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Abstract

In recent years, proponents of configurational comparative methods (CCMs)
have advanced various dimensions of robustness as instrumental to model
selection. But these robustness considerations have not led to computable
robustness measures, and they have typically been applied to the analysis of
real-life data with unknown underlying causal structures, rendering it
impossible to determine exactly how they influence the correctness of
selected models. This article develops a computable criterion of fit-robustness,
which quantifies the degree to which a CCM model agrees with other models
inferred from the same data under systematically varied threshold settings of fit
parameters. Based on two extended series of inverse search trials on data
simulated from known causal structures, the article moreover provides a
precise assessmentof the degree towhich fit-robustness scoring is conducive to
finding a correct causal model and how it compares to other approaches of
model selection.
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Introduction

Different methods of causal data analysis tend to track different features of

causal structures, exploit different markers in empirical data for their infer-

ence to causation, or define causation along the lines of different theories of

causation. These differences must be taken into account when benchmarking

the issued models. This holds notably for model robustness. What it means

for a model to be robust depends on what the corresponding method’s aims

and purposes are. More concretely, the models of a method aiming, say, to

quantify effect sizes on the population level must meet different robustness

criteria than the models of a method aiming to capture difference-making

relations on the case level. It follows that different criteria are needed for

different methods. While some methodological frameworks have long tradi-

tions of robustness benchmarking, others do not. A framework of the latter

type is the one of configurational comparative methods (CCMs; see, e.g.,

Baumgartner and Ambühl 2020; Cronqvist and Berg-Schlosser 2009; Ragin

2008; Thiem 2014b), where discussions about robustness have begun only

recently. The goal of this article is to contribute to the ongoing development

of robustness benchmarks custom-built for the aims and purposes of CCMs.

The most widely employed robustness measures are the ones of causal

discovery methods using statistical techniques. Such methods, as regression

analysis (e.g., Gelman and Hill 2007) or Bayes-nets methods (e.g., Spirtes,

Glymour, and Scheines 2000), rely on probabilistic or counterfactual theories

of causation (e.g., Lewis 1973; Suppes 1970), they track causal dependencies

between random variables (e.g. “X is a cause of Y”), and, most importantly,

their models are built to reflect average or marginal effect sizes or net effects

in the whole data. Their models count as robust only if they remain invariant

across repeated re-analyses of the data under subsampling, measurement

error introduction, or variation of tuning parameters. CCMs, by contrast, rely

on regularity theories of causation (e.g., Mackie 1974), they track causal

dependencies between specific values of variables (e.g., “X¼w is a cause

of Y¼g”), they analyze conjunctural causation and equifinality (i.e., not

marginal effect sizes) and—following the template of Mill’s method of

difference—their models are intended to reflect difference-making relations

on the level of individual cases in the data. More concretely, if the data

contain cases that vary in exactly one of the analyzed factors as well as in
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the outcome, while all other factors remain constant, CCMs take this as

evidence for the causal relevance of a value of the varying factor.1 Therefore,

adding, subtracting, or recoding a few cases, say, due to varying tuning

parameters or measurement error introduction, frequently amounts to alter-

ing difference-making evidence, which then induces changes in CCM mod-

els. As CCM models are expressly built to reflect cross-case variation,

robustness measures that reward model invariance miss the very aim of

CCMs.

Nonetheless, some authors have recently benchmarked CCM models

against statistical robustness standards (e.g., Hug 2013; Krogslund, Choi,

and Poertner 2015). The results are seemingly devastating for CCMs, as their

models typically do not meet these standards to an acceptable degree. But

that finding, rather than yielding a meaningful estimate of the robustness of

CCM models and demonstrating their unreliability, as Hug (2013) and Krog-

slund et al. (2015) submit, merely exhibits that a robustness measure reward-

ing invariance is at cross purposes with CCMs.

A lot of variance in CCM models is completely benign. It simply reflects

varying amounts of inferentially exploited difference-making evidence with-

out implying any inconsistent causal conclusions. Two different models are in

no disagreement if the causal claims entailed by them stand in a subset relation,

that is, if one of them is a submodel of the other. In that case, the submodel

merely recovers the data-generating structure less completely than the super-

model. But given the massive fragmentation of data commonly analyzed by

CCMs, CCMs cannot normally be expected to uncover data-generating struc-

tures in their entirety anyway. Importantly, CCM models only make claims

about causal relevance, not about causal irrelevance. If a factor value X¼w
does not appear in a model of an outcome Y¼g, it does not follow that X¼w is

causally irrelevant to Y¼g but only that the data do not contain evidence for the

relevance of X¼w (Baumgartner and Ambühl 2020).

However, not all variance in CCM models is of the benign kind. For

example, it regularly happens that data entail many different models that are

not submodels of one another, giving rise to model ambiguities (Baumgart-

ner and Thiem 2017). Criteria are needed that select among such unrelated

models. Or, maximizing the two core parameters of model fit, namely, con-

sistency and coverage, tends to induce CCMs to expand resulting models by

irrelevant factor values, prompting overfitting and corresponding false posi-

tives (see the section Overfitting; Arel-Bundock 2019). Strategies are needed

to avoid that pitfall. Hence, there is a need for distinguishing benign from

non-benign model variance and, more generally, for complementing

existing criteria of model selection by additional constraints. Robustness
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standards—properly adapted to the purposes of CCMs—are straightforward

candidates to fill that bill.

Indeed, in recent years, proponents of CCMs have advanced various

dimensions of robustness as instrumental to model selection (e.g., Cooper

and Glaesser 2016; Schneider and Wagemann 2012:§11.2; Skaaning 2011).

But these discussions have typically revolved around concrete real-life data

sets with unknown underlying causal structures.2 In consequence, it is not

possible to determine to what degree existing CCM robustness considera-

tions are conducive to selecting correct models, avoiding overfitting, or

reducing model ambiguities. Moreover, while there are numerous concrete

illustrations qualitatively comparing different model candidates with respect

to their robustness, there currently exist no computable robustness measures

for CCMs.3

This article develops a computable criterion of fit-robustness that is tailor-

made for CCMs by measuring the degree to which a model’s causal ascrip-

tions overlap with the causal ascriptions of other models inferred from the

same data under systematically varied fit thresholds. More specifically, our

operationalization of robustness involves two steps: First, the set of all mod-

els M for given data d is built by re-analyzing d under systematically varied

consistency and coverage thresholds; second, the robustness of a particular

model mi 2M is expressed in terms of the total number of sub- and super-

models mi has among the elements of M. The more sub- and supermodels mi

has in M, the more mi overlaps in causal ascriptions with other models

inferred from d, the higher mi’s robustness score. By systematically varying

other tuning parameters in the first step, analogous criteria of, say, calibra-

tion-robustness or frequency-robustness could be developed. For reasons of

space, we focus on varying consistency and coverage only—which, after all,

are the two dominant CCM criteria of model selection. Furthermore, for

reasons of generality and computational flexibility, we will use Coincidence

Analysis (CNA) as our CCM of choice. While Qualitative Comparative

Analysis (QCA)—the best known CCM—only imposes consistency thresh-

olds and comes with a search protocol for structures with single outcomes

only, CNA accepts both consistency and coverage thresholds and can also

analyze multi-outcome structures.

This article is organized as follows. The second section reviews the con-

ceptual preliminaries of our argument. In the third section, we demonstrate

the need for complementing existing criteria of model selection by a robust-

ness criterion, whose details are presented in the fourth section. The fifth

section benchmarks that criterion under a range of discovery conditions. We

conclude in the sixth section. The Online Supplementary Material provides
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detailed R-scripts that supply an explicit R function operationalizing our

robustness scoring and allow for replicating our benchmark tests along with

all other calculations of this article.

Preliminaries

We begin by introducing the notation and the relevant concepts used in our

ensuing discussion. CCMs study Boolean dependence relations between

variables taking on specific values. In the CCM literature, variables are

typically referred to as factors. Factors represent categorical properties that

partition sets of units of observation (cases) either into two sets, in case of

binary properties, or into more than two (but finitely many) sets, in case of

multi-value properties. Factors representing binary properties can be crisp-

set (cs) or fuzzy-set (fs); the former (typically) take on 0 and 1 as possible

values, whereas the latter can take on any (continuous) values from the unit

interval ½0; 1�. Factors representing multi-value properties are called multi-

value (mv) factors; they can take on any of an open (but finite) number of

non-negative integers as possible values.

For simplicity of exposition, we will subsequently illustrate our robust-

ness account with examples featuring binary factors only. This allows us to

conveniently abbreviate the explicit “Factor¼value” notation. As is conven-

tional in Boolean algebra, we write “A” for A¼1 and “a” for A¼0. While this

shorthand simplifies the syntax of models, it introduces a risk of misinter-

pretation, for it yields that the factor A and its taking on the value 1 are both

expressed by “A.” Disambiguation must hence be facilitated by the concrete

context in which “A” appears. Accordingly, whenever we do not explicitly

characterize italicized Roman letters as “factors,” we use them in terms of the

shorthand notation. Moreover, we write “A�B” for the conjunction “A¼1 and

B¼1,” “Aþ B” for the disjunction “A¼1 or B¼1,” “A! B” for the implica-

tion “If A¼1, then B¼1” (aþ B), and “A$ B” for the equivalence “A¼1 if,

and only if, B¼1” (A�Bþ a�b).

Based on the implication operator, the notions of sufficiency and necessity

are defined, which are the two Boolean dependence relations exploited by

CCMs: X is sufficient for Y if, and only if (iff), X ! Y (“if X is given, then Y

is given”), and X is necessary for Y iff Y ! X (“if Y is given, then X is

given”). As Boolean dependencies amount to mere patterns of co-

occurrence, they carry no causal connotations whatsoever and, hence, mostly

do not reflect causal relations. Still, some of them do. So-called regularity

theories of causation are designed to filter out those sufficiency and necessity

relations that do track causation. They accomplish this by imposing a
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rigorous non-redundancy constraint (Baumgartner and Falk 2019; Graßhoff

and May 2001; Mackie 1974). Only minimally sufficient conditions con-

tained in minimally necessary conditions track causation, where sufficient

and necessary conditions are said to be minimal iff they do not comprise

sufficient and necessary proper parts.

CNA models can be atomic or complex, representing single-outcome and

multi-outcome structures, respectively. An atomic model has the form

F$ Y , where Y is an endogenous factor value (Y¼g) and F stands for a

minimally necessary disjunction of minimally sufficient conditions in dis-

junctive normal form (DNF),4 such that all factors in that DNF are different

(and logically and conceptually independent) from one another and from Y.

An atomic CNA model explains an endogenous factor value Y in terms of a

redundancy-free DNF of exogenous factor values. A complex CNA model is

a redundancy-free conjunction of atomic models of the form

ðF1 $ Y1Þ� . . . �ðFn $ YnÞ.
Since configurational data d tend to feature various deficiencies, such as

measurement error or confounding, expressions of type F$ Y that strictly

adhere to the equivalence operation (“$“) often cannot be inferred from d.

To relax the equivalence standards, Ragin (2006) introduced the fit para-

meters of consistency and coverage into the QCA protocol, which have

subsequently also been imported into CNA (Baumgartner and Ambühl

2020). Informally put, consistency reflects the degree to which the behavior

of an outcome obeys a corresponding sufficiency or necessity relationship or

a whole model, whereas coverage reflects the degree to which a sufficiency

or necessity relationship or a whole model accounts for the behavior of the

corresponding outcome. The parameters take values from the unit interval,

with 1 representing perfect consistency and coverage. What counts as accep-

table scores on these parameters is defined in threshold values determined by

the analyst prior to the application of CNA. The models meeting the chosen

thresholds are output by CNA along with their specific consistency and cov-

erage scores. The product of a model’s consistency and coverage scores, that

is, its con-cov product, is interpreted as a measure for its overall model fit.

To clarify the causal interpretation of CNA models, consider the follow-

ing complex exemplar:

ðA�bþ a�B$ CÞ � ðC�f þ D$ EÞ: ð1Þ

Functionally put, (1) claims that the presence of A in conjunction with the

absence of B (i.e., b) as well as a in conjunction with B are two alternative

minimally sufficient conditions of C (relative to the chosen consistency
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threshold) and that C�f and D are two alternative minimally sufficient

conditions of E. Moreover, both A�bþ a�B and C�f þD are claimed to

be minimally necessary for C and E (relative to the chosen coverage thresh-

old). Against the background of a regularity theory, these functional relations

can be causally interpreted as follows: (i) The factor values listed on the left-

hand sides of “$” are directly causally relevant for the factor values on the

right-hand sides; (ii) A and b are located on the same causal path to C, which

differs from the path on which a and B are located, and C and f are located on

the same path to E, which differs from D’s path; and (iii) A�b and a�B are

two alternative indirect causes of E whose influence is mediated on a causal

chain via C.

Importantly, CNA models are to be interpreted relative to the data d from

which they have been inferred and to the threshold settings chosen for that

inference. That is, (1) does not purport to be a complete representation of the

causal structure behind d. (1) only details those causally relevant factor

values along with those conjunctive, disjunctive, and sequential groupings

for which d contain evidence at the chosen threshold settings. In particular,

(1) does not exclude that some further factor value G might not also be

causally relevant for C or E; (1) only entails claims about causal relevance,

not about causal irrelevance. By extension, another CNA model, such as (2),

inferred from d relative to, say, lower consistency and/or coverage thresholds

does not conflict with model (1).

ðA þ B $ CÞ � ðC þ D $ EÞ: ð2Þ

(2) identifies A and B as alternative direct causes of C and indirect causes

of E, moreover C and D are claimed to be alternative direct causes of E. All

of this also follows from (1). The causal claims entailed by (2) thus constitute

a subset of the claims entailed by (1), meaning that (2) is a submodel of (1).

As the submodel relation will be of core relevance for our ensuing argument,

we define it in all explicitness here.

Submodel Relation. A CCM model mi is a submodel of another CCM model mj

if, and only if,

1. all factor values causally relevant according to mi are also causally

relevant according to mj,

2. all factor values contained in two different disjuncts in mi are also

contained in two different disjuncts in mj,
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3. all factor values contained in the same conjunct in mi are also con-

tained in the same conjunct in mj,

4. if mi and mj are complex models, all atomic components mk
i of mi have

a counterpart mk
j in mj, such that (1)–(3) are satisfied for mk

i and mk
j .

If mi is a submodel of mj, mj is a supermodel of mi. All of mi’s causal

ascriptions are contained in its supermodels’ ascriptions, and mi contains the

causal ascriptions of its own submodels. The submodel relation is reflexive:

Every model is a submodel (and supermodel) of itself; or differently, if mi and

mj are submodels of one another, then mi and mj are identical. Most impor-

tantly, even if two models related by the submodel relation are not identical,

they do not disagree or conflict in their causal ascriptions; rather, they can be

interpreted as describing the same causal structure with varying granularity.

Overfitting

Numerous authors (e.g., Braumoeller 2015; Krogslund et al. 2015; Lucas and

Szatrowski 2014) have argued that CCMs have a dangerous tendency to

incorporate causally irrelevant factors in their models, thereby committing

too many false positive errors. Representatives of CCMs (e.g., Baumgartner

and Thiem 2020; Rohlfing 2015; Thiem and Baumgartner 2016) have found

various flaws and overgeneralizations in these arguments and have shown

that CCMs work reliably for data conforming to the high-quality standards

imposed by CCMs, in particular, the homogeneity of the unmeasured causal

background.5 Still, the fact remains that CCMs run a serious false positive

risk when these quality standards are not met (Arel-Bundock 2019; Baum-

gartner and Ambühl 2020), in particular, when the data comprise cases

incompatible with the data-generating causal structure over the set of mea-

sured factors, meaning cases that, subject to that structure, should not exist.

Such case incompatibilities can have different sources, for instance, mea-

surement error or confounding. For brevity, we will subsequently often sim-

ply say that case incompatibilities are due to noise.

Of course, noise has a negative effect on the output quality of any method,

but for CCMs, this effect is especially high when the data have small sample

size and the analyst is maximizing the model fit, that is, consistency and

coverage. To illustrate this problem, consider the data in Table 1A, which

have been simulated from the very simple causal structure in (3) and one

added irrelevant factor D.

Aþ B�C $E: ð3Þ
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More specifically, Table 1A is the result of, first, collecting one case instan-

tiating each of the 16 configurations of the factors A, B, C, D, and E compa-

tible with (3) and, second, replacing one case in these clean and complete

Table 1. Effect of Random Error.

A)

Case A B C D E

c1 0 0 0 1 0
c2 0 0 1 1 0
c3 1 1 1 1 1
c4 1 1 1 0 1
c5 1 1 0 1 1
c6 0 1 0 1 0
c7 0 0 1 0 0
c8 1 0 0 1 1
c9 0 1 1 0 1
c10 0 1 1 1 1
c11 1 1 0 0 1
c12 0 0 0 0 0
c13 1 0 0 0 1
c14 0 1 0 0 0
c15 1 0 1 1 1

c16 1 0 1 0 0

B)

# Models Con Cov Thresholds Correct

1 A�cþ A�Dþ B�C $ E 1.00 1.00 h1:00; 1:00i O
2 A�cþ B�C $ E 1.00 0.89 h1:00; 0:85i O
3 A�Bþ A�Dþ B�C $ E 1.00 0.89 h1:00; 0:85i O
4 A�Dþ B�C $ E 1.00 0.78 h1:00; 0:75i O
5 A�Bþ A�cþ A�D$ E 1.00 0.78 h1:00; 0:75i O
6 Aþ B�C $ E 0.90 1.00 h0:85; 1:00i P
7 Aþ B$ E 0.75 1.00 h0:75; 1:00i P
8 Aþ C�D$ E 0.80 0.89 h0:75; 0:85i O
9 A$ E 0.88 0.78 h0:75; 0:75i P

Note: The third column indicates the thresholds at which a model is found and the fourth
whether a model is a submodel of (3) (and thus only makes correct causal claims).
(A) features data generated from (3) by introducing measurement error on case c16. (B) lists the
coincidence analysis models (and their fit scores) resulting from re-analyzing (A) with system-
atically lowered consistency and coverage thresholds.
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data by a case that is incompatible with (3). The incompatible case, c16, is

highlighted with gray shading. The only difference between the original case

and c16 is that the latter features E¼0 where the former had E¼1, meaning

that this case incompatibility can be thought of as resulting from noise on the

outcome E.

Case c16 is incompatible with (3) because it does not feature the outcome E

even though one of its causes in (3), A, is given. In light of c16, therefore, A

cannot be identified as sufficient cause of E, meaning that, when processing

Table 1A at maximal consistency and coverage thresholds of h1; 1i, CNA (or

QCA) will not recover (3). Instead, CNA will attempt to conjunctively comple-

ment A by further factor values in order to reach perfect consistency. Indeed,

there exist two further factor values in combination with which A is strictly

sufficient for E in Table 1A: A�c and A�D. It turns out, moreover, that disjunc-

tively combining these two conditions with B�C to A�cþ A�Dþ B�C yields

perfect coverage. Accordingly, when CNA (or QCA) is run at h1; 1i, it outputs

model 1 in Table 1B (see the replication script for details). But, of course, given

that (3) represents the ground truth, model 1 falsely ascribes causal relevance to

c and D, which in fact are irrelevant.

Although not recovered at h1; 1i, the data-generating structure (3) is a

proper submodel of the model with maximal fit. And indeed, if the fit

thresholds are lowered, CNA infers a whole array of further models from

Table 1A, some of which are simpler than the best fitting model. Table 1B

lists all models recovered when fit thresholds are systematically lowered

from 1 to 0.75 at increments of 0.05. Some of these models yield false

positives, but some exclusively entail causal claims that are correct accord-

ing to the ground truth (3), namely, models 6, 7, and 9. Model 6, which is

returned at a threshold setting of h0:85; 1i, is identical to (3), while models 7

and 9 are proper submodels of (3).6 This shows that the false positives

entailed by the model with maximal fit result from overfitting. When

requested to maximize fit, CNA builds a disjunction comprising both irre-

levant factor values and an irrelevant path. When the fit thresholds are

relaxed, adding these additional factor values and the irrelevant path is

no longer required to meet the thresholds, the overfitting disappears, and

correct models are returned.

That CCMs fall prey to overfitting in the presence of only one single

incompatible case is not some rare idiosyncrasy of Table 1A; rather, it is a

commonplace phenomenon in small sample sizes.7 For CNA, the prevalence

of overfitting can be demonstrated using the function cnaOpt() from the

cnaOpt R-package (Ambühl and Baumgartner 2020), which purposefully

builds models with maximal fit for the processed data. In what follows, we
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hence conduct a series of trials to determine the ratios of trials in which

overfitting occurs by applying cnaOpt() to data sets with increasing sample

sizes and increasing shares of incompatible cases. We again choose (3) as our

ground truth and generate data from this structure relative to the factors A, B,

C, D, and E; 16 configurations of these factors are compatible with (3). Let

did be the ideal data consisting of 16 cases, each of which instantiates another

one of these 16 compatible configurations. In a first series of trials, we

alternatively replace 1, 2, and 3 randomly drawn cases in did by randomly

drawn cases that are incompatible with (3), which yields increasing incom-

patibility shares (or noise ratios) of 6.25 percent, 12.5 percent, and 18.75

percent, respectively. In a second series, we double the case frequency

resulting in 32 cases and again randomly replace 6.25 percent, 12.5 percent,

and 18.75 percent compatible by incompatible cases. We repeat the same

procedure for data sets of 48, 64, and 80 cases, thus multiplying the case

frequency of did by 3, 4, and 5. In each trial, we check whether the models

generated by cnaOpt() are overfitted. The overfitting ratio for each trial is

calculated based on 1,000 repetitions of the trial.

The results are plotted in Figure 1. It can easily be seen that they are

damning for small sample sizes. At the base frequency of one case per com-

patible configuration, a single incompatible case leads to false positives due to

overfitting in 38 percent of the trials. An incompatibility share of 12.5 percent,

that is, two incompatible cases at n ¼ 16, pushes the overfitting ratio up to 67

percent, and at 18.75 percent incompatibilities, overfitting occurs in 80 percent

of the trials. In larger sample sizes, the overfitting risk decreases. For instance,

if the sample size and the number of case incompatibilities are multiplied by a

factor of 4, the numbers come down to 0 percent, 1.4 percent, and 10.6 percent;

0.00

0.25

0.50

0.75

1.00

n = 16 n = 32 n = 48 n = 64 n = 80

incomp.

6.25%

12.5%

18.75%

Figure 1. Overfitting ratios when processing data simulated from the target struc-
ture (3) with increasing sample sizes and increasing shares of randomly drawn
incompatible cases. Each overfitting ratio is a mean over 1,000 executions of a trial.
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and with even larger sample sizes, the overfitting risk becomes more and more

negligible. Still, it is indisputable that the overfitting risk for small sample sizes

is unacceptably high. After all, even in small samples—where it is common

CCM practice not to select cases randomly but based on background theories

and all available case knowledge (Schneider and Wagemann 2012)—the com-

plete absence of incompatible cases can hardly ever be guaranteed in the

disciplines in which CCMs are most often applied.

The obvious conclusion to draw is that when analyzing small-sized

noisy data, maximizing consistency and coverage is not a reliable strat-

egy of model selection. This finding conflicts with certain methodologi-

cal recommendations in the CCM literature. Ragin (2008:46), for

instance, suggests that “[i]n general, consistency scores should be as

close to 1.0 (perfect consistency) as possible”; or Schneider and Wage-

mann (2012:128) recommend that consistency thresholds be placed the

higher, the lower the number of cases under investigation. However, in

actual CCM practice, fit thresholds are often simply set to non-maximal

bounds given by conventions, typically some values between 0.85 and

0.75; and in the example of Table 1A, such a conventional threshold

placement avoids the overfitting problem. At h0:75; 0:75i, a model is

returned, namely, A$ E, that merely assigns causal relevance to A,

which is true according to the data-generating structure (3).8 Clearly

though, the conventional threshold placement avoids the overfitting prob-

lem at the price of not revealing as much of the structure behind

Table 1A as could possibly be revealed, for at h0:85; 1i, the entire ground

truth is correctly recoverable from Table 1A. In other words, A$ E is

not informative enough; it is not over- but underfitted.

Overall, in noisy discovery contexts, CCM model fit (just as model fit in

other frameworks) should neither be maximized, to avoid overfitting, nor

minimized, to avoid underfitting. Hence, the question arises how to identify

threshold settings yielding models that are as revealing as possible about the

ground truth without inducing false positives. In simulations, where the data-

generating structure is presupposed, that question is easily answerable by re-

analyzing the data at varying threshold settings and identifying the setting at

which the (known) ground truth is recovered. But, of course, real-life dis-

covery contexts are characterized by the data-generating structure being

unknown, which makes it impossible to determine which among all tested

threshold settings actually recovers the truth. To alleviate that problem, the

next section introduces a criterion of fit-robustness that helps to identify the

models that can be trusted among all the models returned by CCMs within

the range of acceptable threshold settings.
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Robustness

Searching for robust models to avoid over- and underfitting is an

approach that comes easily to mind. But, as we have seen in the intro-

duction, we cannot simply draw on statistical robustness measures

rewarding model invariance under varying re-analyses of the data.

Instead, we propose to understand the robustness of a CCM model in

terms of the degree to which its causal attributions are contained in and

contain the causal attributions of all the other models obtained from a

series of data re-analyses under varying consistency and coverage set-

tings. Rather than rewarding invariance, robustness in that sense rewards

those models that are most closely interrelated with the other models

from that re-analysis series and it punishes models making idiosyncratic

causal attributions.

Before we flesh out that sketch, let us clarify the aims and limitations

of our proposal. Robustness testing is a heuristic for model selection in

noisy discovery contexts. If there is enough noise, especially if it is

patterned or biased, any method will misfire sooner or later. But CCMs,

as we have seen in the previous section, are particularly vulnerable

through even mild degrees of noise. The purpose of a robustness measure

for CCMs must be to reduce that vulnerability, without being expected to

erase it altogether or to work equally well in all noise scenarios; it is only

one tool for vulnerability reduction among others. In that light, the aim

of our proposal shall be to improve the overall model quality in the

presence of randomly distributed noise. The robustness measure sketched

above can be expected to achieve that purpose because if measurement

error is not biased and there is no systematic confounding (and there is

not so much noise that CCMs abstain from drawing inferences alto-

gether), the signal stemming from actual causal dependencies will, on

average, be stronger in the data than spurious associations due to noise.

In consequence, elements of the ground truth will be included in many

models obtained at varying threshold settings, whereas spurious factor

values will only be included in models inferred at specific consistency

and coverage thresholds. That may not hold in biased and patterned noise

scenarios. Thus, the next section will put the performance of our

approach to the test under both random and non-random noise.

We now render our robustness measure precise on the basis of the sub-

model relation introduced in the section Preliminaries, which directly mirrors

containment relations among causal attributions of CCM models. If two

models are related in terms of the submodel relation, at most one of them
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makes causal attributions not made by the other one, such that the model with

fewer attributions remains silent about the other model’s additional attribu-

tions. By contrast, if two models are not related by the submodel relation,

they both entail some causal attributions not entailed by the other model.

That is, the more sub- and supermodels a model mi has in a given set of

models, the more mi’s causal attributions overlap with the causal attributions

of the other models in that set; conversely, the fewer the sub- and super-

models of mi, the more idiosyncratic mi’s causal attributions. We thus pro-

pose to measure the fit-robustness of mi inferred from data d by re-analyzing

d under systematically varied consistency and coverage settings and collect-

ing all models returned in that re-analysis series in a set M. The fit-robustness

of mi can then be expressed in terms of the total number of sub- and super-

models mi has in M.

This approach requires first producing a set M of models inferable

from d under systematically varied fit thresholds. The resulting robust-

ness scoring is relative to the composition of M, which, in turn, depends

on two parameters: the scanned interval of threshold values and the

granularity of the threshold variation. If we scan the interval ½0:8; 1�,
M typically only contains a proper subset of the models that result from

scanning the interval ½0:7; 1�. Likewise, if we vary the consistency and

coverage settings at increments of 0.1, less models tend to be recovered

than if the settings are varied at a finer granularity of, say, 0.05. When

combined, the scanned interval ½h; k� and the variation granularity l

define a re-analysis type, which we simply denote by the tuple

h½h; k�; li. For example, the type h½0:8; 1�; 0:1i scans the interval from

consistency and coverage thresholds of 0.8 to 1 at increments of 0.1.

When performed on a data set d, a re-analysis type yields a re-analysis

series consisting of m analyses of d each of which is performed at a

unique combination of consistency and coverage cutoffs. m is the number

of two-element variations (with repetitions) of the sequence given by the

interval and the granularity. More concretely, the type h½0:8; 1�; 0:1i
induces testing all two-element variations of the sequence

f0:8; 0:9; 1:0g, which amounts to m ¼ 9. Or differently, the re-analysis

series performing that type tests the following consistency and coverage

threshold pairs: h0:8; 0:8i, h0:9; 0:8i, h1; 0:8i, h0:8; 0:9i, h0:9; 0:9i,
h1; 0:9i, h0:8; 1i, h0:9; 1i, and h1; 1i.9 Collecting all models returned in

the course of a re-analysis series results in a set of models M for d
relative to h½h; k�; li. Taken together, these considerations yield the fol-

lowing notion of fit-robustness:
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Fit-robustness (FR). Given a set of models M produced by a re-analysis series

performing the re-analysis type h½h; k�; li on data d, the fit-robustness of

model mi 2M relative to h½h; k�; li is the number of sub- and supermodels

mi has in M.

Before we illustrate (FR)-based robustness scoring with a concrete exam-

ple, two features of (FR) must be emphasized. First, (FR) provides a notion of

robustness that is relative to a re-analysis type h½h; k�; li. In this sense, (FR) is

analogous to statistical robustness measures based on random re-sampling or

measurement error introduction or to the Akaike information criterion. Just

as results of statistical robustness tests based on re-sampling from observed

data may vary depending on the number of samples taken, (FR) may return

different scores when different re-analysis types are performed. Analogously

to the Akaike information criterion, the (FR) score of a model mi is mean-

ingful only in comparison to other models inferred from the same data with

the same re-analysis type. That is, (FR) does not yield a notion of absolute fit-

robustness that would make models built in different re-analyses series

mutually comparable. Rather, (FR) renders the models in M comparable

with respect to their robustness relative to the performed re-analysis

type—it exclusively serves the purpose of selecting among the models in M.

Second, (FR) strikes a balance between overly complex and overly simple

models. To show this, we use the number of exogenous factor values in a

model as measure of its complexity. If mi has more exogenous factor val-

ues—that is, higher complexity—than another model mj, mj cannot be a

supermodel of mi. Hence, models with high complexity tend to have less

supermodels in M than models with low complexity. At the same time, they

are likely to have more submodels because models with less exogenous

factor values cannot have submodels with higher complexity. As (FR) takes

sub- and supermodels equally into account, a model can score high on

robustness by having many submodels or many supermodels. This scoring

is independent of the model’s complexity. Its robustness depends entirely on

whether its elements are returned at many or only at few consistency and

coverage thresholds. (FR) punishes complex and simple solutions alike if

they make idiosyncratic causal attributions.

Let us now look at a concrete example of (FR)-based robustness scoring.

To this end, we revisit the nine models inferred from Table 1A by performing

the re-analysis type h½0:75; 1�; 0:05i using CNA. Table 2 lists them again, in

the same order as in Table 1B (we do not repeat their consistency and

coverage scores). Scanning the threshold interval ½0:75; 1� at increments of

0.05 requires m ¼ 36 different threshold settings each executed by a separate
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CNA run. Many of these runs produce the same models, meaning that the

models in Table 2 are returned multiple times at different threshold settings.

Model 4, for instance, is returned at the following settings: h1; 0:75i,
h0:95; 0:75i, and h0:90; 0:75i. That is, Table 2 does not list individual model

tokens produced in a particular CNA run but unique model types produced

across the whole re-analysis series. For transparency, we add the column “t”

indicating how many tokens (or instances) of a particular model (type) were

recovered in the whole series. In this example, the set of all models M

produced in the series contains a total of 50 tokens, nine of which are

instances of model 1, nine of model 2, and so on.

The columns “Submodels” and “Supermodels” of Table 2 exhibit which

models in M are sub- and supermodels of a particular model. For example,

model 4 has the submodels 4, 6, 7, and 9 and the supermodels 1, 3, and 4. As

detailed in section Preliminaries, every model is both a sub- and a supermodel

of itself, which is why every model is listed in both of these columns (in the

rows) corresponding to itself. The columns “Scoreraw” and “Scorenorm” pro-

vide the raw and normalized fit-robustness scores for each of the models.

To see how these scores are calculated, consider model 4. It has model 6

as a submodel, of which there are 10 instances in M, meaning it receives 10

robustness points from model 6. Model 7 with five instances is another

submodel of model 4, hence, supplying another five points. Or, model 1 with

nine instances is a supermodel adding nine points to the score. When it comes

to counting the sub- and supermodel relations a model bears to itself, we only

Table 2. Relisting of the Models in Table 1B.

# Models t Submodels Supermodels Scoreraw Scorenorm

1 A�cþ A�Dþ B�C $ E 9 1, 2, 4, 6, 7, 9 1 46 0.87
2 A�cþ B�C $ E 9 2, 6, 7, 9 1, 2 43 0.81
3 A�Bþ A�Dþ B�C $ E 6 3, 4, 6, 7, 9 3 31 0.59
4 A�Dþ B�C $ E 3 4, 6, 7, 9 1, 3, 4 37 0.70
5 A�Bþ A�cþ A�D$ E 3 5, 7, 9 5 12 0.23
6 Aþ B�C $ E 10 6, 7, 9 1, 2, 3, 4, 6 53 1.00
7 Aþ B$ E 5 7, 9 1, 2, 3, 4, 5, 6, 7 51 0.96
8 Aþ C�D$ E 2 8, 9 8 5 0.09
9 A $ E 3 9 1, 2, 3, 4, 5, 6, 7, 8, 9 51 0.96

Note: Column “#” labels the (types of) models, “t” indicates how many times a model is
recovered by the re analysis type h½0:75; 1�; 0:05i performed on Table 1A, “Submodels” and
“Supermodel” display the sub- and supermodels of a model, “Scoreraw” and “Scorenorm” their raw
and normalized robustness scores.
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count different tokens of the model. That is, we subtract two points from the

sub- and supermodel relations obtaining among the individual tokens of a

model, reflecting the fact that a model token is both a sub- and a supermodel

of itself. In total, model 4 has ð10þ 5þ 3þ 9þ 6þ 3þ 3Þ � 2 ¼ 37

different token sub- and supermodels in M. More generally, if we denote

the sets of sub- and supermodel tokens of model mi by subi and supi,

respectively, the raw robustness score of mi is simply the sum of the cardin-

alities of subi and supi minus 2:

scorerawðmiÞ ¼ jsubij þ jsupij � 2: ð4Þ

It is evident that, depending on the data and the performed re-analysis

type, scorerawðmiÞ may vary greatly. The raw fit-robustness of mi, when mi

is inferred from data d or by performing h½h; k�; li, is not comparable to the

score of the same model mi when it is inferred from a different d’ or by

performing a different re-analysis type h½h 0; k 0�; l 0i. By normalizing the raw

scores, we make explicit that fit-robustness is relative to the set M of all

models obtained in a re-analysis series. More concretely, the normalized

measure scorenormðmiÞ amounts to mi’s raw score divided by the maximum

raw score obtained by a model in M. Hence, if M ¼ fm1; . . . ;mng, normal-

ized fit-robustness is this:

scorenormðmiÞ ¼
scorerawðmiÞ

maxðscorerawðm1Þ; . . . ; scorerawðmnÞÞ
: ð5Þ

The overall fit-robustness scoring for our example has various notable

features. First, model 1, which has the highest consistency and coverage (cf.

Table 1B), does not have the highest (FR) score, meaning that (FR) scores do

not align with fit. In other words, (FR) is an additional criterion of model

selection over and above consistency and coverage. Second, the (FR) score is

independent of model complexity. There are complex and simple models

with high as well as with low (FR) scores, which corroborates that (FR) has

no built-in preference for more or less complex/informative models. Third,

the frequency at which a model is returned, while important, is not the sole

determinant of the (FR) score and may not even be the decisive one. In the re-

analysis series of our example, model 6 is the most frequent one, being

returned in 10 of the 36 analyses, and also has the highest (FR) score. But

it is clear that frequency alone is not driving the results: The second most

frequent models, 1 and 2, are both returned nine times and lose in (FR) score

to model 7, returned five times, and to model 9, returned only three times.

Fourth, all three models with highest fit-robustness—6, 7, and 9—avoid
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causal fallacies, as all their causal claims are correct according to the ground

truth (3). That means true causal dependencies receive higher (FR) scores

than spurious ones. What is more, the highest scoring model, model 6,

exactly corresponds to the causal structure (3) used to simulate the data in

Table 1A. Thus, (FR) succeeds in selecting the ground truth among all

generated models, thereby avoiding both under- and overfitting.

Plainly, though, this example was purposefully selected to introduce and

illustrate (FR) on a simple test case. What is needed next is an assessment of

whether (FR) achieves its intended purpose when applied to examples not

selected for introductory purposes and simplicity, that is, to randomly drawn

examples. This is the topic of the next section.

Benchmarking

We extensively benchmarked (FR)-based robustness scoring to determine,

first, whether it indeed improves the overall quality of CCM models in

discovery contexts featuring random noise and, second, how it fares in con-

texts with non-random noise. This section reports our results. We first discuss

the general setup of our tests and then detail the specifics and results of the

tests with random and non-random noise, respectively. We executed all tests

both on crisp-set and fuzzy-set data. For brevity, our subsequent discussion

focuses on the crisp-set tests, which, overall, turned out to be less favorable to

(FR)-based robustness scoring. The results of the fuzzy-set tests are pre-

sented in the Online Appendix. The Online Supplementary Material more-

over supplies separate replication scripts for all tests.

General Test Setup

To determine whether selecting models based on high (FR) scores improves

or diminishes the overall model quality, we contrast it with standard model

selection approaches. More specifically, we process data by means of CNA

and select sets S of models using the following four approaches: The first,

which we label FRscore, selects the models with highest (FR) scores result-

ing from the re-analysis type h½0:7; 1�; 0:1i; the second, MaxFit, selects the

models with the highest products of consistency and coverage (con-cov

products) generated by the maximal consistency and coverage setting in the

interval [0.7, 1] actually producing a model; the third, Conv0.8, selects the

models with highest con-cov products generated at the conventional thresh-

old setting h0:8; 0:8i; and the fourth, Conv0.75, selects the models with

highest con-cov products generated at the conventional setting

18 Sociological Methods & Research XX(X)



h0:75; 0:75i. In the selected sets S of top-scoring models, we do not merely

include the models with maximal (FR) scores and con-cov products, respec-

tively, but the models at or above the 98th percentile of (FR) scores and con-

cov products.

To determine the quality of the selected models in S, we have to com-

pare them with the ground truth, meaning we have to know the data-

generating causal structures. As these are typically unknown in real-life

data, we run our tests on simulated data. More specifically, we conduct

inverse searches, which reverse the order of normal causal discovery. An

inverse search comprises three main steps: (1) a causal structure D is drawn

(as ground truth), (2) data d are simulated from D, featuring varying defi-

ciencies (e.g., different types of noise), and (3) d is processed by the

benchmarked method in order to check whether its output meets a tested

benchmark criterion.

We test the model sets S against three increasingly stringent benchmark

criteria: first, whether S is fallacy-free; second, whether S contains a correct

model; and third, to what degree correct models in S completely reflect the

ground truth. A set S is fallacy-free iff it does not entail a causal claim that is

false of the ground truth D (i.e., no false positive). Clarifying when S satisfies

that condition calls for some preliminary remarks on the phenomenon of

model ambiguities.

It is a frequent phenomenon in all methodological frameworks that

empirical data underdetermine their own causal modeling to the effect that

multiple models account for them equally well (e.g., Baumgartner and Thiem

2017; Eberhardt 2013; Spirtes et al. 2000:59-72). In cases of such ambigu-

ities, CCMs output all data-fitting models (and leave the disambiguation up

to the analyst). It follows that, if a CCM issues multiple models, it is not

thereby implying that all of these models correspond to the ground truth but

only that (at least) one of them does, and that—based on the available

evidence—it is undetermined which one exactly. The same holds if one of

FRscore, MaxFit, Conv8.0, or Conv0.75 selects multiple models, that is, if

S ¼ fm1;m2; . . . ;mng with n > 1. Such a result is to be interpreted dis-

junctively: The data-generating structure is:

m1 OR m2 OR ::: OR mn:

A disjunction is true iff at least one disjunct is true; and conversely, it is

false iff all disjuncts are false. Hence, in order for a set of models S to be

fallacy-free, it must not be the case that all models in S are false. This can

be satisfied in two ways: Either (i) S is empty (e.g., because chosen fit
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thresholds cannot be met) or (ii) S contains at least one model mi that is

correct of the ground truth D, which is the case iff mi is a submodel of D. So,

S satisfies our first benchmark criterion iff it satisfies conditions (i) or (ii).

The reader may wonder why we test a benchmark that can, in principle, be

passed by a trivial method producing empty outputs by default. The reason

is that such a method would be entirely uninformative, which would be

visible in its failing our third, completeness, benchmark; but an empty

output produced by a method that does not fail on completeness is a valu-

able piece of information entailing that the data do not warrant any causal

conclusions. The capacity to abstain from drawing causal inferences when

no such inferences are warranted is a crucial methodological asset that

deserves to be benchmarked.

In light of that specification of fallacy-freeness, our second benchmark

criterion is straightforwardly clarified. It focuses on non-empty sets S

only and checks whether condition (ii) is satisfied, meaning whether S

actually contains at least one model mi that is a submodel of D, and thus

correct. That is, while an empty set S passes the first benchmark, it does

not pass the second.10

Finally, our third benchmark criterion addresses the fact that the cor-

rectness of a model does not entail anything about its informativeness. In

other words, of two different models that are both submodels of the

ground truth D, one can be more complex than the other and, hence,

reveal D more completely. It is clear that the more complete correct model

is preferable. Hence, of two approaches that select correct models equally

reliably, the one whose selected models are more complete, on average, is

preferable. The completeness benchmark measures the degree to which the

correct models in S exhaustively reveal D. More specifically, the comple-

teness criterion amounts to the ratio of the complexity of the most com-

plex correct model in S to the complexity of D, where complexity of a

model is, again, understood as the number of exogenous factor values

contained in it.11 That is, contrary to the first and second benchmarks,

which can only be passed or not, the third benchmark can be passed by

degree.

Random Noise

In a first series of tests, we compare the performance of FRscore, MaxFit,

Conv0.8, and Conv0.75 on the above benchmarks when the analyzed data

feature randomly distributed noise, meaning randomly drawn cases incom-

patible with the ground truth. That performance depends on various
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parameters, such as the complexity of the ground truth, the sample size, or

the noise ratio. To vary these parameters (to some degree), we set up 12

different test types simulating data d from randomly generated ground

truths D comprising values of some (not necessarily all) of the crisp-set

factors in F ¼ fA;B;C;D;E;Fg. The 12 test types differ insofar as each of

them realizes one logically possible variation of the following parameters:

(1) number of outcomes in D, with a variation between one and two out-

comes; (2) sample size multiplier, with a variation between one and three

(i.e., one and three cases per configuration); and (3) ratio of cases in d
replaced by cases incompatible with D, with a variation between 0.05,

0.15, and 0.25. For transparency, the 12 test types are listed and numbered

in Table 3. In test 6, for example, we generate ground truths D with two

outcomes and simulate data d from each of them by, first, generating an

ideal data set did comprising one case per configuration and by, second,

replacing 15 percent of the cases in did by randomly drawn cases incompa-

tible with D. Importantly, in all of these tests, each case of did has equal

probability of being replaced by an incompatible case and all incompatible

cases have equal probability of being drawn.

One particular test trial, that is, one instance of a test type, consists in a

data set simulated according to the parameters of that type being sequentially

processed by FRscore, MaxFit, Conv0.8, and Conv0.75. The resulting four

sets of selected models are then benchmarked for fallacy-freeness, correct-

ness, and completeness. To get a statistically reliable performance

Table 3. The 12 Test Types of the Random Noise Series.

Test Type
No. of Outcomes

in D
Sample Size
Multiplier

Ratios of Incompatible
Cases

1 1 1 0.05
2 2 1 0.05
3 1 3 0.05
4 2 3 0.05
5 1 1 0.15
6 2 1 0.15
7 1 3 0.15
8 2 3 0.15
9 1 1 0.25
10 2 1 0.25
11 1 3 0.25
12 2 3 0.25
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assessment, we run 1,000 trials of each test type, yielding a total of

12� 1; 000 ¼ 12; 000 trials. The bar chart in Figure 2 plots the correspond-

ing benchmark scores for the four selection approaches averaged over all

12,000 trials.

These averaged results show that, across all different D complexities,

sample sizes, and ratios of incompatible cases, FRscore significantly outper-

forms the other approaches on the correctness benchmark. While only

including 1.38 models in S per trial, on average, FRscore finds a correct

model in 69 percent of the trials. The other approaches include over 1.45

models in S, which comprises a correct model in only 56 percent (Conv0.75),

44 percent (Conv0.8), and 46 percent (MaxFit) of the trials. FRscore also

scores highest on completeness, which demonstrates that the correct models

singled out by FRscore are not less informative than the models issued by the

other approaches. At the same time, the overall low completeness scores

indicate that, in the presence of up to 25 percent of cases incompatible with

D, CNA can only uncover a little over a third of D—which, roughly, corre-

sponds to the completeness restrictions Arel-Bundock (2019) has recently

exhibited for QCA. Finally, FRscore likewise has an edge over the other

approaches on the fallacy-freeness benchmark, which, to recall, can be

passed either by a correct or by an empty output. FRscore avoids a causal

fallacy in 80 percent of the trials (with 11 percent empty outputs), as opposed

to a score of 75 percent (19 percent empty) by Conv0.75, 76 percent (32
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Figure 2. Benchmark scores averaged over all 12,000 trials of the random-noise test
series. The top-right table provides the average number of models per trial selected
by an approach.
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percent empty) by Conv0.8, and 58 percent (12 percent empty) by MaxFit.

This shows once again that, while the false positive risk for (non-maximal)
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Figure 3. Benchmark scores broken down by the ratio of cases incompatible with D
(top), the sample size multiplier (middle), and the number of outcomes in D (bottom).
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conventional threshold settings is manageable, maximizing model fit is an

unsuitable approach to model selection.

To set these results into proper perspective, the three bar charts in Figure 3

break them down by the parameters varied in our 12 test types. The first chart

shows that FRscore scores highest on correctness at all noise ratios—by a

particularly large margin in high noise scenarios. While Conv0.75 and

Conv0.8 reach decent scores on fallacy-freeness even in the tests with 25

percent incompatible cases, they only find a correct model in, respectively,

20 percent and 12 percent of the trials, meaning that they mostly issue no

model at all, whereas FRscore still recovers a correct model in 40 percent of

the trials. At the same time, the most cautious approach, Conv0.8, which

typically abstains from drawing any causal inferences when processing the

most noisy data, avoids causal fallacies in 73 percent of the trials, while

FRscore only reaches 69 percent on fallacy-freeness. That is, in the tests

with 25 percent incompatible cases, FRscore comes with a slightly higher

false positive risk than Conv0.8, which, however, is counterbalanced by a

more than three times higher prospect of actually being rewarded by the

recovery of a correct model. While Conv0.8 has an advantage on complete-

ness in the tests with only 5 percent noise, the models selected by FRscore are

the most complete ones in all other tests.

The second chart in Figure 3 shows a similar edge of FRscore over the

other approaches as regard to correctness in all sample sizes. As is to be

expected, all benchmark scores are better in the larger sample sizes. MaxFit

is by far the most unreliable approach, in particular, in small-sized data:

While Conv0.75, Conv0.8, and FRscore avoid causal fallacies in over 70

percent of the trials, MaxFit misfires in half of the trials. Finally, the third

chart in Figure 3 plots the benchmarks against the complexity of D. These

results give rise to various questions. For instance, if D has two outcomes,

the scores on fallacy-freeness are significantly lower for all selection

approaches. That is, the complexity of the data-generating structure con-

siderably increases the false positive risk. At the same time, both Conv0.75

and FRscore have higher correctness scores if D has two outcomes. We do

not have explanations for either of these findings. They demonstrate that

the interdependence between the complexity of the data-generating struc-

ture and the reliability of corresponding CCM outputs is in need of further

scrutiny.
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Non-random Noise

Of course, cases incompatible with the data-generating structure may not be

equally probable. Certain types of measurement error may more frequently

occur than others or unmeasured variation of latent causes may confound the

data with a bias. In order to also assess the performance of FRscore in non-

random noise scenarios, we compare it with MaxFit, Conv0.8, and Conv0.75

in a second series of three additional classes of tests. Tests in class I are set up

analogously to our previous tests, that is, ground truths D are randomly

generated from the set of crisp-set factors F ¼ fA;B;C;D;E;Fg, and cases

in ideal data are replaced by cases incompatible with D. Now however,

incompatible cases are not selected with equal probability but such that 70

percent of them are identical. This shall simulate discovery contexts in which

certain types of measurement error are systematically repeated. In order for

this bias to be manifest in the data, we keep the ratio of incompatible cases

constant at 20 percent of the sample size. As before, we vary the number of

outcomes in D and the sample size multipliers, yielding a total of four test

types in class I (see Table 4).

Tests of classes II and III are set up differently. They do not simulate

noise due to measurement error but noise induced by an uncontrolled varia-

tion in latent causes. Instead of replacing cases in ideal data with incompa-

tible ones, we now draw ground truths and generate ideal data from which

we then eliminate columns corresponding to causally relevant factors. Tests

in classes II and III differ in the severity of the resulting data confounding. In

class II, ground truths are built from the factors in F with both one and two

Table 4. The Seven Test Types of the Non-random Noise Series.

Test
Type

No. of
Outcomes in D

Sample Size
Multiplier Noise

I1
I2
I3
I4

1
2
1
2

1
1
3
3

20% incompatible cases with
70% identicals

II1
II2

1
2

1
1

One varying latent cause

III1 2 1 One varying latent common
cause

Parkkinen and Baumgartner 25



outcomes, and one randomly selected causally relevant factor is eliminated

from the data. In class III, we only generate two-outcome structures with at

least one common cause of those two outcomes; we then eliminate that

common cause from the data, which yields a strong spurious dependence

of the two outcomes. To ensure that the data contain causally irrelevant

factors on a regular basis, as in all the other test types, we add an additional

factor to the set from which ground truths are drawn:

F0 ¼ fA;B;C;D;E;F;Gg. As the tests in classes II and III merely eliminate

columns from ideal data without inserting any incompatible cases, varying

the sample size multiplier cannot yield data with varying difference-making

evidence.12 Hence, we keep the sample size multiplier constant in these two

test classes. Table 4 provides an overview over all seven test types of this

test series.

As before, we run 1,000 trials of each test type. The bar charts in Figure 4

plot the benchmark scores averaged over all trials in each test class. The

main finding is that FRscore only has a clear edge over the other selection

approaches in the tests of class I. While the systematicity of the measure-

ment error drags down the overall performance of CNA significantly (as it

would for any method), it still holds that FRscore selects a correct model in

50 percent of the trials, which is about twice as much as the other

approaches. Moreover, its models are most complete—although at a low

level of 15 percent—and it likewise avoids causal fallacies most frequently

(54 percent). But the low scores of all approaches on the fallacy-freeness

benchmark exhibit that systematic measurement error is not reliably

detected by CNA, which, as a result, misfires where it should abstain from

drawing any causal inference.

This changes in the tests of class II. Conv0.8 reliably detects noise

induced by a variation of latent causes and avoids causal fallacies in 92

percent of the trials—mostly by abstaining from drawing an inference.

Although beaten by Conv0.8 on fallacy-freeness, FRscore (62 percent)

scores better than the other approaches on correctness. When it comes

to completeness, MaxFit scores highest (20 percent). The results in the

tests of class III are similar, albeit at a significantly lower level. When a

common cause of two observed factors is unmeasured, Conv0.8 avoids

fallacies in 67 percent of the trials. But also in these tests, FRscore

scores highest on correctness (44 percent). While Conv0.75 (43 percent)

recovers almost as many correct models as FRscore, it outputs nearly

twice as many models per trial. Finally, there is a tie between Conv0.75

and FRscore on the completeness benchmark, both recovering 9 percent

of the ground truth, on average. The Online Appendix provides
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additional plots breaking down those average scores by the varied

parameters.

Overall, while FRscore performs best on all benchmarks in the tests of

class I, it only scores higher than the other selection approaches on the

correctness benchmark in classes II and III. If there are varying latent causes,

there is a certain danger that FRscore is not cautious enough and produces

false positives that could be avoided by a more cautious selection approach

as Conv0.8.

Conclusion

This article has shown that maximizing consistency and coverage thresholds

in configurational causal modeling is a highly unreliable practice, even in the

presence of only mild degrees of noise. Maximizing model fit induces CCMs

to overfit at unacceptably high rates, which various critics of CCMs have

justifiably pointed out. The non-maximal threshold settings that have

evolved by convention over the years alleviate the overfitting danger con-

siderably—however, at the price of recovering data-generating structures

less completely than would be possible based on the available evidence

(i.e., underfitting) or of abstaining from drawing causal inferences altogether.

Overall, there is a clear need for complementing standard criteria of model fit

by further criteria of model selection.

To this end, we developed a criterion of fit-robustness which measures the

degree to which a model overlaps in its causal ascriptions with other models

inferred from re-analyzing data at systematically varied consistency and

coverage thresholds. The more overlap, the higher the (FR) score. We argued

that, contrary to robustness measures customary in statistical methods, which

reward model invariance, (FR) does justice to the fact that CCMs are

expressly built to mirror cross-case variation. (FR) allows for ample variation

among output models, as long as they are sub- or supermodels of one another

and, hence, do not make idiosyncratic causal ascriptions.

Contrary to recent robustness considerations in the methodological lit-

erature on CCMs, (FR) is straightforwardly computable based on the sub-

model relation, and we implemented it as an explicit R function. We

extensively benchmarked model selection based on (FR) in two test series,

one with random and one with non-random noise, comparing it to standard

approaches of model selection. If noise is randomly distributed, (FR) scor-

ing reduces the false positive risk by 5 to 22 percentage points, depending

on the alternative approach it is contrasted with, and it increases the

chances that a correct model—which is as complete about the ground truth
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as possible—is actually returned by 13 to 25 points. To top it off, this

maximization of correctness coupled with a minimization of the false pos-

itive risk is achieved while only issuing 1.38 models per trial, which

amounts to the lowest ambiguity ratio of all selection approaches. Hence,

if there is reason to assume that noise is randomly distributed, selecting

CCM models based on the measure of fit-robustness developed in this

article is unequivocally recommendable.

By contrast, in discovery contexts featuring non-randomly distributed

noise, for example, induced by systematic measurement error or confound-

ing, the overall performance of CCMs is so severely hampered that using a

standard selection approach, which cautiously abstains from drawing any

causal inferences if noise ratios are too high, might be the safer bet. But

even in non-random noise scenarios, analysts willing to take a risk are well

advised to select models based on the robustness measure developed in this

article because, although it does not minimize the false positive risk, it still

maximizes the chances of actually finding a correct model.
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Notes

1. For this inference to be valid, configurational comparative methods (CCMs)

assume that the data’s unmeasured causal background is homogeneous (Baum-

gartner and Thiem 2020).

2. A notable exception is Thiem (2014a), who conducts extensive data simulations

to determine how the choice of membership function and the anchoring of the

crossover threshold affect the coverage score of a single condition in fuzzy-set

QCA.

3. Thiem et al. (2016) have developed an interesting “method of combinatorial

computation” that calculates the probability that a conservative QCA solution

does not change under varying degrees of measurement error and data loss. But

on the one hand, that method is only applicable to parsimonious solutions with

some restrictions, and on the other, it does not tell us how the solutions change.

4. An expression is in disjunctive normal form if it is a disjunction of one or more

conjunctions of one or more literals (i.e., factors or their negations; see, e.g.,

Lemmon 1965:190).

5. Baumgartner and Thiem (2020) have moreover shown that data deficiencies as

limited diversity (fragmentation) or the inclusion of irrelevant factors in the

analysis do not increase the false positive risk.

6. None of QCA’s standard search strategies—conservative, intermediate, and par-

simonious—succeeds in finding (3); rather, QCA outputs model 1 in Table 1B at

all threshold settings in the interval ½0:75; 1�. The reason, roughly, is that fit

thresholds are not authoritative for model building for QCA. By contrast, Dusa

(2018) has recently presented a promising new minimization algorithm for QCA

called CCubes that—analogously to CNA—treats fit thresholds as authoritative.

Correspondingly, CCubes succeeds in inferring (3) from Table 1A at h0:85; 1i.
7. Arel-Bundock (2019) has recently presented an extended Monte Carlo simulation

highlighting the overfitting danger for QCA. Note, however, that Arel-Bundock’s

results are not directly comparable to the ones reported below, as we measure

different benchmark criteria (for our reasons, see notes 10 and 11) and use a

different CCM.

8. See Arel-Bundock (2019) for a precise assessment of the degree to which (non-

maximal) conventional threshold placement alleviates the overfitting danger for

QCA.

9. In general terms, m is determined by the re-analysis type as follows:

m ¼ k � h

l
þ 1

� �2
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10. The disjunction of fallacy-freeness and correctness is equivalent to the correct-

ness criterion used by Baumgartner and Ambühl (2020) and Baumgartner and

Thiem (2020). Arel-Bundock (2019) introduces a quantitative wrongness cri-

terion, which amounts to the proportion of submodels of a CCM model that

are not submodels of the ground truth. We do not work with this measure

(nor its negation) here because we take it to be inadequate: It double-counts

logically dependent mistakes in models. To illustrate, assume that

A�b�Dþ a�B�C $ E is the ground truth, and consider the incorrect models

(i) Aþ Bþ C $ E and (ii) A�b�Dþ a�Bþ C $ E. Arel-Bundock’s criterion

yields a wrongness of 0.286 for (i) and of 0.326 for (ii), even though they both

make one and the same mistake, namely, to disjunctively instead of conjunc-

tively concatenate B and C. Since, apart from that, (ii) makes many more true

claims about the ground truth than (i), its wrongness score should be lower than

(i)’s.

11. Our completeness criterion is not equivalent to Arel-Bundock’s (2019) criterion

by the same name. Arel-Bundock defines completeness as the proportion of

submodels of the ground truth that are also submodels of a CCM model. That

is, for him, a model reaches perfect completeness irrespective of how many false

causal claims it entails, as long as it features all causal relations contained in the

ground truth. In our view, completeness should measure the amount of true things

we learn about the ground truth from the model. Hence, a model that is not true in

the first place cannot be complete, which is why only correct models can be

complete according to our completeness criterion.

12. For a more extensive explanation of why varying the sample size cannot affect

the performance scores in tests of classes II and III, see the Online Appendix.
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