle | Wheels] table, for which L provides no information, is the natural join of [Vehicle] and
[Wheels]

Vehicle Wheels
Ford Model T 4
Ford Model T 2
Triumph Tiger 100 4
Triumph Tiger 100 2
Peugeot Type 3 4
Peugeot Type 3 2

And, finally, [Vehicle | Type | Wheels] is the natural join of [Vehicle | Type], [Type | Wheels] and
[Vehicle | Wheels] as just given, thus:

Vehicle Type Wheels
Ford Model T Car 4
Triumph Tiger 100 Motorcycle 2
Peugeot Type 3 Car 4

EXAMPLE 5.3
To give an example of the dependent product where the ‘middle’ instance is not a subschema, we
can compute S � ΠI J for S.I � J of Example 5.1. Unfortunately, J has no full tuples; no choice of
values for the attributes Monarchy-Republic-King-Queen-President yields a full tuple, as there are
no monarchies in J with both a queen and a king head of state. Thus S � ΠI J becomes:

State Head of state

State

〈Denmark, Finland〉
〈Denmark, Iceland〉
〈Norway, Finland〉
〈Norway, Iceland〉
〈Sweden, Finland〉
〈Sweden, Iceland〉
〈United Kingdom, Finland〉
〈United Kingdom, Iceland〉

Head of state
〈Elizabeth, Harald, Niinistö〉
〈Elizabeth, Harald, Grímsson〉
〈Elizabeth, Carl Gustav, Niinistö〉
〈Elizabeth, Carl Gustav, Grímsson〉
〈Margrethe, Harald, Niinistö〉
〈Margrethe, Harald, Grímsson〉
〈Margrethe, Carl Gustav, Niinistö〉
〈Margrethe, Carl Gustav, Grímsson〉

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

Type theoretical databases 235

But if we let J be, instead

Monarchy Queen
Swaziland Ndlovukati
United Kingdom Elizabeth II
Denmark Margrethe II

Monarchy King
Swaziland Ngwenyama
Norway Harald V
Sweden Carl XVI Gustav

Republic President
Finland Sauli Niinistö
Iceland Ólafur Ragnar Grímsson

Then the State–Head of state table of ΠI J becomes

State Head of state
〈 Swaziland, Finland〉 〈Ndlovukati, Ngwenyama, Niinistö〉
〈 Swaziland, Iceland〉 〈Ndlovukati, Ngwenyama, Grímsson〉

representing the two full tuples of J .

We proceed with an example suggesting the use of context extension—the built in possibility to
enter data related to the instance into tables formed by its rows—for updates; an update I ′ of an
instance I over S is the instance over S.I obtained by writing the new (or old or empty) row in the
table formed by the row to be replaced (or kept or deleted). Adding new rows can be done by writing
I ′ over S.I + 1 instead, as I + 1 has a copy of S over which new additions can be entered. (Multiple
copies of S, and indeed of I , can be added if need be; notice that polynomial expressions over I
such as 2I + 3 yield meaningful instances over S). In this way, a current update occurs in a context
formed by a string of previous updates, thus displaying provenance. Applying the dependent product
operation gives an instance over the original schema S, if desired. (In the following example, we
return to writing the attributes of induced schemas as attribute-value pairs. For esthetic reasons, we
write pairs as A:a, and we airbrush away the pairs with 0 and 1 used for the elements of the disjoint
union.)

EXAMPLE 5.4
Let P � M be the schema and instance:

First name(s) Last name SSN Department
Jim T. Kirk 333 Astrophysics
James Moriarty 222 Criminology

P � M + 1 (p. 26) adds a dummy row:

First name(s) Last name SSN Department
Jim T. Kirk 333 Astrophysics
James Moriarty 222 Criminology

� � � �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

236 Type theoretical databases

An update that corrects Kirk’s first name, deletes Moriarty and inserts two new rows can be written
as an instance P.(M + 1) � N (we abbreviate some of the strings involved):

FN: Jim T. LN: Kirk SSN: 333 Dep: Astro
James Tiberius Kirk 333 Astrophysics

FN: James LN: Moriarty SSN: 222 Dep: Crime

FN:� LN:� SSN:� Dep:�
Sherlock Holmes 111 Criminology

James Watson 555 Medicin

The dependent product P � ΣM+1N , collecting this over the original schema, becomes:

First name(s) Last name SSN Department
Jim T.: James Tiberius Kirk: Kirk 333: 333 Astro: Astro

� : Sherlock � : Holmes � : 111 � : Crime
� : James � : Watson � : 555 � : Med

The one condition on simplicial schemas that can hinder a straightforward translation from a
relational schema is the condition that there can be at most one relation variable over a given set of
attributes. In cases where there is a conflict and it is unnatural to rename attributes, this will have to
be worked around, for instance by adding extra attributes to keep tables distinct.

EXAMPLE 5.5
Faculty and staff tables, both with intended attributes First name, Last name, SSN and Department.
Separated with table name attribute with dummy value:

Staff First name(s) Last name SSN Department
� Jim T. Kirk 333 Astrophysics
� James Moriarty 222 Criminology

Faculty First name(s) Last name SSN Department
� Khan N. Sing 666 Astrophysics
� Sherlock Holmes 111 Criminology

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

Type theoretical databases 237

Separated with primary key columns:

Staff_Id First name(s) Last name SSN Department
1 Jim T. Kirk 333 Astrophysics
2 James Moriarty 222 Criminology

Faculty_Id First name(s) Last name SSN Department
1 Khan N. Sing 666 Astrophysics
2 Sherlock Holmes 111 Criminology

In one table:

Staff/Faculty First name(s) Last name SSN Department
Staff Jim T. Kirk 333 Astrophysics
Staff James Moriarty 222 Criminology

Faculty Khan N. Sing 666 Astrophysics
Faculty Sherlock Holmes 111 Criminology

Finally, we illustrate the suggestion of using part tables to record missing information.

EXAMPLE 5.6
Holmes and Watson have unknown Social Security Numbers. Watson has not been assigned a
department.

First name(s) Last name SSN Dep
Jim T. Kirk 333 Astroph

First name(s) Last name Dep
Jim T. Kirk Astroph

Sherlock Holmes Crimin

First name(s) Last name
Jim T. Kirk

Sherlock Holmes
James Watson

all other part tables are projections.

Funding

Supported by Norwegian Research Council grant no. 230525.

References
[1] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley, Reading MA,

1995.
[2] J. Cartmell. Formalising the network and hierarchical data models—an application of categori-

cal logic. In David Pitt, Samson Abramsky, Axel Poigné and David Rydeheard, eds. In Category
Theory and Computer Programming, vol. 240 of LNCS, pp. 466–492. Springer, Heidelberg,
1986.

[3] J. Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure and
Applied Logic, 32, 209–243, 1986.

[4] P. Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, eds. In Types for Proofs
and Programs, vol. 1158 of LNCS, pp. 120–134. Springer, Heidelberg, 1996.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

238 Type theoretical databases

[5] G. Friedman. Survey article: an elementary illustrated introduction to simplicial sets. The Rocky
Mountain Journal of Mathematics, 42, 353–423, 2012.

[6] P. Gabriel and M. Zisman. Calculus of Fractions and Homotopy Theory. Springer, Heidelberg,
1967.

[7] M. Grandis. Finite sets and symmetric simplicial sets. Theory and Applications of Categories,
8, 244–252, 2001.

[8] B. Jacobs. Categorical Logic and Type Theory. Elsevier, Amsterdam, 1999.
[9] S. M. Lane. Categories for the Working Mathematician. Springer, Heidelberg, 1998.

[10] P. Martin-Löf. Intuitionistic type theory, vol. 1 of Studies in Proof Theory. Bibliopolis, Naples,
1984.

[11] D. Spivak. Simplicial Databases. 2009. http://arxiv.org/abs/0904.2012.

Received 1 March 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/1/217/5754081 by U
niversitetsbiblioteket i Bergen user on 08 February 2021

http://arxiv.org/abs/0904.2012

	Type theoretical databases
	1 Introduction
	2 The model
	2.1 Complexes, schemas and instances
	2.2 Structure of the model

	3 The type theory
	3.1 The type theory T
	3.2 Instance specification as type introduction

	4 Universe
	4.1 Constructing the universe
	4.2 Using the universe in the type theory

	5 Representing data simplicially

