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SUMMARY

The wave equation for acoustic media with variable density
and velocity can be transformed into an integral equation of
the Lippmann-Schwinger type; but for a 4-dimensional state
vector involving the gradient of the pressure field as well as
the pressure field itself. The Lippmann-Schwinger equation
can in principle be solved exactly via matrix inversion, but the
computational cost of matrix inversion scales like N3, where
N is the number of grid blocks. The computational cost can be
significantly reduced if one solves the Lippmann-Schwinger
equation iteratively. However, the popular Born series is only
guaranteed to converge if the contrasts and the size of the
model (relative to the wavelength) are relatively small. In this
study, we have used the so-called homotopy analysis method to
derive an iterative method of the Lippmann-Schwinger equa-
tion which is guaranteed to converge independent of the con-
trasts and size of the model. The computational cost of our
convergent scattering series scales as N2 times the number of
iterations. Our algorithm, which is based on the homotopy
analysis method, involves a convergence control operator that
we select using a randomized matrix factorization. We illus-
trate the performance of the new convergent scattering series
by seismic wavefield modeling in a strongly scattering salt
model with variable density and velocity.

INTRODUCTION

Seismic wavefield modeling is a simulation of seismic wave
propagation in an assumed structure of the subsurface (Yil-
maz, 2001). It is a valuable tool for seismic interpretation and
an essential part of seismic inversion (Carcione et al., 2002).
Therefore, many approaches to seismic modeling have already
been developed. One class of them called integral equation
methods consider the total wavefield in actual media as a su-
perposition of wavefields in the reference media due to a real
source and a virtual source which is caused by the contrast be-
tween actual media and reference media (Jakobsen and Ursin,
2015). After discretization of the relevant integral operators,
the integral equation transformed from the wave equation can
be solved very accurately through matrix inversion (Jakobsen
and Ursin, 2015). However, matrix inversion with a computa-
tional cost that scales like the number of grid blocks cubed is
very costly. In order to avoid matrix inversion, we can mod-
ify some highly developed methods in quantum physics, such
as the well-known Born series, to solve the integral equation.
However, the conventional Born series is only guaranteed to
converge if the contrast and the size of the model (relative to
the wavelength) is relatively small (Jakobsen and Ursin, 2015).

In order to find a convergent scattering series solution in the
case of strongly scattering media, we can use the homotopy
analysis method (HAM) developed by Liao (2003) to solve the

integral equation. Huang and Greenhalgh (2018) first intro-
duced the modern HAM into geophysical applications. Jakob-
sen et al. (2020a) have proposed a general scattering series so-
lution of the Lippmann-Schwinger equation through HAM in
the special case of a fixed density. Provided that the so-called
convergence control operator is chosen in a specific manner,
the novel scattering series is guaranteed to converge in strong
scattering cases. Jakobsen et al. (2020b) have used different
variants of the homotopy continuation method and discussed
their relationship with renormalization group theory. In this
paper, we extend the HAM scattering series to the case of vari-
able velocity and density. The original HAM scattering series
derived by Jakobsen et al. (2020a) is guaranteed to converge
independent of the scattering potential. Therefore, it is attrac-
tive when more model properties are involved and high accu-
racy is required.

The paper is structured as follows. First we transform the wave
equation for acoustic media into an integral equation of the
Lippmann-Schwinger type; but for a 4-dimensional state vec-
tor including the pressure field and the gradient of the pres-
sure field. Then we discuss the exact solution based on ma-
trix inversion as well as the conventional Born series. Next
we use HAM to derive homotopy scattering series and ran-
domized matrix factorization to select the convergence control
operator. Finally we use numerical examples to demonstrate
the performance of the proposed method and compare it with
conventional Born series.

THEORY

Integral equation and conventional Born series

The acoustic wave equation in the frequency domain can be
written as (Cerveny, 2005)(

∇ · 1
ρ (x)

∇+
ω2

κ (x)

)
P(x) =−S (xs) , (1)

where ∇ is the spatial gradient operator, ω is the angular fre-
quency, κ (x) = ρ (x) · v(x)2 is elastic moduli related to den-
sity ρ (x) and velocity v(x), P(x) is the pressure wavefield in
acoustic media and S (xs) represents the source located at xs
position. The wavefield P(x), the source function S (xs) and
the following Green’s functions are all dependent on the an-
gular frequency ω , but we will in the following supress this
dependency.

By using the source representation integral and partial integra-
tion, we obtain the following integral equation (Cerveny, 2005;
Jakobsen and Ursin, 2015):

P(x) =P(0) (x)+ω
2
∫

D
dx′G(0) (x,x′)χκ

(
x′
)

P
(
x′
)

−
∫

D
dx′∇x′G

(0) (x,x′) ·χρ

(
x′
)

∇x′P
(
x′
)
,

(2)



Homotopy analysis scattering series

where P(0)(x) and G(0) (x,x′) are the wavefield and Green’s
function for the arbitrary reference medium, χρ (x)≡ 1/ρ(x)−
1/ρ(0)(x) is the contrast in density and χκ (x) ≡ 1/κ(x)−
1/κ(0)(x) is the contrast in bulk moduli, D is the scattering
domain where the contrasts are non-zero. Explicit analytical
formulae for 2D and 3D Green’s functions in the case of ho-
mogeneous acoustic media are given by Cerveny (2005).

As we can see, equation (2) includes the spatial derivative of
the pressure field and the pressure field itself which makes
the forward modeling more complicated. In order to solve
equation (2) using the known methods of solving Lippmann-
Schwinger equations without spatial derivatives, we need the
gradient of the pressure field. From equation (2), we obtain

∇xP(x) =∇xP(0) (x)+ω
2
∫

D
dx′∇xG(0) (x,x′)χκ

(
x′
)
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(
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−
∫
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(
x′
)

∇x′P
(
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)
.

(3)
Integral equations (2-3) can be combined into a single inte-
gral equation of the Lippmann-Schwinger type (Jakobsen and
Ursin, 2015):

Ψ(x) = Ψ
(0) (x)+

∫
D

dx′G (0) (x,x′)V (x′)Ψ
(
x′
)
, (4)

where Ψ(x) = (P(x) ,∇xP(x))T and Ψ(0) (x) =
(

P(0) (x) ,

∇xP(0) (x)
)T

are 4×1 vectors of the wavefields and the spa-
tial derivative of wavefields in the actual and reference media;

V
(
x′
)
=

(
χκ (x′) 0

0 χρ (x′)

)
is a 4×4 scattering potential operator, the χρ (x′) is a 3×3 di-
agonal matrix;

G (0) (x,x′)=( ω2G(0) (x,x′) −∇x′G(0) (x,x′)
ω2∇xG(0) (x,x′) −∇x∇x′G(0) (x,x′)

)
is a 4×4 operator of Green’s function and its first- and second-
order spatial derivatives. The dimensions of the above vectors
and operators will be reduced in the case of an 2D application.

After discretization of the Lippmann-Schwinger equation (4),
we can arrange Ψ(x) and Ψ(0) (x) at the discretized scatterering
volume positions into vectors ψ = (Ψ1, ...,ΨN)

T and ψ(0) =

(Ψ
(0)
1 , ...,Ψ

(0)
N )T, where N is the number of discretized grid

blocks (Jakobsen and Ursin, 2015). The Lippmann-Schwinger
equation (4) can be rewritten exactly in matrix notation as

ψ = ψ
(0)+g(0)V ψ, (5)

where ψ and ψ(0) are both 4N×1 vectors, g(0) and V of size
4N × 4N are the matrix elements of operators G (0) and V .
From equation (5), we can get the following exact reference
solution:

ψ =
(

I−g(0)V
)−1

ψ
(0), (6)

where I is 4N× 4N identity matrix. Equation (6) for calcula-
tion of the reference solution by matrix inversion is applicable

in any case, independent of the strength of the scattering po-
tential V . However, the computational cost of inversion of a
huge full matrix

(
I−g(0)V

)
scales like (4N)3, which is very

costly due to the large number of grid blocks in practical appli-
cations. To avoid huge matrix inversion and reduce computa-
tional cost, an iterative method based on the well-known Born
series (Morse and Feshbach, 1954)

ψ =

[
∞∑

m=0

(
g(0)V

)m
]

ψ
(0) (7)

should be a better choice for the solution of equation (5) in
practical use. The Born series is very simple and easy to use.
However, it is only guarantted to converge when the spectral
radius, ρ(g(0)V ), is smaller than one, which is often not the
case for realistic seismic models.

Homotopy method for the Lippmann-Schwinger equation

In order to make the iterative method convergent, we use the
the homotopy analysis method (HAM) to solve the Lippmann-
Schwinger equation. The HAM can be used to solve nonlinear
problems in this form (Liao, 2003) :

N [ψ] = 0, (8)

where N is the nonlinear operator and ψ is the target function.
Then we can define the homotopy operator H (Liao, 2003) as

H [Φ,λ ]≡ (1−λ )L [Φ(λ )−ψ0]+λHN [Φ(λ )], (9)

where λ ∈ [0,1] is the embedding parameter, H is the con-
vergence control operator, ψ0 is the initial guess and L is an
linear operator that must be chosen to satisfy L [0] = 0.

If we set H [Φ,λ ] = 0, then we can obtain the zero-order de-
formation equation (Liao, 2003) :

(1−λ )L [Φ(λ )−ψ0] =−λHN [Φ(λ )]. (10)

When we let λ = 0, we can find L [Φ(0)−ψ0] = 0, which
means that Φ(0) = ψ0 which is the initial guess of our nonlin-
ear problem. When we set λ = 1 then N [Φ(1)] = 0, which
means that Φ(1) = ψ , and ψ is the solution of equation (8).
According to the analysis above, if we modify λ from 0 to
1 gradually and then we can get the exact solution ψ of our
nonlinear problem from the intial guess ψ0.

Then we differentiate both sides of the equation (10) m times
with respect to λ , divide the result by m! and set λ = 0. Finally
we obtain the mth-order deformation (Liao, 2003) :

L [ψm−χmψm−1] =−HRm, (11)

where

ψm ≡
1

m!
∂ mΦ(λ )

∂λ m

∣∣∣∣
λ=0

χm =

{
0 if m≤ 1
1 if m≥ 2

and

Rm =
1

(m−1)!

(
∂ m−1

∂λ m−1 N [Φ(λ )]

)∣∣∣∣
λ=0

.

After summing up all the ψmλ m, we can find that
∞∑

m=0

ψmλ
m =

∞∑
m=0

∂ mΦ(λ )

∂λ m

∣∣∣∣∣
λ=0

λ
m = Φ(λ ) (12)
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is the Maclaurin series of Φ(λ ). If we set λ = 1 in equation
(12), then Φ(1) = ψ =

∑
∞

m=0 ψm, which means we can find a
new series solution from equation (11).

In order to use the above HAM to solve the Lippmann-Schwinger
equation (5), first we define the linear operator L and nonlin-
ear operator N as (Jakobsen et al., 2020a)

L [ψ] = ψ, N [ψ] = ψ−ψ
(0)−g(0)V ψ. (13)

If we insert equation (13) into equation (11), then we can ob-
tain the HAM scattering series of the Lippmann-Schwinger
equation (Jakobsen et al., 2020a):

ψ =

[
∞∑

m=0

Mm

]
Hψ

(0), (14)

where
M ≡ I−H +Hg(0)V. (15)

Equation (7), (14) and (15) show that the HAM scattering se-
ries of the Lippmann-Schwinger equation is more flexible than
the conventional Born series, because it introduces a conver-
gence control operator H. It is possible to find a suitable H
to make sure ρ(M) < 1 and the HAM scattering series of the
Lippmann-Schwinger equation converges, even if ρ(g(0)V )>
1 and the Born series diverges.

For choosing a suitable H, Eikrem et al. (2020) have proposed
a method based on randomized matrix factorization. From the
above discussion, we must make ρ(M) < 1 to get a converg-
ing HAM scattering series. According to the equation (15), if

H approximates
(

I−g(0)V
)−1

, then ρ(M) approaches 0. In

order to find a good approximation of
(

I−g(0)V
)−1

, first we

approximate g(0)V by a product of two low rank matrices

g(0)V ≈UWT, (16)

where U and W are 4N × k matries, N is the number of to-
tal grid blocks and k is a relatively small number and T is the

complex conjugate transpose. Then
(

I−g(0)V
)−1

can be ap-
proximated as(

I−g(0)V
)−1
≈
(

I−UWT
)−1

. (17)

Combining equation (17) with the Sherman-Morrison-Woodbury
formula

(A−BC)−1 = A−1 +A−1B
(

I−CA−1B
)−1

CA−1, (18)

we get(
I−g(0)V

)−1
≈
(

I−UWT
)−1

= I+U
(

Ik−WTU
)−1

WT,

(19)
where Ik is k× k identity matrix. It can be seen from equation
(19) that we can use a small matrix inversion to obtain an ap-
proximation of a huge matrix inversion. Finally the H can be
selected as (Eikrem et al., 2020)

H = I +U
(

Ik−WTU
)−1

WT. (20)

This simple method of choosing H works well for small mod-
els and for low frequencies, but for larger models a more effi-
cient method based on hierarchical matrices is also presented
in Eikrem et al. (2020).

NUMERICAL EXAMPLES

We use a resampled SEG/EAGE salt model (Figure 1, upper)
to test the validity of our method (Aminzadeh et al., 1997). The
bulk density of our model (Figure 1, lower) apart from the salt
dome portion is obtained from velocity by Gardner’s relation:
ρ = 0.31V 0.25

p (Gardner et al., 1974). The density of the salt
dome portion equal to the density of halite salt, which is 2163
kg/m3 (Mavko et al., 2020). The grid size of our model is 1390
m wide and 290 m deep. The discrete grid size of the real-
space in horizontal and vertical direction are both 10 m. The
number of grid blocks is 4031 (N = 139×29 = 4031). We use
Ricker wavelet to simulate a source term located exactly in the
middle of the upper row of the model.

Figure 1: Modified version of the SEG/EAGE salt model,
where the density variations (bottom) are related with the ve-
locity variations (top) via Gardners relation.

To calculate H, we use a small matrix inversion with k = 800.
All the forward modeling results are shown in the frequency
domain at 20 Hz. The wavefield in acoustic media is pres-
sure. Figure 2 shows the reference wavefield obtained via
matrix inversion. Figure 3 shows wavefields computed via
conventional Born series and HAM series. To quantify the
convergence performance of different iterative methods, we
compute the normalized overall difference which is defined as
δi =

∥∥∥ψi−ψ(r)
∥∥∥/∥∥∥ψ(r)

∥∥∥, where ψ(r) is the reference wave-
field and ψi is the iterative wavefield after ith iteration. Figure
4 represents a comparison of the convergence performance of
the HAM series and the Born series. In Figure 3 and Figure 4,
we can see that the HAM wavefield is visually equal to the ref-
erence wavefield and the normalized overall difference close
to 0 after about 70 iterations while the Born series diverges.
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Figure 2: Reference wavefield within the model in Figure 1.

(a) Born series wavefield

(b) HAM series wavefield

Figure 3: Wavefields obtained via different scattering series.

Figure 4: Normalized overall differences vs iteration for dif-
ferent scattering series.

CONCLUIONS AND DISCUSSIONS

We have introduced a numerical method for seismic wave-
field modeling in strongly scattering acoustic media with vari-
able velocity and density. Numerical examples show that the
4-dimensional integral equation of the Lippmann-Schwinger
type can be used to do seismic wavefield modeling via either
marix inversion or iterative methods. Compared to matrix in-
version, the convergent iterative method can reduce the com-
putational cost from (4N)3 to n · (4N)2, where n is the number
of iterations. Compared with the conventional Born series, the
homotopy analysis scattering series can ensure convergence in
strongly scattering case through introducing a suitable conver-
gence control operator H.

Having developed a convergent scattering series solution of the
wave equation for acoustic media with variable density and ve-
locity, the next step may be to derive a corresponding conver-
gent inverse scattering series (Weglein et al., 2003). However,
convergence of the (direct) scattering series does not necessar-
ily imply convergence of the corresponding inverse scattering
series (Jakobsen et al., 2020a,b).
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