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SMALL DATA SCATTERING FOR CUBIC DIRAC EQUATION
WITH HARTREE TYPE NONLINEARITY IN R+3*

ACHENEF TESFAHUNT

Abstract. We prove that the initial value problem for the Dirac equation (—iy*9, + m)y =
==

(£ T (b)) in R1F3 is globally well-posed and the solution scatters to free waves asymptotically

as t — +oo if we start with initial data that are small in H® for s > 0. This is an almost critical
well-posedness result in the sense that L? is the critical space for the equation. The main ingredients
in the proof are Strichartz estimates, space-time bilinear null-form estimates for free waves in L2,
and an application of the UP and VP function spaces.
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1. Introduction.

1.1. Preliminary. We consider the initial value problem for the nonlinear Dirac
equation with Hartree type nonlinearity,

(=i O +m)p = (V (P)) v in R,

(1) (0,1) = oy € H*(RY),

where the unknowns are a spinor field (¢, z) regarded as a column vector in C%;
m > 0 is a mass parameter; V(z) = |z|~teI?| is the Yukawa potential; v#0, =
700, + Z?:l ’yjam]., where {'y”}f’_o are the 4 x 4 Dirac matrices, given in 2 x 2 block

form by
0 __ I 0 i _ 0 O'j
7_(01’ T\ o)

L (01 2 (0 —i s (10
"‘(1 0)’ U_<i 0)’ 7=\ 1

are the Pauli matrices; ¢ = ¥T+%, where 1" denotes the the conjugate transpose,
hence,

where

Pip =Ty = (4%, ) = |1 * + hal® — 3] — Jopal?,

where 11, ..., are the components of 1. Finally, H® is the Sobolev space of order
s.

Equation (1.1) with a Coulomb potential, i.e., V(z) = [z|~!, and a quadratic
term [1)|? replacing 1t was derived by Chadam and Glassey [2] by uncoupling the
Maxwell-Dirac equations under the assumption of vanishing magnetic field. They
also conjectured in the same paper [2, pp. 507] that (1.1) with a Yukawa potential V'
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can be derived by uncoupling the Dirac-Klein-Gordon equations:
i -
(8t -A+M )¢:1/”/)

Now if we assume that the scalar field ¢ is a standing wave of the form ¢(t, x) =
e“lo(x) with |c| < M (see, e.g., [10, 23]), the Klein—-Gordon part of (DKG) becomes

(—A+ (M?=c?)) ¢ = ¥,

whose solution is given by

= Vmo * @1/))7

where V,, = (4r|z|)~te ™2l with mg = VM2 —¢c2 > 0. Plugging ¢ = Vi, *

(¥1h) back into the first equation in (DKG) yields (1.1) with V replaced by Vi,,.

Nevertheless, the analysis of (1.1) with the Yukawa potential V or V;,, is the same.
The L?-norm of the solution for (1.1) is conserved:

[ P [ ok

R3 R3

In the massless case, m = 0, (1.1) is invariant under the scaling
u(t,x) = uy(t,z) = )\%u()\t7 Az)

for fixed A > 0. This scaling symmetry leaves the L?-norm invariant, and so equation
(1.1) is L2-critical.
A related equation that has been studied extensively is the boson star equation:

(1.2) (—i@t +vV/m? - A) w=(V*uP)u inR*3.

The first well-posedness result for this equation with both the Coulomb and Yukawa
potential was obtained by Lenzmann [19] for data in H® with s > %, and later this
was improved to s > 1/4 by Herr and Lenzmann [14]. Concerning scattering theory
Pusateri [21] established a modified scattering result in the case of a Coulomb potential
(which is the most difficult case) for small initial data in some weighted Sobolev space.
There are several well-posedness and scattering results for (1.2) with potentials of the
form V(z) = |z|~® for a € (1,3); see, e.g., [3, 4, 5, 6, 21].

Convolution with a Yukawa potential is (up to a multiplicative constant) the
Fourier-multiplier (1 — A)~" with Fourier symbol (1 + |§|2)_1 in R3 while convolution
with a Coulomb potential is (up to a multiplicative constant) the Fourier-multiplier
(=A)™" with Fourier symbol |¢|~2 in R®. Thus, both of these potentials are smooth-
ing operators; however, the Yukawa potential has an advantage over the Coulomb
potential (and also potentials of the form V(x) = |z|~¢ for a € (0, 3)) since the latter
one is singular near the origin.

Recently, Herr and the present author [16] proved small data scattering for (1.2)
with m > 0 and s > % Consequently, scattering is obtained for the nonlinear Dirac
equation

(1.3) (—iy*0, +m)y = (V« [9[*)¢ in R'?
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with Yukawa potential, m > 0 and s > % (see [16, Remark 1.2]).! Existence of a weak
solution for (1.3) with a Yukawa potential in the massless case (m = 0) was proved
earlier by Dias and Figueira [8, 9]. There is also a small data scattering result due
to Machihara and Tsutaya [20] for (1.3) with a potential V(z) = |z|~° for a € (2, 3),
m >0, and s > a/6+1/2.

The key difference between (1.1) and (1.3) is the nonlinearity (V *(1)1))y contains
a hidden null structure while this structure is not present in (V x[t|?)%. In the present
paper, we exploit this null structure to obtain small data scattering for (1.1) for all
m >0 and s > 0. To establish this result we first prove L2-space-time bilinear null-
form estimates for free waves and frequency localized quadrilinear estimates in UP-
and VP-spaces. To the authors knowledge there is no prior well-posedness result for
(1.1).

Our main result is as follows.

THEOREM 1. Let m > 0, s > 0, and |||y < € for sufficiently small € > 0.
Then the initial value problem (1.1) is globally well-posed and the solution 1 scatters
to free waves as t — £oo.

Remark 1.

(i) After the submission of this paper the author has learned that similar scat-
tering results for (1.1) with a Yukawa potential and potentials of type V(z) =
|z|~* was independently proved by Yang [23].

(ii) The critical case s = 0 corresponds to initial data in L?(IR®). The presence of

the factor A%, (6 > 0 small) in the dyadic quadrilinear estimate in Lemma

11 impedes us from performing the sum in Lemma 12 for s = 0. However,

if one is able to prove the estimate with the factor )\;‘Zd or (Amed/Amax)’

replacing A}, then it is possible to do the sum for s = 0, and hence prove
Theorem 1 for initial data in L?(R®). This may however require modifying
the working spaces or proving more refined estimates. In this paper, we do
not claim that the quadrilinear estimate in Lemma 11 is optimal.

(iii) Recently, after the submission of this paper, the author established a scatter-

ing result for (1.1) in R'*2 for m > 0 and s > 0 [22].

1.2. Reformulation of Theorem 1. We rewrite (1.1) in a slightly different
form by multiplying the equation by 8 = ~°:

(1.4) (=i + - D+ mpPyy = (V + (B, ) By in R,
. "/)(07 ) =1 € HS(R:})’
where D = —iV and a = (a!,a?,a?) with o/ = 4097, These matrices satisfy the

following identities:

B = () =1, of=—pal.

1.5 . . .
(1.5) alak = —aFad + 2671,

where §7F = 1 if j = k and 6% = 0 if j # k. Moreover,

(1.6) adaP = 59T +ielkl s,

1 Global well-posedness and scattering of (1.1) for m > 0 and s > 1/2 will also follow from [16].

However, Theorem 1 improves this result to m > 0 and s > 0.
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where /%! = 1 if (4, k,1) is an even permutation of (1,2,3), /¥ = —1 if (j, k,1) is an
odd permutation of (1,2, 3), and €¢/*' = 0 otherwise, and

l
I 0
s = (0 Ul) |
Following [7, 1] we decompose the spinor 1 relative to a basis of the operator

a - D + mf whose symbol is a - £ +mf. Since (a - & +mB)? = (|€]2 + m?)I , the
eigenvalues are +(¢),,, where

()m = vm? + [¢]2.

Now define the projections

Then we can decompose
(1.7) =9t +97,  where vF =II5(D)y.

In view of the identities in (1.5)—(1.6) we have

(1.8) I (D)II5 (D) = I (D), I (D)IE(D) = 0
and
(1.9) BIL, (D) = 117, (D) + m(D);,)!

Applying T (D) to (1.4) and using (1.7)-(1.8) we obtain

(1.10) {E 0y + (D))t = U5 (D) [(V * ( B0,0)) B0

0 = (D))~ =T, (D) [(V * (B, ) 8]

with initial data

(1.11) E(0,) = ¥i € H*(R?),
where
1/)(:)‘: = m( )11[}0
We denote by S,,(+£t) the solution propagators to the free Dirac equation:
S (t)f = eFHPImp = [ FHOmewEf(g) de.
R3

Now Theorem 1 reduces to the following.

THEOREM 2. Let m > 0, s > 0, and Hwo ||H < € for sufficiently small € > 0.
Then the IVP (1.10)~(1.11) is globally well-posed and the solutions ¥* scatter to free
waves as t — oo, i.e., there exist (f+,g9+) € H® x H® such that

Jim [ (t) = Sm(E) fx | . = 0

and

lim_[[#(8) — S (£0)gs | . = 0

t——o0
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The rest of the paper is organized as follows. In section 2 we give some notation,
define the UP- and VP-spaces and collect their properties. In section 3, we collect
some linear, convolution and bilinear estimates for free solutions of the Klein—Gordon
equation. In section 4 we reveal the null structure in (1.10) and prove bilinear null-
form estimates. In section 5 we give the proof for Theorem 2 after reducing it first to
nonlinear estimates. The proof for these nonlinear estimates will be given in section
6. In sections 7 and 8 we prove the convolution and bilinear estimates for free waves
stated in section 3.

2. Notation and function spaces.

2.1. Notation. In equations, estimates, and summations the Greek letters p and
A are presumed to be dyadic with u, A > 0, i.e., these variables range over numbers
of the form 2 for k € Z. In estimates we use A ~ B as shorthand for A = CB and
A < B for A < OB for some constant C' > 0, whereas we use A < B for A < C~'B
for some constant C' > 1; the constants are independent of dyadic numbers such as
pand A\; A~ B means B < A< B; A~ B means either A< Bor B<K A; AV B
and AA B denote the maximum and minimum of A and B, respectively; 1., denotes
the indicator function which is 1 if the condition in the bracket is satisfied and 0
otherwise; we write at+ := a + ¢ for sufficiently small 0 < ¢ < 1. Finally, we use the
notation

-1=1" ”Lf,w(RH?’) or |- HL?E(H@)

depending on the context.
The Fourier transform in space and space time are given by

o~

FAD© =F&) = [ (@) do.

ft,x(u)(’rvg) = ﬂ(T, g) = / 37i(t7+x'£)u(t,1’) dtdm

R1+3

Now consider an even function x € C§°((—2,2)) such that x(s) = 1 if |s] < 1. We
define

0 ifo< A<,
oa(s) = x(s) ifA=1,
X(3) =x (%) ifA>1

and

ox(s) =x (;) - X (2;> for A > 0.

Thus, suppp1 = {s € R : |s| < 2} whereas supppy = {s € R: § < [s| < 2A} for
A > 1. Similarly, suppoy = {s € R: 5 < |s| < 2A} for all A > 0. Then we define the
frequency and modulation projections by

Pof = F  palED F O],
Afu=F Hoa(Im £ (&) ml)u(r,€)).

Define also

+ + + +
A%, = Z A, AL =1-AF,.
n>A
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2.2. Function spaces: UP- and VP-spaces. These function spaces were orig-
inally introduced in the unpublished work of Tataru on the wave map problem and
then in Koch and Tataru [17] in the context of nonlinear spaces. The spaces have
since been used to obtain critical results in different problems related to dispersive
equations (see, e.g., [12, 13, 15]) and they serve as a useful replacement of X **-spaces
in the limiting cases. For the convenience of the reader we list the definitions and
some properties of these spaces.

Let Z be the collection of finite partitions —oco < tg < -+ < tg < oo of R. If
tx = 0o, we use the convention u(tg) := 0 for all functions u : R — L2.

DEFINITION 1. Let 1 < p < oco. A UP atom is defined by a step function a : R —
L? of the form

K
a(t) = Z Lty t0) (1) Ph—1,
k=1

where
K-1

(i€ 2, o} c L with Y |lonlh. = 1.
k=0

The atomic space UP(R; L?) is defined to be the collection of functions u: R — L? of
the form

oo
(2.1) u= Z)‘jaj’ where a;’s are UP atoms and {\;}jen € £*
j=1

with the norm

= inf Al
HUHUP 7'ep7'esentlt£1tion (2.1) Z| ]|
j=1
DEFINITION 2. Let 1 < p < .
(i) Define VP(R, L?) as the space of all functions v : R — L? for which the norm

K v
(2.2) [ollve :=  sup <Z|Iv(tk)—v(tk—1)’£2>

{tk}i(zoez k=1

is finite.
(ii) Likewise, let VP (R, L?) denote the normed space of all functions v : R — L?
such that lim;_, _ o v(t) = 0 and ||[v]|vr < 0o, endowed with the norm (2.2).
(iii) We let VE(R,L?) (VP . (R,L?)) denote the closed subspace of all right-
continuous VP (R, L?) functions (VF(R, L?) functions).

2.3. Properties of UP- and VP-spaces. We collect some useful properties of
these spaces. For more details about the spaces and proofs we refer to [12, 13].

PROPOSITION 1. Let 1 < p < g < oco. Then we have the following:
(i) UP(R, L?) is a Banach space.
(ii) The embeddings UP(R,L?) C U(R, L?) C L>(R; L?) are continuous.
(iii) Every u € UP(R, L?) is right continuous. Moreover, lim;_, o, u(t) = 0.
PROPOSITION 2. Let 1 <p < g < 0o. Then we have the following:
(i) The spaces VP(R, L?), VP (R, L?), VP(R,L?), and V? (R, L?) are Banach

—,rc
spaces.
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(ii) The embedding UP(R, L?) C V* (R, L?) is continuous.

(iii) The embeddings VP(R, L?) C Vb(R,LQ) and VF(R, L?) c VA(R, L?) are con-
tinuous.
(iv) The embedding V* . .(R,L?) C UY(R, L?) is continuous.

LEMMA 1 (see [18]). Letp > 2 and v € V3(R,L?). There exists L = L(p) > 0
such that for all N > 1, there exist w € U*(R, L?) and z € UP(R, L?) with

v=w+ 2

and

= lhwllgs + € 2l < oy
THEOREM 3. Let 1 < p < oo. Then
VP = (UP)*
in the sense that there is a bilinear form B such that the mapping
T:VP— (UP)", T(v):=B(-v)
is an isometric isomorphism.

PROPOSITION 3. Let 1 < p < oo and u € V! be absolutely continuous on compact
intervals and v € VP. Then

o0
B(u,v) = —/ (W' (t),v(t)) dt.
—0o0

2.4. Ui- and V:E-spaces and their properties. We now introduce UP-, VP-
type spaces that are adapted to the linear propagators S, (£t) = eFD),

DEFINITION 3. We define UL (R, L?) (and VE(R, L?), resp.) to be the spaces of all
functions u: R — L?(R3) such that t — Sy, (Ft)u is in UP(R, L?) (resp., VP(R, L?)),
with the respective norms

lulloy = 1Sm(Ft)ullur,
lullvy = [1Sm(Ft)ullve.

We use Vf;,i(R, L?) to denote the subspace of right-continuous functions in VI (R, L?).
Remark 2. Lemma 1 naturally extends to the spaces UY (R, L?) and VI (R, L?).
LEMMA 2 (interpolation). Let p > 2 and u; := Pxu; (j = 1,...,4). For

uj € Ugj and uy € V2, where €; € {+,—}, define

€47

I()) = ‘/V* {Buy,ug ) - (Pug,uq) dtda:’.

Assume that the following estimate holds:

3 3
(2.3) I(N) Smin [ (V) [ ||uj||U3] [uallz, - C2(A) 11 ||uj||U3j [uallyz,
j=1

j=1

3
(2.4) I S G L+ (G M) ] il Mleealyz, -

j=1
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Proof. Given N > 1, we use Lemma 1 to decompose uy € Vi into uy = u + v,
where u € U2 and v € UP,, such that

N
< _
. lullos, S 7 luallys

< ,—N
[vllgz, S e lluallyy -

We now use (2.3) and (2.5) to obtain

3 3
1) £ ) [T sl lulloz, +Ca) [T sl ol
j=1

j=1
N 3
< {Lcl(A) + eNCz()\)] [T lwsllos llusllv -
j=1

This will imply the desired estimate (2.4) if we choose
N =1+ 1In[C5(N)]. O

LEMMA 3 (modulation estimates; see [12]). Let A € 28, where k € Z, and p > 2.
Then

(2.6) IAEull 2 S A Hullys,
(2.7) 1A% ull e S A H|lullys,
(2.8) 1A% ullve S llullve, A ullve S Tullvgs
(2.9) 1A% ully S lulloz,  [AZ3uloy S lullos.

LEMMA 4 (transfer principle). Let
T:L*x---x L* = L}, .(R3C)

be a multilinear operator and suppose that we have

k
’|T(Sm(j:t)¢1a R Sm(it)(bk)HLfL;(Rx]RS) 5 H ||¢J||L§(R3)
=1

for some 1 < p,r <oco. Then
k

HT(U17 AR ’uk)HLfL;(RXRS) 5 H HuJHUi
j=1

3. Linear and bilinear estimates for free waves.

3.1. Linear estimates. The following Strichartz estimate for wave-admissible
pairs is well known.

LEMMA 5 (Wave-Strichartz). Assumem >0, 2 <r < oo, and %—i—% = % Then

2
1Sm (&) fallz g S AT 1flge

Moreover, for all uyx € UL, we have (by the transfer principle)

2
lurllpary S A7 [luallys -
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3.2. Bilinear estimates. The following lemma contains estimates for the con-

volution of two free waves. This generalizes the result of Foschi and Klainerman for
m =0 [11, Lemmas 4.1 and 4.4] to m > 0. The proof is given in section 7.

LEMMA 6 (convolution of free waves). For m > 0 define

I L)€ = [ Faatls =)ot = () = (€ = h)
L)) = [ fatle = a)dtr = (a)on+ (€ = )l

Then the following hold:
(i) Estimate for I :

B L@ =g [ rt-nf (Vi) g (V=T ) ar

2 _ 2 _4m?2

(ii) Estimate for I_:

6 LU =g [ o= (ViT=) g (VG- ) ar

where

Lemma 6 is used to prove the key bilinear estimates in Lemma 7 below, which
also generalizes the result of Foschi and Klainerman for m = 0 [11, Lemma 12.1] to
m > 0. The proof is given in section 8.

LEMMA 7 (bilinear estimates for free waves). Letm > 0 and p, A\, \a > 1. Then
for all fr,, gr, € L2 we have the following:
(i) (++) interaction:

A AX) [IxHlgaallif Aa o A,

1P, (S () frs - S )| S :
‘ plialllonll i 1w S A~ Ao

(ii) (+-—) interaction:

Oa A %) I lllgaall i A
N Il lgrall i S M~

4. Null structure, null-form, and bilinear estimates.

1P (S () 21 - Sm(=t)ga,)Il S {

4.1. Null structure. Here we reveal the null structure in the bilinear terms
(Bt %), Taking the Fourier transform in space and then using the identities
(1.7)—(1.9) we obtain

(4.1)
FABILDI T (D)) = [ (800057 ) I3 (0 nc

- //g_ R By (), Ty, (T (O (C) ) dd

em | /§_H<n>;1< (), $E(Q) ) dndC.
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We use the notation £ = (£)1¢. Now we compute.?

) = (1- ma n+m5>< ma~<+mm)

=IF(a i) ¢)—(HFC) a+rE(1,C)
=(1F7-O)I Z( x{)-S—MHFQ) - at+rEmn),
where
e _ =0 - agmB — ((n) F ())mB + m*1
me)== T (O
We can write
(LF4-O1 = a" (1.) +bi (0, 0),

where
i (0,Q) = (K| F7-OF, g5 (0,¢) = =(0l¢| F {Jal) -
(4.2) + 1Al 0 oy = UQm = [C) F CUmm — [n])] -
bl (naC) - (1 WHCDL b2 ( ]aC) - <77>m<g>m
Setting
(4.3) a5 (n,Q) = Fi(i) x () - S, b3 (n,€) :=r*(n, ),
we can write
3
(4.4) ATT = a7 (1,.0) +bF (. Q)]

j=1

where qjﬂ-E and b]j-E for j = 1,2,3 are given above.
Then in view of (4.1)—(4.4) we can write

3 4
(4.5) (BILL (D)t IEE (D)) = > Q(wt, v®) + 3 Byt v®),
j=1 j=1
where
Q%) = Fo! / / (BE* (n), g (0, OFE(Q) ) ddC,
§=n—¢

(4.6) A .
Bt v =7t [ 0t (@) dnic

2In view of (1.6) we have I F (a - /) (cx - é) =1F ajakﬁjfk =1F éj’“f]jékl +iﬁj6k5j’“ZSl =
(xa-OIFi(Ax{)-5. N

31fm = 0, then ) = || ~'n, ¢ = |¢|~*¢ and r*(n,¢) = 0. Hence, 4115 (n)IIy (¢) = (1F(|n[[¢))~*
OIFi(In||¢) " x¢)-S— (]~ nF|¢|~1¢) - o which coincides with the null structure found in [7,
Lemma 2].
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with

(4.7) by (1,€) = m{n),' 8.

As we show below the @);’s are all null forms. The B;’s on the other hand, are not.
Nevertheless, these terms are more regular than the Q);’s with one full derivative; see
the estimates in Lemma 10 below. Thus, we have decomposed ( SI1 (D)y T, I1E (D))
into a sum of bilinear null forms and generic bilinear terms that are smoother. It is
worth noting that if m = 0, then all the B;’s are zero (see the footnote above), and
hence we only have the null forms on the right-hand side of (4.5).

The null symbols qji satisfy the following estimates.

LEMMA 8. Let a € [0 1]. Then for j =1,2,3 we have

’ 2
In —Cl(In — ¢l = lInl — |C||)]a
(M m{Cm ’
(Inl + <Dl + <] = Im — Cl)r
(M m(Cm '

0] < [
(4.8)

i 0015 |

Proof. First note that

(4.9) g (n,¢) S 1.

Moreover, for two vectors n and ¢ we have the following estimates (see, e.g., [11,
Lemma 13.2]):

n = ¢l (n =<l = [Inl = I<ID)

+ ~

= (Il + 1<) (il + €1 = [n = ¢D)

IR (M m{Cm ’

] (Il + 1<) (Il + 1¢] = In = <|>]é

; <

lg; (1, O S { o ;

where j = 2, 3. Now interpolation between (4.9) and (4.10) gives the desired estimates
in (4.8). 0

4.2. Null-form estimates. We now prove bilinear null-form estimates for two
free solutions Sy, (¢)f and S,,(%t)g of the Dirac equation.

LEMMA 9 (null-form estimates for free waves). Let m > 0 and p, A1, 2 > 1.
Then we have the following null-form estimates:
(i) (++) interaction:

(AL AX2) ([l Tgnall if Ar = Az,

P, 'Sm 17Sm 2 S i )
1@ (Sm(®) s S92 { a2 s llgaall i 1S 20~ o

(ii) (4+—) interaction:

(At AX) IxHllgnall f Ax = A,

P ; Sm t 17Sm —t 2 S -
” #QJ( ( )f)x ( )gA )H { M||f>\1|| ”g)\zH Zf NS /\1 ~ )\2.
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Proof. By (4.6) we have
2.0 (S () s S (£ (7€)
= [ uln = DB 0, 6 OG0+ (e F ()

< / / Pl = CDIaE 0, Ol T DNIG5% (QI6(T + (M F (Chom) didC,
§=n—¢

where on the second line the sign change to F in the delta function is because of the
complex conjugation in (-, -).
By (4.8) we have

M AP
ay  afmols (PN wa ol

where for the estimate on q;f we used

=<l =Inl =<l S mA AL A A2

Indeed, this is obvious if u < A1 ~ Ay Now assume Ay < A ~ p. Then

= ¢ = (nl = 1<D* _ 2[licl=2n-¢
=<l Al =<l In =<+l = 1<~

The case A\; < Ay ~ p also follows by symmetry.
Now using the estimate for q;-r in (4.11) we have for the (++) interaction

= ¢l —=Ilnl =<l =

Fial PuQs(Sm(t)f,: S <gA2>1<75>]

ST = DL IR OB + () = ()

~

_ (W) Fow [Pu (SOFHFD - S0F M gnD) ] (. €).

By Plancherel and Lemma 7(ii) we obtain

||Pqu(Sm(t)f>\1 ; Sm(t)g/\z)H

< (u(uAMM) Py (Sm®F (150D - Sm (=0 F (155D |

~ A1)

<] uAX)fxdlignl i Ay s,
- w202 gl 3 e S A~ As.

Similarly, we use the estimate for ¢; in (4.11) to estimate the (+—) interaction
as

P o [P (S frr, S(=0)92)](7.€)
S [ puin=CDlay 0 OB DI OIS+ b + (C))
§=n—¢
= Fio [P (Sn@F D - SuOF(50D) ] (7:6)-
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By Plancherel and Lemma 7(i) we obtain

1PuQi (Sim(8) s S(=092) | S |[Pu (S ®OF 1T D - SO F (551 )|

< (>‘1 A >‘2) ||f/\1 ” ||g>\2|| if AL ® )\2,
T el gl i e S A~ A O

Applying Lemma 4 (the transfer principle) to Lemma 9 we obtain the following.

COROLLARY 1 (null-form estimates in the U?-space). Let m >0 and ji, \1, Ao >

(i) (++) interaction: For all ux,, vz, € U2 we have

(At A A2) fluns [lpz [[oxsllpz - if Axoe s,

1PuQj(ux,, va,) Il S 1 .
T i/ )2 luxillyz oxsllpz & 1S A~ A

(ii) (+—) interaction: For all uy, € U? and vy, € U2 we have

(A AA2) fluns [z [[oxsllpz 4 Ax = Az,
plluxdlvs loxallye & 1S A~ Ae.

||PHQj(u>\17U)\2)|| 5 {

4.3. Bilinear estimates. In this section we express the bilinear terms in (4.6),

Q; and By, in physical space. We then apply Cauchy-Schwarz and Strichartz esti-
mates to derive bilinear estimates for ); and B;.

LEMMA 10. Let Q denote any one of the Q;’s (j = 1,...,3) and B denote any
one of the Bj’s (j = 1,...,4). For A\;,\2 > 1 assume that uy, € V2 and vy, € V3,
where + and £’ are two independent signs. Then

1
(4.12) 1P QCuxss v I1'S (MA2) 2 unillog [oxa s, 5
1
(4.13) 12:QCurss v3x) [ S (MA2)2 [l [lvz [oxa vz,
(Aido)?
(4.14) [ PuB(ux, s va,)|| < m \|U/\1||v§ ||U/\2||vi§, )

Proof. By Proposition 2(ii), the estimate (4.13) follows from (4.12). Thus, we
only need to prove (4.12) and (4.14).
The null forms @Q;(u,v) in (4.6) can be written in physical space as follows:

Q1(u,v) = (BRu,Rv) F (ﬁRju,RjU>,
(4.15) Qu(u,v) = (ARyu, 0/ Ru) + { BRu, a? Ryo),
Q3(u,v) = (BR1u, YRov ) & ( BRou, vRyv ),

where 5 D
; D

R, = —2 and R= —

* (D)m (D)m

are Riesz operators. Theses operators are bounded in LP for 1 < p < oo, i.e.,

(4.16) IR flle S WAL, and [RAA e S (AL -
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Now by Holder, (4.16) and Lemma 5 we have

1P @ (uxys o)L S i lla | [loxs llzs

1
S (MA2)? lun o lloxells, -

Next we prove (4.14). The bilinear terms Bj(u,v) in (4.6) can be written in
physical space as follows:

Bi(u,v) = (B(1 — R)u,v) + (BRu, (1 - R)v),
By(u,v) = —(BRju,o7 (1 — R)v)  ((1 - R)Bu, o Ryv),
(417)  Ba(uv) = F(u, (D) v) + (D) u,v) F (Ryu,0d (D) ~'v)
F (D), u, 0/ Ryv)  (B(D) M, (D) ),

By(u,v) = =((D) u,v).

Note that

(4.18) D) Aall o © Nt Il
and

(4.19) 10 = R)fallpe S 022 Il e

where in the latter case we used Plancherel and the fact that

1— |§| _ <§>m _ ‘f' — m? ~ m2<§>—2

{E)m (E)m (E)m((&)m +1€])

Now using Holder, Lemma 5, Proposition 2(ii), and (4.16)—(4.19) we obtain

1PuBa (s, o)l S 0= By lgy losally, + sl 10 = Ryosalzs
S 02t {10 = Ryun,llgg losals, + lus g 101 = Ryogllps, }-
1
S Qaro)? {0 = By llys llonallyz, + vz 10— Ryonsllyz, } -

A1 Ae
S O g o,

Similarly,
(AiAo)?
[PuBa(ux,; ox)[l S On A A)? HUAleiz ||UA2Hv§,
and for j = 3,4
(Mo)?
[PuBj(un, s vas)ll < m [2W “Vi ||U,\2Hvi2, : o
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5. Reduction of Theorem 2 to nonlinear estimates. Let I = [0,00). We
define X3 to be the complete space of all functions u : I — L? such that P e
U3 (I, L?) for all 4 > 1, with the norm

2
Hu”Xi = ZH2S ||]lIPuU||Ui < 00,

u=>1

where

1 llus = 1S GFOS L
The Duhamel representation of (1.10)—(1.11) is given by
(5.1) VE() = Sm(EUT + T £ () (1),

where

52 InalDO =TED) [ Salele— DIV # (300101 @)t
The linear part of (5.1) satisfies the following estimate:

ISm(EE I, = D 1% [L1SnEDRYF s

pn>1

(5.3) oD N [ V05

p=>1
||

So it remains to estimate Jy,, +(¢)(t). To this end we let € = (€1, €2, €3), where
€; € {+,—}. Since ¢ = ¢ + 1~ where 1+ = II;f, (D)1, we can write

Tms@)(t) = > JL@)()

€.i€{+77}
where
(5.4) <+ (W)(t) =il (D / S (£t — ) [(V % (B, %)) Bype] (¢)dt!
Theorem 2 will follow by a contraction argument from (5.3) and the following

cubic estimates for Jy, 1+ (1)(t) (see subsection 5.3 below).

PROPOSITION 4. Let m >0 and s > 0. For all v* € X%, we have

HJ’;’L,:I: Xs ~ H ||QpE]HAXs :

5.1. Reduction of Proposition 4 to dyadic quadrilinear estimates. Due
to time reversibility, we may assume that ¢*(t) = 0 for t < 0. Let

* (Y, 4 ) fy.
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By definition of U%, (5.4), Theorem 3, and Proposition 3, we have

1PsT50 @) 2 = [|Sm(FOPATS 200 2

I (D) P Sy (FE dt’
‘ /\/ :F Je(t ) -

= B (IIE(D)P S, (Ft d )

(5.5) N 1‘ ( A/ (FE)d0) |

= sup ‘/ (W€, S, (£t)Prp™) dtdx‘
léally2=1"Jra

= sw | [ V(e v (a0, ot dudal,
[l =1 /%

where Theorem 3 and Proposition 3 are used to obtain the third and fourth equality.
Hence

||an,i(¢)||xi

= 3 WP

Aa>1
=Yoo s | [ vetsun v (aue, o) duda|
Aa>1 Hqsiuvizl R4
2
< SAF swp S / Vo (BUS, 052 ) BUSE, o) dtdx’
Ag>1 H(z)iHvi:l A1,A2,A32>1 R

Set €4 := £ and
W= | [ Vs ) (B 65, ) deda],

Observe that if {; and &4 are the spatial Fourier variables for the functions 1&?] and
¢3’ one can see using Plancherel that the integral on the right vanishes unless

§1— & +E&—&=0.

Consequently, for each j = 1,...,4 it follows from the triangle inequality that the
following conditions must be satisfied:

(5.7) Aj <3max{\p: k#j, k=1,...,4}.
Moreover, if & is the frequency variable for (B9}, 952 ) we have

Sfo=& & =-G+4.

Thus, if £ has dyadic size p it follows from the triangle inequality that the following
conditions must be satisfied:

(5.8)

/.L<<)\1N)\2 or /J,N)\l\/)\g,
L A3~ Ay or p~ A Vg
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We denote the minimum, median, and maximum of (A1, A2, A3) by Amin, Ameds
and Apax, respectively.

LEMMA 11. Assume A; > 1 and § > 0. Then for all wi € U3 and qﬁi € VZE we
have

€
vy

3
Ifn(A) 5 /\fnedj];[l ‘ Ufj ||(Z$§\44HV€24 ’

The proof of Lemma 11 is given in section 6.
Now if we set ¢; 5, := Hz/)ijj |2 , by definition
J

X5einllg =1l

Consequently, Proposition 4 follows from (5.6), Lemma 11, and the following lemma.

LEMMA 12. Let s > 6 > 0. Then for all c; ; € lij we have

R s\0
Si= § E AdAmed * €101 €2,05C3, 25

Aa>1 [ A1,22,A32>1

3
S H H)‘;ij\jufi :
j=1 J

5.2. Proof of Lemma 12. Without loss of generality one could assume A\; <
A2 < A3. We deal with the cases Ay ~ A3, Ay > A3 and Ay < A3, separately.

5.2.1. Case 1: A4 ~ A3. In this case we have

S < Z Z A5 (A1A2)° - €10, €200 C3 0

Aa>1 | A1,A2,A32>1

2
< INernl INsea Il }j[})ﬁ%m]
1 2

Aa>1 LAz~Ay

3
S H H)‘;CL)\J‘H?& )
P g

where to obtain the second inequality, we used Cauchy—Schwarz in A; and in A9, and
the fact that ) ~, )\;2(5_5) S 1, since s > 6.

5.2.2. Case 2: A\; > A3. We further divide this case into \; < Ay and A1 ~ As.
Assume first A\; < A2. Then in view of (5.7) we have Ay ~ Ay. Now we can use
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Cauchy—Schwarz in A\; and in A3 to obtain

S| D MM enezre,

Aa>1 [ A1,A2,A32>1

2
2
S el Moty 3 | 3 ot

)\4>1 Ao~ Ay
3 2
< T INen i -
j=1 J

Next assume A; ~ Ao. In view of (5.7) we have Ay < Ay. Then we apply Cauchy—
Schwarz in \; ~ A2 and in A3 to obtain

S S Z Z A3 (AM1A3)° €10, 2,00 C8,0

Aa>1 [ A1,A2,A32>1

3
S Z )\2s>\45 2s) H |)‘§Cj!>‘jHl2§
=1 J

Ag>1

3
ST INesll: -
i=1 g

5.2.3. Case 3: A4 < A3. As above we further divide this case into A\; < Ay
and A\; ~ Ay. Assume first A\; < A2. In view of (5.7) we have Ao ~ A\3. Then applying
Cauchy—Schwarz first in A\; and then in A\s ~ A3 we obtain

2

S =< Z Z A5 (A1A2)? - e1x, €200 €30

Aa>1 | A1, A2,A32>1

3
5 Z )\25>\2(5 2s) H |>\SC]>\ |l2

Aa>1
S 2
< T INen -
=1 7

Assume next A\; ~ Ag. By (5.7) we have A3 < Aa. Applying Cauchy—Schwarz first
in Ay ~ Ay and then in A3 we obtain

S| D MM enezre,

Aa>1 [ A1,A2,A32>1

3
> T INesn
j=1 7

As>1

3
< T INen i -
j=1 J

A
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5.3. Proof of Theorem 2. We solve the integral equation (5.1) by contraction
mapping techniques as follows. Define the mapping

(5.9) YE() = TWH)(E) = Sm(EUG + iJm, 2 () (1),
We look for the solution in the set
Ds={v* e X1t [ut|x; <6},
For 1* € Ds and initial data of size Hi/}g: HH < e <« 4, we have by Proposition 4
IT@F)llxy Se+6° <4

for small enough 6. Moreover, for solutions ¥+ and ¢* with the same data, one can
show the difference estimate

2
IT@*) = T@®)lxg S (195 lxg + 16 lxs) I6* — 6% lx
< Pl — 6%y

whenever )%, ¢+ € Ds. Hence T is a contraction on D; when 6§ < 1, which implies
the existence of a unique fixed point in Dy solving the integral equation (5.9).

It thus remains to show scattering of a solution of (5.9) to a free solution as
t — oo. By Propositions 2 and 4, we have for each p

Sm (:Ft)Pp, Jm,i (7//) S V—2,rc

and hence the limit as ¢ — oo exists for each p. Combining this with

ST | Pudm s (@)ye $1

p2>1

gives
Jim S (F) Pl (1) = fa € H.

Hence for the solution ¢+ we have
|| S (£8) f1 — l/fi(t)HHs —0 ast— oo
6. Proof of Lemma 11. We use the notation
Y=y, Y=y, Y i=uN,  da =%

By symmetry we may set €; = €3 = + in the integral for If , and thus we need to
estimate

I0) =I5 = | [V + (Bn,va) - (5, va) dida

with € = €3 = +.

Let @ denote any one of the @;’s for [ = 1,...,3 and B denote any one of the
By’s for I =1,...,4. In view of (4.5)—(4.6), it suffices to show for ¢, = €3 = + the
estimates

3
(6.1) () € Mea [T 195002 Iallyz (k=1 4),
=1 ’
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where

B = | [ V@) Qua,v) dtd,

B = | [V Bl v Qi ) dtds

B =] [+ QU ) Blun, ) dtds

I\ = V * B(¢1,12) - B(ws, 1) dtdz|.
R4

In the arguments that follow we repeatedly use the following facts (see Proposi-
tions 1 and 2):

(6.2) Ui cUL, VZcUL for p>2.

We shall also use the conditions in (5.8). We remark that in R3, convolution with
V(z) = e 1?l/|z| is (up to a multiplicative constant) the Fourier multiplier (D)2
with symbol (£)72.

6.1. Estimate for I,(\). By the symmetry of our argument we may assume
A1 < A9 and A3 < )y Using Littlewood-Paley decomposition, Holder, and the
bilinear estimate(4.14), we obtain

L) S D) 2PLB (. o) || | PuB (33, )|

p=>1
4
_ _1 1
SO P uAs) 2 ()7 [ 195l
p>1 j=1 ’

3
S TT5lpe sy
=1 K !

where to sum up the third line we considered the following cases: Ay ~ Ay or A\ <
Ao~ pand A3 ~ Ag or A3 < Ayq ~ p.

6.2. Estimate for I3(\). As in the previous subsection we may assume A3 <
Ag. Then using Littlewood—Paley decomposition, Holder, the null-form estimates in
Corollary 1, and the bilinear estimate (4.14), we obtain

L) S (D)2 PuQ(n, o) || [ PuB (s, )|

p=>1
_1 1 2 4
S 372 8 [T sl TT sl
p>1 j=1 7 j=3 !

3
< I 1sllpz lally
=1 !

where to sum up the second line we considered the cases A3 ~ Ay or A3 < Ay ~ L.

6.3. Estimate for Ip(A). By the symmetry of our argument we may assume
)\1 S )\2 and )\3 S )\4.
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6.3.1. Case A3 < Agq ~ p. As in the preceding subsections we use Holder and
the bilinear estimates (4.13) and (4.14) to obtain

L(A) £ DD 2 PuB (i, o) || 1P Qs va) |

p>1
. 4
<A T eds ) ® [ sl
=1 j=1 7

3
STz allya
=1 ’

where to sum up the second line we considered the cases A1 ~ Ay or Ay < Ay ~ p.
6.3.2. Case A3z ~ A\4.

Subcase 1: A2 = Az ~ Aq. Then by Holder, the bilinear estimate (4.14), and
the null-form estimates in Corollary 1 we obtain

L) S |(D) 2 PuB(ay, o) || 1 PuQ(abs, va) |

p=>1
N 2 4
<32 A8 Tl T 15l
u>1 j=1 7 =3 J

3
S TTslloe sl
i=1 !

where we used A\; ~ Ao or A\; < Ay ~ pu to sum up the second line.
On the other hand, applying Hélder and the bilinear estimates (4.12) and (4.14)
we obtain

2 4
LAY S Y (0 72A " (edsAa) [T Isllyz TT1ilos
j=1 =3 !

p>1

3
<X [T 15l Ialls
J

j=1
where we used A1 ~ Ay or A} < A\g ~ p to sum up the first line.

Now we use Lemma 2 to interpolate between the two estimates for I5(\) above
and obtain

3
LN SN H H%”Ug_ |W’4||v34 .

j=1

Subcase 2: Ay <K A3 ~ Ay. Since by assumption A\; < Ay we have pp < Az ~ \4.
We separate this subcase further into (i) e4 = + and (ii) ¢4 = —. Recall that e3 = +.
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(i) e4 = +. By Holder, the bilinear estimate (4.14) and the null-form estimate in
Corollary 1(i) we obtain

N £ ST IUDY 2 PB v) | [ PaQ (s, )|

n2>1
SO WA A3 piag HH%HW H 15l
pn>1 j=1
Hll%”m [allz, »
j=1

where we used A1 ~ Ay or Ay < Ay ~ p to sum up the second line.
On the other hand, similarly as in subcase 1 above we have

L(A) S A3 H 15llpz ¥allus, -

j=1

Then we use Lemma 2 to interpolate between the two estimates for Iy above and
obtain

3
A) S H1 15llyz allvz -
J:

(ii) e4 = —. This case is contained in Lemma 13 below.

6.4. Estimate for I;(\). By the symmetry of our argument we may assume
)\1 S )\2 and )\3 S )\4.

6.4.1. Case A3 < Ay ~ p. By Holder, (4.14), and the null-form estimates in
Corollary 1 we obtain

N S D) 2P.Q, ) || [ PaQ (w3, )|

pu>1

4
S ()3 ZH 3l Huwjllvz
j=1 j=4

u~>\

<11 95lloz Iallys -

j=1
6.4.2. Case A3 ~ Ay = .

Subcase 1: Ay = A3z ~ A4. By Holder and the null-form estimates in Corollary
1 we obtain

) < Z 2 PuQ(r, ) |1 PaQ (@3, voa) |

pn>1
4
S Y Tl
1<usAs j=1 7

3
< In(Az) H 195172 ||¢4HU§4 '
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On the other hand, by Holder, (4.12), and the null-form estimates in Corollary 1
we have

V) S DY 2 RaQr, 02)|| 1 PLQ (w5, )|

n>1
DI PNE: Hnwyz HH%HW
u>1 Jj=1

<A3HH%||U2 [allra, -

j=1

Then we interpolate the two estimates for I;(\) above, using Lemma 2, and obtain

Aéﬂnwjnw eallya.

j=1

Subcase 2: Ay <K A3 ~ Ay. Since by assumption A\; < Ay we have pp < Az ~ A\4.
We separate this subcase further into (i) e4 = + and (ii) ¢4 = —. Recall that e3 = +.
(i) e4 = +. By Holder and the null-form estimates in Corollary 1

N S D) 2P.Q, ) || [ PaQ (w3, )|

pn>1
SO ) uiN H\I%llya
1<pu<s j=1

AN HH%IIUQ [ally,.

j=1

On the other hand, by Holder and (4.12) we have

L) Y D)2 PuQ(hr, o) || | PuQ(hs, ) |

n>1
< Z )\1)\2)\3)\4 H ||¢j||U4
u>1 Jj=1

< A2z H 15llye Nlallys,

j=1

We then use Lemma 2 to interpolate between the two estimates for I;(\) above
and obtain

NS A H 1¥5llg2 ¥4l -

7j=1

(ii) e4 = —. This case is contained in Lemma 13 below.
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6.5. A modulation lemma. Recall

Y1 =93, b =YL, Ys =N, e =Y,

where €; € {+,—} and €; = e3 = +.

In the case ¢4 = — and A1 < Ay < A3 ~ A4 we exploit the nonresonance structure
in the integral for Iy(\) to establish the required estimates for I;(\) and I»(\) (see
subsections 6.3.2(ii) and 6.4.2(ii) above). This is contained in the following lemma.

LEMMA 13. Let

J()\) = ‘/]R‘l V% A(wlan) . Q(¢37¢4) dtdx )

where A is either Q or B. Assume ¢ = €3 =+, €4 = —, and A1 < Ay € A3 ~ \4.
Then
3
(6.3) P | H%’llugj [tallvz -
j=1

Proof. Decompose the functions v; into a low and high modulation part, i.e.,
v = wj» + 1/)?, where

1/}.;1 = A;J)\3/8,l’[}-7’ w; = A6<J)\3/817[}.7'
We claim that

VA i) Q. vt dedz =0,

Indeed, let (7;,&;) be the space-time Fourier variables of the functions 1/15—. Clearly,
the integral vanishes unless 7 — 70 + 73 — 7 = 0 and & — & + & — & = 0. By
assumption and definition of low modulation, the contributing set must then satisfy

4- % = % > (11 4 (1)m) — (T2 + €2(&2)m) + (T3 + (E3)m) — (T — (Ea)m)|
= (€1 — ea(E2)on - (€ + () > 2

which is a contradiction, and hence the integral vanishes. Thus, we always have at
least one function on high modulation in the integral for J. There are 15 cases of
which at least one of the four functions has high modulation but we consider only 4
cases where one of the functions is on high modulation and the other functions are
on high or low modulation.

Case 1: 91 = 9P or 2 = 2. We only consider the case ¢; = 1} since the
case ¥y = Y% can be handled in a similar way.
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Subcase (i): A = Q. By Hélder, Sobolev, Lemma 5, Corollary 1(ii), and (2.7)
we obtain

) S Z (D)2 Q1 o)l 22 11 [ PuQ (3, ¥a)[| 12 oo

pn>1
S 2720 [l Il e s I1PAQ(Es ) 2,
pn>1
B ) 2 4
S > w2 Tl TT el
1<puSA2 j=1 7 j=3 !

3
Lo
)‘22 3° H W’jHUg_ ||7/14HU524 )
j=1 "J

where we used the physical space representation of the term Q(}, 15) found in (4.15).
On the other hand, applying 4.12 to the norm [|P,Q(¥3,%4)[|2 = we obtain

2 4
_9 3,—4% 1
TS D0 W77 0aA)? [T sl TT sl
j=1 j=3

1<;L<)\2

<A HH%IIUz [allra, -

j=1

Now we use Lemma 2 to interpolate between the two estimates for J(A) above to
obtain the desired estimate (6.3).

Subcase (ii): A = B. By Holder, Sobolev, Lemma 5, Corollary 1(ii), and (2.7)
we obtain

ZH )Y 2PLB(WY, o)l 22 [ PuQ (W3, a)l| p2 poe

pn>1
<SS 2T ks sl rs 1PQs, )2
p>1 .
. L2 4
< S w2 Tl Tl
1<pu<As j=1 7 j=3 /
T
S A3 A H |¢j||U€2, ||¢4||U34,
- J

where the Holder inequality is applied on the physical space representation of B(z)!, 1)
found in (4.17). On the other hand, applying 4.12 to the norm ||P,Q(vs, 1/)4)||L3 L, we
obtain 1

2 4
TS Y 7 PuEartAg A3A4§H|\wj||V3H||wj||U§
j=1 J =3 J

1<p,</\2

=P H 15l Nallys, -

Jj=1

Interpolating between the two estimates for J(\) above and using Lemma 2, we obtain
the desired estimate (6.3).
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Case 2: 3 = 98 or 14 = 9", We only consider the case ¢4 = 1)} since the
case 13 = ¥ can be handled in a similar way.

Subcase (i): A = Q. By Holder, Sobolev, Lemma 5, Lemma 1, and (2.7) we
have

T D D) PuQ(hr, o) o | PuQ(Wos, )| a1

p>1
_1
S ZH 2 || PuQ (1, ¥a)|| ||1/’3HL;>CL§ | 1/’ZHL2
p>1
) N 2 4 3
S > A T sles TT sl S TT I 0s Ieoallys
1<uSAs j=1 =3 B ’

Subcase (ii): A = B. By Hdlder, Sobolev, (4.14), and (2.7) we have

TN S D) RBWr o)l [1PuQs, 0 11

pn>1

Sz IBB@, o)l | PuQ(s, ¢)|
p>1

SO ENT A [nllva 2l sl e s 104 ]
pn>1

4 3

1.1 1 _ 1

S I T sl < TT 0 loe Ietalys

. J . J 4
pn>1 j=1 j=1

since A1 < Ag <€ A3 ~ A\g. 0

7. Proof of Lemma 6. To prove the estimates in Lemma 6 we closely follow
the argument of Foschi and Klainerman for m = 0 [11, Lemmas 4.1 and 4.4].

For a smooth function ¢, define the hypersurface S = {z € R® : p(x) = 0}. If
Vi # 0 for z € SNsupp(P), then

(7.1) /RS@(:E)é(cp(:c))dw:/ *@) g

s [Ve(a)]
For a nonnegative smooth function h which does not vanish on S, (7.1) also implies
(7.2) 3(p(x)) = h(x)d (h(x)p(z)) .-

7.1. Proof of Lemma 6(i). First note that the integral I (f,g) is supported
on the set

(7.3) E(r,&) ={n €R®: (N)m + (€ = Mhm =T}
Thus for n € £(7, &) we have

(7.4)
2~ | — dm?

(M) + (€ = nym)? — [€° — 4m?
2(0)m (& — My — 2(0ll€ = nl +m?) +2(jnllg =0l —n - (€ —n))
0.

Y
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Now we use (7.2) to write

(T = (Mm — (= Mm)
(7.5) =[(r = Mm) + (€= Mmld (T = M)m)* — (£ —)2,)
=2(7 — (Mm)0 (7% — €1 — 27(n)m + 26 - 1),

where in the first line we multiplied the argument of the delta function on the left by

(T = Mm) +{E&=Mm

Introduce polar coordinate n = ow, where w € S?:
In| =0, dn=0c?dS,do.
Then using (7.5) and (7.2) we obtain

L (f,9)(m,8) = 2/}RS(T — (M) F(InDg(1€ = 1D (7% — [€]* = 27 (n)m + 26 - n) d

VTImE
2/ / 0’2(7_<0>m)f(0')g (\/(7-_<0.>m)2_m2)
0 wes?
0 (7'2 — |§|2 —27(0)m + 20€ - w) ds,,do

L [ ot @hmi(o)s (V= @mr =)

B |§| weS?

2 2
5 (T 12 = 2r(0)n w) oy
. ( 2Efo T ”

where in the second inequality we used the fact that

T = (E=Mm = € =1l = V(T —(0)m)? —m?
Changing the variable

5= w-£ = dS,, = dS,ds, where w'eS!,

€l

we have

L(fa)ne) = o [ T ot @t (Ve )

72 = [¢]* = 27(0)m
X 0 ( Selo + s) dsdo

Again, changing the variable
r={(0)m = rdr=odo

we obtain

Lo =g [ [ vt g (ViE ) g (Vi)

T f|§|2727r >
o (B 220 4 o) dsa
<2|gm v) e

= [ =, 0 (ViE ) g (Vi)
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where

2 _ 2_2
D+ ::D+(T,§)=[m,T}ﬂ{T€R: —1§7—2|£||§;\/TW:2T§1}

So r € Dy if and only if r € [m, 7] and
(7% = |€]* = 277)? — 4f¢]*r? + 4m?[¢|* < 0.
The latter condition is equivalent to
(r—ap)(r—a-) <0,

where
T €l — [€]* — 4m?
SRR Y DY i
TR T e

Thus r € [a_,a4] and, hence, Dy = [m, T]ﬁ[a, ay] . We claim that [a—,a4] C [m, 7].
Clearly, ay < 7 since [{| < 7 and 1 — |z|2 <1 by (7.4). The condition a_ > m is
equivalent to

2 = JgP = 4m?

7_2m2|§| 7_27|£|2

which can be squared to obtain
7 —dm73 4 4m2r? — 2|¢)272 + dmr|€]? + |€* > 0.
The expression on the left-hand side can be written as
((r=m)* =m?)" =20 ((r —m)* = m®) +[¢* = ((r —m)” —m?) — [¢")*

which is > 0.
Thus D = [a_,a4] and, hence,

Li(f,9)(7,8) ~ |§|/ \/7"2—m2> (\/(T—r)2—m2>dr.

7.2. Proof of Lemma 6(ii). First note that the integral I_(f, g) is supported
on the set

(7.6) H(r,§) ={n€ R? : Mm = =Mm =7}
Thus for n € H(r,§) we have

€7 =72 = [€]> = (M) — (€ = 0)m)”
= 2(n)m (€ = n)m —2m* +2n- (€ —n) >0
where in the last inequality we used the fact
2(0)m (€ = n)m > 2[n][€ = n| +2m>.

Since the expression on the second line is > 0, we conclude

(7.7)

(7.8) 7% — €2 > 4m?.
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By (7.2) we have
5T = My + (€= Mm) = [=(T = (Mm) + (€ =M mld (=(7 = (M)m)* + (€ = )2,)
= —2(7 — (Mm)d (1€ = 72 + 27()m — 26 - 1) ,

where in the first line we multiplied the argument of the delta function on the left by

—(T = (Mm) + (€= Mm-
Now introduce polar coordinate 7 = ow, where w € S?. Proceeding similarly as
in the above subsection we obtain

Lo =g [ [ otorm =1t (Vi 77— )

612 — 2 + 27(0}m
X 0 < el > dsdo

|;/Ooor(rT)]lp_(?")f( r27m2)g( (r77)27m2> dr,

where

271242
D_:=D_(1,§) = [m,00) N {r ceR: —-1< |§||£|m < 1}
So r € D_ if and only if r € [m, o0] and
(162 = 72+ 277)? — 4|¢r? + 4m?[¢)* < 0.
The latter condition is equivalent to
(r—ap)(r—a-) >0,
where a4 is given above. Thus r < a_ or r > ay and, hence,
D_ =[m,00)N{(=00,a_]Uay,0)}.

We claim that a_ < m and a4 > m. These would imply D_ = [a,00) and, hence,

(oo}

L(f,9)(r,€) = rr=n)f (Vir=m2) g (V=7 =m?) ar.

1
€l

It remains to prove the claim. By (7.7) we have —|¢| < 7 < [£]. So clearly,

€] 4m?
C<Blio iy ) <0<
R MIGEEEE)

Next we show that ay > m. If 0 < 7 < |£| we have

>7'_|_|| 4m? + >
— == m > m.
=2 2 R T2

Now assume —|¢| < 7 < 0. Then a; > m if and only if

* =2 + 4m?

Y =

>2m — T.
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Since 7 < 0, we can square both sides to obtain the condition
™ —dm73 4 4m2r? — 2¢)272 + dmr|€]? + |€* > 0.
The expression on the left-hand side can be written as
2 2
((r=m)? =m?)" =2 ((r = m)* =m®) + [¢]* = ((7 —m)* =m®) — |¢]?)
which is > 0.

8. Proof of Lemma 7. By symmetry we may assume \; < Ag. Thus, we are
reduced to the following cases:

(a))‘l S Ag ~ o,

(b),u <K A~ Ag.

8.1. Case (a) A1 < A2 ~ pu. First assume p = 1 and, hence, Ay ~ = 1. In
this case we simply apply Holder and Lemma 5 to obtain

1P (S (0) s S0 2 S 1Sl 1S (E g0t

S 1 xllzz sy 192 1l 22 es) -

Thus, we may from now on assume g > 1. Taking the space-time Fourier trans-
form we have

Froa [BulSn(0) St (1)932)] (7:6)
pull) [ (€ = mi(r = () = (6 = 1)) .
Froe [BulSn(0) .S ~1)92.)] ()
pull) [ (€ = mi(r = o+ (6 = 1)) .

By CauchySchwarz
Pt [P (0) S (000 (7, )
<L) [ 1B IR (€~ n)P3(r = (b T (€= )
where
Lo(r.€) = €D [ o (Doa1€ = n)8(7 = (b (€ =)o) i

Now we claim that

(8.2) ( Suﬁm Io(1,6) SN2 if A < o~ p
T,§)€

Assume for the moment that this claim holds. Then integration with respect to 7 and
¢ gives the following:

1P (S (£) frs S (Et) g0 |1

= /1+3 ‘]:t,w [PH(Sm(t)f)\ISm(it)g/\z)] (7., 5)‘2 def

R
S [ [P ([ o= €= n)ar ) anas

= A1l g1,
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where we used the fact [, 6(7 — () F (§ —n)m) dr = 1. This estimate together with
(8.1) establishes Lemma 7(i) and 7(ii) in the case A\; < Ay ~ p.
Thus, it remains to prove (8.2). By Lemma 7 we have

Li(r,§) ~ pu|(£||§|) /:+ (T —=71)px ( T2 — m2) Prs ( (r—r)2— m2> dr,
I_(7,8) ~ Pu|(£||'§|) /aio (1 —7)px, ( r2 — m2> Pz ( (r—7)2— mz) dr.

By the support assumption in the integral for I we have r ~ (A1), and 7 — 7 ~
(A2)m- Since p > 1 and Ay < Ay ~ p we have

A1) m{A2)m
sup  In(rg) g Dneln [ gy
(1,6)ERI+3 H (A1) m
Similarly, by the support assumption in the integral for I_ we have r ~ (A1),
and r — 7 ~ (A2)m,. Since p > 1 and Ay < Ay ~ p we have
A1)m (A
sup I_(T,ﬁ)gm/ dr ~ \3.
’I”N<>\1>m

(7,6)eR1+3 2

8.2. Case (b) u < A1 ~ Az. In this case we follow the argument of Foschi
and Klainerman for m = 0 [11, Lemma 12.1] and introduce a collection of cubes
C, = pz +[0,p1)3, z € Z3, which induce a disjoint covering of R®. By the triangle
inequality

(83) PSSO frSm(EDIAIN S Y [PulSm(t)Pe. fr, - Sm(E0) Pe, g0)|)

z,2' €73
where P is the frequency projection onto C,. Let
a2 =P, fx and  gx, . = Pc_,gx,-
Taking the Fourier transform we have
Fia [Bu(Sm(t) farz - Sm(£t)grs,2)] (7.€)

A4 —
o4 = o) [ g (€~ 0l = (1 = (€ — ) .
Since p < A1 ~ Xg and n € C,, £ —n € C,/, the integral in (8.4) yields a nontrivial
contribution if C, and C,, are almost opposite, i.e., if Z(n,& —n) ~ 1. In other words,
for each z € Z3, only those 2/ € Z3 with |z + 2’| < 1 yield a nontrivial contribution
to the sum (8.3). We use these observations and apply Lemma 14(i)-14(ii) below to
(8.3), and use Cauchy—Schwarz to obtain

1Pu (S (&) fri S @)l S D~ I fznlllger

221
1 1
2 2
<u (z |fz,xl|2) (z ngm?)
2€73 2'e73
~ pll fx gxs I

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/11/21 to 129.177.61.144. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

3000 ACHENEF TESFAHUN

and

1Pu (S (8) Frs S (=092 S (1A)2 D~ (1 fenallllgor o |

|z+2/|<1

1 1
2 2
( 5 Ifz,A1II2> (z ugz.w)
2€7Z3 2'e73

~ (A1) 2 (L Fx [l ga -

LEMMA 14 (refined bilinear estimates). Assume pu << Ay ~ Ag. For all (z,2') €
73 x 73 we have the following localized bilinear estimates:
(i) (++) interaction:

[NIE

S (A1)

(8.5) [P (S (8) fz0 = S (0)gzr x| S pll Fon 1] g27 v -
(ii) (+—) interaction:
(8.6) 1P (S (8) Fon = S (=g )| S (A 2| oo ]9 00 -

8.2.1. Proof of Lemma 14(i). Set p.A([{]) = Lp,,(ux)(&) - pa(I€]), where
By, (pz) denotes the ball of center ;12 and radius 24. Squaring (8.4) and using Cauchy—
Schwarz we have

(8.7)
‘]:t,w [PM(Sm(t)fM,z : Sm(t)gkz,z’)} (7, 5)|2

SEANCAOE / N P19275 (€ = mPS(r = = (€ = mhia) i,
where

JE(1,6) = pu(l€]) /Rg Pz (M) P2 20 (1€ = 1D (T — (M) — (€ = M)m) dn.

It suffices to show for all (z,2') € Z3 x Z3 that

(8.8) sup  JI (1,8 SpP if p <<~ e
(r,6)er+3 7

Integration of (8.7) in 7 and & then yields Lemma 14(i).
We now prove (8.8). By (7.1) we have

T E) = o o (1Dpors (€ = 1)
2,2 ( ’5) Py (§|)/7]€5(7—7£)m32“(#z) |V7,(<T]>m + <€ _ 77>m)| m,

where the set £(7,€) is as in (7.3). Since £(n,& —n) ~ 1 we have

|V7](<n>m + <§ - 77>m)| = ‘<17’r>]m _ <€§__777;m ~ 1.

The domain of integration, £(7,§) N By, (pz), is a two dimensional surface with area
< p2. Thus for all (z,2") € Z3 x Z3 and (7, &) € RT3, we have

T3 (1,8) SIE(T,€) N Bau(uz)| S

and this establishes (8.8).
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8.2.2. Proof of Lemma 14(ii). Here we follow Foschi and Klainerman for
m = 0 [11, proof of Lemma 12.1, equation (66)]). To estimate the left-hand side
of (8.6) first we square (8.4) (the +- case), write it as a double integral, and then
integrate over 7 and £ . After applying the Fubini—Tonelli theorem and rearranging
the integrand we obtain

[P (S (8) f2n Sm(_t)gz’,A2)||2
= [ B Q) - e = O (6 = 1) dolén. ).

where do(€,7,() is the surface measure

do(§,n,¢) = pi('ﬂ) 6 ((Mm + (Cm — (€= Mm — (§ — ()m) d€dndC.

Applying Cauchy-Schwarz on the terms fx, -(1)gx, - (¢) and fx, - (€ = C)gx,, = (€ =)
with respect to the measure do (&, 7, (), and then changing variables we obtain

PSSl < [ |l = mPl (€ = OF do(€n. )

< / T (0:0) g (€ = ) Plangis (€ = O dnd,
R6
where

Toan:6) = [ o€ = nbpanal€ = Chpulie)
x 5(<n>m + <C>m - <£ - 77>m - <§ - C>m) dg
So it suffices to show for all (z,2") € Z3 x Z? that

(8.9) sup  J, . (0,0) Spuh for p < A~ Ao
WECZ, Cecz/ ’

By (7.1) we have

PR pons (€ = 1o € = €D
oz (1:0) /gegm,o Ve(E—mm €= Om) 0

where
5(’77 C) = {f € RS : <§ - 77>m + <§ - C>m = <7]>m + <C>m} .
Now we compute

|V§(<§ - n>m + <§ - C>m)|2

2

| gem , 6-¢

[ =

:‘ €—nl _ le=dl | 20¢-nllé=Cl+ €= (€=
<§ - 77>m <§ - C>m <€ - 77>m<§ - C>7n

20,

where § = Z (£ — 1, —(£ — ()) . Observe that since £ —n € C, and £ — ( € C,/, where
|z 4+ 2’| $1 (see the comments under (8.4)), we conclude that
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Thus |V§(<f - 77>m + <£ - <>m)| 2 U/Al and, hence,

A
T .m0 S

A
/ 45 = 21160, 1 B (0)] £ ik
H Jee&(n,¢)NB2,(0) H

since &(7,€) N By, (pu2) is a two dimensional surface with area < p?. This establishes
(8.9).
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