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Abstract. We developed a simple method to refine exist-
ing open-ocean maps and extend them towards different
coastal seas. Using a multi-linear regression we produced
monthly maps of surface ocean f CO2 in the northern Euro-
pean coastal seas (the North Sea, the Baltic Sea, the Norwe-
gian Coast and the Barents Sea) covering a time period from
1998 to 2016. A comparison with gridded Surface Ocean
CO2 Atlas (SOCAT) v5 data revealed mean biases and stan-
dard deviations of 0± 26 µatm in the North Sea, 0± 16 µatm
along the Norwegian Coast, 0± 19 µatm in the Barents Sea
and 2± 42 µatm in the Baltic Sea. We used these maps to
investigate trends in f CO2, pH and air–sea CO2 flux. The
surface ocean f CO2 trends are smaller than the atmospheric
trend in most of the studied regions. The only exception to
this is the western part of the North Sea, where sea surface
f CO2 increases by 2 µatmyr−1, which is similar to the at-
mospheric trend. The Baltic Sea does not show a signifi-
cant trend. Here, the variability was much larger than the ex-
pected trends. Consistently, the pH trends were smaller than
expected for an increase in f CO2 in pace with the rise of
atmospheric CO2 levels. The calculated air–sea CO2 fluxes
revealed that most regions were net sinks for CO2. Only
the southern North Sea and the Baltic Sea emitted CO2 to
the atmosphere. Especially in the northern regions the sink
strength increased during the studied period.

1 Introduction

For facing global challenges, such as predicting and tracking
climate change, it is important to improve our understand-
ing of the ocean carbon sink and its variability. Open oceans,
especially those of the Northern Hemisphere, are relatively
well understood and described in their large-scale variability
(Gruber et al., 2019; Landschützer et al., 2018, 2019; Fay and
McKinley, 2017). Reliable autonomous systems for measur-
ing carbon dioxide partial pressure from commercial vessels
were developed in the early 2000s (Pierrot et al., 2009) and
have since been deployed on a large number of vessels (e.g.,
Bakker et al., 2016). This has resulted in sufficient data to de-
velop methods to interpolate the data and to describe large-
scale air–sea CO2 exchange and its variability (Landschützer
et al., 2014, 2013; Rödenbeck et al., 2013; Jones et al., 2015).
These methods apply a wide variety of approaches, such as
linear interpolation, machine learning and model-based es-
timates. By comparing the different results, it is possible to
achieve a good estimate of the uncertainty associated with
the respective methods (Rödenbeck et al., 2015).

Despite coastal seas covering 7 %–10 % of the world’s
oceans (Bourgeois et al., 2016), their contribution to the
oceanic carbon sink is not yet fully constrained. Whether
coastal seas are a net sink or source for atmospheric CO2
and how their role will change in a changing climate is still
under debate (Bauer et al., 2013; Laruelle et al., 2010). Com-
pared to the open ocean, longer time series and higher spatial
and temporal resolution of the observations are needed in or-
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Table 1. Overview of trends in surface ocean CO2 reported in the literature.

Reference Time range dpCO2/dt (µatmyr−1)

North Sea Thomas et al. (2007) 2001–2005, summer data, 7.9
normalized to 16◦

North Sea Salt et al. (2013) 2001–2005, summer data, 6.5
normalized to 16◦

North Sea Salt et al. (2013) 2005–2008, summer data, 1.33
normalized to 16◦

Faroe Banks Fröb et al. (2019) 2004–2017, winter data (DJFM) 2.25± 0.20

North Sea, west Omar et al. (2019) 2004–2017, winter data (DJ) 2.19± 0.55

North Sea, east Omar et al. (2019) 2004–2017, winter data (DJF) not significant

North Sea Laruelle et al. (2018) 1988–2015 almost no trend

English Channel Laruelle et al. (2018) 1988–2015 slightly smaller than atmosphere

Baltic Sea Wesslander et al. (2010) 1994–2008 larger than atmosphere

Baltic Sea Schneider and Müller (2018) 2008–2015 4.6–6.1

Baltic Sea, west Laruelle et al. (2018) 1988–2015 much smaller than atmosphere, slightly negative

Barents Sea Yasunaka et al. (2018) 1997–2013 not significant

Barents Sea Laruelle et al. (2018) 1988–2015 about the same as atmosphere

Atmosphere global average 1997–2016 2.02 ppmyr−1

Table 2. Overview of air–sea CO2 fluxes reported in the literature. Negative sign denotes flux from atmosphere to ocean.

Reference Time range F (mmolm−2 d−1)

North Sea Meyer et al. (2018) 2001/02 −3.8
North Sea Kitidis et al. (2019) 2015 0–−15
Baltic Sea Parard et al. (2017) 1998–2011 1.2
Norwegian Coast Yasunaka et al. (2018) 1997–2013 −4–−8
Barents Sea Yasunaka et al. (2018) 1997–2013 −8–−12

der to capture all relevant coastal processes. Small-scale cir-
culation patterns governed by topographic features; thermal
and haline stratification; or mixing through tidal cycles, up-
welling or internal waves result in a need for more complex
maps with a higher resolution (Bricheno et al., 2014; Lima
and Wethey, 2012; Blanton, 1991). These physical drivers
are not the only reasons for coastal seas being more compli-
cated to understand. Generally, coastal regions are more pro-
ductive than open-ocean regions due to better availability of
nutrients (e.g., mixing at continental margins, river runoff).
While deeper coastal regions are seasonally stratified, shal-
low regions are vertically mixed, allowing for exchange be-
tween the benthic and pelagic parts of the ecosystem (Grif-
fiths et al., 2017; Wollast, 1998). Together with strong gradi-
ents of productivity this leads to spatial and temporal hetero-
geneity in surface CO2 content.

The different maps developed for describing the open-
ocean surface pCO2 (CO2 partial pressure) dynamics and
air–sea CO2 fluxes are not directly applicable in coastal re-
gions. Many exclude data from continental shelves com-
pletely while all of them have too coarse a spatial resolu-
tion (typically between 1 and 5◦) to properly resolve coastal
seas with their small-scale variability. A few studies have
described coastal carbon dynamics, but most of them have
strong regional or temporal limitations. Table 1 shows an
overview of studies with estimated pCO2 trends over the
northern European shelf, while Table 2 presents available
flux estimates. Laruelle et al. (2017) used a neural net-
work approach to produce a global pCO2 climatology for
coastal seas, describing more distinct seasonal variability in
the Northern Hemisphere than in the southern Pacific and At-
lantic. A global climatology covering both open-ocean and
coastal regions was recently constructed by combining this
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product with the open-ocean product of Landschützer et al.
(2016, 2020). Laruelle et al. (2018) published trend estimates
in regions with high data coverage based on winter data span-
ning up to 35 years. Their findings is that the pCO2 rise
in coastal regions tends to lag the atmospheric rise in CO2.
However, few studies attempted to constrain coastal air–sea
fluxes before. Kitidis et al. (2019) estimated fluxes between 0
and −15 mmolm−2 d−1 in the North Sea, depending on the
season (more negative during summer than during winter)
and the region (more negative fluxes in the northern North
Sea compared to the south). For the Baltic Sea, Parard et al.
(2016, 2017) used a neural network approach to produce sur-
face ocean pCO2 maps from 1998 to 2011 and estimated
an air–sea flux of 1.2 mmolm−2 d−1. Yasunaka et al. (2018)
estimated a flux of 8–12 mmolm−2 d−1 in the Barents Sea
and along the Norwegian Coast using a self-organizing map
technique. Most of the other available studies on the trends
in coastal pCO2 are based on data from either summer or
winter. Estimates based on summer-only data typically show
large interannual variations (Thomas et al., 2007; Salt et al.,
2013), which led to the conclusion that here the interannual
variability masks the actual long-term trend. The approach
to use winter-only data (Fröb et al., 2019; Omar et al., 2019),
however, is based on the assumption that during this season
the influence of biological processes is negligible and there-
fore winter data can be used to establish a baseline trend.
However, also using winter-only data has its drawbacks. In
particular the choice of which months to include can cause
biases, and the optimal selection can differ from region to
region.

In this study we present a new approach to develop
monthly f CO2 (CO2 fugacity) maps based on already ex-
isting open-ocean pCO2 maps in four example regions: the
North Sea, the Baltic Sea, the Norwegian Coast and the Bar-
ents Sea. A multi-linear regression (MLR) was used to fit
driver data against f CO2 observations. Based on the result-
ing f CO2 maps and a salinity–alkalinity correlation we also
produced monthly maps of coastal pH. The performance of
the produced maps was evaluated, and the maps were then
used to investigate trends in coastal f CO2 and pH in the en-
tire region from 1998 to 2016. Finally, we used the f CO2
maps to determine the air–sea CO2 exchange and its tempo-
ral and spatial patterns.

2 Method

2.1 Study area

This work focuses on the northern European continental shelf
and marginal seas. As we want to show the performance of
the MLR method we picked a number of regions with very
different characteristics: the North Sea, the Baltic Sea, the
Norwegian Coast and the western Barents Sea (Fig. 1). We
decided to concentrate on these regions because (1) the data

Figure 1. The study area and the location of the four different
regions: North Sea (purple), Norwegian Coast (red), Barents Sea
(green) and Baltic Sea (blue).

coverage in these regions is fairly high and (2) the authors
have strong knowledge of the specific regions. This is im-
portant in order to properly evaluate the maps and to as-
sess whether or not the output is realistic. The four regions
were defined based on the COastal Segmentation and re-
lated CATchments (COSCAT) segmentation scheme (Laru-
elle et al., 2013). The threshold for defining a region as
coastal sea was set to a depth limit of 500 m. By using this
definition, we produce an overlap to the open-ocean maps,
allowing our maps to be merged with the open-ocean maps.
Please note that this study concentrates on the continental
shelf area. The near-coastal zones (e.g., intertidal zones) are
not included due to the limited availability of driver data in
these regions.

2.2 Data handling

The CO2 data used in this study were extracted from Sur-
face Ocean CO2 Atlas (SOCAT) version 5 (Bakker et al.,
2016). Their coverage is shown in Fig. 2. A newer version
of the SOCAT database (SOCATv2019) was used for vali-
dating the maps against independent data. An overview over
the reanalysis products used as driver data is given in Ta-
ble 3. We use as basic driver data sea surface temperature
(SST), sea surface salinity (SSS), chlorophyll a concentra-
tion (Chl a), mixed layer depth (MLD), bathymetry (BAT),
distance from shore (DIST), ice concentration (ICE) and the
change in ice concentration from the month to month (prior
to current). Chl a values during the dark winter season were
set to 0. In addition to the reanalysis data, pCO2 values from
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Table 3. Products used as driver data in the MLR and the maps.

Product used Resolution Reference

Chl a for MLR 4 km× 4 km, 8 d Global Ocean Chlorophyll (Copernicus-GlobColour)
from Satellite Observations – Reprocessed

Chl a for maps 4 km× 4 km, monthly Global Ocean Chlorophyll (Copernicus-GlobColour)
from Satellite Observations – Reprocessed

MLD 12.5 km× 12.5 km, monthly Arctic Ocean Physics Reanalysis

ICE 0.25◦× 0.25◦, monthly Cavalieri et al. (1996)

SST/SSS 0.25◦× 0.25◦, weekly Global Ocean Observation-based Products
Global_Rep_Phy_001_021

BAT 2 min× 2 min ETOPO2v2 Center (2006)

Rödenbeck pCO2 5◦× 4◦, monthly Rödenbeck et al. (2014)

Landschützer pCO2 1◦× 1◦, monthly Landschützer et al. (2017)

Figure 2. The number of months with f CO2 data from SOCAT v5
in each grid box. The data cover a range of 20 years (240 months).

the closest coastal grid cell of the open-ocean map were used
as a driver in our MLR. We neglect the approximately 1 µatm
difference between partial pressure (reported in the mapped
products) and fugacity of CO2 (reported in SOCAT) as it is
much smaller than the accuracy of the data extracted from
SOCAT v5 (2 to 10 µatm) and the uncertainty associated
with the open-ocean maps. The open-ocean pCO2 values
were extracted from two different products (Rödenbeck et al.,
2014, version oc_v1.5; and Landschützer et al., 2017, 2016,
version 2016). Rödenbeck et al. (2014) is based on a data-
driven diagnostic model of mixed layer ocean biogeochem-

istry fitted against surface pCO2 observations, while Land-
schützer et al. (2016) uses a two-step neural network (a feed-
forward network coupled with self-organizing maps, FFN-
SOM) trained with the pCO2 observations. Please note that
the Rödenbeck open-ocean map contains data in coastal grid
boxes, while the Landschützer open-ocean map is restricted
to the open-ocean regions. The MLR models based on these
two are called MLR 1 (based on the coastal pCO2 values
from the Rödenbeck map) and MLR 2 (based on the near-
est open-ocean pCO2 values of the Landschützer map), re-
spectively. To determine the extent to which the regressions
benefit from the information in the open-ocean maps, a third
MLR, MLR 3, was determined. Here, we do not use any of
the open-ocean maps as a driver, but to account for the annual
rise in CO2, year is included in the set of driver data.

For preparing the input data for the MLR, observations
closest to each SOCAT f CO2 data point in time and space
were extracted from the 3-D fields with the driver data. This
produces, for each of the driver data, a vector as long as the
SOCAT f CO2 observations. After this, the f CO2 data as
well as all extracted driver data were binned on a monthly
0.125◦× 0.125◦ grid covering 1997 to 2016. These proce-
dures ensure that the driver data have the same bias in space
and time within each grid box as the f CO2 data. If a grid
box for example only contains f CO2 observations from the
first week of the month and the northwestern corner, we make
sure that also the gridded driver data only contain values from
the first week and the northwestern corner of the grid box,
and not an average over the entire month and grid box. This
is mostly important for the chlorophyll driver data, which are
available at a very high resolution compared to the f CO2
maps produced in this work. These driver data were used for
determining the MLRs.

For producing the final maps, a second set of the driver
data was prepared, which is called field data in the fol-
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lowing. Here the driver data were directly regridded to a
monthly 0.125◦× 0.125◦ grid, providing full spatial and tem-
poral coverage and a homogeneous average in each grid box.
The field data were used to produce the f CO2 maps based
on the MLR equations.

2.3 Multi-linear regression

The multi-linear regression models were constructed by for-
ward and backward stepwise regression using the driver data
as predictor variables to model the f CO2 observations. In
each step of this regression procedure, the model’s tolerance
to addition or exclusion of a variable is tested. This decision
on whether to add or remove a term is based on the p value of
the F statistic with or without the term in question. The en-
trance tolerance was set to 0.05 and the exit tolerance to 0.1.
The model includes constant, linear, and quadratic terms as
well as products of linear terms. Equation (1) gives the basic
equation, with X1 . . .Xn being the driver data and a1 . . . ann

the regression coefficients.

y = a0+ a1 ·X1+ . . .+ an ·Xn+ a12 ·X1X2

+ . . .+ amn ·XmXn+ a11 ·X
2
1 + . . .+ ann ·X

2
n (1)

The pCO2 value of the respective open-ocean maps was
used for MLR 1 and MLR 2, while year was always used
as a driver variable in MLR 3. Inclusion of stationary drivers
(such as month, latitude and longitude) in the MLR increased
the performance of MLR 2 and MLR 3. However, these were
still not better than MLR 1, and we therefore decided to limit
this analysis to dynamic parameters. Using dynamic drivers
only assures a dynamic description of the conditions in the
field and gives us the possibility to reproduce changes caused
by a regime shifts, for example the ongoing Atlantification of
the Barents Sea (Oziel et al., 2017; Lind et al., 2018).

2.4 Validation

The three linear fits were compared to each other in each re-
gion by taking into account the R2 and the root mean square
error (RMSE) of the fit, as well as the Nash–Sutcliffe method
efficiency (ME) (Nondal et al., 2009). The method efficiency
compares how well the model output (En) fits the observa-
tions (In) for every data point n to how well a simple monthly
average (I ) would fit the observations:

ME=
∑

n(In−En)
2∑

n(In− I )2
. (2)

A method efficiency > 1 means that using just monthly
averages of all data in the region would fit better to mea-
sured data than the respective model. Generally, a method
efficiency > 0.8 is considered bad. Besides the statistics of
the fit itself, the final maps were also compared to the grid-
ded SOCAT v5 data, resulting in an average offset and stan-
dard deviation (SD). In order to compare the maps against

data that were not used to produce the maps, we predicted
the f CO2 for the years 2017 and 2018 (i.e., we applied
the trained multi-linear model to driver data from 2017 and
2018) and compared these maps to f CO2 observations in
SOCAT v2019, gridded on a monthly 0.125◦× 0.125◦ grid.
We also compare the maps directly with observations from
repeated sampling locations in the North Sea and the Baltic
Sea.

2.5 Ocean acidification

For calculating the pH, alkalinity (AT) was estimated in the
North Sea, along the Norwegian Coast, and in the Barents
Sea via a salinity–alkalinity correlation following Nondal
et al. (2009). Alkalinity describes the capacity of the sea wa-
ter to buffer changes in pH. As the concentration of most of
the weak bases in seawater is strongly dependent on the salin-
ity, alkalinity can in many regions be estimated from salinity.
However, in regions with a high amount of organic bases in
seawater, for example in strong blooms or at river mouths,
deviations from the alkalinity–salinity relationship can oc-
cur. The carbonate system was calculated using the CO2SYS
program (van Heuven et al., 2009) with carbonic acid dis-
sociation constants of Mehrbach et al. (1973) as refitted by
Dickson and Millero (1987), KSO−4 dissociation constants
following Dickson (1990) and the boron–salinity relation fol-
lowing Uppström (1974). For the Baltic Sea, we did not cal-
culate pH as the alkalinity–salinity relationship in this region
is complex due to different AT–S relations in different sub-
regions of the Baltic Sea and a non-negligible increase in AT
over the last 25 years (Müller et al., 2016).

2.6 Calculation of trends

For calculating trends of f CO2 and ocean acidification, the
data in every grid box were deseasonalized by subtracting the
long-term averages of the respective months. Then a linear
fit was applied to the deseasonalized time series. For illus-
trating the influence of interannual variability we calculated
the trend for different time ranges. As a time range less than
10 years barely resulted in significant trends, we decided to
limit the trend analysis to starting years 1998 through 2006
and ending years 2008 through 2016.

2.7 Flux calculation

The air–sea disequilibrium was calculated as the difference
between our mapped f CO2 values and atmospheric f CO2
in each grid cell and time step. The atmospheric f CO2 was
determined by converting the xCO2 from the NOAA marine
boundary layer reference product from the NOAA GMD Car-
bon Cycle Group into f CO2 by using monthly SST and SSS
data (Table 3) and monthly air pressure data from the NCEP-
DOE Reanalysis 2 (Kanamitsu et al., 2002). We calculated
the air–sea CO2 flux (F ) according to Eq. (3), such that neg-
ative fluxes are into the ocean. The gas transfer coefficient k
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Table 4. Driver used in the different regressions.

log (MLD) SST SSS CHL ICE ICE change log (BAT) DIST pCO2 year

North Sea
MLR 1 x x x x x x x
MLR 2 x x x x x x x x x
MLR 3 x x x x x x x x x

Norwegian Coast
MLR 1 x x x x x x x
MLR 2 x x x x x x x
MLR 3 x x x x x x x x

Barents Sea
MLR 1 x x x x x x x
MLR 2 x x x x x x x
MLR 3 x x x x x x x

Baltic Sea
MLR 1 x x x x x x x x
MLR 2 x x x x x x x
MLR 3 x x x x x x x

was determined using the quadratic wind speed (u) depen-
dency of Wanninkhof (2014) (Eq. 4). The Schmidt number,
Sc, was calculated according to Wanninkhof (2014) and the
solubility coefficient for CO2, K0, following Weiss (1974).

F = k ·K0 · (f CO2,sw− f CO2,atm) (3)

k = aq · 〈u
2
〉 ·

(
Sc

660

)−0.5

(4)

In our calculations, we used 6-hourly winds of the NCEP-
DOE Reanalysis 2 product. The coefficient aq in Eq. (4) is
strongly dependent on the wind product used (Roobaert et al.,
2018). We determined it to be aq = 0.16 cmh−1 for the 6-
hourly NCEP 2 product following the recommendations of
Naegler (2009) and by using the World Ocean Atlas sea sur-
face temperatures (Locarnini et al., 2018). The barrier effect
of sea ice on the flux was taken into account by relating the
flux to the ice cover extent following Loose et al. (2009).
As the gas exchange in areas that are considered 100 % ice
covered from satellite images should not be completely ne-
glected, we use a sea ice barrier effect for a 99 % sea ice
cover in all grid cells where the sea ice coverage exceeded
99 %.

3 Results

3.1 Maps of f CO2

The skill assessment metrics for MLR 1, MLR 2 and MLR 3
are presented in Table 5. It shows the R2 and RMSE of the
fit, the ME, and the average offset and SD to the gridded SO-
CAT data. The coefficients for MLR 1, MLR 2 and MLR 3

are provided in the Supplement. The MLRs substantially im-
prove the predictions of the open-ocean maps in all studied
regions, showing a better average offset and SD to SOCAT v5
and ME than the coarser-resolution open-ocean maps (for ex-
ample the Rödenbeck map: North Sea, 0± 95 µatm; Norwe-
gian Coast, 2± 17 µatm; Barents Sea, 22± 40 µatm; Baltic
Sea, 4± 48 µatm; MLR1: North Sea, 0± 26 µatm; Norwe-
gian Coast, 0± 16 µatm; Barents Sea, 0± 19 µatm; Baltic
Sea, 2± 42 µatm). In all regions MLR 1 has the best model
efficiency, the highest R2 and the smallest RMSE of the fit,
while these statistics are worse for MLR 2 and MLR 3. This
can be explained by the fact that the Rödenbeck map contains
information about the continental shelf and the Barents Sea,
while for MLR 2 the closest open-ocean grid cell of Land-
schützer et al. (2017) was used. The fact that MLR 3 showed
the weakest performance shows the value of using informa-
tion from the open-ocean maps in the regression.

Figure 3 shows, from left to right, the spatial distribu-
tion of the average difference between the predicted f CO2
by MLR 1 and the gridded SOCAT v5 data, the Rödenbeck
map and the gridded SOCAT v5 data, the difference between
MLR 1 and the Rödenbeck map, and, for comparison, the
difference between MLR 3 and the SOCAT v5 data. In the
North Sea, MLR 1 seems to slightly overestimate the f CO2
in the constantly mixed region at the entrance of the English
Channel and the area off the Danish North Sea coast. In the
Baltic, MLR 1 generally describes the spatial variability in
f CO2 well. However, in the Gulf of Finland it usually pre-
dicts f CO2 values that are too low during May/June while it
slightly underestimates events of very high f CO2 in Decem-
ber/January. Regardless, the spatial biases vs. SOCAT are
clearly smaller for MLR 1 than for the original Rödenbeck
map. Further, as the predictions of MLR 2 and 3 are clearly
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Table 5. Statistical evaluation of the MLR 1, MLR 2 and MLR 3 in comparison to the open-ocean maps of Rödenbeck et al. (2015) and
Landschützer et al. (2017) for each region. The data for the open-ocean map of Landschützer et al. (2017) are in parentheses since this is
based on an extrapolation of the nearest open-ocean grid cell towards the coast. The number of grid cells containing data is given behind the
region abbreviations.

R2 adj RMSE ME difference to gridded SOCAT v5
median mean SD

(µatm) (µatm) (µatm)

North Sea (36170)

MLR 1 0.7271 25 0.3145 −0.15 26
MLR 2 0.5130 33 0.5789 −0.52 36
MLR 3 0.5331 33 0.4895 −2.4 32
Rödenbeck 0.3522 −0.28 95
(Landschützer) 0.5714 −4.7 103

Norwegian Coast (16014)

MLR 1 0.7860 16 0.1742 0.46 16
MLR 2 0.5634 22 0.3597 −2.3 24
MLR 3 0.6074 20 0.2436 −0.08 21
Rödenbeck 0.2177 2.0 17
(Landschützer) 0.3294 7.0 23

Barents Sea (13925)

MLR 1 0.8871 12 0.1069 0.32 19
MLR 2 0.8724 14 0.0986 1.3 68
MLR 3 0.8672 18 0.1082 1.3 24
Rödenbeck 0.2923 22 40
(Landschützer) 0.3364 15 44

Baltic Sea (46810)

MLR 1 0.9076 39 0.0488 2.2 42
MLR 2 0.6733 66 0.3111 −1.0 68
MLR 3 0.6628 67 0.3027 0.24 69
Rödenbeck 0.1326 4.2 48

Figure 3. Average regional differences between MLR 1 and gridded SOCAT v5 data, the Rödenbeck map and gridded SOCAT v5 data,
MLR 1 and the Rödenbeck map, and MLR 3 and the gridded SOCAT v5 data (from left to right).
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inferior to those of MLR 1 (Table 5 and Fig. 3, MLR 3 only),
we will use MLR 1 results for the further analyses. An ex-
tended validation of the MLR 1 maps can be found in the
discussion section.

Figure 4 shows the monthly averages of f CO2 produced
by MLR 1 for February, May, August and November. In
all regions, the highest f CO2 values occur in the winter,
while the lowest f CO2 values occur in summer. The largest
seasonal cycle could be observed in the Baltic Sea, where
f CO2 reached well below 200 µatm in midsummer and over
500 µatm during the winter.

We notice that the gradients that exist between the grid
cells in the Rödenbeck map are still visible in our maps in
some regions, for example the sharp gradient in the south-
ern North Sea in February or the east–west and north–south
gradients in the entire North Sea in August. Such gradients
are also evident in directly mapped pCO2 data (Kitidis et al.,
2019); however, here they are strongly meridional and latitu-
dinal in their extent. As such, while these gradients do reflect
actual features of the f CO2 distribution in the North Sea,
their specific shape here is also a consequence of the influ-
ence of the Rödenbeck maps on our estimates – from the use
of these maps as a driver in the MLR and their importance in
improving the statistical performance vs. the MLR that did
not use these values as a driver (MLR 1 vs. MLR 3, Table 5).
Also, they do reflect the uncertainty of – and our level of
confidence in – the estimated pCO2 values, being approxi-
mately similar to or slightly larger than the RMSE of MLR 1
(Table 5). Any smoothing would be completely artificial and,
while being more visually pleasing, would not better reflect
the truth in any meaningfully quantifiable extent. We have
therefore chosen to leave them untouched. These gradients
are therefore also visible in subsequent pH and trend maps.

3.2 Maps of pH

The monthly average of pH calculated from MLR 1 f CO2
ranges from about 8 during winter to 8.15 during summer in
the North Sea and at the Norwegian Coast (Fig. 5). Towards
the Barents Sea the pH maximum during summer increases
to 8.2. The pH of 8.00–8.15 in regions with a large influence
from the Atlantic, such as the northern North Sea and the
Norwegian Coast, is in good agreement with the range of pH
determined for the open North Atlantic (Lauvset and Gruber,
2014; Lauvset et al., 2015). In the North Sea, the pH is in the
same range as reported in Salt et al. (2013), and it also shows
the same distribution in August/September, with higher pH
in the northern North Sea and lower pH in the southern part.

4 Discussion

4.1 Performance of the pCO2 maps

The performance of the MLR and the maps is evaluated in
different ways: (1) using the R2 and the RMSE of the fit;

(2) using the average deviation and its SD, as well as the ME
between the produced f CO2 maps and the gridded observa-
tions as a regional average; (3) showing the median deviation
between the MLR and the gridded observations on a monthly
level; and (4) by comparing the data from the f CO2 maps to
observations from two time series stations. (2)–(4) will be
shown for the time period covered by the driver data (1998–
2016) and for the prediction of the f CO2 values for 2017
and 2018. These predicted values are compared with data
from the newest SOCAT release (SOCATv2019) and provide
a comparison with an independent dataset. Please note that
the comparability of the model performance between the dif-
ferent regions is limited. All statistical parameters used are
influenced by characteristics that can vary substantially be-
tween the different regions, such as range of the data, their
variability or the amount of grid cells with data. For exam-
ple, in a diverse region with many measurements the amount
of variability captured by these measurements is most likely
larger and thus will lead to a weaker correlation.

Generally, the uncertainty of MLR 1 is in the same range
as in other studies (Laruelle et al., 2017; Yasunaka et al.,
2018) mapping coastal f CO2 dynamics: 25 µatm in the
North Sea, 16 µatm along the Norwegian Coast, 12 µatm in
the Barents Sea and 39 µatm in the Baltic Sea (based on
the RMSE in Table 5). In the Baltic Sea, which has a large
variability in itself, Parard et al. (2016) obtained lower SDs
through dividing the area in smaller sub-regions.

One clear drawback of the here presented MLR 1 is the
clearly visible grid pattern of the open-ocean pCO2 product
that was used as input data with its grid size of 5◦× 4◦, men-
tioned in Sect. 3.1. There are two ways how one could get
rid of this artifact in a future release. A finer resolution of the
open-ocean maps used will lead to a better representation of
the actual gradients in our mapped product. Rödenbeck et al.
just released a newer, finer resolution of their open-ocean
product (2.5◦× 2◦) that we intend to use in a future version
of this data product. However, this will not be sufficient to
eradicate the artifact completely. Another approach, running
the MLR without an open-ocean pCO2 product, can provide
a coastal pCO2 product without this artifact. While in prin-
ciple it is preferential to have coastal maps that are indepen-
dent of the open-ocean products, MLR 3, which is running
without open-ocean pCO2 as a driver, clearly did not reach
the same accuracy as MLR 1 (Table 5). New and better input
fields or a different regression method could help improve
the independent coastal maps in the future. Another impact
that the open-ocean pCO2 product of Rödenbeck et al. can
have on MLR 1 is the potential introduction of patterns from
regions further away as the spatial correlations used in pro-
ducing the Rödenbeck et al. pCO2 just ignore land barriers.
However, the influence of these spatial correlations is rela-
tively small in regions with a high data density (as the Eu-
ropean shelf) and the multi-linear regression used to produce
MLR 1 corrects for this.
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Figure 4. The average f CO2 of MLR 1 (1998–2016) for 1 example month in each season (February, May, August and November).

Figure 5. The average pH based on MLR 1 (1998–2016) for 1 example month in each season (February, May, August and November).

The seasonal differences between MLR 1-determined val-
ues and the SOCAT v5 data for each region are shown in
Fig. 6. This comparison shows a very good agreement. For
MLR 1, the seasonal variations of the median bias are small
in the North Sea, along the Norwegian Coast and in the Baltic
Sea. In the Barents Sea, however, the bias varies seasonally.
Here, MLR 1 slightly underestimates the f CO2 in winter and
early spring, while it overestimates the f CO2 in summer. In
all other regions, the median seasonal bias is smaller than
the uncertainty of the maps. The larger seasonal bias in the
Barents Sea is most likely caused by the larger seasonal bias
in the number of available observations. There are no data
available in October, December and January.

When comparing all observations from the years 2017
and 2018 to the predictions by the MLR 1, we find a

good agreement in the North Sea (2± 20 µatm) and no sea-
sonal bias (Fig. 7). In the other regions, the agreement
is somewhat reduced compared to the years 1997–2016
(−9± 39 µatm (Norwegian Coast), −5± 29 µatm (Barents
Sea) and 28± 58 µatm (Baltic Sea)). In these regions we also
observe a seasonal bias in the years 2017 and 2018. At least
for the Baltic Sea this could be a result of the extraordinary
warm and dry summer in 2018 that led to very low f CO2 val-
ues (see Fig. 8 and the data in SOCAT, Bakker et al., 2016).
Please note that for this comparison the MLR was extrapo-
lated in time. Only observations until December 2016 were
used to produce the MLR. Therefore accuracy of the maps
itself is reduced.

In a second test to investigate to which extent MLR 1 can
reproduce observations we compared the MLR output with
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Figure 6. Boxplots showing the median deviation of MLR 1 from the gridded SOCAT 5 data for each region (red line). The boxes show the
upper and lower 75th percentiles. Ninety-nine percent of the data lie within the range of the purple whiskers. Extremes are shown as gray
crosses.

time series data from two voluntary observing ship lines in
two very different regions with a good data coverage: M/V
Nuka Arctica in the northern North Sea (0–2◦ E, 58–60◦ N)
and M/V Finnmaid in the Baltic Sea (23–24◦ E, 59–60◦ N)
(Fig. 8). The agreement between the MLR 1 and the obser-
vations is very good. MLR 1 reproduces the general season-
ality and some of the interannual variability, also in the years
2017 and 2018, the observations of which were not used in
the regression.

When performing interpolation exercises it is always im-
portant to be aware of the fact that the resulting maps might
come with biases and do not represent all regions equally
well. While the here presented maps give a good general
overview about the surface ocean f CO2 variability in re-
gions with a relatively large amount of data, the reliabil-
ity, however, is limited in regions where the data coverage
is more scarce. This is especially the case when the region
with scarce data coverage is showing different characteris-
tics in, for example, temperature and salinity, compared to
the rest of the region. One such example is the Gulf of Both-
nia in the Baltic Sea region where almost all data used to
derive the MLR is from south of 60◦ N, i.e., not in the Gulf
of Bothnia but in the Baltic Proper and western Baltic Sea
(see Fig. 2). The MLR method can also lead to unrealistic
extreme values and even negative f CO2. Some such values

occur in the northeastern Barents Sea as well as in parts of
the Baltic Sea (about 0.01 % of the grid cells in each region).
As pH cannot be calculated for negative f CO2, we excluded
all negative f CO2 values for the calculation of pH. Exclud-
ing the negative values resulted in a change in the average
f CO2 of 0.05 µatm (Baltic Sea) and 0.3 µatm (Barents Sea)
so they are of negligible importance for the flux estimates.
While the negative values are easy to spot and discard, there
are most likely other unrealistically low values in spring and
summer in the very north and northeastern Barents Sea as
well as some parts of the Baltic Sea. However, there are no
data available in SOCAT v5 or available elsewhere to vali-
date this.

All regions with questionable f CO2 are also questionable
in their pH data. There is a number of very high pH regions
in the Barents Sea (Fig. 5) that are associated with also very
low f CO2 (Fig. 4) that might not be realistic. In addition,
estimated pH values in low-salinity regions where the actual
alkalinity–salinity deviates strongly from the Nondal et al.
(2009) one used here (e.g., river mouths in the southern North
Sea or the Skagerrak) should be interpreted with caution.
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Figure 7. Boxplots showing the median deviation between MLR 1 (based on observations until 2016) and measured f CO2 values in 2017
and 2018. The boxes show the upper and lower 75th percentiles. Ninety-nine percent of the data lie within the range of the purple whiskers.
Extremes are shown as gray crosses. The numbers of grid cells with data available were 5047 for the North Sea, 1543 for the Norwegian
Coast, 2312 for the Barents Sea and 5414 for the Baltic Sea.

Figure 8. Time series of ship-of-opportunity (SOOP) data from Nuka Arctica (a, blue) and Finnmaid (b, blue) compared with MLR 1 at the
same location (red). In light blue the predictive MLR output for the years 2017 and 2018 is shown.
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4.2 Trends in f CO2 and pH

Trends in surface ocean f CO2 in coastal regions are often
difficult to assess because of the scarcity of data relative to
the highly dynamical character of these regimes and their
large interannual variability. For example, the start of the pro-
ductive season can range from February to April even within
a small area, such that even restricting the analysis to specific
seasons (e.g., winter) can be challenging. Also, due to a lack
of data, especially winter data, most observational studies are
based on summer data. Further, the fact that these measure-
ments typically do not take place every year adds even more
uncertainty to the estimated trend, as interannual variability
can mask the trend signal.

The monthly maps of f CO2 from 1998 to 2016 enable us
now to estimate the trend in surface ocean f CO2 for the en-
tire region, equally distributed over the seasons (Fig. 9, left).
All trends were computed from deseasonalized data. The in-
terannual variability of the trend estimates in each region is
shown in the panels on the right hand side in Fig. 9. We ex-
clude the northern Baltic Sea from the trend map because we
do not expect to have a robust trend estimate in that region as
there are only very few data from that region in the regres-
sion. Based on the linear regression the significant trends in
f CO2 have an average uncertainty of 0.5 µatmyr−1 (North
Sea), 0.4 µatmyr−1 (Norwegian Coast), 0.4 µatmyr−1 (Bar-
ents Sea) and 0.7 µatmyr−1 (Baltic Sea), while the shorter
time periods shown have a higher uncertainty; no time peri-
ods longer than 1998–2016 (for which the given uncertain-
ties of the trend apply) are shown. For pH trends, the av-
erage uncertainties of the regressions over 1998–2016 are
5× 10−4 (North Sea) and 7× 10−4 (Norwegian Coast and
Barents Sea).

In most of the regions addressed in this study, the trend
in the surface ocean is lower than the trend in atmospheric
xCO2 (global average 2.02 ppmyr−1 (Cooperative Global
Atmospheric Data Integration Project, 2015)). Trends ex-
ceeding the atmospheric values in the period from 1998 to
2016 can only be observed at the entrance of the English
Channel, in Storfjorden/Svalbard and the Gulf of Finland
(2.5–3 µatmyr−1). It has to be noted that there was almost
no measured f CO2 as MLR input from Storfjorden. There-
fore, these trends are highly uncertain. The trend in the west-
ern North Sea is only slightly lower than the trend in the at-
mosphere (1.5–2 µatmyr−1), while the trends in the eastern
North Sea, along the Norwegian Coast and in the Barents
Sea are lower (0.5–1.5 µatmyr−1). In the North Sea this is
consistent with a recent study of Omar et al. (2019), which is
directly based on observations. These low trends will result
in an increase in the strength of the ocean carbon sink with
time.

Generally, only few regressions over time ranges of less
than 10 years turned out to be significant. This is an impor-
tant finding when comparing the trends determined from our
maps with the trends reported in literature, many of which

Table 6. f CO2 trend calculated from gridded, deseasonalized SO-
CAT v5 observations.

Region Latitude (◦ N) Trend (µatmyr−1)

North Sea, south 51–54.5 3.2± 1.3
North Sea, center 54.5–58 1.43± 0.21
North Sea, north 58–62 2.320± 0.089

Norwegian Coast, south 62–68 2.12± 0.19
Norwegian Coast, north 68–73 1.426± 0.099

Barents Sea, south 69–74 1.31± 0.30
Barents Sea, north 74–85 1.01± 0.22

Baltic Sea, south 54–56 2.05± 0.12
Baltic Sea, north 56–61 1.84± 0.21

were covering periods shorter than 10 years (Table 1). In or-
der to compare the general patterns of f CO2 trends deter-
mined from our maps with those directly determined from
observations over a similar time range, we estimated the
f CO2 trends also from the SOCAT v5 observations that were
used to produce the MLR (Table 6). We gridded and desea-
sonalized the SOCAT v5 data and divided the entire region
into nine subregions. A figure showing the fits and the data
coverage can be found in Appendix A. These observation-
based trends show similar general patterns as those based on
our maps (Fig. 9, 1998–2016): (1) largest trends in the south-
ern North Sea, (2) decreasing towards the north with trends
around the atmospheric trend in the northern North Sea and
trends around 1 µatmyr−1 in the Barents Sea, and (3) close
to atmospheric trends in the Baltic Sea.

The observation that some subareas (the Baltic Sea or
along the shore of the western North Sea) did not show a
significant trend can be explained by the fact that coastal sea
systems, especially enclosed areas such as the Baltic Sea, ex-
perience a high anthropogenic pressure. Anthropogenic im-
pacts other than rising atmospheric CO2 concentrations influ-
ence the ocean carbon system; for example the nutrient load
of rivers can affect coastal ecosystems and primary produc-
tion through eutrophication. This will result in lower f CO2
in summer and higher f CO2 in winter (Borges and Gypens,
2010; Cai et al., 2011). Another important process that in-
fluences the carbon system in the Baltic Sea is inflow events
from the North Sea. In between such events, CO2 accumu-
lates in deeper water layers, causing an increasing gradient
of dissolved inorganic carbon (DIC) across the halocline.
Whenever deep winter mixing occurs, this will then lead to
a large increase in surface f CO2 because of the input of
DIC-rich waters from below. Another reason is the observed
change in alkalinity with time. This affects the f CO2 though
changes in the buffer capacity of the inorganic carbon system
(Müller et al., 2016).

In most other regions, the sea surface f CO2 trends were
typically smaller than the rise in the atmospheric CO2 con-
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Figure 9. The trend in surface ocean f CO2 estimated from deseasonalized f CO2. Panel (a) shows the spatial distribution of the trend over
the time period from 1998 to 2016. Grid boxes without a significant trend are denoted with a black dot. Panels (b)–(e) show the trends in
different time periods in four regions, from the various years on the y axis to the various years on the x axis. Non-significant trends were left
blank. Significant trends in sea surface temperature are indicated with crosses/circles. The color bar is centered on the approximate annual
f CO2 rise in the atmosphere (2 µatmyr−1).

Figure 10. (a) The long-term trend (1998–2016) in surface ocean f CO2 each month. (b) The average seasonality in f CO2 for the periods
1998–2007 (green) and 2007–2016 (purple) in the northeastern North Sea (58–60◦ N, 3–8◦ E), normalized to December. The SD for each
month is shown as the shaded area.

centration. A possible explanation is an earlier onset of the
spring bloom. For example, in the North Sea a significant
drawdown in f CO2 has been observed as early as Febru-
ary in some years, but there is also a large variability (Omar
et al., 2019). The bloom timing and onset in the North Sea
after the 1990s have been shown to be mainly triggered by
the spring–neap tidal cycle and the air temperature (Sharples

et al., 2006). The bloom timing and onset were found to be
significantly earlier in the 2010s compared to the previous
decades (Desmit et al., 2020). Even if the trend in winter
f CO2 was following the atmospheric xCO2 increase, such
a change in bloom timing and onset would lead to a trend
lower than in the atmosphere when averaging over the en-
tire year. Figure 10a shows the annual trends in f CO2 in
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each month in the four regions considered. Particularly in
the North Sea and Baltic Sea, very low f CO2 trends are ob-
served in February–May, suggesting that changing timing of
the spring bloom might be important here. Investigating the
seasonal f CO2 in more detail (Fig. 10b) revealed an ear-
lier and deeper f CO2 drawdown in the second decade of
our analysis (2007–2016) than in the first (1998–2007) in
the northeastern North Sea (58–60◦ N, 3–8◦ E). This strongly
suggest that an earlier and stronger spring bloom is lower-
ing the annual f CO2 growth rates in this region, which is
among the ones with the smallest f CO2 trends in the North
Sea (about 1 µatmyr−1, Fig. 9). In the other regions, no such
changes could be established with confidence. Future inves-
tigations should aim at generating f CO2 maps with higher
temporal resolution, as changes in the timing of the spring
bloom might be a matter of days or weeks, which would not
be fully resolved by the monthly maps presented here.

When looking at the interannual variability, it becomes
obvious that the trend in the North Sea is slightly smaller
than the atmospheric CO2 trend. In contrast, the Norwe-
gian Coast and the Barents Sea experience a robust trend
much lower than the atmospheric trend (Norwegian Coast:
1–1.5 µatmyr−1; Barents Sea: around 1 µatmyr−1). Here we
can also see a stable pattern of warming over timescales of
10 to 15 years. The warming in itself would result in an in-
crease in f CO2 with time, in addition to the atmospheric
forcing. As we are observing a trend smaller than the at-
mospheric trend, temperature effects cannot be the driver
here. The lower trend stems most likely from an earlier onset
of spring bloom. It has been shown that the Atlantification
and the reduced ice coverage of the Barents Sea lead to a
longer productive season, and this will result in more months
with strong undersaturation in CO2 (Oziel et al., 2017). In
the Baltic Sea the patterns are different. Here the variabil-
ity is much larger, while most of the time periods show a
trend larger than the atmospheric trend (3–3.5 µatmyr−1).
Although slightly smaller our results broadly agree with
trend estimates based on measurements of 4.6–6.1 µatmyr−1

over 2008–2015 (Schneider and Müller, 2018). Finally, it
also needs to be noted that the uncertainty of the f CO2 maps
was highest in the Baltic Sea. This makes it also more diffi-
cult, if not impossible, to properly detect these small differ-
ences in the trends.

For pH, the trend in most regions is around −0.002 yr−1

(Fig. 11). As expected, regions with the strongest trend in
f CO2 also show the highest trend in pH, such as the south-
ern North Sea. The trend in the northern North Sea and
along the Norwegian Coast is in good agreement with the pH
trends found in studies focusing on the open Atlantic Ocean
(−0.0022 yr−1, Lauvset and Gruber, 2014) and the North At-
lantic and Nordic Seas (−0.002 yr−1, Lauvset et al., 2015).

4.3 CO2 disequilibrium and flux

The average air–sea CO2 disequilibrium
(1f CO2= f CO2,sea− f CO2,atm) is shown in Fig. 12.
The only region showing an average supersaturation is the
southern North Sea. Towards the north, the surface ocean
becomes more and more undersaturated, with the lowest
values in the Barents Sea. The values in the Barents Sea
(−60 to −80 µatm in the southern Barents Sea and less than
−100 µatm around Svalbard) are in agreement with those
estimated by Yasunaka et al. (2018). The seasonal cycle of
1f CO2 follows a biologically driven pattern with higher
values in the winter and lower values from April to August.
The seasonal cycle is largest in the Baltic and smallest in the
Barents Sea.

The air–sea CO2 fluxes and their trends (Fig. 13) show
that most regions are a net and increasing sink for CO2. The
only net source regions are the southern North Sea and the
Baltic Sea. The two different regimes in the North Sea, with
the southern, nonstratified part being a source and the north-
ern temporarily stratified part a sink for CO2, have been de-
scribed in the literature before (Thomas et al., 2004), but
the gradient between them as represented here may be a too
sharp (Sect. 3.1). However, there is a large interannual vari-
ability in the f CO2 disequilibrium (Omar et al., 2010), and
studies based on different years find conflicting results re-
garding the direction of the flux (Kitidis et al., 2019; Schiet-
tecatte et al., 2007; Thomas et al., 2004). This large interan-
nual variability was also present in our maps. During some
years, larger parts of the North Sea were a net source, while
during other years also the southern North Sea acted as net
sink (not shown).

The seasonal variations in the air–sea flux are driven by a
combination of the changes in the disequilibrium, the wind
strength and the ice cover. As there is less wind during sum-
mer, when the disequilibrium is large, but a smaller disequi-
librium during winter, when the wind strength is high, the
seasonal variability in the flux is often less clear than that in
the disequilibrium. This can be seen in the Barents Sea and
Norwegian Coast. Yasunaka et al. (2018) found the seasonal
and interannual variation in the Barents Sea and the Norwe-
gian Sea mostly corresponded to the wind speed and the sea
ice concentration. We see the strongest dependence on the
air–sea disequilibrium, however (not shown). This indicates
that the seasonal and interannual variability in our f CO2
maps is larger than in the maps generated by Yasunaka et al.
(2018). Still, our average fluxes fit well with those reported
by Yasunaka et al. (2018) of −8 to −12 mmolm−2 d−1 (Bar-
ents Sea) and −4 to −8 mmolm−2 d−1 (Norwegian Coast).
In the North Sea there is almost no net flux during win-
ter, as the surface ocean is more or less in equilibrium with
the atmosphere. In the Baltic Sea, there are high fluxes into
the atmosphere during winter as here a large oversaturation
coincides with strong winds. This is also why the Baltic
Sea is a net source region. Although Parard et al. (2017)

Biogeosciences, 18, 1127–1147, 2021 https://doi.org/10.5194/bg-18-1127-2021



M. Becker et al.: Coastal f CO2 maps 1141

Figure 11. The trend in surface ocean pH estimated from deseasonalized pH. (a) The spatial distribution of the trend over the time period
from 1998 to 2016 is shown. Grid boxes without a significant trend are denoted with a black dot. Panels (b)–(e) show the trends in different
time periods in three regions, from the various years on the y axis to the various years on the x axis. Non-significant trends were left blank.

Figure 12. The average air–sea CO2 disequilibrium over the period 1998–2016 (a, red colors indicate average undersaturation, while blue
colors indicate average oversaturation). For every region average disequilibria are shown as seasonal averages (b) and time series of annual
disequilibria (c). Blue line: North Sea; red line: Norwegian Coast; yellow line: Barents Sea; purple line: Baltic Sea

did find slightly smaller seasonal fluxes (+15 mmolm−2 d−1

during winter and −8 mmolm−2 d−1 during summer), the
annual air–sea CO2 fluxes are in good agreement (0 to
+4 mmolm−2 d−1 between 1998 and 2011).

The uncertainty in the calculated fluxes is a result of the
uncertainties in the f CO2 observations, 1f CO2 maps, the
gas exchange parameterization and the wind product. The

uncertainty of the 1f CO2 is mostly driven by the uncer-
tainty of the MLR, resulting in an error between 12 and
39 µatm, according to the RMSE values of MLR1 for the
different regions (Table 5). A number of studies address the
uncertainty of gas exchange parameterizations and the wind
products (Couldrey et al., 2016; Gregg et al., 2014; Ho and
Wanninkhof, 2016). For this study, we apply an uncertainty
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Figure 13. The average air–sea CO2 flux over the period 1998–2016 (a, red colors indicate sink regions, while blue colors indicate source
regions). For every region average fluxes are show as seasonal averages (b) and time series of annual fluxes (c).

of the gas transfer velocity of 20 % (Wanninkhof, 2014).
This will result in an uncertainty of the air–sea flux of about
2 mmolCd−1 m−2. It has to be kept in mind that the absolute
uncertainty in k increases with increasing wind speed but that
the uncertainty in the wind speed has the largest influence in
summer when also the disequilibrium is large. In contrast,
the uncertainty in 1f CO2 will cause larger errors in winter,
when the wind speeds are high.

There is an ongoing discussion of how and to which extent
the dominant climate mode in the North Atlantic, the North
Atlantic Oscillation (NAO), is driving the variability in the
CO2 fluxes (Salt et al., 2013; Tjiputra et al., 2012; Watson
et al., 2009). Even though some features in the time series
seem to coincide with very extreme states of the NAO, such
as a very large disequilibrium along the Norwegian Coast in
2010, we could not find any significant correlation between
the CO2 fluxes and the NAO index.

5 Conclusions

The MLR approach presented in this work is a relatively easy
and straight forward method to produce monthly f CO2 maps
with a high spatial resolution in coastal seas, and the use of
available open-ocean maps improved the coastal maps sig-
nificantly. The maps reproduce nicely the main spatial and
temporal patterns that are present in observations in the dif-
ferent regions for both f CO2 and pH. The surface seawater
f CO2 trends were mostly lower than the atmospheric trends
and also lower than the trends found in the open North At-
lantic. Results show that the northern European shelf is an in-
creasing net sink for CO2. Only the Baltic Sea is a net source
region. This method clearly has the potential to be extended
to a larger region. However, it should be handled with care

in regions with only a small number of observations as the
MLR can lead to unrealistic values.

Long-term observations with a high temporal resolution
are extremely important for developing maps such as pre-
sented here. While a decent spatial coverage exists for the
open North Atlantic, most coastal regions are still undersam-
pled, in particular relative to their high variability in time and
space. To further understand and interpret the trends in f CO2
and pH it is necessary to increase our knowledge and under-
standing of the interaction between primary production, res-
piration in the water column and the sediments, mixing and
gas exchange, and their influence on the carbon cycle.

Besides an increased amount of in situ observations, also
improved, higher-resolution driver data hold the potential to
enable a better representation of spatial gradients. Including
not only satellite-derived chlorophyll data but also colored
dissolved organic matter (CDOM) can also lead to an im-
proved performance of the regressions, especially in regions
with a high load of terrestrial dissolved organic carbon.

While MLR-derived sea surface f CO2 maps provide a co-
herent picture of the entire region, they have clear limitations
and should be interpreted with caution in regions with few or
no observations. A large number of observations is essential
both for producing high quality maps and for their validation.
Also, observations of a second parameter of the carbon sys-
tem would be beneficial for deriving pH maps – to reduce and
quantify the error introduced by estimating alkalinity from
salinity. In addition to that, our work neglects the areas clos-
est to land due to unavailability of CO2 data and reanalysis
products in those areas. For adding their contribution to the
flux estimates, new platforms specialized on measurements
directly at the land–ocean interface need to be developed.
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Appendix A: Trend in surface ocean f CO2 observations

Figure A1. Trend in surface ocean f CO2 in deseasonalized, gridded observation data (SOCAT v5).
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