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Abstract

In this paper, we consider an interpolation-based decoding algorithm for a large family of
maximum rank distance codes, known as the additive generalized twisted Gabidulin codes,
over the finite field Fy» for any prime power g. This paper extends the work of the con-
ference paper Li and Kadir (2019) presented at the International Workshop on Coding and
Cryptography 2019, which decoded these codes over finite fields in characteristic two.
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1 Introduction

Error correction codes with the rank metric have found applications in space-time coding
[27], random network coding [44] and cryptography [12]. Many important properties of
rank metric codes including the Singleton like bound were independently studied by Del-
sarte [9] , Gabidulin [13] and Roth [38]. Codes that achieve this bound were called maximum
rank distance (MRD) codes. The most famous sub-family of MRD codes are Gabidulin
codes which is the rank metric analog of Reed-Solomon codes. They have been extensively
studied in the literature [9, 12, 13, 25, 36, 38].

Finding new families of MRD codes has been an interesting research topic since the
invention of Gabidulin codes. In [20, 39], the Frobenious automorphism in the Gabidulin
codes were generalized to arbitrary automorphism and generalized Gabidulin (GG) codes
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were proposed. In the past few years, a considerable amount of work has been done on MRD
codes. In [40], Sheekey twisted the evaluation polynomial of a Gabidulin code and proposed
a large family of MRD codes termed twisted Gabidulin (TG) codes. Using the same idea
for generalizing Gabidulin codes, arbitrary automorphism was employed to construct gen-
eralized twisted Gabidulin (GTG) codes. This family of MRD codes were first described
in [40, Remark 9] and later comprehensively studied in [26]. Otal and Ozbudak [30] later
introduced a large family of MRD codes, known as additive generalized twisted Gabidulin
(AGTG) codes, which contains all the aforementioned linear MRD codes as sub-families
and new additive MRD codes. There are also some new families of MRD codes which are
not equivalent to AGTG codes nor its subfamilies [5, 8, 42, 47]. Recent constructions of
linear and nonlinear MRD codes were lately summarized in [31, 41].

MRD codes with efficient decoding algorithm are of great interest in practice. In his
pioneering work [13], Gabidulin gave a decoding algorithm based on extended Euclidean
algorithm. Subsequently, Richter and Plass in [36], and Loidreau [25] proposed modified
version of Berlekamp-Massey and Welch-Berlekamp algorithms to decode Gabidulin codes.
Some of the aforementioned algorithms were further optimized in [45, 48]. Nevertheless,
the known decoding algorithms for Gabidulin codes cannot be directly applied to those new
MRD codes with twisted evaluation polynomials, especially when the MRD codes are only
linear over the ground field I, or its subfield. By modifying the decoding algorithm in [19]
for subspace codes, Randrianarisoa and Rosenthal in [37] proposed a decoding method for
the twisted Gabidulin codes, which works only for a limited option of parameters. Randri-
anarisoa later proposed an interpolation approach to decoding twisted Gabidulin codes in
[35], where he gave a brief discussion on the case when the rank of the error vector reaches
the unique error-correcting radius of the twisted Gabidulin codes.

In this paper, we apply the interpolation approach by Randrianarisoa [35] in decoding
additive generalized twisted Gabidulin (AGTG) codes, which contain (generalized) twisted
Gabidulin codes and (generalized) Gabidulin codes as special cases. For AGTG codes with
minimum rank distance d, if an error vector has rank strictly less than d%l, the decod-
ing process can be directly converted to the decoding of generalized Gabidulin codes, for
which existing decoding algorithms in [25, 36, 48] can be applied. On the other hand, when
the error vector has rank exactly d%l (with d being odd), a new problem arises and one
needs an efficient way to solve a quadratic polynomial. Solving a given quadratic poly-
nomial over finite fields in general is a challenging problem. The quadratic polynomial
derived from the decoding of AGTG codes has a close connection to a projective polyno-
mials P (x). Different from the short discussion in [35], we study the projective polynomial
P (x) in greater depth. We start with the discussion on the number of roots of P(x) accord-
ing to its coefficients and the characteristic of the finite field IF;», propose methods to find
roots of P(x) for each case, and finally adopt the result in the decoding algorithm for
AGTG codes.

The remainder of this paper is structured as follows. Section 2 introduces some prelim-
inaries, where we particularly recall some properties of linearized polynomial and recently
constructed twisted MRD codes. Section 3 summarizes the interpolation decoding approach
for additive generalized twisted Gabidulin codes and identifies the crucial quadratic poly-
nomial when the rank of error reaches % (with d being odd). Section 4 is dedicated to the
study of the quadratic polynomial and to finding roots of the corresponding projective poly-
nomial P(x). Section 5 integrates the interpolation decoding procedure and the result of
Section 4 into an explicit algorithm and discusses the complexity of the proposed algorithm.
Section 6 concludes the work of this paper.
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2 Preliminaries

Let g be a power of a prime p. Throughout this paper we denote by IF- the finite field with
q" elements for an arbitrary positive integer r.

2.1 Linearized polynomial

A polynomial of the form L(x) = Zf-:(; lix‘]i over [Fyn is known as a g-polynomial [29].
Define a set

k—1 _
Li(Fgr) = {L(x) =) lix? |L(x) € For[x]/ (7" ~ x)} . (1)

i=0

It is easy to verify that (Lk (Fyn), +, o) forms a non-commutative [, -algebra, where +
denotes the conventional polynomial addition and o denotes the symbolic product given by
a(x) ob(x) = a(b(x)). Note that symbolic product is associative and distributive, but non-
commutative in general. For a nonzero L(x) = Zf-:(; Iix? over F qn» its g-degree is given
by degq(L(x)) =max{0 <i < k|l; # 0}.

When ¢ is fixed or the context is clear, it is also customary to speak of a linearized
polynomial as it satisfies the linearity property: L(c1x + c2y) = c1L(x) + c2L(y) for any
c1,c2 € Fy and any x, y in an arbitrary extension F,». Hence a linearized polynomial
L(x) € L,(Fy) indicates an [F,-linear transformation L from Fy» to itself.

Known MRD codes in the literature are mostly given in the terms of linearized
polynomials. Some relevant definitions and auxiliary results are recalled below.

Definition 1 For a nonzero linearized polynomial L(x) = Zfz_(; lix1 " over Fgn, its rank is
given by
Rank(L) := diqu (Img(L)) =n — dim]pq (Ker(L)),

where Img(L) = {L(x)|x € Fyn} and Ker(L) = {x € Fyn|L(x) = 0}.

For a linearized polynomial L(x) = Z;;o l,-xqi with g-degree k, i.e., [y # 0, it is clear
that Ker(L) has at most qk elements. From the definition, the linearized polynomial L(x)
has

Rank(L) = n — dimg, (Ker(L)) > n — k.
Sheekey in [40] characterizes a necessary condition for L(x) to have rank n — k as below.

Lemma 1 [40] Suppose a linearized polynomial L(x) = lox + 11x9 +--- + lkqu, Iy #0,
in L,(Fyn) has q* roots in Fyn. Then

Normgn 4 (k) = (_l)nkNormq"/q (lo), 2)

o d4qg4edgl .
where Normgn ;4 (x) = x4 4" is the norm function from Fyn to .

Furthermore, the necessary and sufficient condition for L(x) with g-degree k to have g*
roots in F,» was independently characterized recently in [28, Theorem 7] and [7, Theorem
1.2], where all coefficients of L(x) are involved.

Below we recall two interesting matrices, of which properties and connection are critical
for the decoding algorithm in this paper.
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Definition 2 [24, 49] Given a vector a = (ao, ..., ay—1) over F,n, the Dickson matrix
associated with a is given by

q q
ap a, y ...da
—1
q q"
/ 611 ao o .. 612
Da=(a moam ). = , 3
“ i~ jmodn) nxn : : Lo ©)
-1
q q"
An—1 A, _, ... 4y
and the Moore matrix associated with a is given by
n—1
ao ag ag
-1
q q"
i ay  a; ...a
Ma - aq == . (4)
l nxn . . o
-1
q q"
an_l an_l . .. an_l

The Dickson matrix and Moore matrix have the following properties:

Lemma 2 For two vectors a = (ag, ..., ap—1) and b = (by, ..., by—1) over Fyn,
n—1
iy DI = D, witha' = (ay, ag_l, e, a? ;
.. . —1 j
i) D,-Dp = D,, whereu = (ug, ..., u,_1) withu; = Z?‘:o aiqu(modn)bj"
iii) M - My = Dy, where v = (v, ..., vo1) withv; = Y "_ga? bj;
. . _ J
iv) M, - D, = My, where w = (wy, ..., Wy—1) With w; = Z;fz(l) al bj.

The proof follows from direct calculations and is thus omitted here.

Let D, (IF,») be the set of all n x n Dickson matrices over F». It is shown in [49] that
D, (Fyn) forms an I, -algebra and there is an isomorphism ¢ between L,,(IF;») and D, (Fyn)
given by

n—1
) = = (17’
(p (ZO llx ) —_— D(l(],unlnfl) - (ll—J(mOdn))nxn ) (5)
1=

A Dickson matrix D will be said to be associated with a linearized polynomial L(x) if
¢(L(x)) = D.

Proposition 1 [49]. Let L be the linear transformation induced by a linearized polynomial
L(x) € L,(Fyn) and D be the Dickson matrix associated with L(x). Then

Rank(L) = Rank(D) and det(L) = det(D).

It is well known [24] that given a linearized polynomial L(x) = er':ol l,-qu over [Fyn,
it is a permutation of Fy», i.e., Rank(L) = n, if and only if its associated Dickson matrix
is non-singular; or equivalently its associated Moore matrix is non-singular. It follows from
the fact that the determinant of a Moore matrix vanishes if and only if the entries of its first
column are linearly dependent. In fact, more interesting connections between a linearized
polynomial L(x) in £, (F4») and its associated Dickson matrix can be established.

@ Springer



Cryptography and Communications (2020) 12:987-1009 991

Proposition 2 [35, Theorem 3] Assume a linearized polynomial L(x) = Z?;ol 1ix? over
Fyn has rank k. Then its associated Dickson matrix D in (5) has rank k over Fyn. Moreover,
any k x k submatrix formed by k consecutive rows and k consecutive columns in D is
invertible.

Remark 1 Let o = ¢g* with ged(s, n) = 1. The o-polynomial
n—1
Lo(x)=lox +11x° +---+1,1x7 , [ €Fyn,

which reduces to a g-polynomial over Fy» for s = 1, is a generalization of g-polynomial.
The aforementioned properties of g-polynomials can be similarly obtained as for o-
polynomials. For instance, the o-polynomial L, (x) = Z;{:O 1;x°" with [y # 0 also has
Rank(L) = n — dim]Fq (Ker(L)) > n — k [15]. When ¢ is replaced by o in the definition
of the Dickson and Moore matrices, they are called the o-version Dickson matrix and the
o -version Moore matrix, respectively. The o-version Dickson and Moore matrices have the
same properties as characterized in Lemma 2 and Proposition 2.

2.2 Maximum rank distance (MRD) codes

Let n and m be two positive integers. The rank of a vector a = (ay, a2, ..., a,) over Fym
is defined as the dimension of spang, (a1, aa, ..., a,) which is the vector space spanned by
a;’s over IF,. The rank distance between two vectors a, b € Fym is defined as dg(a, b) =
Rank(a — b).

Definition 3 A rank metric (n, M, d)-code over Fyn is a subset of IFZm with size M and
minimum rank distance d. Furthermore, it is _called a maximum rank distance (MRD) code
if it attains the Singleton-like bound M < g™nmn—d+1.n(m=d+D)}

The Gabidulin codes are the most well-known MRD codes [13]. This family of MRD
codes were further generalized in [20, 39], where the Frobenius automorphism of F,» was
replaced by a generic automorphism x +— x° with 0 = ¢* and ged(s,n) = 1. The gen-
eralized Gabidulin (GG) code GG, x over gm with length n and dimension k is defined
by

k—1 ‘
GG = {(f(ozo), f@), . flan-)Ifx) =) fix” and f; € qu} . ©)
i=0

where ag, oy, ..., 0,1 in Fym are linearly independent over F,. When o = g¢, ie,
s = 1, the code GG, reduces to the original Gabidulin code [13]. The choice of
independent points «g, o1, ..., ®,—1 does not affect the rank property. Hence it is cus-

tomary to express generalized Gabidulin codes without the evaluation points as GG, y =
f(x) = Zf:_(% f,-x“l | fi € Fym } We will also omit the evaluation points «g, a1, ..., 0,1
in the following introduction of recent twisted MRD codes [26, 30, 40]. For consistency
with the parameters of MRD codes in [26, 30, 40], throughout what follows we always
assume n = m.
Recent constructions of MRD codes largely depend on the number of roots of certain
linearized polynomials. From Lemma 1 it is readily seen that a linearized polynomial L (x)
of g-degree k has rank at least n — k 4 1 if the condition (2) is not met. In [40] Sheekey
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adopted Lemma 1 to construct twisted Gabidulin (TG) codes and described the generalized
twisted Gabidulin (GTG) codes, which was intensively studied by Lunardon et al. [26].

Proposition 3 [26, 40] Let n, k, s be positive integers such that k < n and gcd(s,n) = 1.
Let 1 be a nonzero element in Fyn satisfying Normgsn 45 () # (—1). Then the set

k—1 '
His(n.h) = {Z fix® 4 nfd X fi € Fqn} )

i=0
is an MRD code with minimum rank distanced =n — k + 1.

The idea of manipulating some terms of linearized polynomials to construct new MRD
codes was further extended in [30, 31, 33]. Below we recall from [30] the additive gener-
alized twisted Gabidulin (AGTG) codes , for which we will propose an interpolation-based
decoding algorithm in the next section.

Proposition 4 [30] Letn, k, s, h € Z" satisfying gcd(s,n) = l and k < n. Let g = q(’)‘ and
n € Fyn such that Normqsn/qa (n) # (—=1)"k"_ Then the set

k—1

si h sk
His.ao(m h) = {Zﬁxq +fy0 x| f; € By ®)
i=0

is an Fy,-linear (but not necessarily I -linear) MRD code of size q"* and minimum rank
distancen — k + 1.

The above AGTG codes reduce to GTG codes when gy = ¢ and to GG codes whenn = 0
or go = 2. Very recently, Sheekey in [42] showed the existence of a new family of MRD
codes which is not equivalent to AGTG codes and Trombetti-Zhou codes in [47]. Recent
MRD codes that are constructed based on Lemma 1 were formulated in a united manner in

[41] and [22].

3 Encoding and decoding for AGTG codes

Throughout this section we will denote [i] := ol = qSi fori = 0,...,n — 1, where
(s, n) = 1, for simplicity.

Below we briefly describe the encoding process of the AGTG codes, which provides the
notational conventions and a reference for the interpolation decoding process.

3.1 Encoding AGTG codes

For an AGTG code with evaluation points «, o1, ..., ®,—1 that are linearly independent
over [, the encoding of a message f = (fo,..., fk—1) is the evaluation of the following
linearized polynomial at points «g, o1, ..., @y—1:

k—1

) h
F) =" fixll 4 ffoxk,
i=0
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~ h
Let f = (fo,---» fk—1, r;quO,O, ..., 0) be a vector of length n over F,» and M be the
o-version Moore matrix generated by «;’s, where 1 <i,j <n —1,1.e.,

o0 oz([)l] oz([)n_l]

[1] [n—1]
= (U B ap o ..o 9
—\% )nxn o . . .. : ) ()

1 —1

Oy ag] ozr[ln_l]

Then the encoding of AGTG codes can be expressed as
(for s fimD) P> € = (f(@0), .., flan-1)) = fMT. (10)

Here it is worth noting that in encoding process, one actually only needs to calculate the
h

multiplication of the (k + 1)-tuple (fo, ..., fk—1, 1 fg %) and the first k 4+ 1 row of M. Here
we express it as in (10) for being consistent with the decoding procedure.

3.2 Decoding AGTG codes with an error-interpolation polynomial g(x)

For a received word r = ¢ + e with an error e added to the codeword ¢ during transmission,
when the error e has rank ¢ < L%J, the unique decoding task is to recover the unique

codeword ¢ such that dg(c, r) < L%J.

When the rank ¢ of the error is strictly smaller than %, the decoding of AGTG codes
Hk,s5,q0 (1, h) can be converted to the decoding of GG codes GG, k+1. More concretely, one
can use the existing decoding algorithms, e.g., [25, 36, 48], for (generalized) Gabidulin
codes to establish a system of n — (k + 1) — ¢ independent affine equations and # unknowns,
which is uniquely solvable since 2t < n — (k 4+ 1). However, when the rank ¢ achieves the
unique error-correcting radius, i.e., (n — k) is even and t = %, one needs more equa-
tion(s) on the unknowns and new techniques are required. In the interpolation decoding for
the TG codes by Randrianarisoa [35], the problem was converted to certain quadratic equa-
tions. However, how to efficiently solve the corresponding quadratic equations was little
considered in [35].

Below we shall extend Randrianarisoa’s idea to the larger family of AGTG codes and
investigate the quadratic equations in greater depth. For self-completeness, we briefly
describe the process of interpolation decoding and how it is transformed to solving certain

quadratic equation for the case that 2t = n — k.
n—1

Suppose g(x) =Y 7 gix" is an error interpolation polynomial such that
glaj)=e =ri—cij, i=0,...,n—1. (11D

It is clear that the error vector e is uniquely determined by the polynomial g(x). Denote a
vector g¢ = (g0, ..., gu—1). From (10) and (11) it follows that

r=ct+e=(f+gM".
This is equivalent to

h
r-MH™ = (fo+ 80\ frmt + 8k—1. nfoqo + ks 8k+1s -+ s &n—1)- (12)

Letting y = (Y0, ..., Yu_1) =7 - (MT)~!, we obtain
h h
q q
(841> 8n—1) = (Vkt1s---» Yu—1) and — g + gk = vk — 1Y ° (13)

h
. q
since nf," + gk = vk, and fo + go = »o.
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Therefore, the task of correcting error e is equivalent to reconstructing g(x) from the
available information characterized in (13). This reconstruction process heavily depends on
the property of the associated o-version Dickson matrix of g(x) and will be discussed in
Section 3.3.

3.3 Reconstructing the interpolation polynomial g(x)

Similarly to the definition in (3), the o -version Dickson matrix associated with g(x) can be
given by

_ (] _
G= (gi—j (modn))nxn =(Go Gi ... Gp1) (14)

where the indices i, j run through {0, 1, ..., n — 1} and G is the j-th column of G.

According to Proposition 2, the matrix G has rank ¢ and any ¢ x ¢t matrix formed by ¢
successive rows and columns in G is nonsingular. Then G can be expressed as a linear
combination of G, ..., Gy, namely, Go = A1G1 + A2G2 + - - - + A,G¢, where Ay, ..., A
are elements in [F,». This yields the following recursive equations

1 2 .
gi=rig +Frgl g, 0<i<n, (15)

where the subscripts in g;’s are taken modulo n. Recall that the elements g1, ..., g,—1 are
known from (13). Hence we obtain the following linear equations with known coefficients
and variables A1, ..., As:

gi=rgM + e+ g kit 1<i<n (16)

The above recurrence gives a generalized version of g-linearized shift register as described
in [43], where (A1, ..., A;) is the connection vector of the shift register. It is the key equation
for the decoding algorithm in this paper, by which we shall reconstruct g(x) in two major
steps:

Step 1. derive the coefficients Aq, ..., A; from (13) and (16);
Step 2. use Ay, ..., A; to compute gx—1, ..., go recursively from (15).

Note that Step 1 is the critical and challenging step in the decoding process, and Step 2 is
simply a recursive that can be done fast. The following discussion shows how the procedure
of Step 1 works.

As discussed in the beginning of this section, for an error vector with Rank(e) = t <
L%J, i.e., 2t + k < n, we can divide the discussion into two cases.

Case l1: 2t + k < n. In this case, (16) contains n — k — t — 1 > ¢ affine equa-
tions in variables A, ..., A;, which has rank ¢. Hence the variables A{, ..., A;
can be uniquely determined. Here we assume the code has high code rate, for
which the Berlekamp-Massey (BM) algorithm is more efficient [14]. Another
reason for choosing the BM algorithm is that it outputs the intermediate poly-
nomial B® %=1 (x) which will be used in Case 2. Although the recurrence
(16) is a generalized version of the ones in [36, 43], the modified BM algo-
rithm [36, 43] can be applied here to recover the coefficients Ay, ..., A;. For
self-completeness we recall the modified BM algorithm in Algorithm 1. The
coefficients of A %=1 (x) are the desired A;’s.
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Case 2:

2t + k = n. In this case (16) givesn —k —t — 1 = t — 1 independent affine
equations in variables Ap, ..., A;. For such an under-determined system of linear
equations, we will have a set of solutions (Ag, ..., A;) that has dimension 1 over
[F4n. Namely, the solutions will be of the form

)»—I—w)/z()»1+a))»/1,...,)»,+a))»;),

where A, A" are fixed elements in ]F;,, and o runs through [Fgn. As shown in [43,
Th. 10], the solution can be derived from the modified BM algorithm with a
free variable w. Next we will show how the element w is determined by other
information in (13).

Algorithm 1 A modified BM algorithm solving (16).

N -

o 0 N Nt AW

Input: elements gxy1, ..., gn—1

Output: A shortest FSR with coefficients Aq, ... , A; satisfying (16)
Set L=0,AQx)=x, BOx)=x,A)=1;

for eachr fromOton —k —2 do

end

Calculate Ar = —Gk+1+r + ZZ'L:] Al(") q*
if Ar = (O then

Bkt 14r—i°

AT () = A (x);
Bt (x) = x4 o B (x):

else

AT (x) = AV (x) — Ax? o BV (x);
if 2L > r then
‘ BTt (x) = x9 o BM(x);
else
B(r+1)(x) — Ar_lA(’) (x);
L=r+1-1L;
end

end
r=r+41;

Sett =1L;
Return ¢, the connection vector A1, ... , A, in A®~%=D(x) and B®~*=D(x)

Observe that in (15), by taking i = 0 and i = k + ¢ and substituting the solution A + wA’,
one gets the following two equations

1
g0 = ()\1+w)\’,...,)\,+w)\;)-(g[] ...,g,[flt)T

n—1°

1
Skt = (M + oA}, ... X +C‘))‘;) ) (gIEle—l’ T g[l])T

Re-arranging the equations gives

g0 = cotciw
_ R 1) (17)
8kt = 2+ 3w+ (A + )‘tw)gk )
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where ¢, 1, ¢2, ¢3 are derived from A, A" and the known g;’s. Furthermore, from (13) we

h h

0

h h
have —nggo + 8k = Vk — nyoq . Denoting ¢4 = yx — nyoq % and substituting gx = c4 + nggo

into (17) gives

h
(v + M) (cq + n(co + crw) i) — g1y + (c2 + c30) = 0.

This equation can be re-arranged as

uowq0“+l +u1wq5 + urw +u3z = 0. (18)
where g = q()”, v = h + ust, uop, ..., us are derived from cy, ..., c¢5 and 7.
Since the error e with rank ¢ = % = % can be uniquely decoded, the polynomial

v v
P(x) = uoxt 4 11 x9% + upx + us

should have roots w in Fy» that lead to solutions A + wA’ in (16) and (go, k) in (17).

With the coefficients A1, ..., A; in Step 1 and the initial state g,_1, ..., g,—s, One can
recursively compute go, ..., gk—1 according to (15) in Step 2. Note that not all solutions of
P (x) lead to correct coefficients of the error interpolation polynomial. In fact, by the expres-
sion of Dickson matrix of g(x), correct g(x) should have the sequence (g,—1, - .., &n—t, - --)
generated from (15) has period n. In other words, if the output sequence has period n, we
know that the corresponding polynomial g(x) = Z;:ol gix["l is the desired error interpola-
tion polynomial. From the above discussion, the remaining task of decoding is to efficiently
find roots of P(x) in Fy», which will be discussed in the next section.

4 Finding roots of the polynomial P(x)

This subsection is dedicated to finding solutions to the following equation in Fyr» = Fqgu:

Px) = uox?t + 41 x% + urx + uz = 0. (19)

When ¢ = g5 = qo, the polynomial P can be reduced to P(x) in [35, Page 10]. In [35],
the author converted solving P(x) = O to the factorization of the linearized polynomial
2l l . 21 1 . .
x?" 4+ ax? + bx. Nevertheless, factoring x9° + ax? + bx is not necessarily easy and
there’s no efficient algorithm, as far as we know, for factoring this linearized polynomial.
Therefore, it’s important to further investigate how to efficiently solve P(x).
Assume d = (v, un). We start with the simplest case that ug = 0. In this case, (19) is
reduced to an affine equation ulxqg + usx + uz = 0. Furthermore,

i) if (u1,uz) = (0,0), then P(x) has no zero if u3 # 0 and every element in F » as a
zero otherwise;
ii) ifu; =0, uy # 0, then P(x) has a unique zero x = —u3/uy;
iii) ifu; %0, up =0, then P(x) has a unique zero x = (—u3/uy)%
iv) if ujuz # 0, uz = 0, then P(x) = 0 has g¢ zeros in Fn, if —us/uj is a (g§ — 1)
power of an element in Fy; otherwise, P (x) = 0 has a single zero x = 0.
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When ug # 0, we transform the equation P(x) = 0 into
1 v
P(x) = —P(x—ulual):quH—|—ax+b:0, (20)
ug
where
U uy \ 90 us  uiur Uy uy \ 90 up \ 90t
a=—+|—-——) andb=— - ——+ — | —— +(—— .
uo uo o  ug U0 \ U uo

The polynomial P(x) can be seen as a reduced version of the original polynomial P (x). It
is clear that if a = 0, then P (x) = 0 has either no solution or

g +1, if
m = ged(gy + 1, 95" — 1) = {2, if
1, if

nu :
sed(un ) 1S even,

% and gq are odd,

W is odd, and g is even
solutions, depending on whether —b is an m-th power; and that if » = 0, P(x) = O has
either zero as its unique solution or qg solutions.

When ab # 0, the polynomial P(x) = x4+ ax + b over Iﬁ‘qgn has a variety of
applications in the construction of different sets with Singer parameters [10], construction
error correcting codes [3], APN functions [4] and computing cross-correlation between m-
sequences [11, 16].

The polynomial P(x) is a type of projective polynomials [1], which in general has the
form

ap+aix + azx(z) +---+ alx(l) € Fynlx],

where x) = x = . Bluher in [2] showed that the projective polynomial

P(x) = x4t +ax +b, a,beF, 21)

where ¢ is any prime power and r,n are arbitrary two positive integers, has exactly
0,1,2,g" + 1 possible number of zeros in F,» with ry = gcd(r, n). Before the discussion
on finding roots of P (x), it is important to know the possible number of roots and the corre-
sponding conditions on the coefficients of P (x). In the following we will discuss different
ways to find and express the zeros of P(x).

First, we present a relations among roots of P (x), which is inspired by [11, Lemma 22]
and generalized for any prime power q.

Proposition 5 For positive integers r, n and a prime power q, the projective polynomial
Px)=x? " %ax+b, abe Fon

has 0,1,2 or q"° + 1 roots x € Fyn, where ro = gcd(r, n). Moreover, if P has three different
roots xo, x1 and xa € Fyn, then all the roots can be characterized as

Aoy ALy A
x0+xl+x2

Aoxo + A1x1 + Axxo

XAg, Al Ay = —X0X1X2 (22)
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where (Ag, A1, A2) # (0,0,0) and Ag + A1 + A = 0.
Proof Suppose P (xg) = 0 for an element x( in IF,». For a nonzero A € an, one has

P(L+x0) = (4 x0) T +a( +x0) + b
= I 4 xo0d + Axgr + xgr+1) + Aa+axo+b
= A 4 x0 + (x +a)h) + P(xo)
=29 (A +x0/2+ & +a)/nT).

Thus P(A+xp) = 0if and only if % is a solution of the affine equation Lf)(z) = Lo(z)+1=
0, where

Loz) = (¢ +a)z7 + xoz.

Depending on xp, Lo(z) may have a single solution if xgr +a = 0 or ¢g'° solutions if

xo(xgr +a)lisa (g™ — 1)-th power in Fy». Hence the affine equation Lé)(z) = 0 has
either 0, 1 or ¢" nonzero solutions in [F,;». For each nonzero solution z of Lé(z) =0, we
get a root xg + % of the projective polynomial P (x).

On the other hand, when P (x) has three distinct roots xg, x; and xp, we obtain two

different roots 1 and i of the affine equation L6 (z) = 0 and their difference i
X1—X0 X2 —XQ X1—X0
1

is a root of the linearized polynomial Ly(z) = 0, i.e.,

X2 —X0
n(——)= ¢ (555) +1=0
0 X1 — X0 - 0 3= o
n(——)= ¢ (i) +1=0
0 X2 — X0 N 0\ 2=xo -
1 1
/ / _ 1 . 1 _
fo (Xl - Xo) o (xz = xo) -t (x1+x° x2+x°) =
Soy= mlxo — xzim is aroot of Ly(z). Hence, z = mlxo + Ay runs through all roots of
Lé(z). Consequently, assuming (Ag, A1, Ay) = (1, A, —(A+ 1)),
1 1
x® = xo+ — =x0+ ————
Z pap——, + Ay
4 1
= X0 0 A A
X1—X0 + X1—X0  X2—xo

ot (x1 — x0)(x2 — x0)
(x2 — x0) + A(x2 — x0) — A(x1 — x0)
14 A _ (44D

= X

X0X1X 0 ail 12
= —X0X1X2.
x0+Ax1 — (A+ Dxy
Ag | A Ay
X0 + X1 + X2
= —X0X1X2. = X(Ag,A1,A7)

Aoxo + A1x1A2x2

runs through all roots of P(x) different from xo, while A runs through . O
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The above result gives a method to express all the roots of the projective polynomials
P(x) = x4t 4 ax +b,a,b € IF;‘,, in terms of the three known roots in Fy». Moreover,
from its proof, a method to describe the roots of the projective polynomial P(x) in terms of
the roots of the affine polynomial L (z). Nevertheless, the condition that characterizes the

exact number of solutions to the affine equation Lf)(z) = (xg +a)z? "4 xpz + 1 is not clear.

In order to investigate the number of roots of P(x) = x4 t! 4+ ax + b in Fyn according
to its coefficients, we need to divide the discussion into two cases: ¢ is even; or ¢ is odd and
gcd(r,n) = 1.

4.1 Solving the equation P(x) = 0 over finite fields of characteristic 2

When the finite field F,» has characteristic 2, the polynomial P (x) can be further converted
to F.(x) = x4t 4+ x + ¢ = 0, which was intensively studied in [17, 18, 21]. Helleseth
and Kholosha in [17, 18] explicitly gave the root of F.(x) = 0 in terms of the coefficient ¢
when it has a single zero in F;» and when it has two zeros in F » if ged(r, n) is odd. Very
recently, Kim and Mesnager in [21] further studied the equation for the case ¢ = 2 and
ged(r, n) = 1 and explicitly calculated all possible zeros of F.(x) in F». Since for general
AGTG codes, the parameter qq is always greater than 2. Below we shall recall the result
by Helleseth and Kholosha [18] and apply it to find the roots of the projective polynomial
P(x) in some cases.

Note that the AGTG codes are defined over Fy» with g a prime power. In this context,
we assume ¢ is a power of 2. To avoid potential confusion of notations, below we recall the
result from [18] and treat the underlying finite field as Fom, where m is a positive integer.
Let [ be a positive integer with d = gcd(l/, m) and denote m| = [/d. Define two sequences
of polynomials in recurrence as follows: C1(x) = C2(x) = Z1(x) = 1, and

Cip2(x) = Cip1(x) +x2'Ci(x),  Zi(x) = Cip1(x) +xC2 | (x) (23)

fori=1,2,...,m; — 1.

Proposition 6 [18, Prop. 3-5] Gvien a polynomial
Fo)=x2 4 x4¢, ceFin, (24)

i) it has exactly one zero in Fom if and only if Z,,,(c) = 0 and Cp,,(c) # 0; and this
zero is given by x = (cC,%ll_1 (c))zm_] ;

ii) it has exactly two zeros Fom if and only if Z,,,(c¢) # 0 and Trf (N7 (C)/Z,Zn1 (c)) =
0, where the trace function Trf (z) = Zflz_ol zzi and Ng (z) is the norm function
defined by N/ (z) = ]_[720_ P2, Moreover, if d is odd, then these two zeros are
W+ w)Zp,(c)/Cp,(c) for n € {0, 1}, where

% m 221'
w = Cnt1© 3 (de <c)) ;
Zus1(0) 72 (c)

=

iii) it has exactly 2¢ + 1 zeros in Fom if and only if Cpy(c) =0.
As an illustration, we apply Proposition 6 1) to a general polynomial G(x) in the follow-

ing proposition, which will be used to explicitly give the zero of P (x) in Fom withm = nuw.
The second cases can be applied in a similar manner.
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Proposition 7 The polynomial
Gx) = x21+1 + alle + arx + as

over Fom has exactly one zero in Fom if and only if one of the following conditions holds:

. [ 1
1) a = a% and a3 = a% le; or

11) _ 0l 2041 . .
a) =ay, a3 #ay " andm is odd; or
iil) a2 # a?, Z,(¢) = 0 and Cp, () # 0 with ¢ = (a1a2 + az) [ (ay + a2 )2+,

_1
Moreover, for Cases (i) and (ii), the zero of G(x) is given by x = ay + (ajap + a3) 2 +1; for

Case (iii), the unique zero is given by x = (a1 + agn_l)(ccrznll_1 ) +a.

Proof 1t is relatively easy to verify Case 1) and Case ii). In fact, when a; = a% , one obtains

the equation
1
G() = (x +a)* ™ + (@142 +a3) = 0.

The statement of Case 1) immediately follows; and for Case 11), it is easily seen that the equa-
tion has a single solution only if ged(2! 4+ 1,2" — 1) = 1, equivalently, m; = n/ ged(l, n)
is odd.

For Case ii1), the equation G (x) = 0 can be reduced to a polynomial of the form F,.(y) =

y21+1 + y + ¢ = 0 by the following substitution
Fe(y) = s~ @G (sy +ap)
_ —@41) 241 2
=5 (sy +ayp) +ai(sy +a1)” +ax(sy +a1) +as
= §~@+D (s21+1y21+1 +s(a} +ax)y +aay + a3>
- y21+1 + y + c,
where

! m—1 m—1 ajay + aj ajap + aj
s = (a% +a)?" " = (a1 + a% )and ¢ = T SIS
S (a1 + a )( +h

It is clear that y is a zero of F.(y) = yZIJrl + y 4+ cif and only if x = sy + a; is a zero of
G (x). The desired statement follows from Proposition 6. O

Corollary 1 Let g9 = 2% for a positive integer w, | = wv, m = wun and m| =

m/ gcd(l,m). Let Ci(x), Zi(x) be defined as in (23) respectively. Then the polynomial
x0T 4 a1x% + arx + az over Fyn has exactly one solution in Fyn given by

i) x=ayifay = afo and az = ayay;

1 v

i) x=a;+ (@ax+a3)®" ifa, = a?o, az # ayar and my is odd;

n—v

i) x=(a1+a% YO ()" +arifar #a®, Zu, () = 0and Cp, () # 0 with

¢ = (a1az +az) (a1 + a3’ )+,
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4.2 Solving the equation P(x) = 0 over FFgn when gcd(r, n) =1

For the projective polynomial P(x) = x4 t! + ax + b with ged(r, n) = 1, McGuire and

Sheekey recently in [28] gave a complete criteria on the coefficients a, b for P(x) = 0 to

have 0, 1, 2 and g + 1 solutions in F,» by the analysis of the companion matrix of P (x).
Let 0 = ¢" and define a sequence of 2 x 2 matrices as follows:

0 —-b

Co=12,C=C1=<1 4

> , and C, = Ck_lcgkil = CC]?_I, (25)

where C is termed the companion matrix of P(x), and C,fl is the matrix obtained from Cy,
by applying to each of its entries the automorphism x > x° . Furthermore, define a matrix

1

Ap=C,=CC°...C°" . (26)

Since det(C;) = b and N(b) = b'To++""" one can easily verify det(Ap) = N(b).

Denote
_(b/a 0 _(a"b 0 _(-G%, —-G7_,
X_<o 1)’2”_( 0 aw)™ =\¢. ¢ ) &

. ol-1 . . .
where ) = g o1 and G,, can be computed using the recursive relation

2

G =Gy =G’_, -G, (28)
Then it follows that

Ap=C,=XY,Z,. (29)
Hence one can express A p associated with P(x) in terms of G,, as follows:

-1
—u? .G°_, LG
Ap = N(a n—2 a n—1
j2 ()( L G G, )

ao

where N (a) denotes the field norm of a € Fyn from Fyn to IF;, and u = b9 /a4 +1_ Note that
if G,—1 = 0 then A p will be a diagonal matrix.

Theorem 1 [28] The number of roots of the projective polynomial P(x) in Fyn is given by

g™ —1
reF, q_l

where n;,_ is the dimension of the eigenspace of Ap corresponding to the eigenvalue M. The

number of roots of L(x) in Fyn is given by q"!. In other words, the dimension of the kernel
of L(x) is 2 — Rank(Ay, — I»).
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g —1

Theorem 2 [28] The polynomial P(x) has 7 roots in Fyn if and only if

Ap = Aly,
where d is the dimension of the eigenspace of the matrix Ap.

The characteristic polynomial Sp(x) € Fy[x] of a2 x 2 matrix Ap is of the form
Sp(x) = x? = Tr(Ap)x +det(Ap), (30)

where Tr(Ap) is the trace of the matrix Ap and it is defined as the sum of its diagonal
elements and det(A ) is the determinant of the matrix A p. The polynomial Sp(x) can have
0,1 or 2 roots in IF, . For odd prime power g, the discriminant A g of the quadratic polynomial
Sp(x) is of the form

Ag = Tr(Ap)? —4det(Ap). (31)

Case 1) if Ag is a non-square in F,, Sp(x) has no solutions in F,, then P(x) has no
solution in Fyn.

Case 2) If Ag =0, Sp(x) has aunique solution A in F, then P(x) has 1 or g +1 solutions
in Fqn .

i) If the dimension of the eigenspace corresponding to A is two, then P(x) has
g + 1 solutions in Fg». Due to Theorem 2, this will happen if and only if
Ap=2ADhie. Gy, =0and G, € F,.

ii) If the dimension of the eigenspace corresponding to A is one, then P(x) has
one solution in Fy». Due to Theorem 2, this will happen if and only if Ap is
not a multiple of I i.e. G,,—1 # 0.

Case 3) If A is anon-zero square in Fy, Sp(x) has two distinct roots (eigenvalues) in .
If dimension of the eigenspaces corresponding to each eigenvalue is one, due to
Theorem 1, P(x) has two solutions in [Fn.

Note that the projective polynomial P(x) = x? *!4ax +b associates with the following
linearized polynomial

r_1 2r r
L(x)=xP(x? ") =x9 4+ax? +bx, a,beFgy.

It is readily seen that if we can efficiently solve the linearized polynomial L (x), the roots of
P(x) can be obtained accordingly. In [28] the authors also applied companion matrices to
study the number of roots of the above linearized polynomial. Further works on the roots of
linearized polynomials can be found in [7, 32, 46].

Below we provide another way of studying the roots of the linearized polynomials L (x)
via the Dickson matrix directly.

Theorem 3 Let ap, o1, ..., a,—1 be a basis of Fyn over F, and L(x) = Z?:_ol lixqi a
linearized polynomial in L, (Fyn) with rank r. Let D be the associate Dickson matrix of
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L(x). Suppose Dgy, D1, ..., D,_1 are the n rows of D and D, = zoDy + z1D1 + --- +

Z2r—1Dy—1, where 2, ..., zr—1 in Fyn. Then the elements
r—1 ) )
n—j n—j n—r .
Bizzaf 2 —a?, i=0,1,...,n—1,
J l
j=0

are roots of L(x). Moreover, the kernel of L(x) in Fyn is given by
ker(L) = spang, (Bo, Bty -+, Br—1)-

Proof From Proposition 2 it is clear that the r-th row D, can be expressed by a linear
combination of Dy, Dy, ..., D,_| as D, = Z:;é 7 Dy;. That 1s to say, the vector z =
(zoy-+-szn-1) = (20, ., 2r-1,—1,0,...,0) satisfies z - D = (0, ..., 0). Define

([c]z() eer Zr—1 —1 0 0 \
q q
0 zg ... z,_; -1 ... 0
n—r—1 qn—r—l
DZT_ q n—1_ = 0 0 ZO Zr—l _1
(20:2_y>2p )
n—1 n—1 n—1
Kz‘f oozl 0o ... 0 ¢z )

It follows from the pattern of the Dickson matrix D that DZT - D = 0,,«,, where 0, 1s the
n x n all zero matrix.

According to the definition of D,, it is clear that it has rank at least n — r. On the
other hand, since the Dickson matrix D has rank r and all rows of D, are solution of
(y0, +++» Yn—1)D = (0, ..., 0), the rank of D, is at most n — r. This means that D, has rank
exactlyn —r.

Let M, be the Moore matrix associated with the basis «g, ..., a,_1. It follows from
Lemma 2 1) and iv) that

Bo B ... B

q q

- Bir B} ... B
MaDz =M,D, = MB = : : o

Pr—1 BZ—I BZ_1

n—(r—1) n

here 2/ = (0, 2! ") = (20,0,...,0,-1,7 ") and
Werez—(ZO’Zn_lv"'7ZI )_(ZO’ 9 0009 Uy ’Zr_l ""’Zl )an

n—1 n—1 4 oor—1 . .
o 9’ _q/ _ " _q" _ q" ) _q"/ g
B; = E oz, = E a oz, = E a z; T
Jj=0 j=0 Jj=0
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fori =0,1,...,n — 1. Recall that DZT - D = 0,,x,,. It immediately follows that
n—1 n—1
Bo By ... B 1 lh 17, ...1 1
q q"" q q""
1 - I 1 ool
Onxn = Mﬁ -D = B Pl . !31 . .O . .2
. . q q"! q q"!
Bu1 By - Br_, Lot 1, 1
Hence L(B;) =0fori =0, 1,...,n — 1. Moreover, since the Moore matrix My, is nonsin-
gular, the rank of Mg is the same as that of the rank of D,, which implies that the rank of
Bo, ..., Bn—1 over Fy, is equal to n — r. Thus the linear combination of By, ..., B,—1 over
IF, yields all the solution of L(x) in IF,». The desired conclusion follows. O

From Theorem 3, we see that finding solutions of a linearized polynomial can be
converted to the task of computing the rank of its associated Dickson matrix D =
(Do, ..., Dp_1)T and of finding a solution of D, = xoDg + --- 4+ x,—1D,_1. In general,
calculating the rank of a Dickson matrix D is nontrivial. Recently Csajbdk in [6] proposed
an interesting characterization of the rank of D.

Theorem 4 [6] Let D be the associated Dickson matrix of a linearized polynomial L(x) =

Zl":_ol 1ix? over Fyn. Denote by D, the submatrix of D by removing the first t rows and the
last t columns. Then L(x) has rank r if and only if

|Dol == [Dy—r—1l =0 and |Dy—,| #0.
By Theorem 4, in order to determine the rank of the Dickson matrix associated with
L(x), we need to calculate the determinant of Dy, D; and D,. The calculation for the case

D> is trivial. We only need to consider Dy and D;. To this end, we need the following result.

Theorem S The determinant of the Dickson matrix

b 0 0 .0 1 " "7
a bl 0 0 0 1
1 a7 pi” 0 0
2r . .
Dy=|0 1 af : : (32)

r(n—3) r(n—2)
al b4 0
r(n—=2) r(n—1)

0... 1 a b4 _

. . . . . 2r r
associated with the linearized polynomial L(x) = x? + ax? + bx can be calculated
using the recursive relation

r(

Do = (=" a?" " My + 267" | My_a] + N(a) + 1, (33)

where N (a) denotes the field norm of a € Fyn from Fyn to By, My, is a tridiagonal matrix
of order n and M,,_1 = D;.
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Note that D; is a lower triangular matrix and its determinant can be directly computed
|D>| = 1. In order to prove Theorem 5 we need the following observation.

Lemma 3 The determinant of the tridiagonal matrix

[a b7 0 0
¢ ad b9 :
0 c? an
M, =
b0
cqn—S aqn 2 bqn—l
[ 0... 0 " anl_ (34)

is given by the recurrence relation
n—1 n—1 n—2
Myl =a? |My—1] =0T T [My_al, (35
where |My| = 1 and |M_1| = 0.

Proof Using Laplace expansion on the last column for n > 2 gives

ab? 0 . 0
cad be :
0 ct qf
M| =(=1)*"-a®
b0
an74 aq'rLfS bqn72
0 0 @’ qd"”
ab? 0 .. 0
cal bt
0 c g9

1

+ (=1t

: aqn 3 bqn—2
0... 0 "’
qn—l qn—l qn—2
=a ‘Mn_1| —b - C |Mn_2|. O

Proof of Theorem 5. The proof follows immediately by applying Laplace expansion and
Lemma 3. Note that the determinant of an upper (lower) triangular matrix is the product of
the elements in its main diagonal.

Theorem 5 characterizes the conditions for the associated Dickson matrix of L(x) =
x4 ol +ax?" +bx to have rank n,n—1and n—2. According to Theorem 3, one can obtain the
roots of L(x) by finding the coefficients in the linear combination of the first n — 1 rows of
D when D has rank n — 2 and coefficients in the linear combination of all rows of D when
D has rank n — 1. Here the modified BM algorithm [43] will be employed, which requires
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O(n?) operations in Fg4n for these two cases. With the coefficients, the roots of L(x) are
given by Theorem 3.

Instead of using Theorem 3 to compute the roots of the linearized polynomial L(x), one
may use the probabilistic method given in [46]. The problem of finding the root space of
the linearized polynomial L(x) is reduced to find the image space of another linearized
polynomial K (x) derived from

x?" —x = W) oK),

where W (x) = ged(L(x), x9" — x). The idea is to randomly choose y; € I, and calculate
K (y;) until the base elements for the image space of K (x) are obtained. Since L(x) has o-
degree 2, we need to find two basis elements K (y;), K (y) for the image space of K (x).
According to [46], the algorithm has complexity in the order of O(n) operations in F . In
general the expected number of y; € [F » that need to be evaluated in order to find n linearly

independent basis elements K (yg), ..., K(y,—1) is given by 1—ql.i—n [46]. U

5 The decoding algorithm of AGTG codes

With the discussion in Sections 3.2—4, we summarize the interpolation polynomial decoding
algorithm of AGTG codes in Algorithm 2, and analyze its complexity accordingly.
Recall that reconstruction the error interpolation polynomial g(x) is to solve (15) based

on the available information in (13). For the case that t = # with even n — k, according to

Algorithm 1, A%~ (x) is the linearized polynomial obtained after n — k iteration and its
coefficients are the desired vector (A, ..., A;). L is the linear complexity of AP=k=D(x)
and B %=1 (x) is the auxiliary linearized polynomial which is used to store the value of
A®D (x) with the largest degree L; such that L; < L. Hence one can obtain from Algorithm
1 two 7-dimensional vectors A and A" over F». Then the solution of (15) is given as

o) =G +or, ... A + o)),

from which the coefficients gy, . .., gx can be calculated recursively. The relation of go and
gk in (13) leads to a quadratic equation

Px) = MoxqgJrl + qug + urx +u3z =0.

If ug = 0 calculate its zeros by cases 1)-iv) after (19) or use Theorem 5, Berlekamp Massey
Algorithm 1, Theorem 3 and Corollary 1 otherwise. The above process therefore can be
integrated into the explicit Algorithm 2.

Remark 2 In the proposed Algorithm 2, we reconstruct the error interpolation polynomial
g(x) by two major steps: calculate the coefficients A, ..., A; by the modified BM algo-
rithm, and deal with the case t = |(n — k)/2] by investigating the zero of the established
polynomial P (x). Section 4 investigates the solutions to P(x) = 0 In the process, the cal-
culation of the characterized conditions in Theorem 2 dominates the overall complexity. In
Line 1 of Algorithm 2, the calculation of the interpolation polynomial y (x) at points («;, r;)
for 1 <i < n. It has complexity in the order of (’)(n3 ) operations over [Fyn, which can be
further optimized by the method in [34]. For the remaining steps in Algorithm 2, the modi-
fied BM algorithm dominates the overall complexity. Since the modified BM algorithm has
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operations in the order of O(n?) over F 4n» the overall complexity of Algorithm 2 is in the
order of O(n?) over F,» when normal bases are used in the interpolation step.

Algorithm 2 Interpolation decoding of AGTG codes.

Input: A received word r with t < L%J errors and linearly independent evaluation
points oy, ..., oy

Output: The correct codeword ¢ € FZ” or “Decoding Failure”

1 Calculate y(x) = Z?:_(} yix[i] such that y (a;) =r; fori =1, ..., n;

2 Apply modified BM algorithm to (gx+1,---, &—1) = (Vk+1,---, ¥n—1) and output L,
A(n—k—l) (X), B(n—k—l) ()C);

3 if L = (n—k)/2 then A

4 Denote A = —w + ZiL:1 Agn_k_l)gZil_i with w € Fyn ;

5 Express the coefficients of the polynomial

APO (x) = lA<"—’<—“(x) +x7 o BOFD(y),

A
Derive the connection vector (Ap, . .., ;) from monic A% (x);

6 Derive the polynomial P (x) = uox?t! + u1x% + urx + u3 in (19);

7 if ug = 0 then

8 ‘ Calculate the zero to P(x) by Cases i)-iv) after (19);

9 else

10 Calculate the zero to P (x) by Theorem 5, the modified BM algorithm and

Theorem 3;

11 end

12 Set (A1, ..., A;) = A+ w)’ with w as the zero of P(x);
13 Calculate gg, gx from (19);
14 end

15 for eachi in{l, ..., k} do
[1]

(]

16 Calculate g; = A18,| + -+ + At g;_,, Where the subscripts of g;’s are taken
modulo #;

17 end

18 if The sequence gy, . .., gn—1 derived from A1, . .., A; has period n then

19 | Return the codeword ¢ = (cy, ..., ¢;) with ¢; = r; + g(o;)

20 else

21 ‘ Return “Decoding Failure”

22 end

6 Conclusion

This paper further investigates the interpolation-based decoding algorithm for additive
generalized twisted Gabidulin codes over finite fields with any characteristic. The main con-
tribution of this paper includes the discussion of efficiently finding the roots of the involved
project polynomials and their corresponding linearized polynomials.
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