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Organisms have evolved to trade priorities across various needs, such as growth,

survival, and reproduction. In naturally complex environments this incurs high

computational costs. Models exist for several types of decisions, e.g., optimal foraging or

life history theory. However, most models ignore proximate complexities and infer simple

rules specific to each context. They try to deduce what the organism must do, but do

not provide a mechanistic explanation of how it implements decisions. We posit that the

underlying cognitive machinery cannot be ignored. From the point of view of the animal,

the fundamental problems are what are the best contexts to choose and which stimuli

require a response to achieve a specific goal (e.g., homeostasis, survival, reproduction).

This requires a cognitive machinery enabling the organism to make predictions about

the future and behave autonomously. Our simulation framework includes three essential

aspects: (a) the focus on the autonomous individual, (b) the need to limit and integrate

information from the environment, and (c) the importance of goal-directed rather than

purely stimulus-driven cognitive and behavioral control. The resulting models integrate

cognition, decision-making, and behavior in the whole phenotype that may include the

genome, physiology, hormonal system, perception, emotions, motivation, and cognition.

We conclude that the fundamental state is the global organismic state that includes

both physiology and the animal’s subjective “mind”. The approach provides an avenue

for evolutionary understanding of subjective phenomena and self-awareness as evolved

mechanisms for adaptive decision-making in natural environments.

Keywords: behavior, evolution, ecology, adaptation, optimality, cognition, complexity, prediction

INTRODUCTION

Choice is fundamental for the behavior of all animals (Barnard, 2004). Making a decision
involves identifying and selecting one specific physiological, behavioral, or cognitive alternative
among several available options. This requires integration of various types of information and
weighting conflicting needs (e.g., Mangel and Clark, 1986; McNamara and Houston, 1986). When
the decision is being made, its exact outcome is usually uncertain. Thus, decision-making explicitly
or implicitly involves prediction of the best alternative by the organism. Prediction ability may be
fundamental for all living systems (Ramstead et al., 2018; Suddendorf et al., 2018). Even unicellular
microorganisms are capable of predictive decision-making in behavior and homeostatic regulation
(Lyon, 2015; Bleuven and Landry, 2016; van Duijn, 2017).
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There is a paradox in evolutionary ecology. On the one
hand, behavioral ecologists have developed elaborate theories and
models identifying the behavioral strategies that are expected
to maximize life-time fitness under specific constraints. On the
other hand, evolutionary ecology is silent on how these decisions
are made or how fitness maximization is implemented in the
nervous system. Do animals really assess their expected fitness?
Are they using proxies? Are decision-makers aware of their
decisions? We argue that (i) considering both perspectives at
the same time improves understanding of how animals make
decisions, and what animals know about themselves, and that
(ii) the cognitive system for predicting possible consequences
of available behavioral choices, the “prediction machine”∗ (see
Glossary for terms marked by asterisks), is central in animal
decision-making, and rests on functions of the nervous system.

The dominant tradition in ecology is to see the animal
through the lens of the researcher who is omniscient, aware
of the factors that are relevant in the specific decision context,
and has complete information and control. Then, analytical
methodology identifies abstract decision rules and heuristics. A
century ago, this was the only perspective available. By taking
the perspective of the “agent”∗, the acting animal, we will follow
the opposite path. It essentially runs through building the whole,
albeit simplified, animal, a virtual “robot,” that mechanistically
implements cognitive and behavioral functions (Dean, 1998).
Its machinery is adapted through simulated natural selection
as in the artificial life approach (Adami, 1998; Seth, 2007).
We will show how animal behavior emerges from principles of
information processing, not just fitness maximization. Decisions
depend on the state of the organism, and are sensitive to the
mechanisms for withholding or bringing information to the
decision-making system, which is encoded in nervous systems
that vary throughout Animalia. We show that ecology has
much to learn from “cognitive sciences”∗ by implementing
computational models and point at some prospects.

PERSPECTIVES ON DECISION-MAKING

It is convenient for ethologists and behavioral ecologists to
assume that apparently complex behavioral and life history
choices are implemented by simple processes where the
underlying mechanisms evolved through natural selection
(Dawkins and Dawkins, 1973; Krebs and Davies, 1993; Doya,
2008). Consequently, one focus in behavioral ecology has been
to account for the choices observed in a specific context
in terms of specific costs and benefits without referring to
the proximate mechanisms involved (Krebs and Davies, 1993;
Barnard, 2004). The Euler-Lotka equation provides the principal
mathematical framework in evolutionary ecology. Euler (1760)
showed how age-dependent survival and fecundity schedules
determine population per capita growth rate, and Lotka (1925)
redefined it to account for the evolutionary fitness of life-history
strategies where patterns of survival and fecundity depend on the
genotype (Fisher, 1930) and behavioral actions. The transition
from population statistics (Euler, 1760) to decisions (Lotka, 1925)
was advanced with state dependent life history theory (Mangel

and Clark, 1986;McNamara andHouston, 1986), which explicitly
assumes that animals make decisions—choose a specific behavior
from a suite of possible ones—that depend on physiological state.

In these modeling approaches, the researcher deduces the
predicted decision by maximizing a metric of evolutionary
fitness. Already Alfred Lotka hinted that there are mechanisms
within a body that enable the organism to make evolutionarily
good decisions: “What guides a human being, for example in the
selection of his activities, are his tastes, his desires, his pleasures
and pains, actual or prospective” (Lotka, 1925, p. 352). He pointed
at an evolved neurological basis—and an ability to predict—
that controls decisions. When introducing Optimal Foraging
Theory, [Emlen (1966), p. 611] wrote that the energy efficiency
rule applied “within the physical and nervous limitation of
a species.” In practice of the “phenotypic gambit”∗ (Grafen,
1984), ecologists have usually ignored proximate mechanisms
and focused on specific decision rules that maximize fitness in
specific situations (Fawcett et al., 2013). The resulting models
usually leave unspecified how animals implement these rules.
Therefore, no account is given to how animals assess the
probabilities and utilities of alternatives, or which cognitive
mechanisms, learning rules, or nervous system components are
involved. This gap is, however, populated with new knowledge
from two directions. A growing trend in the neuroscience
of decision-making accounts for natural ecological contexts
and evolutionary adaptation (Glimcher, 2003; Hutchinson and
Gigerenzer, 2005; Louâpre et al., 2010; Mobbs et al., 2018).
Similarly, behavioral ecologists are increasingly interested in
psychological mechanisms, motivation, emotion and learning as
mechanisms underlying decision-making in specific ecological
contexts (McNamara and Houston, 2009; Giske et al., 2013;
Trimmer et al., 2013; Fawcett et al., 2014; Frankenhuis et al., 2018;
Higginson et al., 2018).

Detailing individual-level decision mechanisms can be taken
one step further: how does the world look from the perspective of
the animal? The agent metaphor—the animal seen as an adaptive
autonomous system—is not new in ethology. It has been used
in the theory of behavioral control and motivation (McFarland
and Bosser, 1993). Even bacteria, displaying impressive decision-
making capacities (Lyon, 2015; Reid et al., 2015; Bi and Sourjik,
2018), are recognized as autonomous agents (Fulda, 2017). There
is much to gain in the study of behavioral ecology by taking
the adaptive autonomous agent perspective from the cognitive
science and robotics.

In human psychology and cognitive science, decision-making
is usually thought to depend on explicit thinking and deliberation
by the individual (Baars and Gage, 2010). But even in humans,
much of decision-making is served by model-based and goal-
directed mechanisms that are not necessarily linked with
consciousness (Botvinick and Cohen, 2014; Pezzulo et al., 2014;
Bach and Dayan, 2017). The focus in these disciplines is on
general and universal proximate mechanisms (e.g., Bayesian
analysis or a set of broadly applicable heuristic rules, e.g., tallying)
to account for rational decision-making across various domains
of situations. In this context, rationality means that the agent
chooses the best option given constraints (Kahneman, 2002;
Gigerenzer and Gaissmaier, 2015). A similar approach taking the
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perspective of the decision-making subject and accounting for
its neurobiological mechanisms for choice (e.g., reinforcement
learning, role of prefrontal cortex, basal ganglia etc.) is used in
neurobiology (Gold and Shadlen, 2007; Cisek and Kalaska, 2010;
Brody and Hanks, 2016). A focus on the general architecture for
optimal and resilient action selection is common in robotics and
artificial intelligence (Arkin, 1998; Pezzulo et al., 2014; Lewis and
Canamero, 2016).

There is a gap between the ultimate ecological and
evolutionary understanding of optimal decisions in specific
contexts and the general proximate machinery of decision-
making across different situations. One bridging tool would be
general models that combine a mechanistic system capable of
trading priorities across different needs and producing optimal
choice in different unpredictable contexts with evolutionary
adaptation. Such a model cannot represent an equation or a
system of equations but needs a set of computational algorithms
implementing a cognitive machinery that “works” like a real
system (Dean, 1998). Thus, the challenge is to bring cognitive
and ecological models together. Adaptive decision-making in
natural environments needs to account for the evolved organism
with its integrated phenotype (Murren, 2012), including the
cognitive machinery enabling it to behave autonomously, make
predictions about the future through subjective∗ processes, and
thus producing adaptive decisions in real time.

DECISION-MAKING IN NATURAL
ENVIRONMENTS: THE
COMPLEXITY CHALLENGE

Experimenters normally use simple artificial environments and
experimental systems focused on a single problem or context that
are controllable and lack ambiguity (Staddon, 2003; Fawcett et al.,
2014). The natural environment, however, is usually complex,
heterogeneous, continuously changing, and stochastic. What is
the “context” may not be obvious for the organism. The animal is
bombarded with numerous, conflicting, and often novel stimuli.
A considerable fraction of incoming sensory information is
irrelevant, and distracting, the relevant sensory input is often
partial, inaccurate, and ambiguous (Tsotsos, 2011). Nervous
system functions involve inherent noise (Faisal et al., 2008;
Tsetsos et al., 2016), and the availability of different behavioral
options changes over time and space and may be unknown
(Blumstein and Bouskila, 1996; Fawcett et al., 2014; Bossaerts and
Murawski, 2017).

A straightforward assumption is that animals can make better
decisions through the use of all, or most, available information,
so that decisions are based on Bayesian reasoning (Knill and
Pouget, 2004;McNamara et al., 2006; Bogacz, 2007). This requires
that the animal’s cognitive system is able to calculate, represent
and use probabilities and accumulate information about the
different choice options. The evidence is scant (Tecwyn et al.,
2017) and the current view is that this capacity in animals
is generally rather poor (Johnson and Fowler, 2013). Even
humans have inherent difficulties with probabilistic thinking
(Kahneman and Tversky, 1982; Kahneman, 2002), especially

early in life (Girotto et al., 2016). Nonetheless, animals can
perform Bayesian coding and reasoning in some circumstances
(Knill and Pouget, 2004; Kheifets and Gallistel, 2012; Fontanari
et al., 2014). Probabilistic models based on sequential sampling,
accumulating noisy information, integrating evidence (Bogacz,
2007; Forstmann et al., 2016) and Bayesian sampling (Sanborn
and Chater, 2016) assume collecting much information. This way
of decision-making presupposes collecting information about the
probability distributions for most variables defining state as well
as environmental alternatives (Griffiths et al., 2008; Lee, 2011).
However, obtaining information involves costs and can be risky
(Lima and Dill, 1990; Barnard, 2004; Eliassen et al., 2009).

Combinatorial complexity becomes a major problem for
decision-making in dynamic and stochastic environments
because the organism cannot constantly evaluate future effects
of every environment and action on its survival and fecundity
(Bryson, 2000; Schmid et al., 2011; Tsotsos, 2011). Such a
task would require high computational power: any increase in
the complexity of the system would raise the computational
demands at least exponentially (Cooper, 1990; Tsotsos, 2011;
Bossaerts and Murawski, 2017). The only feasible solution is
to use approximate and special case algorithms (Cooper, 1990;
Goldreich, 2010). One such case is represented by extreme
prior probabilities, when the full-information Bayesian model
is equivalent to a simple heuristic∗ decision rule (Parpart
et al., 2018). Generally, however, determining a mapping
between unconstrained stimuli (input) to a specific response
(output) does not scale up to natural environments, quickly
reaching an almost intractable computational complexity∗.
Thus, the strictly bottom-up stimulus to response decision-
making process becomes infeasible (Tsotsos, 1995; Shanahan and
Baars, 2005; Bossaerts and Murawski, 2017). Consequently, the
cognitive machinery must restrict information entering into the
decision system.

In computer science, a system based on fixed mapping
between the input and output represents a lookup table. Using
such a table, potentially complex runtime computations are
substituted by a simpler array indexing operation (Knuth,
1997). Indeed, computational demand increases linearly with
growing fixed size tables (Fredman et al., 1984). However, a
non-deterministic decision tree cannot be represented by a
finite lookup table. Russell and Norvig (2010) considered a
hypothetical case of a table-driven autonomous agent doing
a simple task in limited in time. The number of entries
in the lookup table required for a rather moderate-size
system could exceed the number of atoms in the observed
universe. A similar consideration for a brute force table-
based program that could pass the Turing test is equally
discouraging: a tabular program cannot make adaptive decisions
in an unpredictable environment, such a task, even limited
in time, requires mental states (McDermott, 2014). Animals
face even more complex situations because they do not
have a specific computational goal with a halting point
(Glimcher, 2003). In the general case, the size of the
rule base would grow exponentially (or faster) when the
set of the contexts and stimuli for decision-making only
grows linearly. The problem exacerbates with systems that
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change over time, as the lookup table would require extra
dimensions to account for planning (Pollock, 2006) and
sequential decisions (Walsh and Anderson, 2014). Generally, a
system based on advance planning needs higher computational
capacity than that generating adaptive behavior autonomously
(Arkin, 1998; Russell and Norvig, 2010).

Viewing animal behavior as a lookup table of fixed adaptive
recipes, where it can draw the best response to each potential
situation may appear simple but brings about increased
complexity at other levels: (i) the need to determine the current
situation and (ii) how each entry in the table has evolved, encoded
in genes, or come to store the adaptive recipe.

Although natural environments are complex and unbounded,
certain natural situations are highly repeatable, making simple
context-specific rules feasible as a special case. Such rules
would translate to simple fixed strategies governed by reflexive
neural circuits like the fast startle avoidance in teleost fish
(Simmons and Young, 1999). Similarly, mammals have two
distinct circuits that are responsible for fear and anxiety,
the “high road” and the “low road.” The former involves
complex cortical processing whereas the later can quickly
transmit information from the sensory thalamus directly to
the fear processing amygdala (LeDoux, 1996). Thus, the low
road may involve an evolutionary adaptation specifically to
simple stimuli and rigid, repeatable contexts whereas the
high road is adapted to complex, flexible general purpose
processing not easily attainable through fixed automatic reflexes
(Rolls, 2000; Trimmer et al., 2008).

ORGANISM AS AN AUTONOMOUS AGENT

There is a growing recognition that behavior is agentic,
purposive (Dickinson, 1985), generated endogenously by the
animal (Edelman, 2016), and has an intrinsic spontaneity
and indeterminacy (Maye et al., 2007; Brembs, 2011). Such
behavior can be based on internal predictive models (Clayton
et al., 2003; Suddendorf and Corballis, 2010; Corballis, 2013)
involving subjective assessment of the animal’s state (Bubic
et al., 2010; McNally et al., 2011; Clark, 2013). Doing so does
not require a complicated nervous system (Dyer, 2012; Giurfa,
2013; Haberkern and Jayaraman, 2016). The nervous system and
the organism as a whole are now increasingly depicted as a
“prediction machine” (Bubic et al., 2010; McNally et al., 2011;
Clark, 2013) with ability tomodel the environment and anticipate
future consequences of actions.

Thus, the fundamental problem of adaptive behavior and
decision-making in a naturally complex environment is what
are the best stimuli to respond to and what are the best contexts
to choose for achieving a specific goal such as homeostasis,
survival, or reproduction rather than just how to best respond
to particular environmental stimuli. This points to three essential
aspects: (a) the focus on the autonomous agent with a subjective
internal model∗ and predictive processing; (b) the need to limit,
as much as integrate, information from the environment; (c)
the importance of goal-directed (top-down) rather than purely
stimulus-driven (bottom-up) cognitive and behavioral control.

LIMITING INFORMATION INPUT:
ATTENTION AND HEURISTICS

Efficient decision-making in natural environments requires
control over which stimuli to process and which to ignore.
In neuroscience, such selectivity is thought to arise through
attention: the capacity to acquire and process only a limited
subset of the available sensory input (Bushnell, 1998; Katsuki and
Constantinidis, 2014; Moore and Zirnsak, 2017). Furthermore,
attention restriction must emerge from interactions between the
components of the systems (McClelland et al., 2010; Botvinick
and Cohen, 2014; Dennett, 2017).

Selective attention can be achieved through either stimulus-
driven (bottom-up) or goal-driven (top-down) mechanisms
(Corbetta and Shulman, 2002; Moore and Zirnsak, 2017). In
its simplest form, noticeability or apparent physical salience
of the stimulus induces stimulus-driven (bottom-up) attention
automatically. Here the properties of the stimulus itself, rather
than the internal state of the agent, elicit the selection bias.
Goal-driven (top-down) attention emerges when specific types
of information (e.g., specific kinds of stimuli) are actively
sought out from the external environment. Top-down attention
is implicated in goal-directed behavior and complex forms of
cognition (Norman and Shallice, 1986; Corbetta and Shulman,
2002; Buschman and Miller, 2014).

Attention is a critical mechanism for sensory system
functioning and decision-making. Quite well-developed
attention can be found in animals with relatively small nervous
systems, for example in insects (Nityananda, 2016). Selectivity in
the visual processing center modulates later behavioral choices
(Paulk et al., 2014), which leads to selective priming of motion
detectors in the optic lobe, accounting for the insects fascinating
ability to predict prey movements (Kohn et al., 2018).

Selective attention is closely linked with cognitive control
that involves prioritization of the information for goal-directed
decision-making (Braver, 2012; Duncan, 2013; Mackie et al.,
2013) typically by inhibitory neuronal mechanisms (Aron,
2007; MacLeod, 2007). Cognitive control includes hierarchically
organized integration of information frommany sources (Toates,
2002; Verschure et al., 2014; Pezzulo et al., 2015), top-
down suppression of distracting emotion-eliciting stimuli, and
regulation of the emotional response (Banich et al., 2009;
Goschke and Bolte, 2014). Various brain circuits have been
implicated in goal-directed cognitive control, such as basal
ganglia, prefrontal cortex (Haddon and Killcross, 2005; Goschke
and Bolte, 2014; Verschure et al., 2014), and lateral habenula
(Hikosaka, 2010). Although few studies of cognitive control have
been conducted in non-human species, the existing evidence
indicates that at least some form of cognitive control can be found
in species lacking prefrontal cortex, such as pigeons (Castro
and Wasserman, 2016) and fruit-flies (van Swinderen, 2005).
Models of cognitive control emphasize local self-organizing
computations (Botvinick and Cohen, 2014).

Heuristics in Human Decision-Making
In economic judgment and psychological decision-making,
humans do not typically use exhaustive analysis of all information
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about the various alternatives and their probabilities. Cognitive
complexity is limited by using simple heuristic rules (Hutchinson
and Gigerenzer, 2005; Gigerenzer, 2008; Gigerenzer and
Brighton, 2009). This reflects the trade-off between accuracy and
effort (in behavioral ecology, see Chittka et al., 2009). While
more information is usually beneficial, obtaining it generally
follows the law of diminishing returns. Neural computations are
energetically costly and consume time. At some point, obtaining
more information and performing additional computations will
not result in sufficiently better decisions (Eliassen et al., 2009).
Instead of the best choice, the organism makes fast and frugal
decisions that are good enoughmost of the time for the ecological
conditions (Hutchinson and Gigerenzer, 2005; Gigerenzer,
2008). Simple heuristics based on limited information can
perform quite well compared to complex informed decision
strategies in a variety of situations (Hutchinson and Gigerenzer,
2005; Eliassen et al., 2007, 2016).

Although the human mind creates verbal heuristics and
rules of thumbs, the evolved rules in most animals are
non-symbolic neurophysiological mechanisms. Heuristic rules
that describe animal behavior are theoretical constructs,
not actual machinery implemented in the nervous system.
Natural selection can maintain simplified algorithms for
approximate solutions in organisms with finite computational
power, memory, and limited information (Geisler and Diehl,
2003; Trimmer et al., 2011; Bach and Dayan, 2017). It
can also facilitate decision biases because some errors (e.g.,
underestimating predation risk or overconfidence in resource
contests) are far more costly than erring on the other side
(Houston et al., 2007; Johnson et al., 2013).

Using less information could result in better decisions than
strategies based on more detailed computations, even when
additional processing is cheap and information is easily available
(Gigerenzer and Brighton, 2009). The main explanation for such
a “less-is-more” effect is that decision-making is about prediction
of the future rather than accounting for the past. Including extra
information and computations within a stochastic environment
incurs significant risk of overfitting. A complex model that
includes more parameters and fits the observed data better
is frequently less capable to predict the future state of the
environment than a simpler model.

This is a general issue that has been treated in non-parametric
inference and machine learning literature. If a model is based
on too limited information (high bias), prediction is inaccurate
because of inadequate model specification. However, if too much
information is accepted (high variance), the prediction can
also be wrong because the model fits all irrelevant stochastic
idiosyncrasies; there is no universal solution to this trade-off
(Geman et al., 1992; Bishop, 2006). Gigerenzer and Brighton
(2009) suggest that the more uncertain the environment is, the
more the cognitive system should protect itself from the variance
even at the expense of increasing bias, thus accounting for the
prevalence of simple and imperfect but resilient heuristics.

How can the animal decide which heuristics to choose in
each situation? This would still require a fairly complex cognitive
system. The main conclusion is that the proximate decision-
making architecture should not use general inference algorithms

(e.g., explicit Bayesian probabilistic reasoning) to find the best
solution in a wide range of contexts, nor should it be largely based
on context-specific lookup table rules. Instead, the cognitive
system of the animal must be able to adapt to a wide range of
situations, as well as its own need states, by dynamically adjusting
the information input in real time.

FORMAL MODELS AND
PROXIMATE IMPLEMENTATION

In the 1960s, David Marr (2010) proposed the now classical idea
that full understanding of any cognitive system requires three
levels of analysis: (a) computational theory, (b) representation
and algorithm, and (c) proximate mechanistic implementation.
Simple heuristics, Bayesian, and active inference models provide
an elegant mathematical framework—they account for what
the organism should do—but do not provide mechanistic
explanation of how it is done (Gigerenzer and Brighton,
2009; Bowers and Davis, 2012). How the organism and its
nervous system may implement these computations is still
poorly understood. However, the agent view of the organism
requires understanding at all three levels, specifically, the
algorithmic implementation and neurobiological “hardware.”
Understanding animal decision-making requires models that
integrate goal-directed predictive processing, information-
limiting heuristics and probabilistic Bayesian thinking into
mechanistic evolutionary models in a (neuro-)biologically
realistic way. We believe that an approach based on cognitive
architecture (Anderson, 2007; Lucentini and Gudwin, 2015;
Budaev et al., 2018) would be a viable strategy for a more
mechanistic understanding of the adaptation and evolution of
decision-making. This involves building simulation models of
cognition and behavior, embodied decision-making, and action
selection (Seth, 2007; Cisek and Pastor-Bernier, 2014). In terms
of Marr’s analysis, cognitive architecture models work at the
second level—the proximate software of cognition, behavior
and decision-making—and allow simplified representation at
the third level—neurobiological hardware—within a simulation
system. As a result, analyzing evolutionary adaptation of the
proximate mechanism becomes possible (Giske et al., 2013, 2014;
Evers et al., 2014; Eliassen et al., 2016; MacPherson et al., 2017;
Budaev et al., 2018).

ADAPTIVE ARCHITECTURE
FOR DECISION-MAKING

We have developed an adaptive architecture for decision-
making (Huse and Giske, 1998; Strand et al., 2002; Giske
et al., 2003, 2013, 2014; Andersen et al., 2016; Eliassen et al.,
2016). It currently contains a general framework and simulation
models that integrate cognition, decision-making and behavior
in the whole integrated phenotype including the genome,
physiology, hormonal system, perception, emotions, motivation
and cognition (Budaev et al., 2018). It follows from and extends
the classical ethological notion of behavioral control systems
(see Toates, 2002; Hogan, 2009). In the following sections we

Frontiers in Ecology and Evolution | www.frontiersin.org 5 May 2019 | Volume 7 | Article 164

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Budaev et al. Decision-Making From the Animal Perspective

show how this framework can be used to model adaptive
animal decision-making.

The Subjective Internal Model
At any time, new information from the body or the external
environment may arrive at the animal’s sensory system. Yet,
before that, the animal has some representation within its
nervous system of both itself and its surroundings. Even
unicellulars can evaluate the situation within the cell and in
the surroundings and make decisions about pursuing resources,
closing enemies out, dividing, or entering a resting stage (Våge
et al., 2014; Lyon, 2015; Bi and Sourjik, 2018). The complexity
of this internal representation varies within Animalia, but it can
be described as an “image” (Damasio, 2010) of aspects of itself
and of the world around it. Much of incoming information will
not be relevant for altering this image, and will not evoke a new
behavior. We call this image an internal model (of the internal
and external world). It is subjective, as it accumulates from the
organism’s own experiences. The subjective internal model (SIM)
is the animal’s cognitive environment for its decision-making.
Technically, SIM represents a set of parameters that are fixed
from the individual genome. We now describe the processes that
can challenge an animal’s SIM, and how that may lead to new
decisions and behavior.

The Survival Circuit
Modularity is ubiquitous in anatomy, physiology, and behavior
(Lorenz et al., 2011; Clune et al., 2013). In particular, behavioral
organization is viewed as hierarchically modular (Toates, 2002;
Hogan, 2009). Causal factors for behavior bring about constraints
and correlations across contexts making up personality (Gosling
and John, 1999; Sih et al., 2004; Budaev and Brown, 2011). In this
framework, modularity is represented by the elementary unit of
information processing: the survival circuit.

The survival circuit is an evolutionarily conserved and highly
integrated neural pathway, along with its neural centers, that
responds to a specific class of innate or learned stimuli and
controls a specific set of behavioral and physiological responses
important for the survival (LeDoux, 2012). Such systems
represent integrated sensory-motor units that link behavioral
decision and action with perception of the environment. The
organism has several of these systems that control specific
behavioral domains linked to nutrition, danger avoidance,
resting, reproduction, etc.

Information Limitation, Attention, and the
Global Organismic State
Animal behavior can always be viewed as a series of mutually
exclusive activities, that occur one at a time (McFarland and
Sibly, 1975). Since most organisms have several survival circuits,
priority needs to be determined. This happens through mutual
competition (Cisek, 2007; Colas, 2017; Alhadeff et al., 2018). The
winning control system gains over the organism and becomes
its current dominant state, called the global organismic state∗

(GOS, LeDoux, 2012, 2014). The strength of the activation
of the dominant state determines the general arousal∗ of the
organism which involves a wide range of neural pathways and

brings about alertness to various sensory stimuli, reactivity,
and motor activity (Pfaff, 2006; Calderon et al., 2016). This
is an oversimplification dictated by the main application area:
ecological and evolutionary analysis of animal behavior. Whereas
arbitration between different controllers involves competitive
exclusion, it can also include sharing of attention, working
memory, and other limited resources (Daw et al., 2005; Keramati
et al., 2011; Korn and Bach, 2018).

What happens once a GOS has been established can differ
across Animalia. Certain taxa may have to run the priorities
of a GOS isolated from all other survival circuits, and may
even have a higher number of specialized survival circuits.
More complex nervous systems have means to communicate
between survival circuits, and thus incorporate more factors
in the decision-making. For instance, Milinski (1984) found
that starving three-spined sticklebacks were not willing to focus
entirely on attention-demanding high-speed feeding after seeing
the silhouette of a predatory bird, and also chose to feed in a less
attention-demanding situation after first reducing its hunger in
high-risk feeding (Heller and Milinski, 1979). Thus, the brains
of these fish would implement an information broadcast in the
SIM across survival circuits that allows for nuanced behavioral
decision by the GOS. In the crab Heterozius rotundifrons, on the
other hand, the alternative global organismic states seem to be
like an on/off switch (Hazlett and McLay, 2000).

The GOS and general arousal jointly modulate the top-down
attention system such that all the perceptions that are not linked
with the currently dominant survival circuit are suppressed
(Figure 1). The stickleback feeding (Heller and Milinski, 1979)
illustrates that the extent of this suppression is proportional
to the general arousal. For example, if the dominant state
of the organism is fear, then hunger, thirst, and sexual drive
systems are suppressed proportionally to the fear arousal. This
provides a simple mechanism for goal-directed limitation and
modulation of information input. That is, arousal determines the
current need state of the organism (e.g., higher or lower hunger)
such that a higher need brings about a stronger information
limitation while a weaker need causes a wider integration of
diverse stimuli. This accommodates both limited- and full-
information models of decision-making: a strong need dictates
the organism to prefer a fast decision based on the most critical
information, while being in a low-need state permits longer and
more deliberate collection and analysis of information. Attention
restriction in our framework is a simplification, real animals
have various forms of attention (orienting, selective, expectancy,
sustained, parallel resource sharing etc.) that can involve both
suppression of irrelevant stimuli and enhancement of relevant
stimuli (Bushnell, 1998; Katsuki and Constantinidis, 2014;Moore
and Zirnsak, 2017).

Top-down attention creates elementary goal-directed
behavior. Indeed, the current GOS determines which stimuli the
organism will select to respond to without an additional internal
controller. Furthermore, this also creates an elementary form of
subjective phenomena that exist only for experiencing subject
(Searle, 1997). Indeed, due to differences in their internal states,
two organisms with identical genomes placed into identical
environments will have different weights of environmental
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FIGURE 1 | A graphical model of the cognitive environment for decision-making in an animal with Subjective Internal Model (SIM), survival circuits (here two shown,

where the blue became the GOS) and the potential for a Global Organismic State (GOS). The continuity of the SIM across time steps is illustrated. Two survival circuits

are activated from sensory information and compete for access to the GOS. The winner, in this case related to hunger reduction, narrows the attention to stimuli

relevant for feeding, utilizes the prediction machine for re-entrant evaluation of the future arousal of its need state to be obtained by each behavioral option available,

and chooses accordingly. If the neurobiological arousal from all survival circuits is low, the organism may not enter a strict GOS, and rather make reentrant predictions

that considers needs in several survival circuits. Information from both (and other) survival circuits is stored by the SIM, but will gradually be forgotten.

inputs and thus different SIMs. This is analogous to being in
different subjective environments, so the organism would come
to make different decisions. As they continue to interact with
their environments, subjective differences would further deviate.

Subjective Simulation for
Predictive Decision-Making
The link between perception, decision-making, and action
within the survival circuit not only produces behavior directly,
but can also be reactivated recursively∗. This provides a
simple mechanism for internal subjective simulation of action
consequences. Combined with the general arousal as a proxy
for the organism’s subjective need, this provides a mechanistic
system capable of predictive processing. Now the organism can
build simple sensorimotor models of its internal and external
environments by recurrent reactivation of its survival circuits and
calculate its expected need state under all or many immediately
expected conditions of the environment. For example, an animal
can from visual inspection andmemorymake a prediction of how
much a potential food item will reduce hunger before it decides
to eat it. This simulation process within the SIM implements
an elementary form of “mind” capable of elementary declarative

representation: knowledge symbolizing facts about the world,
e.g., “If I eat this food item, my hunger diminishes.” This is
consistent with the current thinking in cognitive neuroscience
where the same integrated neural pathways are recruited when
the behavioral action is produced as when the same action is
planned, anticipated, subjectively simulated, or even observed
(Hurley, 2008; Casile et al., 2011; Soylu, 2016). Such mechanisms
are not limited to human higher cognitive functions: insects are
a model system for sensorimotor integration because of their
simple nervous systems but complex behaviors (e.g., Huston
and Jayaraman, 2011). Furthermore, computationally similar
mechanisms can exist even in bacteria (Duijn et al., 2008).

Recurrent rather than simple feed-forward processing
is particularly important for complex decision-making
computations. For example, recurrent networks can implement
Turing-complete machines and therefore perform computations
of any complexity (Siegelmann and Sontag, 1995). Such
recurrent networks can be supplemented with attention and
memory providing a powerful unsupervised architecture capable
of inferring computational algorithms (Graves et al., 2014).
Whenever the same set or sequence of inputs is used, one can
unwind a recurrent into a simple linear process. The power
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of recurrent processing lies in its inherent and parsimonious
capacity to cope with uncertainty and unpredictability.

It is thought that complex forms of cognition depend
on reentrant∗ recruitment of sensorimotor bundles (Barsalou,
2008). These are involved in mental simulations of actions
and provide an objective substrate for subjective experience
(Barsalou, 2008). Barsalou (2005) suggested that there is a
continuity of such systems across species: a common architecture
can underlie conceptual systems in different taxa. Neurobiology
of learning converges on the idea that even simple nervous
systems should store information intrinsically in the symbolic
way (Gallistel and King, 2010; Gallistel and Balsam, 2014). There
is also now evidence that at least some species are able to travel
in time mentally and “future-think” (Corballis, 2013; Thom and
Clayton, 2015; Dere et al., 2018). Thus, a range of species, even
with simple nervous systems, may have cognitive mechanism
for active, dynamic understanding of their environment (a
simple form of deliberation or thinking), probably based
on recurrent recruitment mechanisms and perceptual symbol
systems. Furthermore, such mechanisms may show evolutionary
continuity and range from simple to very complex (incidentally,
there is no a priori reason to assume that primates should always
use more complex internal mechanisms than fish or insects).
Indeed, there is a growing literature indicating that animals are
capable of causal reasoning and abstraction (Penn and Povinelli,
2007; Urcelay and Miller, 2009; Guez and Stevenson, 2011).

Elementary Self-Awareness Through the
Subjective Internal Model
The adaptive decision-making architecture described in this
paper provides a mechanistic model for elementary forms of
subjective understanding of the environment by the organism
(Budaev et al., 2018). Such an understanding does not
involve building a generalized abstract representation of the
environment, but is produced by the organism’s internal control
systems (Figure 1). It also provides a model of elementary self-
awareness, which is defined as the ability of the organism to
assess its own subjective internal state and use this information
for decision-making and behavior (see Budaev et al., 2018).
In this way, the subjective state depicted by the survival
circuit and general arousal represents a common subjective
currency for decision-making. For example, when choosing
one of several available food items, the organism can calculate
the anticipated level of hunger resulting from eating each one
and then select the item that minimizes the expected arousal
(Budaev et al., 2018). Thus, the organism anticipates effects of
its decisions through prediction of its own subjective states.
Similarly, it was shown that using simple subjective information
can significantly increase the efficiency of decision-making: it
can approach a Bayesian learning strategy integrating large
amount of information (Higginson et al., 2018). The ability to
monitor one’s own subjective state in animals should not be
considered a glimpse of anthropomorphism. On the contrary,
there is a growing understanding that many animals can in fact
monitor their own cognitive state and therefore are capable of
metacognition (Smith et al., 2003; Kornell, 2014).

Thus, the decision-making architecture based on simple
subjective simulations with elementary self-awareness—the
primary regulator of the whole organism behavior—encodes
a valid, albeit limited and not always precise, model of the
organism’s world including both the internal and external
environment (Figure 1). It is apparently much simpler and
has far fewer degrees of freedom than the stochastically
fluctuating environment, and can even be drastically simplified
in situations of high need (high arousal) through the use of
heuristics. This provides a solution to the complexity challenge
in animal decision-making.

Evolutionary Adaptation
Behavior of the organism is determined bymultiple causal factors
(Hogan, 2009), such as reflexes, homeostatic drives, and emotions
(Andersen et al., 2016). These mechanisms can be inherited
and operate without individual learning. Hence, the major
computational challenge of both environmental assessment and
bodily priorities does not all depend on the individual’s cognitive
capacity: it is partially conducted through adaptive evolution
of the population gene pool. Animals are unlikely to perform
complex Bayesian computations, but natural selection is expected
to favor organisms that approximate Bayesian inference (Ramírez
and Marshall, 2017). How such computations can be done
mechanistically is generally unknown.

This framework investigates these problems through the
genetic algorithm to evolve solutions to genetic (Huse and
Giske, 1998; Fiksen, 2000) and cognitive/behavioral (Giske
et al., 2013; MacPherson et al., 2017) architecture in individual-
based models. Our approach directly translates into testable
experiment: increasingly adaptive behavior evolved over
successive generations provides evidence for the architecture
implemented (Giske et al., 2013, 2014; Andersen et al., 2016;
Eliassen et al., 2016; Budaev et al., 2018). Also, the solution
found by the genetic algorithm is at the level of the gene pool, so
there will usually be genetic variation in the population (Giske
et al., 2014). Such genetic diversity allows for consistent variation
among individuals, including emergence of personality types that
differ in sensory sensitivity and top-down emotional evaluation
of the choices (Giske et al., 2013). This enables generating
and testing hypotheses on both the decision architecture
and its variability. Further models can be built testing co-
evolution and/or competition of distinct architectures in
common environments. We envision the framework as a digital
laboratory, a middle ground between theoretical optimality
models and experiments.

Individual learning plays a crucial role in decision-making
(Doya, 2008; Frankenhuis et al., 2018). Much of learning can
be mediated by innate cognitive machinery with subjective
currency serving for the prediction error∗ (Sutton and Barto,
1981; Botvinick and Weinstein, 2014; Holland and Schiffino,
2016). This calls for models of learning based on top-down
cognition and information rather than temporal association
between stimuli (Gallistel and King, 2010; Gallistel and Balsam,
2014; Haselgrove, 2016). Individual learning is therefore linked
with the evolved cognitive architecture and memory system,
so that even individually acquired choices can be based on
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evolutionary computations over the previous generations. The
elementary forms of declarative representation that result from
reentrant recruitment of survival circuit in our framework may
therefore provide a model for the evolution of innate core
knowledge (Kinzler and Spelke, 2007; Vallortigara, 2012).

GENERAL DISCUSSION

Many biological problems are complex, studying them need
models that can incorporate complexity (Levins, 1966). Such
models often contain a mixture of theory, statistical relationships
from empirical studies, and theoretical relationships that need
to be challenged by new data (Railsback and Grimm, 2019).
An important part of the current shift toward an integrative
understanding of proximate and ultimate causation involves
viewing the animal as an agent rather than just passive
responder. Decisions made by the agent can be analyzed
from its point of view, accounting for its sensory and motor
capabilities, environmental conditions and affordances. This
focuses on how the animal solves its everyday decision
tasks across various contexts through its evolved cognitive
architecture, acting autonomously, purposively, determining
dynamically which information to use and which to ignore.
Merging evolutionary ecology with the cognitive sciences,
animal cognition, neuroscience as well as artificial intelligence
and robotics opens important perspectives in the study of
decision-making in organisms with complex cognition and
behavior. A drawback is that more complex, computationally
intensive simulations with expensive computer programming
are required (Huse and Giske, 1998; Giske et al., 2013);
(MacPherson et al., 2017).

Ethologists (e.g., Tinbergen, 1952) and evolutionary ecologists
(Mangel and Clark, 1986; McNamara and Houston, 1986) have
long accepted that animal behavior is not a mechanical response
to the external pressure from the environment but depends
on the state of the organism. In this paper we argue that
the fundamental state to consider is not stomach contents, fat

reserves, or body mass per se, but a state of its “mind”: the
global organismic state. The animal’s subjective internal model
can, via control of the nervous system, set the animal in a
mental state that will dominate many aspects of its cognition and
behavior, including decision-making. There is an exciting avenue
for linking cognition and neuroscience with ecological function.
Predictions on the fitness economics (Krebs and Davies, 1993) of
various cognitive systems and emotions can now be produced.
By integrating knowledge at different levels of analysis it could
depict correlations across contexts, time, and developmental
stages. This provides a key to better understanding animal
personalities and life history strategies. Finally, the focus
on agency, top-down causes and emergence may lead to
novel discoveries that are not easily predicted from simple
aggregate phenomena.
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GLOSSARY OF TERMS

Agent: an autonomous entity that is capable of adaptive, goal-
directed behavior.
Arousal: an elementary neural force of the central nervous
system that activates a broad range of cognitive processes,
emotions and behavior.
Cognitive science: a general interdisciplinary area focusing
on cognition in the broad sense, with the mind and brain as a
computational machine.
Computational complexity in computer science is the
inherent difficulty involved in solving a specific class of
computational problems.
Global Organismic State (GOS): the current state of the
organism in terms of the specific survival circuit that is activated,
raised arousal, motivation, focused attention etc.
Heuristics: a simple rule, taking into account very few pieces
of information, to base estimation, prediction and decision-
making upon.
Model-based/model-free cognition: model-based cognition
is driven by representation of the causal structure of the
environment with expectations and predictions of the action
outcome whereas model-free, just links reward with the action.
Phenotypic gambit: the assumption that fitness consequences

are all we need to know to understand the choice of actions, such
that the internal mechanisms can be ignored.
Prediction error: the difference between the predicted state
of the environment (external and internal) and that actually
observed as a consequence of the action.
Prediction machine: a view of the organism as a computational
machine that forms predictions about the future states of itself
and its environment, and makes decisions and selects actions
based on these predictions.
Reentrant processing: an architecture for neural networks and
cognitive system based on recursive (repeated) activation of the
same neuronal ensembles and/or functional system.
Subjective: internal processes and states of the organism that
exist from the first-person point of view; their existence is
inseparable from and cannot be defined independently of the
experiencing organism.
Subjective Internal Model (SIM): an internal representation or
a model of itself and the environment currently held in the brain
of the organism, available to decision-making.
Survival circuit: an evolutionarily conserved and
highly integrated neural pathway that responds to a
specific class of innate or learned stimuli and controls
a specific set of neurobiological, physiological, and
behavioral responses.
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