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Abstract

Today, the Norwegian Arthroplasty Register (NAR) works in a traditional way with statis
ticians who help prepare, conduct, and report on data analyses. Doctors and biomedical
engineers are often turning to the registry for the purpose of monitoring and answering their
research questions. Technologybased solutions may help facilitate and streamline the above
process, enabling users to interact and utilize this national database in a more accessible man
ner.

Using Design Science Research (DSR), we identified data mining tasks and set out to
deliver a Webbased system to streamline data mining on hip arthroplasty data. In a collabo
rative effort between backend and frontend developers, we implemented the prototype as a
Webbased application andmodeled the dataminingmethods after the KnowledgeDiscovery
in Databases (KDD) process.

The contribution of this thesis is a fully functional prototype for exploring arthroplasty
data and assessing hip implant performance. Among the implemented methods are Cox
Regression, KaplanMeier analysis, and Logistic Regression.

Based on the expert evaluation, we consider the novelty of the artifact to be twofold.
First, we bridge the gap between humans and statistical models by allowing endusers to
assess the quality of hip implants in a direct and more tailored manner. Second, we may
extend the system to include additional methods to meet diverse user needs.

Future work should further involve domain experts to suggest additional methods and
carry out a comprehensive evaluation in a real clinical setting.
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Chapter 1

Introduction

For more than half a decade, hip arthroplasty has helped relieve pain and restore normal hip
function to the hip joint making it one of the most successful and widely performed surgeries
today. The demand for Total Hip Arthroplasty (THA) is increasing worldwide, with more
than a million surgeries performed annually (Pivec et al., 2012, p. 1768). Improvements to
surgical techniques, new bearing surfaces, and implants have lowered revision rates and re
duced premature failure of hip implants. Hip replacement surgery owes part of its success to
national joint registries established in the 70s and early 80s to monitor and report on implant
survivorship (Lübbeke et al., 2018; Pivec et al., 2012).

The role of national registries is to collect and survey large amounts of data for differences
in outcome. If such a difference is determined, the registries will conduct further analysis
to identify which factors influence the outcome (Graves, 2010). Sweden established the
first such registry in 1979, and other Scandinavian countries followed shortly after in the
early 80s. Today, national registries are widespread and play a crucial in identifying the best
surgical practices and guidelines that lead to improved clinical outcomes of joint replacement
surgery (Lübbeke et al., 2018; Pivec et al., 2012; Graves, 2010). For example, research by
the NAR led to the identification of an underperforming implant widely used for THA in
Norway. The study observed that survival outcomes of the implant worsened from one period
to another and found that the deterioration coincided with changes in surgical techniques and
implant material (Hallan et al., 2012).

Increased demand for THA and the recently enforced EU regulation calls for surveil
lance of new implants that are introduced to the market (The European Commission, 2017;
Lübbeke et al., 2018). In turn, this require us to consult and review the data more often.
The registries are providing a great source of data and knowledge, but are still working in
a traditional way where annual and other reports are produced with the help of statisticians.
This research wants to design solutions that would enable interactive and streamlined data
analysis for users, which physicians, researchers, and other healthcare management staff can
utilize. Currently, there are no systems offering online data analysis on arthroplasty data in
Norway. This has motivated the research presented in this thesis that looked into possibilities
of data mining and implementation of a system which could help users perform automatic
analysis online. The artifact produced by this thesis enables users to carry out procedures
for assessing risk and predict the longevity of implants. Design Science was used as the
research framework that provided guidelines to design solutions for relevant stakeholders in
the arthroplasty domain.

Following are the research questions that were formulated to keep the research relevant
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and purposeful.

1.1 Research Questions
RQ 1: What are the qualities and characteristics of an outcome analysis tool for
THA?
RQ 2: What data mining methods are useful for outcome analysis in THA?
RQ 3: Can KDD lower the barrier of entry and allow medical staff to analyze
hip arthroplasty data without the need for a statistical background?

1.2 Collaborative Aspect
This thesis benefits from contemporary work from three other collaborators that each pro
vided a distinct contribution to the project. The outcome of the collaboration is a prototypical
data exploration and outcome analysis tool for a national joint registry. Two students have
focused on data mining, and the latter two on HumanComputer Interaction (HCI) and data
visualization. The project further makes a distinction between data mining designated for hip
and knee arthroplasty data. The students working on data mining have maintained a close
collaboration and supplied the two other students with data for visualization and data min
ing methods for their prototype. Although the focus of this thesis is primarily on applying
data mining methods to hip arthroplsty data, we produced a minimal frontend application
to validate and showcase our methods.

1.3 Thesis Outline
Chapter 2: Theory presents related work, THA, the national arthroplasty register, and the
theoretical framework for the practical work of this thesis.
Chapter 3: Methodology and Methods presents the methodologies and methods used in
this work.
Chapter 4: Establishing Requirements describes the functional and nonfunctional
requirements of the system, and the technologies used for the prototype.
Chapter 5: Data Material describes the data sample provided for this research.
Chapter 6: Prototype Development presents the system architecture and workflow, and a
detailed outline of the four development iterations of this project.
Chapter 7: Artifact presents the resulting artifact produced by this thesis.
Chapter 8: Evaluation presents feedback from the evaluation with IT and domain experts.
We also present results from the System Usability Scale questionnaire.
Chapter 9: Discussion provides a discussion of the prototype development, data mining
tasks, artifact evaluation, and limitations of this research work.
Chapter 10: Conclusion and Future Work concludes and summarizes the work. Directions
for future work are outlined at the end.



Chapter 2

Theory

2.1 Related work
In this section, we present related work and provide background material of the NAR. We
also provide a theoretical framework for the practical work of this thesis. Specifically, we
provide a short introduction to machine learning and survival analysis.

2.1.1 Mining for individual patient outcome prediction in hip
arthroplasty registry data

Kristoffersen (2019) explored the applicability of applying machine learning techniques on
a hip arthroplasty dataset from the NAR. Using a data mining based approach, Kristoffersen
investigated the efficacy of using unsupervised and supervised learning to predict individual
patient outcomes. The author conducted an initial data analysis phase to identify dependent
and potential independent variables in the dataset. Cluster analysis was used to identify
similarities and distinctions between different patient groups. The analysis found that age
was more or less similarly distributed across clusters, and neither males nor females were
associated with worse survival outcomes. A similar proportion of men and females was
found for revision rates, indicating no disproportionate distributions for either sex in the
dataset. The survival length of the prosthetic device and a dichotomous indicator for revision
surgery was used as target labels. The survival length of the prosthetic device was modeled
as a binary outcome feature, partitioning examples into two target classes. (1) Those with a
survival length under eight years and (2) those at eight years or more. Both target classes had
approximately the same level of support  54% of the sample required revision within eight
years, whereas the remaining 46% lasted over eight years. Excluded from the analysis, was
deceased patients and patients not actively monitored by the register. Kristoffersen trained
the model on features known at the time of primary surgery. Examples of such features
are patient information, device materials, and reason for indication (Kristoffersen, 2019, p.
6567).

Three different classifiers were tested  Logistic Regression, Random Forest and a Multi
layer Perceptron Classifier (MLP). Among these, the MLP performed best, resulting in an
outcome that mirrors the real empirical outcome. Approximately 54% of the examples were
classified with a survival duration below eight years and 47% above eight years. However,
performance measures for the classifier were less impressive. The confusion matrix shows a
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False Positive Rate (FPR) of 18%. In other words, nearly 1/5 of all classified examples was
wrongly assigned to false positive outcomes. The False Negative Rate (FNR) was measured
at 15%, indicating that the classifier is less likely to falsely assign a negative label to an
example that belongs to the positive class (Kristoffersen, 2019, pp. 6668). In the best
case, Kristoffersen (2019) obtained an area under the curve score of 0.75 for the Multilayer
perceptron classifier. The other models performed insufficient for practical use.

Kristoffersen suggests that more variance in the dataset and more details about specific
prosthesis can boost performance further (Kristoffersen, 2019, p. 78). As future work, he
encourages the idea of combining the models and methods into a “full software solution” for
use in a realworld environment to aid decision making in hip arthroplasty surgery (Kristof
fersen, 2019, p. 79).

2.1.2 HALE, the Hip Arthroplasty Longevity Estimation system

Most hip prostheses are successful shortterm— approximately 90% of all hip implants last
over ten years. However, complications leading to revision surgery can arise. Typically,
revisions occur due to loosening of prosthesis’. Other indications for revision are bacte
rial infection, wear, and fracture (Hallan, 2007). To better understand why and when pros
theses fail, Longberg (2018) developed the Hip Arthroplasty Longevity Estimation system
(HALE). HALE is a fullyworking prototype aimed at physicians for the purpose of predict
ing hip prosthesis longevity in patients. The project seeks to investigate the efficacy of using
machine learning to predict longevity presurgically in order to find the most suitable and
effective installment. A distinctive feature of HALE is the inclusion of a UI to lessen the
entry barrier and involve medical practitioners without the need for a background in statistics
or informatics (Longberg, 2018, p. 1).

Longberg pursued two different approaches of predictive modeling  multiple regres
sion analysis and optimized classification and decision tree regression (CART). For the user
centered part of HALE, multiple linear regression (MLR) was chosen, since it offered better
performance than decision tree regression (Longberg, 2018, p. 68).

The models were validated using SPSS  a wellknown, validated statistical analysis tool
from IBM (SPSS Inc., 2021). The MLR model showed comparable performance to a simi
larly constructed linear regression procedure from SPSS both in terms of accuracy and per
formance (Longberg, 2018, p. 72).

The usability of the systemwas assessed using semistructured interviews, heuristic eval
uation, and the SUS method. Feedback from the evaluation suggests users found the system
easy to explore and appealing in terms of functionality. Others perceived it as being a bit too
technical (Longberg, 2018, p. 73).

Statistical evaluation found that predicted longevity outcomes were ’reasonably good’
and that that the machine learning component was manageable to use by novice users. Sim
ilarly to Kristoffersen (2019), Longberg recognizes the dataset as a limiting factor of his
research. In conclusion, Longberg argues that the performance of the models can be further
improved using a larger dataset with additional clinical variables.
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2.1.3 Multiple Imputation in Predictive Modeling of Arthroplasty
Database

In this thesis, Berge (2019) explores the possibility of using data mining techniques to fore
cast individual patient outcomes in THA. DSR was used as the research methodology and
KDD was used for the data mining process. Haukeland University Hospital provided Berge
with two small datasets of failed cases of THA. Berge’s approach to data mining is twofold.
First, he investigates the completeness of the data by analyzing it for missing data. Then, an
attempt is made to fill in the missing values by means of multiple imputation – a technique
for replacing missing values in data. The second part of the paper deals with the development
of a webbased prediction tool for THA patients. Berge used the programming language R
for both aspects of his work (R Development Core Team, 2004).

The first dataset was an unstructured and distorted spreadsheet with tables that appeared
to be out of place and without context. Figures without explanations were scattered around,
and parts of the spreadsheet were formatted with colors that had no clear interpretation. Due
to the difficulties of relating these tables and figures to the main table, only the main table
was extracted and exported to a more friendly format for data analysis. The result was a
commaseparated values (CSV) file with 27 observations and 47 variables. Berge used R
to analyze the data completeness and found that roughly 1/5 of the values were missing.
Variables relating to the wear of a prosthesis, osteolysis, and trace metals found in the blood
were the most frequently missing variables in the dataset. The second dataset was in much
better condition with less missing data, containing more observations, and the number of
variables reduced to half of the original dataset (Berge, 2019, pp. 3639). An interesting
aspect of Berge’s work is the visualizations that he made of missing data. For example, a
”missingness pattern” plot and a bar chart showing the proportion of missing values for each
variable are featured. These visualizations offer an easy and straightforward interpretation
of the dataset’s completeness.

Multivariate Imputation by Chained Equations (MICE), a software package in R, was
used for the imputation phase of his work (van Buuren, 2021). Although imputation was
performed on both datasets, the first dataset was primarily used for experimentation with
methods and parameter tuning (Berge, 2019, p. 47). For the second dataset, Berge tuned
parameters of the methods based on guidelines from the literature. The results of the impu
tation were assessed using density plots, scatter plots, and convergence plots. The plots show
that the imputed data holds a similar shape to the original data, indicating that the imputa
tion was effective, although some deviation was present. The prototypical prediction tool
was made with R Shiny  a software package in R that allow for the creation of interactive
web applications (RStudio, Inc, 2021). Berge’s tool features a linear regression component
to perform simple linear regression. The tool allows the user to input an independent and
dependent variable and be presented with detailed results from running the analysis. After
performing the regression analysis, users are presented with a regression plot and a detailed
summary, including pvalues, rstatistic, r2 and other statistical metrics. With regards to the
imputed datasets, the predictive accuracy of linear regression was somewhat ambiguous. In
some cases, improvements were observed and in other cases not (Berge, 2019, pp. 7477).
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2.2 Total Hip Arthroplasty (THA)

The hip joint is a ballandsocket joint located between the femur and acetabulum of the
pelvis. Its primary function is to support the weight of the body during static posture or
movement. The upper end of the femur is the femoral head (ball) which inserts into the
acetabulum (socket) of the pelvis. The ball and socket are coated with a layer of thin tis
sue, called articular cartilage, enabling them to move smoothly. The hip joint itself is bond
together with ligaments (tissue) and coated with a tissue called synovial membrane that pro
duces a lubricating fluid within the cartilage to avoid friction during hip movement (Foran,
2015).

The most common cause of chronic hip pain is arthritis, but fracture, diseases, and dislo
cation due to injury can also cause pain. For example, in children, medical conditions may
disrupt normal hip growth and lead to arthritis (Foran, 2015). Damage to the hip can be
painful and restrict the mobility of the hip  limiting one’s ability to perform daily activities.
In some cases, getting in and out of bed can be a strenuous and painful task. Depending
on the severity of the damage, medications and lifestyle changes may be sufficient to re
lieve pain and hasten the recovery process. In other cases, replacing the injured parts with
artificially constructed components, known as prostheses, may be required. Such artificial
replacement of a hip joint is known as hip replacement surgery (hip arthroplasty) and is a
standard procedure, commonly performed on elderly affected by osteoarthritis.

Today, hip arthroplasty is performed successfully across all age groups. We can group the
practice into two types of procedures  THA and hemiarthroplasty. THA replaces both the
femoral head and acetabulum, while hemiarthroplasty replaces only the femoral head (Foran,
2015). In 2018, in Norway, the average age of patients receiving surgery was 67 for men and
68.9 for women. The majority of patients are women, and the primary cause of indication
is osteoarthritis at 79% (on Arthroplasty and Fractures, 2019, p. 9). For younger patients,
the primary indications appear to be paediatric hip diseases (33%), systematic inflammatory
disease (23%), and avascular necrosis (21%). In younger patients, osteoarthritis accounts for
only 4% out of all other indications (Halvorsen et al., 2019).

2.3 The Norwegian Arthroplasty Register (NAR)

Since its inception in 1987, the NAR has recorded 233 142 hip arthroplasties with a steady
increase of surgeries each year. In 2018, a total of 9 553 primary surgeries were performed,
along with 1 422 revisions. The latter amounts to a revision rate of 12.8% which is the
lowest revision rate in the history of the register. All interventions are regularly reported to
the register. Therefore, prior to surgery, surgeons are required to fill out a standardized form
concerning details about the planned surgery (onArthroplasty and Fractures, 2019, p. 9). The
information collected by the register includes, but is not limited to, patient demographics,
indication for THA (diagnosis), surgical procedure, implant and revision information (Dale
et al., 2011, pp. 647648).
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2.3.1 Data validity

The validity of a register are typically measured across four major axis’: (1) coverage, (2)
registration completeness of patients/surgeries, (3) registration completeness of recorded
variables, and (4) accuracy of the registered variables (Varnum et al., 2019, p. 338). The
coverage is the proportion of departments reporting to the national registers out of the to
tal number of departments performing arthroplasty. Coverage is generally high in Nordic
countries because the authorities reimburse the orthopedic departments for reporting to the
registers (Varnum et al., 2019, p. 338). Additionally, annual reports are provided to par
ticipating departments with results from each department, which further helps incentivize
reporting of operations to the registers (Furnes and Havelin, 2002, p. 40). The completeness
of registration is measure of how well the register reflects the data reported to the national
patient registers (Furnes and Havelin, 2002, p. 40)(Varnum et al., 2019, p. 338). In Norway,
the completeness of registration is quite high. From 20082012, the completeness of regis
tration was 96.6% for THA and 95.3% for primary knee surgeries (Pedersen and Fenstad,
2016, p. 19). Another aspect concerning the validity of registers is the registration complete
ness of variables. This refers to the proportion of variables registered by the surgeons out of
the total number of variables recorded by the register. The final axis concerns the accuracy
of the information (variables) provided by the surgeons. The accuracy is the probability that
the variables reported to the register are correct. Since the data is used to assess the quality
of prostheses, the information must be correct and give an accurate description of the surgery
performed by the surgeon. In Denmark, the accuracy of variables is evaluated in annual re
ports. The accuracy of variables in the NAR have also been studied (Pedersen and Fenstad,
2016, pp. 1820).

Arthursson et al. (2005) assessed the quality and validity of the data recorded by the
NAR by comparing it to data recorded by the Norwegian Patient Register (NPR) and a local
hospital. They found the register a valid, reliable, and an excellent source of information for
clinical data on THA. The study reviewed 5 134 THAs and revisions performed at a single
hospital between 1987 and 2003. KaplanMeier survival curves were compared across the
two registers to evaluate the possibility of missing data. Out of the 5 134 operations, only
19 (0.4%) were missing from the NAR (Arthursson et al., 2005, p. 823). In comparison,
47 operations or 3.4% were missing from the NPR. In 56 cases (1.1%), the date of surgery
was misreported in the NAR. 85% of these errors were tracked back to the surgeon. The
remaining 15% occurred due to typing errors at the NAR (Arthursson et al., 2005, p. 825).

The NAR is considered a highquality and successful arthroplasty register. In fact, all
Nordic countries maintain registers with high standards and are often considered the “ideal”
for other countries to model their register upon. This success is due to a collaborative ef
fort between the Nordic countries to standardize data collection, variables, and statistical
methods. The collaboration was established in 2007 as the Nordic Arthroplasty Register
Association (NARA), and their aim is to improve the quality of treatment and research of
joint replacement surgery (Pedersen and Fenstad, 2016). The idea is, that by agreeing upon
a common dataset and statistical methods, research done on one register is more likely to be
applicable and comparable to another. In turn, that should lead to better research quality and
eventually, improved quality of treatment (Pedersen and Fenstad, 2016).
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2.3.2 Scientific landscape

Citation and coauthor analysis was conducted to map out the scientific landscape of pub
lications related to the NAR and the NARA. The purpose was to identify key figures and
review the influence of NAR and NARA. Analyses were performed using VOSviewer, a
software package for creating and visualizing bibliometric networks (van Eck and Waltman,
2020). Bibliographic data was obtained from Web of Science by doing an advanced search
for publications referencing the Norwegian Arthroplasty Register and Nordic Arthroplasty
Register Association, as well as their respective acronyms. The search was further restricted
to items including the word “hip” at least once and papers published before 1987 were ex
cluded. Due to exportation limitations with Web of Science, citation analysis was restricted
to items published in the Web of Science Core Collections. Data for the coauthor analysis
was searched across all available databases at the Web of Science.

Two datasets were exported from Web of Science and imported into VOSViewer. The
unit of analysis was ‘Author’ for both the citation and coauthor analysis. This means that
a node in the network represents an author and that the size of that node is determined by
the number of documents published by that author. In the citation analysis, the relatedness
of nodes is determined by the number of times they cite each other. Thus, authors who tend
to cite each other will have a stronger link, and the edge between them will appear thicker.
In the coauthor analysis, the relatedness of nodes is determined based on their number of
coauthored documents. Thus, authors who tend to appear in the same documents will have a
stronger link and the edge between them will appear thicker. The color of the nodes indicates
which cluster they belong to. Authors with less than five documents were excluded from
the analysis to avoid cluttered visualizations and many outliers. For the same reason, the
minimum link strength was set to 5. Therefore, there may be authors who have been omitted
from the analysis, and some authors may appear to be disconnected from each other even if
there is a connection between them. It is also possible, but unlikely that the sample from the
Web of Science is not representative of the actual scientific landscape.

Figure 2.1 shows the result of the citation analysis. The largest nodes in the network
appear to be Ove Furnes and AnneM. Fenstad, with 27 and 21 documents. Alma B. Pedersen
is the thirdlargest node with 19 documents. Leif I. Havelin comes fourth with 17 documents.
Johan Karrholm and Søren Overgaard follow closely with 16 documents each. Karrholm and
Overgaard serve as the directors of the Hip Arthroplasty Register in Sweden and Denmark,
respectively (Höftprotesregistret, nd; Register, nd). Interestingly, all of these authors are
connected with a link strength of 33 or greater. The authors have Scandinavian names and
apart from a few exceptions, most of them have a link to each other which shows the extent
of collaboration between the Nordic countries.

Furthermore, there appears to be a strong link between the current and former director
of the NAR, Ove Furnes, and Leif I. Havelin. Furnes is Havelin’s strongest link with a link
strength of 42. Havelin founded the register together with Lars B. Engesæter and served as
the director from 1987 until 2002. Cofounder Engesæter is also one of Havelin’s strongest
links. Havelin has since worked as a chief physician at the Department of Orthopaedics,
Haukeland University Hospital (Tidsskriftet, nd). In 2019, Havelin and Engesæter received
the Knight 1st Class award from the Order of St. Olav for their contributions to orthopedics
(Kongehuset, 2018). As of June 2021, Furnes is the acting director of NAR (on Arthroplasty
and Fractures, nd).
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Furnes, together with my supervisor Dr. Ankica Babic, are the driving forces behind the
collaboration between the Department of Information and Media Studies at the University
of Bergen and the register, which has arranged for the execution of several master’s theses
in recent years. There has also been produced research with Dr. Peter Ellison and researcher
and engineer Paul Johan Høl from the Biomedical Engineering Laboratory at Haukeland
University Hospital. Table 2.1 provides an overview of master theses´ executed under the
supervision of Dr. Ankica Babic and the collaboration with the register.
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Figure 2.1: Network visualization of the citation analysis of publications related to the NAR.

Figure 2.2 shows the result of the coauthor analysis. The largest node in the network is
Ove Furnes with a total of 74 documents. The second largest is Leif I. Havelin with a total of
57 documents. Both of these nodes appear in the same cluster and are considerably larger than
other nodes in the network. There are three clusters in total, but one of them seems to bemore
or less disconnected from the rest of the network. The other two clusters seem to be ordered
according to geographic origin. The green cluster consists exclusively of Norwegian authors,
while the red cluster contains a mixture of Scandinavian nationalities. This may indicate that
Norwegian authors work closely together and are often involved in work together. There is
at least one link between Furnes and every single author in the red cluster. The same is true
for Havelin. Furnes and Havelin’s extensive network probably reflect their leadership roles.
Statistician AnneMarie Fenstad employed by NAR is clustered together in the red cluster
despite her Norwegian nationality. She appears as a highly connected node with many ties
to authors from other countries in Scandinavia.



10 2. Theory

malchau, henrik

fevang, bjorg-tilde s.

gjertsen, jan-erik

pulkkinen, pekka

dybvik, eva

makela, keijo t.

makela, keijo

dale, havard

garellick, goran

nordsletten, lars

espehaug, birgitte

eskelinen, antti

pedersen, alma b.

overgaard, soren

karrholm, johan

fenstad, anne m.

lie, stein a.

hallan, geir

engesaeter, lars b.

havelin, leif i.

furnes, ove

VOSviewer

Figure 2.2: Network visualization of the coauthorship analysis of publications related to the
NAR.

Overall, the network of authors referencing the NAR and NARA are mostly authors of
Scandinavian origin. Although not depicted in Figure 2.2 and 2.1 , there are also articles
by authors outside of Scandinavia such as England, Japan, Australia, Netherlands, and the
USA. These authors did not meet the threshold for inclusion. Furthermore, apart from a few
outliers, most nodes seem to be highly connected, both within and across other clusters. The
most influential nodes in the network seem to be the registries’ leaders, both current and
past. They have ties to most other nodes in the network. In addition, these authors have
considerably more publications attributed to them than other nodes in the network. In the
coauthor analysis, there is a cluster that consists exclusively of Norwegian authors while
the other large cluster contains a mixture of Scandinavian authors.
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Paper Year

Berntsen, Eirik Information system for postmarket
surveillance of total joint prostheses 2014

Ertkjern, Ørjan Postmarket Surveillance of
Orthopaedic Implants using
Webtechnologies

2015

Åserød, Hanne Mobile Design For Adverse Event
Reporting And Pharmacovigilance 2017

Carlsen, Tor Aimar Designing an elearning platform
for patients undergoing hip
replacement surgerys

2018

Krumsvik, Ole Andreas A SelfReporting Tool to Reduce
the Occurrence of Postoperative
Adverse Events After Total Hip
Arthroplasty

2017

Longberg, PerNiklas HALE, the Hip Arthroplasty
Longevity Estimation system 2018

Berge, Øyvind Svenning Multiple Imputation in Predictive
Modeling of Arthroplasty Database 2019

Kristoffersen, Yngve Mining for individual patient
outcome prediction in hip
arthroplasty registry data

2019

Iden, Andreas Data Mining Approach to
Modelling of Outcomes in Total
Knee Arthroplasty

2020

Blom StoltNielsen, Sunniva Design Driven Development of a
WebEnabled System for Data
Mining in Arthroplasty Registry

2021

Farsund Solheim, Arle Arthroplasty Data Visualization
2021

Ånneland, Sølve Webbased Data Mining Tool for
Total Knee Arthroplasty 2021

T. Hufthammer, Knut. Data Mining For Outcome Analysis
In Hip Arthroplasty

2021

Table 2.1: Master theses executed under the supervision of Assoc. Prof. Ankica Babic and
the collaboration with the register.
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2.4 Machine learning

Machine learning is the practice of applying algorithms to build statistical models that can aid
in decision making in a specific application area. These statistical models attempts to learn a
mathematical function from a dataset or collection of past observations to make inferences
about future observations. Typically, this dataset is divided into two separate ones for which
the larger portion is used to train the model whereas the remaining part is used to assess
the quality of the model (validation) (Burkov, 2019, p. 3). The performance or validity of
a model is often evaluated in terms of its accuracy, precision, recall rate, and ROC curve
(Burkov, 2019, p. 65).

Accuracy refers to the proportion of correct predictions in the set of all predicted out
comes. Precision is the proportion of true values to the total number of predicted positive
values. Recall is the ratio of correctly predicted positive values to the overall number of pos
itive instances in the training set (Burkov, 2019, p. 6667). Ideally, you would want to have
high precision and high recall, but this is often difficult to achieve. Optimizing one metric is
likely to affect others negatively. Therefore, which metric to optimize for is usually chosen
on a casebycase basis (Burkov, 2019, p. 66). For instance, in spam detection, misreporting
a legitimate email can be costly. However, misreporting a small amount of spam is unlikely
to have negative consequence. In such case, it may be acceptable to sacrifice recall in favor
of precision gains. However, in other cases, such as medical diagnosis, one must maintain a
fine balance between precision and recall. On the one hand, it is required that the classifier
is precise. Moreover, it is important to exhaust every possibility to identify the right diagno
sis, since missing one could be costly. In such cases, visualization techniques like the ROC
curve can come in handy. ROC shows how the relationship between recall and precision
fluctuates in accordance with changes in the threshold for identifying a positive outcome in
the model (Burkov, 2019, pp. 6768).

We tend to differ between four types of machine learning  supervised, semisupervised,
unsupervised and reinforcement learning (Burkov, 2019, pp. 34). In supervised learning,
we use a dataset of labeled examples to learn a function that can predict the outcomes of
future observations. The objective is to model the relationship between a set of indepen
dent variables and a dependent variable. The independent variables are sometimes referred
to as features or predictors and are used to predict the value of the independent variable.
Dependent variables are either from a continuous or discrete distribution. When the depen
dent variable is continuous, we use regression algorithms to model the relationship (Burkov,
2019, pp. 325). Examples of such algorithms are Simple Linear Regression and Multiple
Linear Regression (Géron, 2019, pp. 89). The goal is to fit a regression line that best fits
the observed data points in our dataset. In linear regression, a common way of estimating
the regression line is using the leastsquares method. The leastsquares method fits the re
gression line by minimizing the squared sum of distances between the observed data points
and the line we are trying to fit. The distances between the observed points and the line is
known as residuals. Thus, more succinctly, we say we want to minimize the squared sum of
the residuals (Géron, 2019, p. 113).

For discrete variables, we use a class of algorithms known as classification algorithms.
Examples are Logistic Regression and Naïve Bayes Classifier. The former is not inherently
a classification algorithm, but is commonly used in conjunction with a decision boundary to
form a binary classifier. Rather than fitting a straight line through the observed data points
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like in linear regression, Logistic Regression fits a Sshaped curve using the logistic function
 a type of sigmoid function. A decision boundary is then drawn on the line, effectively
functioning as a cutoff point to partition examples into one of two classes (Géron, 2019,
85107). In classification problems, the dependent variable is analogous to a target variable.
The target variable can take on a set of outcomes known as classes. A classification task with
only two target classes is known as binary classification. Likewise, classification with more
than two targets, is known as multiclass classification. We refer to models trained on a set
of examples as classifiers. These classifiers have learned the function that allows them to
assign (or predict) labels of future observations. The predicted label must correspond to one
of the predefined target classes. For example, in a binary outcome problem, these classesmay
be unmarried/married or dead/alive. Binary and multiclass classifiers designate exactly one
label per example. Classification problems requiring more than one label per example should
use a multilabel classification algorithm. Examples of such algorithms are Random Forest
and MLP (Géron, 2019, pp. 85107). Scikitlearn offers a comprehensive documentation
with a detailed overview of algorithms for binary, multiclass, and multilabel classification
(Pedregosa et al., 2011).

In unsupervised learning, there are no predefined target labels to predict. Instead, we aim
to partition examples into clusters or groups based on their similarity to each other. This type
of learning is suitable for exploring unknown data and problems where the outcome is not yet
known. Typical use cases of unsupervised learning are clustering, dimensionality reduction,
and outlier detection (Burkov, 2019, p. 8).

In clustering, we aim to categorize examples based on shared attributes to identify qual
ities that separate one group from another. One of the most popular clustering algorithms is
kmeans  a very efficient technique to group data into k number of clusters (Géron, 2019,
pp. 236241). The main challenge with clustering is choosing how to sort the data and how
many clusters to group the data into. Depending on the configuration, different angles or
perspectives can emerge from the data. If we have too few clusters, we fail to capture the
underlying structure of the data, and no interesting patterns emerge. In that case, the model
is underfitted to the data. On the other hand, if we allow too many clusters, we may risk
corresponding the model too closely to the underlying dataset. In that case, the model is
overfitted to the data, and the clusters become difficult to interpret (Géron, 2019, pp. 2729).
It seems to be an art to interpret results of cluster analysis, it usually demands expertise and
some experience with the field of research.

With dimensionality reduction, the objective is to transform each feature vector to a lower
dimensionality or a simplified representation. It is the process of removing redundant or
highly correlated features and the overall noise in the data. Dimensionality reduction is of
ten used to project high dimensional spaces onto a lower dimensionality that is more suitable
for visualization. With a simplified representation, we can take advantage of visualizations
to uncover insightful patterns or apply other machine learning techniques such as regression
analysis for further analysis (Burkov, 2019, p. 130). One of the traditional approaches to
dimensionality reduction is Principal Component Analysis (PCA). This technique was re
cently applied by Iden in his work with Total Knee Arthroplasty (TKA) data (Iden, 2020).
The application of Principal Component Analysis (PCA) showed potential for descriptive
modeling and was advocated for its usefulness in scenarios with a large number of variables
(Iden, 2020, pp. 5657).

In outlier detection, we attempt to detect examples within the dataset that differ from the
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typical example in the dataset. Such analysis can be very important in assessing the signifi
cance of our findings since outliers can skew our results in a particular direction. Therefore,
outlier detection is commonly used as a preprocessing step to remove anomalies in datasets.
Oneclass classification learning algorithms is typically used for detecting outliers (Burkov,
2019, p. 90).

Algorithms that work with both unlabeled and labeled data are known as semisupervised
learning. The few labeled examples are used to train a supervised model. Then, the remain
ing examples are used with an unsupervised algorithm to improve the performance of the su
pervised model. These algorithms combine unsupervised and supervised techniques (Géron,
2019, p. 13).

2.5 Survival Analysis
The following section gives a short introduction to survival analysis and its terminology. A
complete introduction to survival analysis falls out of the scope of this text  only concepts
and methods relevant to this thesis are presented. More detailed descriptions can be found
in the literature 1. The formulas and mathematical notation that follow have been adopted
from Kleinbaum and Klein, 2012.

Survival analysis is a statistical discipline originating from the medical community in
the seventeenth century. Initially used to study lifetimes in demographic groups, survival
analysis is today an integrated component of theoretical statistics. It has expanded to other
fields such as engineering, behavioral, and actuarial sciences (Andersen and Keiding, 2005).

In survival analysis, the object of study is timetoevent data, and the response or outcome
variable is time until an event occurs 2. Time begins with the followup or ‘birth’ event of an
individual and elapses until a death event (death, relapse, failure) occurs. Individuals who are
lost to followup before the observational period ends, are said to be censored. Individuals
becomes lost to followup due to external circumstances preventing us from recording their
lifetime history (Kleinbaum and Klein, 2012, pp. 46). For example, the individual may go
missing, withdraw from the study or move abroad. Furthermore, individuals whose survival
time is greater than the observed survival time are said to be rightcensored. For right
censored individuals, we only know their observed lifetime, not their actual lifetime. In other
words, we know that the individual survived up to some point in time, but the exact duration
remains unknown. One of the core assumptions in survival analysis is that censorship is
regarded as noninformative. That is, we regard censored individuals as having the same
survival prospect as their uncensored counterparts (Kleinbaum and Klein, 2012, p. 58).

The two primary tools for modeling lifetime data in survival analysis are the survival
and hazard function (Kleinbaum and Klein, 2012, p. 8). The survival function S(t) defines
the probability of survival past time T and can be calculated by subtracting the Cumulative
Distribution Function (CDF) F (t) from one. Formally, we have:

S(t) = 1− F (t) = Pr(T > t) (2.1)

Here, T is a nonnegative random number denoting the time of death. The lowercase t
1See Kleinbaum and Klein (2012) for an introductory text to survival analysis
2The outcome variable is time until an event occurs
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denotes a specific value for T . Thus, Pr(T > t) is the probability of survival past time t, i.e.
the probability that the time of death T is greater than t.

The survival function has the following properties:

• S(t) is monotonically decreasing as time t increases, i.e., S(1) ≥ S(2), S(3), ..., S(n−
1) ≥ S(n)

• S(0) = 1. The probability of survival past time 0 is 1.

• S(t) tends to 0 as t → ∞. The probability of survival will tend towards 0 as t ap
proaches∞ (Kleinbaum and Klein, 2012, pp. 89).

Furthermore, by computing the derivative of the survival function, we obtain a Proba
bility Density Function (PDF):

f(t) =
dS(t)

dt
(2.2)

Likewise, integrating over the PDF from t to∞ gives us the survival function:

S(t) =

∞∫
t

f(t)dt (2.3)

Note that to obtain the survival function, we integrate from t → ∞ over the PDF. Con
versely, to get the CDF we integrate from 0 → t over the PDF. Since the total probability
must equal one, we have that one minus the CDF of t is the probability of surviving past T .

The second tool for modeling timetoevent data in survival analysis is the hazard func
tion. The hazard function gives the instantaneous potential for an event to occur within a unit
of time, t, conditioned that the individual has survived up to time t 3. The hazard function,
h(t), is defined as follows:

h(t) = lim
∆t→0

P (t ≤ T ≤ t+∆t|T ≥ t)

∆t
(2.4)

Here ∆t is a unit of time. The numerator to the right of the limit is a conditional prob
ability statement, i.e., a statement in the form of P (A|B) (probability of A given B). The
expression to the left of the ’given’ part of the conditional probability statement describes
the interval that the event occurs between t and t plus some unit of time ∆t. The value ob
tained from the function is a rate since we calculate the ratio of two quantities  a probability
(numerator) and a unit of time (denominator) 4. The result is the rate of occurrences at time
t or the probability of having an event per unit of time. The output of the hazard function
varies depending on the unit of time used (hours, days, years, etc.) and can take on values
ranging from 0 up to infinity (Kleinbaum and Klein, 2012, pp. 912). A hazard ratio of one
means that the exposure variable does not affect the outcome variable. A hazard ratio greater
than one indicates that the exposure variable is a risk factor having a negative effect on the
outcome variable. Conversely, a hazard ratio less than one means that the exposure variable
is a protective factor, positively affecting the outcome variable (Kleinbaum and Klein, 2012,
p. 33).

3The hazard ratio gives the instantaneous potential for an event to occur at time t given that the individual
has survived up to time t.
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Hereafter, I will refer to the survival and hazard function simply as S(t) and h(t), respec
tively.

2.5.1 KaplanMeier
There are several ways in which we can model or approximate S(t) and h(t). These ap
proaches can be grouped into nonparametric, semiparametric, and parametricmodels. Non
parametric models do not impose any assumptions on the distribution of the data. In particu
lar, nonparametric models do not assume that the distribution holds a specific shape or form.
An example of such a model is the KM 5. In this model, the survival curve is plotted using
a piecewise constant function (step function) where the curve remains constant across se
lected time intervals (Kleinbaum and Klein, 2012, pp. 5253). By plotting the KM estimate
for two subject groups, we can show how the survival experience of the groups differ from
each other. Such a comparison can be useful in clinical trials where you want to measure the
effects of a treatment in which one group is given the treatment and the other is not (placebo)
(Goel et al., 2010). In Figure 2.3 we see an example of such a comparison. The plot shows
survival curves for two widely used femoral stems in Norway. The event of interest is revi
sion surgery and the timeline shows years until revision surgery. The plot is presented with
95% confidence intervals. Although the two stems has comparable survival curves, Lubinus
SP II seems to perform better from 2 years onward.

Figure 2.3: KM survival curves comparing two widely used prostheses in Norway. The plot
was produced using lifelines  a software library for survival analysis (DavidsonPilon et al.,
2021)

The KM estimator is defined as follows:

Ŝ(t(j − 1)) =
i=1∏
j−1

P̂ r(T ≥ t(i)|T ≥ t(i)) (2.5)

4The hazard function is a rate, not a probability
5The KM estimator is also known as the ’product limit estimator’
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Here, Ŝ(t(j− 1)) denotes the probability of survival past t(j− 1). P̂ r(T ≥ t(i)|T ≥ t(i))

gives the probability of survival for all individuals i up to time j−1. These are individuals that
are still considered to be at risk. Those at risk are individuals who have (a) not experienced
an event or (b) are not censored. The total probability of surviving to time j is computed
by multiplying all preceding probabilities of survival up to j − 1 as specified by the product
operator (

∏
) (Kleinbaum and Klein, 2012, pp. 5457).

One drawback of the KM method arises when there are no events within a given inter
val. In that case, the KM estimate over that interval will remain constant, i.e., a survival
probability of 1. While such a curve may indeed exist, it is more likely to result from a small
sample size. When the sample size is large, the KM estimate is an excellent approximation of
the actual survival curve because it approaches a smooth estimator as the sample size grows
without assuming any shape or form of the distribution. Note that, in the absence of cen
soring, the KM reduces to the CDF (Borgan, 1997, p. 9). Another drawback of the method
is the difficulty of incorporating covariates. One way is to plot the survival curves for both
groups and use the logrank test to assess whether the two groups are statistically signifi
cantly different, i.e., that the null hypothesis is satisfied. However, the KM method can not
adjust for confounding variables within the groups (Jager et al., 2008, p. 565). Therefore, it
can be difficult to determine the actual effect of the treatment since a confounding variable
could coincide with the effect observed from the treatment.

2.5.2 Cox Proportional Hazard Model
To investigate the influence of individual covariates, the Cox Proportional Hazard Model
(hereafter Cox model) might be more appropriate since it allows us to adjust for confounding
and interaction effects.

The formula for the Cox model is the product of two components, a nonparametric
baseline hazard, and a parametric exponential component. The baseline hazard is an un
specified function of time that does not involve covariates. Conversely, the exponential part
of the formula includes covariates, but does not consider time, i.e., the covariates are time
independent. Since the covariates are assumed to be timeindependent, the estimated hazard
ratios of a covariate should remain constant or proportional over time. We refer to this key
assumption of the Cox model as the proportional hazard assumption. For this reason, the
Cox model is known as a semiparametric model (Kleinbaum and Klein, 2012, p. 9094).
The Cox model is defined as follows:

h(t,X) = h0(t) × e

p∑
i=1

βiXi

,
In the survival library used for this research, the baseline hazard h0(t) represents the

average subject at time t. We find this subject by computing the mean for each covariate
included in the model at each time point. The rightmost term in the expression is computed
as e to the linear sum of βiXi over p predictor variables (Kleinbaum and Klein, 2012, p.
9394). This latter term corresponds a set of hazard ratios computed for each covariate that
functions to inflate or deflate the hazard from the baseline.

The minimum number of observations to include in a Cox regression to avoid sampling
bias has been discussed in the literature. Peduzzi et al. (1995) suggest that a minimum of 10
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cases per predictor variable divided by the smallest proportion of positive cases (where an
event occurred) adequate for regression analysis with proportional hazards. When all events
are observed, the proportion of positive cases is equal to 1, and the minimum number of
cases to include is simply 10 times the number of predictors. Long (1997) recommends that
the number of cases is further increased to at least 100 when Peduzzi et al.’s method results
in less than 100 cases.

We typically assess the fit of a Cox model using the concordanceindex metric, which
is a generalization of the AUC score commonly used in Logistic Regression. The cindex
considers the rankings of the predictions, not the predictions themselves. In other words,
we evaluate the order of the predictions and report the number of concordant pairs out of
the total number of pairs in the model. A model that can accurately predict the order of all
observations has a cindex of 1. A random model has a cindex of 0.5 (Raykar et al., 2007).

A Cox regression analysis outputs estimated regression coefficients, hazard ratios, p
values, standard errors, and CIs that describe the influence that covariates have on the sur
vival outcome. To explain the output in more detail, we fitted a Cox model to 241 synthetic
observations of the Charnley and Lubinus SP II stem. We based the synthetic data on vari
ables representative of actual arthroplasty data and distributed the covariates to the best of our
judgment. We leveraged a simulation model from the PySurvival library to create survival
times based on the Weibull distribution with a scale parameter of 0.05 and a shape parameter
of 4.5 (Fotso et al., 2019). The latter parameter represents the time when 63.3% of the pop
ulation has experienced an event. We set the risk function to linear and the corresponding
risk parameter to 1. Lastly, we set the coefficient used to calculate the censored distribution
to 7. We included the following explanatory variables in the model: age at primary surgery,
gender, ASA classification, and implant type. A summary of the fitted model is available in
Figure 2.4.

The cindex shows that the goodness of fit is better than a random model but not partic
ularly good (0.68). The formula property shows the predictors included in the model, and
computed residuals indicates whether residuals plots were produced to assess the propor
tional hazard assumption. In this case, we chose to include scaled Schoenfeld residual plots
as a graphical diagnostic of the proportional hazard assumption. Figure 2.5 shows scaled
Schoenfeld residual plots for a subset of the covariates in the model. In these plots, we want
to verify that the residuals represented as green dots do not form a pattern of change over
time, i.e., that the residuals are more or less randomly distributed over time. The pvalues
shown below each plot aids in this assessment, signifying whether the residuals follow a ran
dom distribution (DavidsonPilon et al., 2021, pp. 120121). In our case, the test indicated
that all pvalues were nonsignificant and thus that the proportional hazard assumption is
satisfied.

The table shown in Figure 2.6 shows the effect of each covariate on the outcome along
with pvalues and 95% CIs. The coef column shows the estimated regression coefficients
computed for each covariate in the model. The coefficients quantify the effect associated
with a unit increase in the covariate. A negative coefficient indicates a decrease in haz
ard, and a positive coefficient indicates an increase. To interpret the regression coefficients,
we exponentiate the coefficients to obtain hazard ratios, also known as relative risks. The
exp(coef) column shows the exponentiated coefficients or hazard ratios for each covariate.
To reiterate the explanation of hazard ratios from Section 2.5, a ratio above 1 indicates a risk
factor, and a ratio below 1 indicates a protective factor.
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Figure 2.4: An overview table showing details about the fitted Cox model from the Web
interface of our prototype

We can see from the table that the factors associated with the greatest relative risk are the
ASA classifications Mangler and Moribund. For example, ASA = Mangler yields a hazard
ratio of 3.143, i.e. a 314% greater relative risk. This means that, if we hold everything else
equal, the ”presence” of Moribund will result in a 314% increase in hazard. Likewise, ASA
= Moribund yields a hazard ratio of 1.442  a 44% greater relative risk of failure. The CIs
for both of these covariates is fairly wide and crosses unity (1) which signifies that the esti
mates are insignificant. The pvalues shown in table forMangler (p = 0.280) andMoribund
(p = 0.580) confirms the above and we should therefore accept the null hypothesis of no
significant effects.

We can also use the Coxmodel to visually assess the effects of adjusting a single covariate
on survival. We can produce a plot to assess the influence that explanatory variables have on
the survival outcomewith respect to a primary exposure variable. For example, in Figure 2.7,
we consider the type of implant to be the primary exposure variable and ASA classification as
an explanatory variable. The plot shows the effects of varying P_ASA factorsMoribund and
Mangler for both the Charnley and Lubinus SP II stem. Based on the plot, healthy (Frisk)
patients with the Lubinus SP II stem seem to be associated with a slightly better outcome
than other configurations. Moribund patients with the Charnley stem are associated with the
worst outcome. It is important that we take into consideration the goodness of fit (cindex)
when interpreting these curves because the baseline hazard in which these curves are inflated
or deflated from depends on the fit of the model (DavidsonPilon et al., 2021). Recall that
the data is synthetic and does not reflect the actual performance of the prostheses.
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Figure 2.5: The figure shows scaled Schoenfeld residual plots for a subset of covariates in
the model. The pvalues indicates that the residuals does not establish a changing pattern
over time and thus that the proportional hazard assumption is satisfied.

Figure 2.6: The summary table shows the estimated regression coefficients and hazard ratios
along with 95% CI and pvalues. The screenshot is taken from the Web interface of our
prototype.

2.6 Web API
The following section introduces the concept of a Web Application Programming Interface
(Web API)  the data interchange medium used for the development of the prototype in this
thesis.

AWeb API is a mechanism for exchanging resources over a network. Web APIs work by
publicly exposing a set of endpoints associated with resources located on a server. Examples
of such resources are text content, images, videos, Portable Document Format (PDFs), and
structured data. Client applications can query Web API endpoints using the HTTP protocol
to retrieve, send, or update resources on a server. The most commonly used HTTP methods
are GET and POST. The GET method requests a resource, while POST sends a resource to
the server (Park, 2019). Both GET and POST requests accept parameters used to retrieve
a selected resource or specify an action to perform on a given resource. See Request for
Comments (RFC) 7231 (J. Reschke and R. Fielding, 2014) for a complete list of methods
defined by the HTTP protocol. Resources are transported over the network in standardized
formats such as plain text, HTML, binary data, or a structured data interchange format such
as JavaScript Object Notation or XML (Park, 2019).

There are many good reasons for choosing a webbased Web API as an interchange
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Figure 2.7: Adjusted survival curves showing the partial effects on outcome for ASA clas
sificationMoribund and Frisk (Healthy)

medium for data. Firstly, the data transmission protocol (HTTP) is based upon an open
standard. Open standards facilitate adoption and ensure that the capabilities and limitations
of the protocol are well understood. Secondly, effective decoupling of the client applica
tion from the server application. The client application does not need to be aware of any
implementation details of the Web API – only the interface it exposes. Thirdly, due to ex
cellent availability of HTTP libraries among programming languages, frontend developers
are given the freedom of choice to use whichever technologies they like.
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Chapter 3

Methodology and Methods

3.1 Design Science Research (DSR)

The project will be executed through the application of the DSR methodology. DSR seeks
to develop and create purposeful artifacts in the form of constructs, models, methods or in
stantiations. Here, constructs are defined as vocabulary or symbols. Models are defined as
abstractions or representations that use constructs to represent a realworld situation. Meth
ods are algorithms and practises used to search the solution space. Lastly, instantiations are
implementations of prototypical applications. The purpose of the produced artifact is to solve
concrete organisational problems or business needs (Hevner et al., 2004, p. 77).

DSR is not only concerned about the development of an artifact and emphasises eval
uation as one the key activities in the research cycle. After all, the stated goal of DSR is
utility and this can only be measured through evaluation (Hevner et al., 2004, p. 80). As
such, the justification for the artifact is a measure of its utility that can be assessed through
both qualitative and quantitative evaluation methods. (Hevner et al., 2004, p. 78) stresses
the distinction made above by considering design to be both a process (set of activities) and
a product (artifact). Together, they constitute a socalled buildandevaluate loop that needs
to be iterated a number of times before the final artifact is obtained.

They also advocate the complementary use of both behaviouralscience and DSR in de
veloping information technology solutions. They argue that truth (the goal of behavioural
science) and utility (the goal of DSR) are “two sides of the same coin” and that both paradigms
are paramount for relevance and effectiveness of IS research (Hevner et al., 2004, p. 77) .
While utility is usually derived from truth, the authors imply that the application of DSR can
aid in the discovery of truth (Hevner et al., 2004, p. 98). To illustrate the interplay between
these paradigms, the authors present a conceptual framework for understanding, executing
and evaluating IS research. Please see Figure 3.1 on page 24 for a complete overview of
the DSR framework.

The environment encompasses the people, organisations and technological infrastructure
for which the artifact is to be deployed. The development of the artifact is driven by the busi
ness needs of the people within the organisation. These business needs are defined by the
goals or tasks of the organisation, or the opportunities that they have identified. Behavioural
science is used develop and justify theories that explain a particular phenomenon related to
the business needs. On the other hand, DSR is used to develop and evaluate artifacts in order
tomeet the identified business needs. Both the theory and artifact may need refinement by the
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justify/evaluate activities to conform to the business need. The knowledge base is composed
of methodologies and fundamental theories, frameworks, instruments, constructs, models,
methods, and instantiations for which the artifact is supported by or built upon. Methodolo
gies used in behavioural science includes data collection and empirical analysis techniques.
The quality and effectiveness of artifacts is typically assessed using computational and math
ematical methods, such as performance metrics (Hevner et al., 2004, pp. 8081).

Figure 3.1: Information System Research Framework diagram depicted in Hevner et al.
(2004)
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Hevner et al. (2004) presents seven guidelines for DSR in Information Science (IS) re
search that outline the fundamental principles and values of the methodology. These guide
lines are listed below as they are described in (Hevner et al., 2004, p. 83).

1. Design as an Artifact  Designscience research must produce a viable artifact in the
form of a construct, a model, a method, or an instantiation.

2. ProblemRelevance  The objective of designscience research is to develop technology
based solutions to important and relevant business problems.

3. Design Evaluation  The utility, quality, and efficacy of a design artifact must be rig
orously demonstrated via wellexecuted evaluation methods.

4. Research Contributions  Effective designscience research must provide clear and
verifiable contributions in the areas of the design artifact, design foundations, and/or
design methodologies.

5. Research Rigor  Designscience research relies upon the application of rigorous
methods in both the construction and evaluation of the design artifact.

6. Design as a Search Process  The search for an effective artifact requires utilizing
available means to reach desired ends while satisfying laws in the problem environ
ment.

7. Communication of Research  The search for an effective artifact requires utilizing
available means to reach desired ends while satisfying laws in the problem environ
ment.

The guidelines direct attention towards an understanding of the problem space and pro
vides valuable guidance for producing purposeful artifacts and demonstrate their utility through
welldefined and rigorous evaluation methods. These guidelines serve as a valuable asset to
the application of DSR andwill be consideredmore carefully throughout the project timeline.

3.2 Development Methods and Methodologies
This section present the requirement specification process and describes the Dynamic Sys
tem Development Methodology (DSDM) that was used to develop the artifact of this thesis.
DSDM was chosen for its collaborative strength and focus on delivering on time. The main
points of collaboration were the implementation of the data mining tasks and the Web API.
In addition, two members of the project team were working on the frontend development
and exchanged aspects of HumanComputerInteraction (HCI) design. The results from the
backend development has served as input to the frontend development. There were also
shared valuable feedback and comments between the backend and frontend team.

3.2.1 Requirement Specification
Requirements development is an important activity in software engineering and a funda
mental step toward building a solution. The purpose is to define the needs and requirements
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and describe the functionality of the system. We typically differ between two types of re
quirements  functional and nonfunctional ones. Functional requirements describe what the
system is supposed to do, such as which actions or procedures to support. Functional re
quirements are absolutely necessary to implement for a system to fully function. Qualities
related to how the system supports these operations are the nonfunctional requirements of
the system. Nonfunctional requirements refer to qualities such as speed, responsiveness,
reliability, and usability that one wants the system to possess (McConnell, 2004, pp. 3843).

There are several good reasons for specifying the requirements upfront. First, it allows
the customer to review, give feedback and redefine the specifications to fit their needs. Sec
ond, it sets a baseline for what the system is supposed to do. If this baseline is met early in
development, the requirements can be tweaked and extended. However, in practise, there
are often cost and time constraints involved, which the development team must consider.
These constraints are more maintainable when specifications for the system are set in ad
vance because it makes sure that the most critical components of the system are prioritized.
Third, welldefined requirements help avoid arguments between involved parties that can
occur due to disagreements or misunderstandings regarding what the system is supposed to
do. Should such disputes nevertheless arise, a look at the requirements can aid in resolving
misunderstandings and conflicts (McConnell, 2004, pp. 3843).

3.2.2 Dynamic System Development Methodology (DSDM)
First developed as an offspring from the Rapid Application Development (RAD) approach,
the DSDM is a proven and versatile framework for Agile project management. The foun
dations of DSDM was laid in 1994 to address the shortfalls of the RAD method like lack
of quality control and project structure, and the slowness and inflexibility of the traditional
approach. Recognizing their strengths and weaknesses, DSDM combines the best of both
worlds  the rigidity and quality control from the traditional approach and transparency, flex
ibility, communication, and business involvement from RAD. This makes it suitable for both
small and larger projects requiring more oversight, structure and governance. At the core of
the DSDM lies eight principles that team members must embrace to fully take advantage of
the methodology (Craddock, 2014):

• Focus on the business need

• Deliver on time

• Collaborate

• Never compromise quality

• Build incrementally from firm foundations

• Develop iteratively

• Communicate continuously and clearly

• Demonstrate control
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These principle underpin the philosophy of DSDMwhich states that: ”best business value
emerges when projects are aligned to clear business goals, deliver frequently and involve the
collaboration of motivated and empowered people” (Craddock, 2014). In DSDM, focus,
collaboration, and a clear understanding of the business needs are key for successful project
delivery. The method attempts to deliver a minimal subset of requirements and a functional
solution, without compromising cost and time. This is in stark contrast to the traditional
approach where the project specification remain fixed and time and cost are adjusted in an
ongoing manner. In the worst case, the project can go out of budget and fail to deliver on
time. From a business perspective, this can be detrimental  both internal and external to the
organization. DSDM mitigates this risk by ensuring that, at the very least, a minimum set of
features are always delivered on time and within budget. This is achieved by having a fixed
deadline and budget, and a baseline acceptance criteria for quality. Some leeway is accounted
for by allowing the requirements specification to be adjusted should time be scarce or the cost
too high. In practise, this is accomplished using timeboxing and the MoSCoW technique.
MUST have, SHOULD have, COULD have, WON’T have (MoSCoW), is the technique
used to group work items into a logical order according to their importance. Timeboxing
breaks the project into smaller, incremental parts, each with its own fixed budget and dead
line. The most important features are implemented first and less critical ones are assigned a
lower priority (Craddock, 2014). Timeboxes start with a kickoff or a brief session in which
the team discusses the objectives and deliverables for the upcoming Timebox. Similarly, we
conclude Timeboxes with a closeout meeting to debate, inspect and potentially accept deliv
erables. The closeout is also an opportunity for the team to reflect, learn and prepare for the
next Timebox (Consortium, 2021). The DSDM offers two formats for timeboxing: DSDM
structured Timebox and free format Timebox. A structured Timebox requires an investiga
tion, refinement, and consolidation phase between the kickoff and closeout and requires
more supervision than a free format Timebox. In contrast, the free format Timebox is more
loosely structured and does not demand formal review points between kickoff and close
out. However, the free format Timebox relies on the presence of a Technical Coordinator to
provide feedback in an ongoing manner (Consortium, 2021).

If these practises are followed, DSDM, guarantees that aminimum subset of requirements
are delivered in the worst case scenario (Craddock, 2014).

The success of a DSDM project is dependent on a number of factors. First, the approach
has to be embraced by all parties that are involved in the project. Second, a healthy rela
tionship with the customer must be maintained at all times. Third, team members must be
committed to their roles and work closely together. Lastly, enduser involvement is encour
aged and should occur frequently throughout the project (Craddock, 2014).

3.3 Knowledge Discovery in Databases (KDD)

The last few decades have seen an unprecedented growth in terms of processing power and
storage capacity of computers. As processing power and storage is becoming increasingly
cheaper, the amount of data accumulating is growing as well (Chen and Rossman, 2014).
To be able to leverage this data in a useful way, KDD has been established as a young and
interdisciplinary field attempting to bring forth real value and insight from the data.
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Fayyad et al. (1996) definedKDDas: ”...the nontrivial process of identifying valid, novel,
potentially useful and ultimately understandable patterns in data” (Fayyad et al., 1996, pp.
4041). KDD can be considered amultistep process for extracting knowledge from raw data.
Moreover, KDD establishes a framework for how to store, access, and apply algorithms
efficiently and interpret and visualise data, with emphasis on knowledge as the final end
product.

The first step of the KDD approach is to develop an understanding of the application
domain and define a set of questions we want to answer. Then, we select a data sample, often
raw data, that we can extract and discover new knowledge from. Careful selection is advised,
as introducing too many or too few variables can influence the results negatively. The third
step, referred to as data cleaning and preprocessing, concerns the handling of missing data
and the removal of noise or outliers that may distort a selected dataset. The fourth step is data
reduction and projection which is the practise of reducing dimensionality or transforming
data to other representations. For example, one may apply Principal Component Analysis
for dimensionality reduction, scale continous variables or dummy encode categorical data.

Next, we have to decide on the goal of the KDD process. This influences the data mining
step where we must choose the appropriate model for the problem we are trying to solve.
For example, are we concerned with a classification or regression analysis task?. The sixth
step deals with the technicalities such as choosing which data mining algorithm(s) and which
models and parameters to use. Afterwards, we perform data mining and search for patterns
of interest in a particular representational form, such as classification rules or clustering.
Following data mining, we must interpret the results and evaluate whether the identified
patterns are actually meaningful. It is important to reason about the patterns to understand
how they originate and to evaluate their relevancy. Visualising the data may aid greatly
in gaining intuition about these patterns. The endproduct of KDD is highlevel domain
applicable knowledge that must be documented and possibly incorporated into other systems
for application. If the knowledge derived from the process proves inapplicable or deficient,
we may need to step back to earlier activities in the process for refinements. Often times,
several iterations are necessary to obtain desirable results (Fayyad et al., 1996, p. 42). Figure
3.2 shows an overview of the KDD process.

Numerous science and business applications owe its success to the KDD process. For
example, SCIKAT  a system for analysing and classifying sky objects have been used in
astronomy with great success. In business, the model has been used for marketing, invest
ment and fraud detection systems. Some notable examples are HNC’s Falcon and Nestor’s
PRISM systems which is being used for credit card fraud detection. Within aerospace engi
neering, the CASSIOPEE troubleshooting system is used to diagnose and predict problems
for the Boeing 737 (Fayyad et al., 1996). KDD may be particularly beneficial for the health
care sector due to the vast amount and complex nature of healthcare data being accumulated.
Here, KDD has a broad range of potential use cases, including the evaluation of treatment
effectiveness, predicting the length of stay, diagnosis prediction, hospital resource manage
ment and decision support systems (Tomar, 2013).

In summary, the KDD process lays out the activities involved in knowledge discovery
in a structured and distinctive order. Each activity builds on one another and have its own
objective. The emphasis on knowledge as the finalend product serves to direct the process
in the right direction. In case of inapplicable or deficient results, the process allows us to step
back and do the necessary the refinements in order to get more favorable results. KDD has
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Figure 3.2: The KDD process. The stippled lines shows the iterative nature of the process.

been used for both small and large projects with success. For these reasons, I have chosen
to adhere to the principles and practises of KDD in this project.

3.4 Evaluation
The overall aim of DSR is to produce a viable and relevant artifact with welldefined util
ity and efficacy. The evaluation activity stands as one of the guiding principles of DSR.
The guidelines emphasize the importance of demonstrating utility, quality, and efficacy with
rigorous and wellexecuted evaluation methods (see Section 3.1). In this thesis, we consult
relevant stakeholders and experts for feedback and evaluate the design artifact with the SUS
tool. The evaluation form used to validate the design artifact in this thesis is presentation
and demonstration in conjunction with the SUS questionnaire.

3.4.1 System Usability Scale (SUS)
The SUS is a quick and dirty” technique for assessing the usability of a system that has estab
lished itself an established industry standard shown to produce reliable and valid results. The
questionnaire consists of 10 predefined statements related to usability traits of the system,
such as its complexity, frequency of use, and ease of use. Each statement accepts five po
tential responses  ranging on a scale from Strongly agree to Strongly disagree. We interpret
the results on a scale ranging from 0100, in which 68 is considered average. Scores above
the average grade of C is considered to be within the acceptance range. A score between 74
and 80 corresponds to a grade of B, and an excellent score (80 or greater) corresponds to the
grade A (Sauro, 2011a). Figure 3.3 shows a visual representation of the SUS scale with its
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various grades and acceptance ranges.

Figure 3.3: Visual representation of the SUS adopted from (Bangor et al., 2009)



Chapter 4

Establishing Requirements

4.1 Meeting with the register

Ameeting with the registry took place on the second of October 2020 at the register’s offices
in Bergen. Attending the meeting was my supervisor and the three other master students
working on the project. Present from the registry was the director and researcher, Ove Furnes,
statistician Anne Marie Fenstad, researcher and engineer Paul Johan Høl, and Dr. Peter
Ellison. The plan was to introduce the new master students, the theme of our master theses,
inquire about personas and database access, and discuss clinical questions to model using
data mining. Also on the agenda was how to handle the data safely and responsibly and to
plan out activities for the coming months. The contracts for the datasets were also a topic of
discussion.

Each student gave a short presentation outlining the vision and ideas for the project. The
presentation was well received and led to a lengthy discussion on various topics, including
the arrangement of interviews with patients and staff at the register. There was also talk about
the necessity of defining a ‘benchmark’ to compare and evaluate prosthetic devices using sta
tistical models. For the hip register, there was broad agreement that the Charnley prosthesis
was a good starting point. For the knee register, the “Profix” prosthesis showed excellent
results. The register informed us about a populationbased registry study reported in Hallan
et al. (2012) evaluating the performance of a particular titanium femoral stem widely used
in Norway since 1984. Despite excellent results up to the year 2000, the performance of the
stem began to deteriorate in the period 20012008. The study used KM survival curves and
Cox regression to measure the effects of covariates of interest. They found that patients who
underwent surgery in 20012008 had an adjusted relative risk that was 4.7 times higher than
for 19962000 and that high stem offset, male sex, and small stem size were risk factors for
revision surgery Hallan et al. (2012). The register urged us to review the paper and attempt
to replicate some of the findings in the study. In particular, the register was interested in
whether underperforming prostheses can be detected earlier using machine learning. The
register found a similar research paper for the student working with Total Knee Arthroplasty
data.

We were advised that the KaplanMeier method and Cox Regression were the de facto
standard for registrybased studies on survival analysis. Thewidespread use of thesemethods
led us to explore survival analysis further and include both KaplanMeier and Cox regression
in the requirement specification of the system.
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4.1.1 Requirements
The following section describes the requirements and the intended functionality of the pro
totype developed in this thesis.

The following requirements were set during and in the days following the meeting with
the register.

4.1.2 Functional Requirements
• Present statistics relevant to clinicians and researchers.

• Provide predictions of clinical outcomes of THA.

• Provide classification of clinical outcomes.

• Produce survival curves for different subject groups (KM method).

• Allow the user to perform cluster analysis

• Allow the user to identify risk factors for THA (Cox regression).

Nonfunctional Requirements

• Let the user choose which input data and parameters to train the model with (flexibil
ity).

• Documentation should be available for all tasks in the system.

• The system should be tested frequently to identify faults.

• Use complementing technologies to allow for interoperability between heterogeneous
systems. The choice of technologies for the data mining component should not limit
which technologies the frontend team chooses to use (and vice versa).

4.2 Technologies
The following section introduces the main technologies and tools for the prototype develop
ment.

Scikitlearn

Scikitlearn is a software package written in Python (Van Rossum and Drake Jr, 1995) with
numerousmachine learning algorithms for supervised and unsupervised problems (Pedregosa
et al., 2011). The project values code quality and testing in favor of providing as many fea
tures as possible. The development of Scikitlearn is communitydriven, and the core team
is open to contributions from external contributors. The documentation is broad, with ap
proximately 300 pages of class references and a comprehensive collection of complete and
detailed examples. The API follows a consistent and minimalistic interface which eases the
learning curve for new developers. For instance, most algorithms in Scikitlearn implement
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one or more of the following objects: estimator, predictor, transformer, and model. An es
timator is used to fit data to a model. Predictors implement the ‘predict’ method used to
make predictions on insample or outofsample data. A transformer implements the ‘trans
form’ method to manipulate data into a suitable format. Lastly, a model implements the
‘score’ method to estimate the goodness of fit of the provided data (Pedregosa et al., 2011,
pp. 28252830).

Scikitlearn was selected for the clustering and classifier component of the system for all
of the above advantages. The following reasons influenced our choice as well: (1) Earlier
work by Kristoffersen (2019); Longberg (2018) demonstrated the use of regression and clus
tering in Scikitlearn using a similar dataset, thus laying the groundwork for further research
in the area. Longberg observed that visualization was key to understanding data and pro
posed that future work should consider automating this process in a userfriendly interface.
(2) Scikitlearn is distributed under the BSD license, making it suitable for academic and
commercial usage, including Pharma and healthcare industry (Brajer et al., 2020).

Lifelines

Lifelines  a survival analysis module for the Python programming language was used for
the survival analysis component. Lifelines provide implementations of a wide collection of
parametric, semiparametric, and nonparametric survival models such as the KM model,
Cox Proportional Hazard model, and Weibull model DavidsonPilon et al. (2021). A total
of 21 univariate and regression models are available in the library. Methods to compare
the difference in survival between two or more populations are also available such as the
logrank test and the restricted mean survival times metric. There are also plots for evaluating
a model’s performance and comparing the survival curves produced by two different models.
The library has ample documentation and provides a large number of examples coveringmost
of its API. Interested readers can find an introduction to survival analysis and tutorials with
realworld applications on the website of Lifelines. Lifelines was chosen for this research
because it provides implementations of the Cox Proportional Hazard Model and the KM
method out of the box.

FastAPI

The Web API was built on top of FastAPI  a web framework written in Python (FastAPI,
2021). FastAPI was chosen for several reasons. (1) The features specified in the require
ments 4.1.2 require satisfactory performance. In particular, some of the computations car
ried out by the system can be computationally heavy and slow. (2) Berge (2019) highlighted
some of R and R Shiny’s limitations and suggested Python as a candidate for a more complex
system. He notes that customization of the user interface is tedious, limited, and restricted to
predefined components. According to Berge (2019), future systems should consider Python
as R seems more suitable for smaller applications. He argued that for future work, a back
end/front end model would increase efficiency and be more beneficial from a user’s point
of view by relieving them of tasks and being more userfriendly. The limitations of R Shiny
concerning customizability were an important design consideration. Although R provides a
powerful and broad range of statistical tools, the limitations with respect to user interface de
sign and Berge (2019)’s considerations lead us in the direction of Python and thus FastAPI.
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These considerations were discussed and made with the other collaborators working on this
project. (3). Scikitlearn and Lifelines were explored ahead of time, and FastAPI seemed to
complement these libraries well because they are all written in Python.

Web Technologies

The frontend is built on top of standardWeb technologies, namelyHTML,CSS, and JavaScript.
We relied upon Bootstrap for the UI layout and UI components. DataTables was used to
enhance HTML tables with search and sort functionality (SpryMedia Ltd., nd), and we pro
duced plots using the Opensource graphic library Plotly.js (Plotly Technologies Inc., 2015).
We communicate with the Web API programmatically using native JavaScript.

Trello

Trello is a webbased and Kanban inspired collaboration tool for organizing projects (Trello,
2021). Trello organizes work in a board of lists containing cards indicating a basic unit of
work. Cards or work items are transferable across lists which allows for a Kanban styled
workflow. For example, one can group items into ToDo’s, Doing, and Done and transfer
items from one list to another in a sequential order. We used the service to organize and
break larger assignments into smaller and more approachable increments. We also used
the platform as a discussion board among teams members for less formal discourses deemed
inappropriate for Git issue tracker. These discussions was tied to the work item being worked
at which helped prevent potential derailments. The tool integrated well with the DSDM by
allowing us to colorcode the list of requirements according to the MoSCoW prioritization
technique (see Section 3.2.2). An overview of the Trello board used for the backend is
depicted in Figure 4.1.

Other technologies

In addition to the technologies above, a handful of other software modules were used to a
varying degree. A few noteworthy mentions are pandas, NumPy, pydantic, patsy, formulaic,
and SQLAlchemy (Reback et al., 2020; Wes McKinney, 2010; Harris et al., 2020; Bayer,
2012). We used Git for version control (Git, 2021) and GitHub for repository management
(GitHub, 2021).
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Figure 4.1: Trello board used by the backend development team.
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Chapter 5

Data Material

5.1 Data

The following section describes the dataset and the data mining tasks that was defined and
used in the development of the prototype. The data is experimental and reflects the registry
data closely in terms of variables and their values.

The material used in this thesis was provided by Dr. Pete Ellison from the Biomedical
Engineering Laboratory at Haukeland University Hospital in the form of a data sample of
THAs conducted in Norway during 19952018. A total of 10 000 THAs with a 9 year follow
up until revision surgery was included. The starting point is the year of primary surgery and
the endpoint is the year of revision surgery. The event of interest was revision surgery and
the outcome variable of interest was time until revision surgery (failure). The mean age for
patients undergoing primary surgery was 55 years (SD = 10) and the mean survival duration
for implants was 4.12 years (SD = 2.72). The number of male patients is 5013 and the
number of female patients is 4987. In total, the dataset contains 156 variables. The majority
of these are categorical (n = 154). The two continuous variables are the implants survival
recorded in years and the age of the patient during primary surgery. An overview of patient
demographics can be found in Tables 5.3 and 5.2.

Excluding expired products, the most frequently used femoral stem was the Lubinus SP
II (n = 163, m = 83). For the acetabular cup, the most frequently used product was the
Mittelmeier (n = 158, m = 80).

Patients health status is indicated by the American Society of Anesthesiologists (ASA)
classification system. This system is used to assess a patient’s health on a scale of 1 through
6. In the first category, ASA I, we have healthy patients, while in the fifth category we have
patients who are likely to die if surgery is not performed (ASA, 2021). The excerpt used
in this research has only the first five categories. These are, in order of severity: healthy
patients, asymptomatic condition that increases risk, symptomatic disease, lifethreatening
disease and moribund. Studies have shown that higher ASA scores is associated with a
higher risk of revision in joint replacement surgery (Schaeffer et al., 2015; Ferguson, Sil
man, Combescure, Bulow, Odin, Hannouche, GlynJones, Rolfson, and Lübbeke, Ferguson
et al.). Therefore, ASA classification score should be considered a potential predictor of
early revision surgery. To investigate the potential of ASA score as a predictor of revision
surgery, pairwise comparisons using the logrank test were performed for all n ≥ 2 unique
groups in ASA. Table 5.1 shows that all comparisons have a pvalue greater than the cutoff
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test statistic p  log2(p)

Asymptomatic condition Healthy 0.54 0.46 1.11

Lifethreatening disease 1.59 0.21 2.27

Moribund 1.64 0.20 2.32

Symptomatic disease 1.10 0.29 1.77

Healthy Lifethreatening disease 0.29 0.59 0.76

Moribund 0.30 0.59 0.77

Symptomatic disease 0.11 0.74 0.43

Lifethreatening disease Moribund 0.00 0.96 0.05

Symptomatic disease 0.05 0.83 0.27

Moribund Symptomatic disease 0.05 0.83 0.27

Table 5.1: Pairwise logrank tests was calculated with Lifelines to compare the survival ex
perience between groups with different ASA categories (DavidsonPilon et al., 2021). The
tests are chisquared under the null hypothesis with 1 degree of freedom. The pvalues show
there is no significant difference among the groups (p > 0.05 for all comparisons).

value of 0.05, indicating that the null hypothesis should be accepted. These tests were calcu
lated for the total population; running the tests on subpopulations may still yield significant
differences. However, subsequent tests for the Charnley and Lubinus SP II resulted in no
significant difference among the various ASA scores.

Variable n Min q1 x̃ �x q3 Max s IQR #NA

Age 10000 31 48 55 54.6 62 78 10.0 14 0

Follow up time 5011 0 2 4 4.1 6 9 2.7 4 4989

Table 5.2: Patient characteristics: continuous variables.
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Variable Levels n %
∑

%

Gender Male 4987 49.9 49.9

Female 5013 50.1 100.0

all 10000 100.0

ASA Healthy 1632 16.3 16.3

Asymptomatic condition 1648 16.5 32.8

Symptomatic disease 1724 17.2 50.0

Lifethreatening disease 1641 16.4 66.5

Moribund 1640 16.4 82.8

Missing 1715 17.1 100.0

all 10000 100.0

Surgical Position Lateral 3249 32.5 32.5

Supine 3419 34.2 66.7

Missing 3332 33.3 100.0

all 10000 100.0

Surgical Approach Anterior (SmithPetersen) 1602 16.0 16.0

Anterolateral 1718 17.2 33.2

Lateral 1685 16.9 50.0

Posterolateral 1643 16.4 66.5

Other 1663 16.6 83.1

Missing 1689 16.9 100.0

all 10000 100.0

Stem Material Steel 3356 33.6 33.6

Titanium 3333 33.3 66.9

Cobaltchrome 3311 33.1 100.0

all 10000 100.0

Femoral Fixation Cemented with antibiotics 2591 25.9 25.9

Cementless without antibiotics 2457 24.6 50.5

Cementless 2516 25.2 75.6

Missing 2436 24.4 100.0

all 10000 100.0

Acetabular Fixation Cemented with antibiotics 2412 24.1 24.1

Cementless without antibiotics 2621 26.2 50.3

Cementless 2504 25.0 75.4

Missing 2463 24.6 100.0

all 10000 100.0

Table 5.3: Patient characteristics: nominal variables.
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Chapter 6

Prototype Development

We developed the artifact in small increments within four major iterations timeboxed at 23
weeks. We implemented features incrementally according to MoSCoW priority, and added
tests in an ongoing manner. Although we spent most of the time developing the API, we
devoted a substantial amount of time exploring the data and learning about technologies
related to the project.

Timeboxes were initiated with ’Kickoffs’ (see Section 3.2.2) or short and informal brief
ings establishing the objectives for the following weeks, such as what features to implement
or rework. We opted for the free format Timebox of DSDM rather than the standard DSDM
structured Timebox format because we deemed the loosely structured Timebox more appro
priate for such a small team (see Section 3.2.2).

Frequently held meetings compensated for the lack of structured timeboxes and helped
to keep the project on track. We concluded each Timebox with a ’Closeout’ summarizing
accomplishments, discussing challenges, and rescheduling work for the next Timebox.

6.1 Initial work without data

In the early phases of our work, we envisioned a system comprised of three major workflows.
Firstly, allow the user to assemble a pipeline of transformations and create new datasets.
Secondly, let the user create a machine learning model and train it on one of the transformed
datasets. Thirdly, enable them to run predictions on outofsample data and present results
to the user.

6.1.1 Procedure for preprocessing

In the weeks leading up to the data delivery, we worked on a procedure for automatic pre
processing of data. The idea was to use pipelines from Scikitlearn to assemble a series of
transformation steps such as feature selection, imputation of missing data, scaling of numer
ical features, and encoding of categorical features. The output of a pipeline is a transformed
dataset that we can feed into a machine learning model. A powerful feature of pipelines is
that flow can be split within the pipeline, allowing us to selectively transform specific parts
of the data. For instance, we may want to impute a subset of features and give different
treatment to categorical and numerical features.
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We managed to successfully implement a preprocessing routine on the API that utilized
the pipelines module from Scikitlearn. Although functional, our solution had a couple of
flaws. Firstly, compositing such a complex data structure in a user interface is a nontrivial
task. See Appendix B for a depiction of the data structure required to build a pipeline in our
system. Secondly, original feature names did not remain intact after processing the data. The
last part is important because we must be able to map the transformed features back to the
original features in the UI meant for endusers. The processing routine was left unfinished
andwas not integrated into the final system. Further descriptions of the preprocessing routine
is found in Appendix B.

6.2 First iteration

The prototype development began in late October of 2020 after Dr. Peter Ellison at Hauke
land University Hospital provided us with test data to build the prototype around. We spent
the first week exploring the dataset, structuring the API, and scheduling two sessions with
the frontend team to discuss what demographics might be interesting to extract from the
dataset. There was consensus within the group that gender distribution, indications for revi
sion surgery, and the frequency distribution of implants were interesting aspects to consider.
However, it quickly became clear that we lacked the necessary insight from the intended
user groups, such as patients and arthroplasty researchers. StoltNielsen from the frontend
team later conducted a survey confirming our suppositions that patients were interested in
implant use and indications for revision surgery. The survey found that patients would like
to know more about their implants, possible risk factors and implant survivorship. In addi
tion, patients were also interested in information regarding patients within their age cohort
citepsunnivanielsen.

During the following two weeks, we implemented API endpoints for extracting the above
information and wrote tests in Postman (Postman, 2021) to ensure the methods adhered to
specification. Figure 6.1 shows an example of tests run in Postman. The tests helped us
identify errors and bugs before we pushed code to version control (Git). We ended the first
iteration by tutoring the frontend team on setting up and interacting with the API. Table 6.1
shows a list of endpoints completed during the first iteration.

Endpoints Description

Most popular femoral stems Five most used femoral stems

Most popular femoral stems by county Five most used femoral stems by county

Most popular acetabular cups Five most used acetabular cups

Most popular acetabular cups by county the five most used acetabular by county

Indications for revision Distribution of indications for revision

Indications for revision by age groups Indications for revision broken down by age groups

Average implant survival Average survival duration of implants

Missing values Total number of missing values for each variable

Table 6.1: API endpoints implemented during the first iteration
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Figure 6.1: Testing of API endpoints in Postman

6.3 Second Iteration
The second iteration began on the 16th of November and lasted approximately two weeks.
The plan for these weeks was to incorporate Lifelines and Scikitlearn and add endpoints for
KM analysis and binary classification using Logistic Regression.

We started by revisiting and refactoring procedures from the first iteration. Some mi
nor mistakes were overlooked and picked up by the frontend team. For example, implants
tagged as ’expired’ were not dropped from the list of most used implants. These implants
are troublesome because we do not know the actual name of the implant used.

Following these corrections, we added a routine for computing KM survival curves and
logrank tests. This routine takes as input a variable (treatment) corresponding to the various
groups we want to compare. We dispose of unwanted groups by applying a filter that selects
only the groups of interest. We may apply additional filters to impose further restrictions
upon the groups. For example, we can use the filter gender == ”male” to compute the
survival curves of males but not females. We perform pairwise logrank tests for all n > 2

unique groups and output results from these together with the computed survival curves.
The output from this routine includes survival curves, confidence intervals, extended risk

tables, median survival time, and logrank tests. All of which are conveniently accessible
through Lifelines. Pairwise logrank tests were later added as a standalone routine because
such tests are useful outside of a KM analysis as well.

Next, we added a routine for training and performing classification using a Logistic Re
gression model from Scikitlearn. We split the data into a training and test dataset internally
and allow the user to supply a formula based on Wilkinsonstyle notation to construct the
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model. For example, the formula y ∼ gender + age creates model with predictors gender
and age, and the intercept y. The response variable, y, was hardcoded as a binary outcome
variable corresponding to implant survival less than 4 years or greater than or equal to 4
years.

The output from the Logistic Regression endpoint is a precisionrecall curve, ROC curve,
and a classification report. The plots are computed on the API and transported over the
network as Base64 strings. Base64 encoding allows us to conveniently represent binary data
as an ASCII string and transfer graphics over the API without corrupting the asset (Josefsson,
2006).

Halfway through the iteration, we held a short meeting debating whether we should build
a minimal frontend application to complement the data mining methods on the Web API.
We realized that simply providing ’raw’ data analysis over an Web API is insufficient for
KDD. To fulfill the last and possibly the most important step in the KDD process, Knowledge
presentation (see Section 3.3), we had to present results in a suitable representable form that
allows for evaluation and interpretation of the analysis’. This last step is what ultimately
validates our system and provides knowledge and utility for endusers.

Based on the above, we decided to shift our efforts towards the development of a front
end to accompany the methods available on the Web API. To save time, we based the front
end on the micro web framework, Flask, and built a minimal Web application to interact
with the Web API. We designed the UI with the free and Opensource frontend framework,
Bootstrap, and use ’vanilla’ JavaScript to communicate with the Web API. The data used to
populate the UI elements comes from the Web API.

Towards the end of the second iteration, we integrated the Logistic Regression procedure
into the frontend. We created a layout that organizes functionality and results from themodel
into four distinct sections. Figure 7.10 shows the UI that was designed for the procedure. In
the first section, we provide a simple UI to fit a model to a possibly filtrated dataset. The
second section contains a classification report with various classification metrics describing
the fit of the model, such as precision and recall (see Section 2.4). The third and fourth
section reports a ROC and precisionrecall curve (see Section 2.4).
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Figure 6.2: UI for the Logistic Regression component

Although the Logistic Regression procedure required some effort to incorporate into the
frontend, we were able to integrate the KM procedure without encountering any major prob
lems. During closeout, we discussed possible improvements and additions for the next it
eration. For instance, we wanted to output the number of subjects next to group labels in
the KM plot and allow the user to choose the observation period. Table 6.2 shows a list of
methods that were implemented in iteration two.

Endpoints Description

KM analysis (with UI) KM analysis with extended risk tables and logrank tests

Logistic Regression Binary classification using Logistic Regression

Pairwise logrank tests Pairwise logrank tests for n > 2 unique groups

Table 6.2: API endpoints implemented during the second iteration
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6.4 Third Iteration
The third iteration took place in December and lasted approximately four weeks. The plan
for this iteration was to integrate the other methods into the frontend and add methods to
help explore and understand the data better.

We faced a few challenges while working on the frontend. First of all, we struggled to
develop suitable UIs to gather the necessary input from the user. For example, it took us a
while to come up with an appropriate UI to construct the boolean expression used to filter
data in the KM method. Our first design accepted the input through a simple text box (see
Figure 7.10). We eventually settled for a multistep solution allowing the user to build the
expression one step at a time. This solution is presented in Figure 6.3.

Figure 6.3: Filter mechanism used to select a specific subpopulation in the dataset. We used
this mechanism for the survival table.

To complement the KM, we added a survival table which aggregates survival data for
a predefined period. This table shows the number of individuals who entered the study to
gether with failures, censorings, and the total number of individuals at risk for each interval.
Now that we had a frontend, we decided to add a contingency table to aid with data ex
ploration. Contingency tables, also known as twoway tables, display the frequency of two
or more variables and helps investigate the interrelationship between categorical variables.
The contingency table was fairly straightforward to add, although we had to make some mi
nor adjustments to the frontend to make the table interactive and searchable. Specifically,
we included the Opensource library DataTables to enhance the table with sortable columns
and realtime search. We deemed this enhancement necessary since the crosstabulation can
potentially return a lot of data depending on the user input.

After adding the contingency table, we shifted our attention towards the second major
feature listed in the requirements specification from Section 4.1.2, namely Cox Regression.
We spent quite a lot of time learning and experimentingwith the Coxmodel before integrating
it with the system. Tomake the integration of the Coxmodel more feasible, we broke the task
into smaller andmoremanageable steps. We started by defining the possible input parameters
of the model and their constraints. For example, one of the parameters of the Cox model is
the baseline estimation method which must take on one of three possible values. We declared
these constraints with JSON schemas in Pydantic  a data validation and parsing library well
integrated with FastAPI. We will not go into further details about Pydantic other than to note
that it helped validate userinput and ’standardize’ the Web API responses. These schemas
are used extensively on our Web API.

After specifying all the input parameters to the model, we extended the endpoint with
functionality in an incremental manner. First, we integrated the filtering mechanism de
scribed in Section 6.3 to allow the user to fit a model to a userspecified dataset. Then, we
concentrated on adding the essential elements from the Cox model, such as model summary
and hazard ratios. Since Lifelines conveniently retains the parameters used to fit the model,
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we could extract these properties afterward and pass them along in the response object. We
encountered a couple of minor challenges during these efforts. One of them dealt with data
conversion. In particular, Lifelines stores calculations with much higher precision than the
response format (JSON) supports. Since, in most cases, three significant digits are sufficient,
we safely converted the estimates to a ’less precise’ data type. We also found that the avail
ability of certain properties depended on the parameters supplied to the model. For example,
when specifying breslow as the baseline estimation method, the loglikelihood property is
the partial loglikelihood. However, when specifying piecewise or spline, the reported mea
sure is the loglikelihood. Such nuances may seem minor, but they are potentially essential
from a statisticians’ point of view.

Although Lifelines is capable of producing plots of the survival function outofthebox,
we wanted to allow the frontend team to enhance these plots with interactivity. Therefore,
we extracted data from the figures and provided the necessary data to rebuild the figure on
the frontend. We also provided the figures as Base64 strings as described in Section 6.3.

We implemented a simple UI on the frontend to fit and present results from a Cox re
gression. The UI and corresponding Web API request used to fit the model can be found
in Appendix C.1. We concluded the iteration by reflecting on the progress and discussing
potential improvements to the Cox procedure. In particular, we figured it would be better to
split the routine across two sections: one for fitting the model and another for analyzing re
sults. The idea was that by separating the two tasks, we would achieve separation of concern
and reduce the complexity of the routines, both on the Web API and the frontend. Finally,
we added an interaction plot that could be used to investigate possible interaction effects.
We scheduled these alterations for the fourth iteration. Table 6.3 shows an overview of the
methods implemented during the third iteration.

Endpoints Description

Survival Table (with UI) Table showing aggregated survival data

Contingency Table (with UI) Table summarizing the frequency counts of two variables.

Interaction Plot (with UI) Plot for investigating interaction effects

Cox Regression (with UI) Procedure for performing a Cox regression analysis.

Table 6.3: API endpoints implemented during the third iteration

6.5 Fourth Iteration
We officially initiated the fourth iteration on the 25th of January, although we spent some
time refactoring the codebase between the third and fourth iterations. In the kickoff meeting,
we picked up the discussion from the closeout of the last iteration regarding separation of
concern. We decided to separate the Cox routine into two stages  ’fitting’ and analysis. We
extended the existing endpoint to persist models to a database for later use. In practice, this
is a twostep process that occurs behind the scene, not requiring any action on the user’s
part. First, we serialize the model to a stream of bytes in Python (Van Rossum and Drake Jr,
1995), and then we save it to a database with the help of an Object Relational Mapper known
as SQLAlchemy (Bayer, 2012). This process further involves an SQLite database and a
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database model (Hipp, 2020). We can consider the database model to represent a fitted Cox
model that maps into a table in a relational database (SQLite). Further details and a depiction
of the database model are available in Appendix C.

Mindful that Cox Regression outputs a lot of information, we designed the analysis page
with the idea of separating functionality by concern. We accomplished separation using
an UI component from Bootstrap that neatly compartmentalize the different aspects of Cox
regression. This component has the added benefit of ’hiding’ information from the user
that is not relevant for the task at hand. Figure 6.4 displays the UI and the separation of
functionality achieved for the Cox Regression procedure.

Figure 6.4: Compartmentalizion of the Cox Regression procedure.

We collaborated with StoltNielsen and Farsund on complementary work related to vi
sualization and HCI aspects of the implemented methods. We exported demographic data
to Farsund and shared our methods such that StoltNielsen could explore potential improve
ments to the user experience. During these meetings, we shared valuable comments and
suggestions back and forth between the backend and frontend team. This feedback led to
several alterations and improvements to the design.

Midway through the iteration, we held two video conferences with a diverse group of
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experts. Feedback from the experts helped us identify a series of inconsistencies in the UI
and additional tasks that could improve the system. For instance, one expert pointed out that
a plot was missing a label from an axis. Another expert suggested we include a routine for
exploring the dataset more closely. Although the expert did not specify what such a routine
would look like from the user’s perspective, we were encouraged to include descriptions of
variables and their distribution. We provide further details about the evaluation in Chapter
8.

After the evaluation, we dedicated some time to correct the issues that emerged from
the expert review. We prioritized the small matters, such as inconsistent use of colors and
missing labels. More demanding tasks such as the autocomplete functionality (see Chapter
8) were scheduled for future work. We did, however, take time to implement a method that
provides a descriptive overview of the dataset. This method produces a LaTeX table with
descriptive statistics for categorical and numerical variables in the dataset. The endpoint
accepts as input an arbitrary number of variable names and generates two separate LaTeX
tables — one for categorical variables and another for continuous variables. We interface
with R through Python and use reporttools to generate the tables. The latter is a package for
R specialized for generating descriptive tables in LaTeX (Rufibach, 2015). To interface with
R from Python, we use a Python package known as rpy2 (rpy2, 2021). Figure 6.4 provides an
example of what the table looks like for categorical variables. The implemented endpoints
during the fourth iteration are available in Table 6.5.

Variable Levels n %
∑

%

Gender Male 4987 49.9 49.9

Female 5013 50.1 100.0

all 10000 100.0

ASA Healthy 1632 16.3 16.3

Asymptomatic condition 1648 16.5 32.8

Symptomatic disease 1724 17.2 50.0

Lifethreatening disease 1641 16.4 66.5

Moribund 1640 16.4 82.8

Missing 1715 17.1 100.0

all 10000 100.0

Table 6.4: LaTeX table for categorical variables. The table is generated using the reporttools
package in R (Rufibach, 2015).

Endpoints Description

Cox Regression UI for analysis section UI for the analysis section of the Cox Regression procedure

Descriptive statistics Tables with descriptive statistics for categorical and continuous variables

Table 6.5: API endpoints implemented during the fourth iteration
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Chapter 7

Artifact

The following section presents the DSR artifact produced after four development iterations of
the DSDM. The artifact is twofold, consisting of two distinct but interrelated components  a
Web API and a Webbased frontend application. The data mining methods are incorporated
into theWeb API and made accessible in a userfriendly UI on the frontend application. Fig
ure 7.1 shows a highlevel overview of the system architecture and the relationship between
the two components.

Database

Survival Analysis ClassificationStatistics

API

Web Application

Figure 7.1: Highlevel overview of the system architecture. The API is the core component
that acts as an interface between the data mining methods and the frontend application.

The remaining part of this chapter presents the data mining methods that are supported by
the Web API. First, we show the descriptive data mining methods, namely survival tables,
interaction plots, and contingency tables. The predictive methods, KM, Cox Regression
and Logistic Regression are presented afterwards. In all of the following examples, data
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displayed on the frontend is retrieved from the API using HTTP requests.

7.1 Survival Table
The survival table summarizes the survival experience for an entire population at each unique
time point. In particular, survival tables record the number of events in total and the number
of failures and censored events individually. The table also shows the number of individ
uals who entered the study and the total number at risk. Figure 7.2 shows a survival table
for healthy patients between the age of 50 and 70 in the period 20102020. The column
’Removed’ refers to the number of individuals removed from the study. ’Revision’ refers
to the number of individuals requiring revision surgery. ’Censored’ refers to the number of
individuals lost to followup. ‘Entrance’ refers to the number of individuals that entered the
study at a given time. The total number of individuals at risk is shown in the last column.

Figure 7.2: Survival table showing the number of failures for each year. The user can specify
any number of filters to focus on a subpopulation.

7.2 Contingency Table
Contingency tables, also known as twoway tables, display the frequency of two or more
variables. The table helps investigate the interrelationship between categorical variables.
Figure 7.3 shows a contingency table from our prototype with implant type shown vertically
and the implant survival shown horizontally. For example, the second furthest cell from the
right shown in the top row displays the average age of patients during primary surgery for
patients with the Lubinus SP II stem whose implant failed after 9 years. The selected sub
populations are patients with the Lubinus SP II and Charnley stem. Toggling the aggregation
option displays frequency counts instead.
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Figure 7.3: Contingency table comparing the average age at primary surgery for two implants
distributed by duration of survival.

7.3 KaplanMeier (KM)
A simple user interface was created for the KM procedure. The user can select the period to
study, desired CI and populations to compare. An arbitrary number of boolean expressions
can be applied to restrict the number of curves to compute or select groups with certain
characteristics, such as patients belonging to specific age groups or implants of a specific
type. For example, ’(P_FEMUR_PRODUKT == ”CHARNLEY” | P_FEMUR_PRODUKT
== ”LUBINUS SP II”) & (ALDER >= 50 | ALDER <= 70)’, selects patients with Charnley
and Lubinus SP II implants who had surgery between the age of 50 and 70. Admittedly, such
filters are not particularly userfriendly and can be hard to construct for nonprogrammers.

An improved alternate designwas used for the survival table and interaction plot as shown
in Figure 7.2. This design can be easily adapted for the remaining components of the system,
but such improvements were not prioritized because the focus was on functionality rather
than user experience which was left to the frontend team.

Figure 7.4 shows sample output from running a KM analysis in the system. The user
specified input is shown on the left, and the results of the analysis are displayed on the right.
Results include an interactive KM plot with CI, extended risk tables for each group, and
logrank tests for assessing whether the groups are significantly different. Three different
variations of the logrank tests are available: Wilcoxon, TaroneWare, and Peto. These vari
ations offer different weighting schemes that give more weight to certain time points.
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Figure 7.4: The UI for the KM procedure. The page shows a KM plot comparing the two
femoral stems Lubinus SP II and Charnley. Based on the plot, it seems like the Charnley stem
performs slighly better from 1.5 years onward. The data is synthetic and does not reflect the
actual performance of the prosthesis and is used for illustration purposes only.
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7.4 Cox Regression
Cox Regression is split across two sections: one for ’fitting’ and the other for analysis and
predictions. In the fitting section, we build Cox models based on input from the user and
display details describing the model’s fit, such as the concordance index score, likelihood
ratio test, and results from a proportional hazard assumption test. The output from the model
is divided into several sections as shown in Figure 7.5. Models built in the ’fitting’ section
are persisted in a database and made available in the analysis section of the system.

Figure 7.5: UI in the ’fitting’ section of the Cox Regression procedure. Some of the available
parameters have been hidden on purpose.

After fitting a model, users can navigate to the analysis section to further investigate
the output of the model. Figure 7.6 displays a table with estimated regression coefficients,
hazard ratios, 95% CIs, pvalues among other things. The topmost table shows the result of a
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likelihoodratio test that compares the fitted model against a crude model with no covariates.
The test statistic for the likelihoodratio test is chisquared under the null hypothesis.

Figure 7.6: UI from the analysis section of the Cox Regression component. The figure shows
a table with hazard ratios, regression coefficients, cindex among other measures.

The Model summary section in Figure 7.7 shows a summary table describing the model
that was fit and the model’s goodness of fit. For example, information such as the total num
ber of observations, number of observed events, baseline estimationmethod, crossvalidation
scores, cindex, partial AIC, and more can be found in the table.
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Figure 7.7: UI from the analysis section of the Cox Regression component. The figure shows
a summary of the fitted model
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In the Plot partial effects on outcome section, users can compare the influence of indi
vidual covariates on the survival outcome. Figure 7.8 displays the UI that was created for
this part.

Figure 7.8: UI from the analysis section of the Cox Regression component. The figure shows
the survival survival curves for the Charnley and Lubinus SP II stem.

Results from the proportional hazard assumption test is found in the bottom section (see
Figure 7.9). If the assumption is violated, users are informed about the violating factor and
advised on actions that can help satisfy the assumption. Users in need of further assessment
of the proportional hazard assumption can compute the scaled Schoenfeld residuals of the
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covariates. This produces a series of plots that become available in the analysis section,
which is useful for visually inspecting and assessing the proportional hazard assumption.

Figure 7.9: UI from the analysis section of the Cox Regression component. The figure shows
results from the proportional hazard assumption test.

7.5 Logistic Regression
This page uses a Logistic Regression model from Scikitlearn to predict the longevity of
an implant as a binary outcome problem. The independent variable and target classes are
fixed and cannot be altered by the user. Data is split into a training and test dataset using the
70/30 rule, where the larger portion is reserved for training and the remaining 30% is used
for testing. The dependent variable is the timeuntil revision, and the target classes are less
than 8 years and larger than or equal to 8 years.

Figure 7.10 shows a classification report from the UI after fitting a Logistic Regression
model to synthetic test data. The usersupplied formula specifies the model to construct, and
the filter selects training data for the model. After fitting the model, the goodness of fit can be
assessed using a precisionrecall curve, ROC curve, and various classification metrics such
as the f1score, precision, and recall. Figures 7.11 and 7.12 display the ROC and precision
recall curve as they are presented in the UI. This component is merely intended as proofof
concept and, for that reason, does not allow users to perform predictions on outof sample
observations.
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Figure 7.10: UI for the Logistic Regression component
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Figure 7.11: ROC curve from the Logistic Regression component

Figure 7.12: Precisionrecall curve from the Logistic Regression component
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7.6 Descriptive Statistics
Based on feedback from the evaluation, we created a routine that generates descriptive statis
tics of the dataset. The procedure is capable of generating statistics for both categorical and
numerical variables. Figure 7.1 and 5.2 shows the LaTeX tables produced by this routine.
At the moment, these tables are not available on the front end. However, we plan to do this
in a future iteration, possibly using LaTeX.js (LaTeX.js, 2021). More details about how we
implemented this procedure is available in Section 6.5.

Variable Levels n %
∑

%

Gender Male 4987 49.9 49.9

Female 5013 50.1 100.0

all 10000 100.0

ASA Healthy 1632 16.3 16.3

Asymptomatic condition 1648 16.5 32.8

Symptomatic disease 1724 17.2 50.0

Lifethreatening disease 1641 16.4 66.5

Moribund 1640 16.4 82.8

Missing 1715 17.1 100.0

all 10000 100.0

Surgical Approach Anterior (SmithPetersen) 1602 16.0 16.0

Anterolateral 1718 17.2 33.2

Lateral 1685 16.9 50.0

Posterolateral 1643 16.4 66.5

Other 1663 16.6 83.1

Missing 1689 16.9 100.0

all 10000 100.0

Stem Material Steel 3356 33.6 33.6

Titanium 3333 33.3 66.9

Cobaltchrome 3311 33.1 100.0

all 10000 100.0

Table 7.1: LaTeX table for categorical variables. The table is generated using the reporttools
package in R (Rufibach, 2015).

7.7 Interaction Plot
An interaction plot helps us determine the presence of possible interaction effects. In this
plot, the mean of the dependent variable is shown on the yaxis and the idependent vari
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able is displayed on the xaxis. The traces correspond to categorical variables with possible
interaction effects. Parallel traces indicate no interaction effect, while crossing traces may
indicate an interaction. Figure 7.13 shows how survival span fluctuates with a patient’s age
at surgery. The ASA category ’Moribund’ is considered a possible interaction effect. In spite
of minor differences, we see that the two traces follow each other closely.

Figure 7.13: Interaction plot showing the mean survival span with age at primary surgery on
the xaxis. The traces show the response of healthy (red) and moribund (blue) patients.
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Chapter 8

Evaluation

We assessed the utility and usability of the prototype by presenting and demonstrating the
prototype to three groups of reviewers. After each demonstration, we asked the experts to fill
out a SUS questionnaire. We also asked them what they thought about the starting pages and
the ability to save sessions for later use. We present the response to the SUS questionnaire
and the followup questions in Section 8.4.

The first group consisted of two biomedical researchers, one of whom has extensive
domain knowledge in orthopedics. The second group included three experts experienced
with building datamining andHCI solutions for themedical domain. For the third evaluation,
we interviewed a medical doctor (general practitioner). Table 8.1 shows the participants
involved in the evaluation.

Participant Gender Age Education Profession

P1 Male 31 Medical Degree General Practitioner

P2 Male 25+ Master’s degree IT professional

P3 Male 25+ Master’s degree IT professional

P4 Male 45 Ph.D Researcher (Biomedical Engineer)

P5 Male 25+ Master’s degree IT professional

P6 Male 41 Ph.D Researcher (Biomedical Engineer)

Table 8.1: Description of the participants that took part in the expert evaluation.

For the digital meetings, we arranged two video conferences segmented into three parts:
(1) prototype demonstration, (2) discussion and questions, (3) feedback. The sessions lasted
approximately one and a half hours each and ended with a request to fill out a standard SUS
survey. We demonstrated the most digestible features first and gradually went on to the
more advanced features. We did this in order to not overwhelm the participants and keep
them attentive throughout the whole session.

The features were presented in the following order: survival table, contingency table, and
Cox Regression. The first two meetings took place digitally due to the ongoing COVID19
pandemic. In addition, because of the rather technical setup of the system, we chose to show
two short video presentations and demonstrate the use of the system instead of letting them
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explore online. The third session with the general practitioner (GP) took place in person and
lasted approximately half an hour.

8.1 Session one: domain experts
The reviewers were intrigued by the survival and contingency table but argued that having to
spell out variable names would be cumbersome and difficult for most users, especially ’new’
users. One expert suggested that autocomplete functionality for the variable names would
likely result in a more pleasant user experience.

Both reviewers expressed interest in the mechanism for managing data used in the anal
yses. In particular, they wondered whether we queried data from an external SQL database
upon each request to the Web API. We explained that in the current solution, data was stored
locally on disk and held in memory while the Web API is running. However, we further
explained that this approach was only for convenience and that future iterations would store
the dataset in a database. The discussion led to the identification of at least three benefits.
First, databases are always up to date. Second, databases offer an extra layer of security
for the data. Lastly, query languages bundled with database management systems such as
Microsoft SQL offer a more expressive and powerful language to query the data (SQL). One
expert pointed out that always having uptodate data would be an advantage of our system
compared to more complete statistical software solutions such as SPSS or STATA.

Afterward, we demonstrated the Cox Regression procedure by walking them through the
process and explaining details along the way. The experts expressed interest in the feature,
suggesting it might be interesting for the register. One of the experts raised concerns about
the feature’s usefulness and what benefits it provides to its target users. In response, we
stressed that other more featurerich software packages such as SPSS or SAS offer the same
procedure. However, we argued that users would probably save time and find our system
straightforward to use than SPSS and SAS. The expert fully agreed and claimed our system
seemed much more tailored to its target audience, taking them through the process in a more
”slicker” way than SPSS. We learned from one of the experts that the current method of re
viewing data at the NAR is a manual process. The data is manually exported from a database
and handed over to statisticians for further analysis. Results and findings are compiled and
published in annual reports. The expert further suggested that our system may be useful to
perform ”quick checks” on a weekly or monthly basis. He also pointed out that the prototype
may ”easily” extend to function as a monitoring system to detect when a group (prosthesis)
falls below a certain threshold. The ability to save the models and revisit them later was well
received, with one expert labeling it a ”nice feature”.

8.2 Session two: IT experts
One of the IT experts proclaimed that the system seemed ’cool’ and bore a resemblance
”Microdata”. Microdata is a system for analyzing registry data developed by the Norwegian
Centre for Research Data and Statistics Norway.

The HCI experts proposed that we properly align column headers in the tables and use
margins between UI elements more cautiously in our design. Specifically, the headers were
misaligned, and some elements appeared too closely together and were difficult to tell apart.
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Furthermore, one expert made us aware that an axis in one of our plots was missing a label.
Another HCI experts drew attention to the inconsistent use of colors in the system. The
expert argued that such inconsistencies might confuse the users and require them to exert
more cognitive effort than necessary to use the system.

The mix of language (Norwegian and English) was highlighted as a potential usability
issue by the experts. We agreed but pointed out that the interface is written in English and that
the inconsistencies appear because the variable names are coded in Norwegian. However, the
point still stands, and we believe that a mechanism for renaming variables could be suitable
in a potential preprocessing routine of the system.

The experts argued that most usability issues seemed minor but urged us to fix them
because they can potential have a substantial impact on the user experience. We concluded
the meetings with a short debrief requesting the experts to fill out the SUS questionnaire.

We forwarded the criticism directed at the user interface and other HCI aspects to Stolt
Nielsen in case any of the errors had manifested themselves in her HCI work. Similarly,
we shared the comments regarding consistent use of colors and the labeling of axes with
citeauthorarle which was working on visualizations.

8.3 Session three: General Practitioner (GP)
We began the session by assessing the GP’s experience and knowledge about survival anal
ysis and registrybased studies. The GP was familiar with both KM and Cox Regression
from the literature, but was not wellversed in how to conduct such analysis. The participant
was also aware of registrybased studies, but not about the specific efforts of the NAR. To
establish a better starting point, we gave the participant a short explanation of KM and Cox
Regression while pointing out that the purpose of the system was to explore risk factors for
early failure of implants. We further informed the participant about registrybased studies
and the importance of detecting inferior implants.

In response to the survival table, the GP commented that it seemed like an ”occasionally
useful feature” that felt ”somewhat highly specialized” towards its target group. He appre
ciated the ability to filter data and thought the output was ”well presented,” but proposed
we provide more context about its usefulness. We explained that survival tables are used to
learn about the survival experience of one or more groups and that they are typically part of
a more indepth analysis. The GP concurred, admitting it seemed like a valid use case.

The GP appreciated the contingency table claiming it seemed like a ’great idea,’ but
encouraged us tomake it more userfriendly and less ’daunting’. In particular, the GP pointed
out that the filtering seemed challenging to comprehend and intangible to all but the most
advanced users. He further proposed that we reuse the survival table’s filtering component,
which felt ”much nicer”. Like the experts from the earlier evaluation, the GP noted that the
variable names seemed difficult to remember. To improve the user experience, he encouraged
us to provide a list of variable names somewhere on the page.

The participant suggested that the survival table shown earlier would probably comple
ment the KM analysis well and that we should consider ”fusing” them together on one page.
He further argued that the survival table seemed to make more sense together with the KM
procedure than as a standalone feature.

The GP found the model creation process interesting albeit a bit ”overwhelming” with all
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the available ”options” (model parameters). He maintained that the procedure would prob
ably make sense from an expert perspective and liked the descriptions next to each option.
The critique of the contingency table regarding the diffuse variable names was reiterated and
suggested as a potential improvement. Moving on to the results, the GP noted that the page
seemed ”very clear” and ”nicely laid out”. In particular, he enjoyed the ability to perform
predictions of implant survival based on userdefined criteria, although he wondered about
the reliability of the predictions. We informed that the concordance index score measures
the model’s ability to provide reliable rankings or, put differently, that individual risk assess
ments are relative to event times. The plot showing the effects of covariates on outcome was
well received and considered ”fun to play with”. He suggested we show somewhere what
the baseline hazard represents. We clarified that the baseline hazard has no meaningful real
world interpretation and represents the ”average” individual at each interval. We argued
that for a dichotomous variable such as ”smoker”/”nonsmoker,” it doesn’t make sense to
talk about ”half a smoker.” You either are a smoker, or not. However, from a mathematical
standpoint, the ”average” subject has a sensible interpretation. The GP agreed with the latter
assessment.

We moved our attention towards the summary table, briefly explaining the information
reported in the table, such as the estimated regression coefficients, hazard ratios, standard
errors, pvalues, CIs, and the loglikelihood test. The GP argued that although there was ”a
lot of (information) to take in, everything appeared quite tidy”. He proceeded to say that the
inclusion of pvalues was a ”good idea” and ”important” in research for hypothesis testing.
He proposed we include a short description of what the loglikelihood test compares and what
it tells us.

Afterward, we showed him the residual plots used to test the proportional hazard assump
tion. In response, the GP proclaimed that ”visuals (visualizations) are always good.”. We
concluded the meeting with the SUS questionnaire and a short debrief asking him what he
thought about the system and the choice of data mining tasks. The GP argued that the proto
type seemed to have ”a lot of potential” and appeared to be ”easy to use”. He further argued
that the choice of data mining tasks is ”probably good”, but that he lacked knowledge about
the field to give us a definitive answer.

8.4 SUS questionnaire and followup questions
The calculated SUS scores was generally high and put the prototype well within the accep
tance range. All scores were above 75 (average 84.5) which corresponds to a grade of C or
greater. 2 out of 6 participants gave a score of 90 or greater, situating the prototype within the
’best imaginable’ category. Three of the participants put the prototype within the ’excellent’
category corresponding to a grade between 80 and 90. Figure 8.1 shows the calculated SUS
score for each participants.

The lowest score of 77.5 was given by the GP. In contrast to the other evaluations, the
review with the GP was conducted in person and with the opportunity to try the system in
practise. Therefore, it is possible that the GP may have come across other usability issues
that were not easy to spot during a video conference. Another possibly is that participants
are more ’generous’ in remote evaluations than they otherwise would have been inperson.
Nonetheless, the system seems to have been wellreceived and the feedback from the experts
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was much informative.
We presented the participants with two followup questions. (1) Their opinion regarding

the ability to save sessions (analyses) for later use. (2) Whether they found the starting pages
welcoming or not. The responses to these question are summarized in Figures 8.2 and 8.3.
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Figure 8.1: Calculated SUS scores (average score: 84.5)
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Figure 8.3: Response to whether the participants found the pages welcoming
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Chapter 9

Discussion

The prototype benefited from feedback from a diverse group of experts, including a medical
practitioner, two domain experts, and multiple HCI experts. In general, the experts found the
system easy to use, albeit a bit ”overwhelming” at times, but functionality seemed appealing.
Discussions with domain experts helped identify and substantiate several key benefits that
the artifact exhibits or can attain in future iterations. First and foremost, we have tailored
the system to the target group, and the survival analysis methods offered are trusted and
actively used by the registry today. As one expert put it: ”it leads them through the process
in a much slicker way”. As a result, the system could be well suited as a tool for quick
analyses or checks in favor of fullyfledged statistical analysis software requiring more time
and resources to manage.

In addition, the Webenabled API architecture allows other, possibly heterogeneous sys
tems to leverage our data mining component. One possible extension would be an implant
monitoring system that alarms users when an implant goes below a certain performance
threshold. Secondly, the system can easily be adapted to pull data directly from a database
such that analyses are always uptodate. Thirdly, we can extend the system with more mod
els from Lifelines or Scikitlearn. In this regard, one might want to consider methods from
Iden (2020) and Longberg (2018). Although models may vary in complexity, both Lifelines
and Scikitlearn follow a consistent and straightforward interface abstracting away imple
mentation details. Therefore, extending the API with methods from these libraries should be
feasible. Other machine learning libraries may require more effort.

Lastly, based on feedback from expert evaluation, we argue that the developed artifact
lowers the entry for performing survival analysis that otherwise requires some experience in
programming languages or statistical software such as R, SPSS, or STATA. Contemporary
work by StoltNielsen addresses some of the shortcomes related to the HCI aspect of our pro
totype. In particular, StoltNielsen propose a mechanism for filtering data in a less strenuous
manner. We propose our own solution shown in Figure 7.2 and 7.13. Further work should
involve target users and investigate the practicality of both of these solutions. Readers in
terested in enhancements pertaining to HCI aspects of our work should turn to StoltNielsen
(2021) and Farsund (2021) for inspiration.
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9.1 Answering Research Questions
RQ 1: What are the qualities and characteristics of an outcome analysis tool for
THA?

It seems like the objective of registrybased research is always related to answering con
crete questions such as the longevity of an implant or risk assessment of new implants that
enter the market. Although many methods could help answer these questions, the registry’s
role as a national resource means they must be highly diligent and scrupulous about their
work. Hence their choice of wellestablished and widespread methods such as KM and Cox
Regression. Various clinical fields highly regard these methods due to the transparency of
analysis and the possibility to interpret results. Also, these methods come with measures of
accuracy and significance, such as the cindex and logrank test. It is therefore conceivable
that outcome analysis tools for THA should exhibit all of these qualities and characteristics
 interpretability, precision, and significance.

We identified some desirable characteristics during evaluation as well. Firstly, always
uptodate data was much valued property by the experts. Secondly, a tailored user experi
ence seems to be a much appealing feature (Section 8.1). A tailored user experience is only
attainable through wellestablished HCI principles which became apparent during evaluation
with IT and HCI experts. Hence, an analysis tool for THA should probably strive to satisfy
all of the above.

There are other methods to consider, such as Logistic Regression and other survival mod
els besides those presented in this thesis. However, such models should be validated and
scrutinized, preferably using a more realistic data sample.

RQ 2: What data mining methods are useful for outcome analysis in THA?

This research question was initially answered by consulting the literature and staff at the
registry in Bergen. According to the typical tasks they conduct on the data, their experience
is to use KM and Cox regression analysis to predict the longevity of implants and assess
risk factors for THA. They are often presenting demographic data in the form of graphical
visualization or summary tables published in annual reports andmade public on their website.
The literature also mentions Linear Regression, Logistic Regression, MLP, and PCA (Berge,
2019; Longberg, 2018; Iden, 2020).

Methods for inspecting the completeness of data with visualizations have also been in
vestigated (Berge, 2019). All of these methods, including those presented in this thesis have
shown potential and could prove useful for outcome analysis in THA.

In this project, we have started with methods that are already wellgrounded in the do
main. In the current form, the registry carries these methods out with the help of statisticians,
so the idea of this project was to make them more approachable and easier to use through
a proper HCI interface. We argue that such a rich national resource of data could be better
utilized by opening the userbase to include all those interested in exploring the data and
deriving their own hypothesis to answer research questions. Examples of such users would
be physicians or endresearchers.

RQ 3: Can KDD lower the barrier of entry and allow medical staff to analyze
hip arthroplasty data without the need for a statistical background?
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At this point, it is not possible to answer this question with full confidence due to the
lack of a more comprehensive evaluation. Further evaluation involving medical staff would
help determine the value of the tool for clinical practise. However, such evaluation should
be performed under circumstances that allow them to explore and try the tool in practise.
The answer could also be guided by the result of the evaluation which has shown a great
acceptance of the choice of methods. In addition, they were found to be reasonably easy
to use and straightforward although it was clear that more knowledge of the domain and
methods would be beneficial.

The choice of methods is grounded in the literature with which both clinical experts and
biomedical engineers are familiar with, so it could be expected that they will be comfortable
with the implemented data mining procedures (Section 8.1).

The evaluation has also shown that there is a place to add additional methods although
nobody specified what could be added or what would be their particular wish. Due to the
combined efforts of the backend and frontend development, the evaluators have seen an in
teractive web application that lends itself to two application domains (Hip and Knee). More
over, this application makes it easy to choose different data mining methods and analyse
results.

Visualizations and solutions that were added to the frontend made it possible to further
explore data in terms of time periods, region of country, and interactive visualizations. The
work of the frontend team can be found in (Farsund, 2021) and (StoltNielsen, 2021). Such
experience, is certainly more userfriendly than diving into a programming environment that
backend developers are used to. There is a great potential to make the system more ap
proachable and easy to use. However, further development and experience is required to
fully tailor the system for real users and different usergroups (medical doctors/biomedical
researchers). Future work will have to explore this direction.
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Chapter 10

Conclusion and Future Work

10.1 Conclusion
This thesis applied DSR to produce a novel artifact in the form of a data mining tool tar
geted at researchers working within the arthroplasty domain. DSR has ensured the rigor and
relevance of the research and helped evaluate the utility of the artifact against potential tar
get users and experts. After a meeting with the NAR, we established the requirements and
developed the system using the DSDM. Development was carried out iteratively in small in
crements, and we prioritized requirements using the MoSCoW technique from DSDM. We
allocated approximately 23 weeks for each iteration and held frequent meetings to discuss
potential problems or improvements.

Our contribution is a fully functional prototype for exploring arthroplasty data and as
sessing hip implant performance. We implemented the prototype as a Web API and modeled
the data mining methods after the KDD process. Among implemented methods are Logis
tic Regression and the survival analysis methods KM and Cox Regression. Those methods
have also been proved applicable on knee prosthesis data in collaborative work by Ånneland
(2021).

The SUS score was 84.5 which indicates that the usability of the system was well within
the acceptance range. For the first first fully functioning prototype this is an encouraging
evaluation that motivates further refinement.

Based on the expert evaluation, we consider the novelty of the artifact to be twofold. First,
we bridge the gap between humans and statistical models by allowing endusers to assess the
quality of hip implants in a direct and more tailored manner. Second, we may easily develop
or adapt the system to suit the needs of an implant monitoring system to detect andwarn about
underperforming prostheses. Although we identified some minor usability problems during
evaluation, the feedback was generally positive, and complementary work by StoltNielsen
already addresses some of these usability issues (StoltNielsen, 2021).

10.2 Future Work
Future work should combine the efforts of the frontend and the backend team to make a
complete system for a wider audience such as patients, researchers, and physicians. Farsund
(2021) and StoltNielsen (2021)’s work would open the system to more general user groups
such as patients or physicians with powerful visualizations of demographics and a more
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userfriendly UI. Likewise, the complementary work by Ånneland (2021) adapts the system
to TKA.

It is likely that future work would benefit from further involvement of domain experts
to supervise the data mining aspects of the project. Additional models and methods should
be examined for reliability and efficacy and carefully selected through consultation with
an expert or statistician. Models that account for timevarying covariates such as age or
biomaterial wear should be of prime interest. Such models may require a preprocessing
component to derive these features and transform the dataset into a suitable format for time
dependent covariates. For example, we may derive the patients’ age from birthyear or record
the patients’ weight as it varies due to lifestyle changes or medication. The Cox model can
account for timevarying covariates with minor alternations. The Lifelines module offers an
implementation of the Cox model that handles this.

A preprocessing mechanism provides other benefits besides allowing for timevarying
models. For example, we may obtain better predictions from Logistic Regression by trans
forming data into a more coarse or ’simplified’ representation using dimensionality reduc
tion techniques such as PCA. As one evaluator suggested: ”Aggregating data into less detail
might give better prediction results.”. We did not pursue this further because the test dataset
was not suitable for such a treatment. However, the early phases of our work resulted in the
development of an experimental routine for preprocessing data that could potentially work
well for PCA analysis (see Section 6.1). Although that routine is not fully finalized, it might
serve as a basis for future work.

Future work should explore additional visualizations and design interfaces to meet the
needs of a broad usergroup expected to be interested in national registry as a resource.
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Appendix B

Scikitlearn pipeline

Listing 1 shows an example of a JSON structure used in the preprocessing routine described
in 6.1.1. The output the routine is a Scikitlearn pipeline object that can transform a dateset
into an appropriate format for machine learning algorithms. Figure B.1 shows an example
of such a pipeline.

Figure B.1: Scikitlearn pipeline produced by the preprocessing routine from 6.1.1. The
input to the processing routine should be a series of preprocessing steps and transformations
to apply to the data. Example input is provided in Listing 1. The depicted figure is an HTML
representation of the pipeline and is intended for illustration only.
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1 {
2 "steps":[
3 {
4 "step_name":"Feature Selection",
5 "step":"FeatureSelector",
6 "params":{
7 "feature_names":[
8 "ANT_REVISJONER, SURVYRS"
9 ]
10 }
11 },
12 {
13 "step_name":"Transform categorical and numerical features",
14 "step":"ColumnTransformer",
15 "params":{
16 "remainder":"none",
17 "sparse_threshold":"sparse",
18 "n_jobs":"2",
19 "transformer_weights":"weight",
20 "verbose":""
21 },
22 "substeps":[
23 {
24 "step_name":"Pipeline for categorical features",
25 "step":"Pipeline",
26 "params":{
27

28 },
29 "substeps":[
30 {
31 "step_name":"Replace missing values with a constant",
32 "step":"SimpleImputer",
33 "params":{
34 "strategy":"constant",
35 "fill_value":"missing"
36 }
37 },
38 {
39 "step_name":"Encode categoricals as binary features",
40 "step":"OneHotEncoder",
41 "params":{
42 "handle_unknown":"ignore"
43 }
44 }
45 ],
46 "columns":[
47 "SURVYRS",
48 "ANT_REVISJONER"
49 ]
50 },
51 // ...substep (pipeline) for numerical features.
52 ]
53 }
54 ]
55 }

Listing 1: JSON structure used to construct a Scikitlearn pipeline object.
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Cox Regression procedure

Figure C.1 shows the UI created in the third iteration that users can use to fit a Cox model in
our prototype (See Section 6.4). Listing 2 shows the Web API request used to fit the model.
Listing displays the SQLAlchemy (Bayer, 2012) representation of a fitted Cox model. This
database model was used to persist the models into a database for later use.
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Cox Regression
Alpha

0,05

Alpha level of confidence interval. Use 0.05 for 95% CI (1-0.05)

Strata

Covariate(s) for stratification

Baseline estimation method

Breslow

Controls how the baseline hazard is estimated

Compute residuals

-- select an option --

Compute residuals (for example: schoenfeld residuals)

Penalizer

0

Regularize regression coefficients. Shrinks

coefficients towards zero. Default: 0.0

l1-ratio

0

Ratio for L1 vs L2 penalty. Default: 0.0

K-fold cross validation

0

k-number of cross validations

Scoring method

Concordance Index

The scoring method to use in cross validation

Filter

P_FEMUR_PRODUKT == "CHARNLEY" | P_FEMUR_PRODUKT == "LUBINUS SP II"

Apply a filter to select a subset of values. Use == for comparision and & and | for logical AND and OR,

respectively.

Formula

P_FEMUR_PRODUKT + ALDER + PAS_KJONN + P_ASA

R-style formula to fit regression model.

C i t
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Covariates

P_FEMUR_PRODUKT,PAS_KJONN

Covariates to vary and observe for the effects on outcome with respect to the survival function or

cumulative hazard.

Values

CHARNLEY+Mann,LUBINUS SP II+Mann

Specific values that we wish our covariates to take on. Separate stratas with ',' and combine values of

covariates with a '+'

Function to fit

Survival Function

The function to use for the partial effects on outcome plot. Must be either the survival function or

cumulative hazard.

Values for hazard plot

P_FEMUR_PRODUKT

Fit

Figure C.1: The UI created for the ’fitting’ part of the Cox regression procedure.
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1 /**
2 * Fit a Cox model
3 * */
4 async function getCoxAnalysis(event) {
5 event.preventDefault();
6 baseUrl = "http://localhost:8000/analyses/CoxPHAnalysis";
7 form = event.currentTarget;
8 formData = new FormData(form);
9 plainFormData = Object.fromEntries(formData.entries());
10 url = new URL(baseUrl);
11 searchParams = new URLSearchParams();
12 Object.keys(plainFormData).forEach(function(key) {
13 split = plainFormData[key].split(',');
14 for (i = 0; i < split.length; i++) {
15 if (searchParams.has(key)) {
16 searchParams.append(key, split[i]);
17 }
18 else {
19 searchParams.set(key, split[i])
20 }
21 }
22 })
23 url.search = searchParams;
24

25 const response = await fetch(url.toString(), {
26 method: 'POST',
27 mode: 'cors',
28 //... other properties
29 });
30

31 if (response.ok) {
32 response.json().then(data => {
33 //Present results from the analysis
34 printModelSummary(data);
35 printLogLikelihoodRatioStatistic(data);
36 plot_partial_effects_on_outcome(data);
37 createTable(data);
38 plot_hazards(data);
39 printAssumptions(data);
40 });
41 }
42 else {
43 //Alert the user about what went wrong
44 });
45 }
46 }

Listing 2: API request in JavaScript to fit a Cox model from the frontend.
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1 class CoxPHModel(Base):
2 __tablename__ = "coxph_models"
3

4 id = Column(Integer, primary_key=True, index=True)
5 model_name = Column(String, index=True)
6 model_type = Column(String, index=True)
7 description = Column(String, index=True)
8 covariates = Column(String, index=True)
9 formula = Column(String, index=True)
10 model = Column(LargeBinary)
11 residuals = Column(LargeBinary)
12

13 dataset = relationship("DatasetModel", back_populates="fitter", uselist=False)

Listing 3: Database representation of a fitted Cox model (SQLAlchemy).
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Glossary

Area under the ROC curve (AUC) The area under the ROC curve (AUC) is a metric for
assessing the discriminatory power of a classifier obtained by computing the area under
the ROC curve. A perfect classifier has a score of 1 and a classifier whose predictions
are completely random will have an AUC score of 0.5 (Burkov, 2019, pp. 6768) see
ROC. 4, 18

Concordance index An evaluationmetric used to assess the goodness of fit of survivalmod
els such as the Cox Proportional Hazard Model. 18, 19, 56, 72

Confidence interval (CI) A range of values where the estimate of interest (e.g. mean or
median) is likely to lie within. A 95% CI means that upon multiple samplings from
the same population, the true estimate of interest is expected to lie within the upper and
lower 95% range in 95% of the cases. A narrower CI indicates a more precise estimate
(Tan and Tan, 2010). 16, 18–20, 53, 55, 95

Confusion matrix A table summarizing the proportion of examples correctly and incor
rectly classified by the classification model. (Burkov, 2019, p. 65). 3

Cumulative distribution function (CDF) The probability that an event occurs prior to or
at time t. The CDF can be obtained by integrating the PDF:

t∫
0

f(t)dt (C.1)

(Kleinbaum and Klein, 2012, p. 264). 14, 15, 17

DSR Design Science Research. v, 5, 23, 25, 29, 51, 75

Dynamic System Development Methodology (DSDM) An Agile development methodol
ogy suitable for both small and large projects. DSDM focuses on business needs and
aims to deliver projects on time. The methodology values collaboration and iterative
development (Craddock, 2014). 25–27, 41, 51, 75

False negative rate (FNR) The proportion of positive examples incorrectly predicted as
negatives (Burkov, 2019, p. 16). 4

False positive rate (FPR) The proportion of negative examples incorrectly predicted as pos
itives (Burkov, 2019, p. 16). 4
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Hazard function The hazard function, h(t) gives the instantaneous potential for the event
to occur at a specified moment in time t, given that the individual has survived up to
that point in time. The hazard function is a rate, not a probability. For that reason, the
hazard function is sometimes referred to as the conditional failure rate (Kleinbaum
and Klein, 2012, p. 9). The value obtained by the hazard function is dependent on the
unit of time used, e.g. hours or years. first. 15, 16

HCI HumanComputer Interaction. 2, 48, 67, 71, 72

Hip Arthroplasty Longevity Estimation system (HALE) A prototypical system for esti
mating hip prosthesis longevity in hip arthroplasty patients. The systemwas developed
by Longberg (2018) and is intended to be used by physicians. 4

KaplanMeier estimator (KM estimator) A nonparametric survival model for estimating
survival functions. KaplanMeier estimates are easy to compute and simple to interpret
(Goel et al., 2010). ix, 16, 17, 31–33, 43, 45, 46, 51, 53, 54, 67, 72, 75

Knowledge Discovery in Databases (KDD) Amultistep process for extracting knowledge
from raw data. KDD encompasses a framework for how to store, access, apply algo
rithms efficiently, interpret and visualize data. The process emphasizes the importance
of knowledge as the final endproduct (Fayyad et al., 1996, p. 42). v, ix, 5, 27–29, 44,
75

Logistic regression A supervised learning algorithm used for binary and multiclass classi
fication. Logistic regression classifiers works by drawing a decision boundary using
the sigmoid function from which it partitions examples into different classes (Géron,
2019, 85107). 3

Multilayer perceptron (MLP) A supervised learning algorithm based on neural networks
with one or more nonlinear layers (hidden layers) (Géron, 2019, p. 289). 3, 13, 72

Multiple linear regression (MLR) A supervised learning algorithm modelling a linear re
lationship between a set of independent variables and a dependent variable. Multiple
linear regression is a generalization of simple linear regression where there are only
one independent variable (Teetor, 2011, p. 267). 4

NAR Norwegian Arthroplasty Register. v, 1, 3, 7–10, 66, 67, 75

NARA Nordic Arthroplasty Register Association. 7, 8, 10

Principal Component Analysis (PCA) Adimensionality reduction technique used to trans
form a highdimensional space into a lower dimensionality. (Géron, 2019, pp. 1314).
13, 72

Probability density function (PDF) The probability density function is a way of quantify
ing the relative likelihood that a random variable takes on range of values as opposed
to a single value in an infinite sample space (ReliaSoft, 2015, pp.1011).. 15
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Random Forest Asupervised learning algorithm combiningmultiple decision trees together
to form a forest of trees. Each individual tree performs its own prediction and the best
prediction is selected according to some algorithm. The random forest algorithm can
be used for both regression and classification (Burkov, 2019, pp. 910). 3

Receiver Operating Characteristic (ROC) A method used to assess the diagnostic ability
of a classifier, i.e. it’s discriminatory power or ability to distinguish between examples
from the positive and negative class. The ROC curve is a graphical plot. (Burkov,
2019, pp. 1618). ix, 12, 44, 59, 61

RFC Request for Comments. 20

Survival function The survival function S(t) is the probability of survival beyond time t

first. 14–16, 47

System Usability Scale (SUS) A ’quick and dirty’ method of evaluating the usability of a
system. The SUS is a questionnaire that consists of ten predefined statements with
a standardized response format. Participants can respond to these statements with
five predefined responses ranging from ’Strongly agree’ to ’Strongly disagree’ Sauro
(2011b). ix, 4, 29, 30, 65, 67, 75

TKA Total Knee Arthroplasty. 13, 76

Total Hip Arthroplasty (THA) A surgical intervention involving the artifical replacement
of the hip joint  a ballandsocket joint located between the femur and acetabulum of
the pelvis. The purpose of the surgery is to restore normal hip function using artificial
components mimicking the function of the hip joint. In THA, both the femoral head
(ball) and acetabulum (socket) is replaced Foran (2015). 1, 2, 5–7, 37, 72

UI User Interface. ix, x, 4, 34, 42, 44, 45, 47–49, 51, 54–60, 76, 83, 85

Web Application Programming Interface (Web API) A service exposing a set of end
points to exchange resources over the Web (Park, 2019). 20, 21, 25, 33, 34, 44, 46, 47,
51, 66, 75, 83
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