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Abstract. In this paper, the primary objective is to investigate flow structures in the wake
of wind turbines based on applying a truncated Proper Orthogonal Decomposition (POD)
approach. This scheme decomposes the three-dimensional velocity fields produced by the
high-fidelity PArallelized LES Model (PALM) into a number of orthogonal spatial modes and
time-dependent weighting coefficients. PALM has been combined with an actuator disk model
with rotation to incorporate the effects of a turbine array. The time-dependent deterministic
weights from applying the POD scheme are replaced by stochastic weights, estimated from two
independent stochastic techniques that aim to account for unresolved small-scale features for
a number of POD modes. We then reconstruct the flow field by a small number of stochastic
modes to investigate how well the applied stochastic methodologies can reproduce the flow field
compared to the original LES results.

1. Introduction
Highly variable wakes and wake-wake interaction within the area of a wind farm play a key role
in governing the performance of the wind farm (e.g. its total power output) and controlling
the fatigue loads and intermittency events acting on downwind turbines. Furthermore, the
asymmetrical nature of wake evolution due to its interactions with multiscale processes in the
atmospheric boundary layer may lead to an average energy loss of about 5-20% [1]. Therefore,
accurate modelling of wake dynamics and interaction is crucial for optimizing the layout as well
as operational performance of (offshore) wind farms.

Wake effects can be studied using numerical wake models aiming to essentially capture the
momentum deficit and the enhanced level of turbulence within the area of wind farm/turbines
(i.e. near- and far-wake regions). How to predict key wake features, such as meandering of the
wake, far-field (approximately ≥4 rotor diameter) recovery of the velocity deficit, effects of rotor
geometry, wake interactions with shear and turbulence in the atmospheric boundary layer, near-
field rotor-induced turbulence, and wake-induced turbine loads have led to emergence of different
modelling approaches over the last decade, see for example [1]. We may classify these models into
three main groups: empirical models that estimate analytically the wake velocity based on some
over-simplified assumptions and ideal hypothesis [4, 8]; models that treat turbines as roughness
elements applicable for wake loss prediction over a large wind farm [10, 3]; and Computational
Fluid Dynamics (CFD) models with different levels of accuracy and complexity that include the
dynamics of turbines and the flow fields [2]. While CFD models, such as Large Eddy Simulations
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(LESs), account for large and small scales relevant to the wind turbines/farm wakes, they are
computationally expensive for practical wind energy applications. Furthermore, major concern
in the first two groups is that they are either relying on over-simplified assumptions or excluding
important features of the wake dynamics (e.g. steady wakes) to capture wake instabilities. To
bridge the gap between computational cost and capturing the relevant scales and dynamics,
efficient Reduced Order models (ROMs) need to be developed.

In reduced-order modeling, a complex dynamical system with many degrees of freedom (DOF)
is replaced by a limited number of DOFs through isolating dominant dynamical features for a
given flow by an effective use of high-fidelity CFD models. Proper Orthogonal Decomposition
(POD), as one frequently used modal decomposition methods, is a computationally efficient
approach in the analysis of wind energy. The modal basis functions in the POD method,
characterized by spatial orthogonality, can also be coupled to governing equations of flow motions
through a Galerkin projection, so-called Galerkin-POD procedure, to reconstruct the entire flow
field [5]. In Galerkin-based methods, the temporal dynamics of POD modes is described by a
system of nonlinear ordinary differential equations. To capture the missing small-scale motions
in the flow field, these temporal coefficients can be alternatively treated as a stochastic process
described by, for example, a Gaussian process or a random walk model of truncated POD modes
[6, 7]. However, due to the truncation of higher-order and dissipative scales in the POD-based
models, the accuracy of ROM requires the use of a large number of training data, ”snapshots”,
that can be effectively derived from CFD simulation results. The POD-based methodologies
can then be used for near real-time (short-term) prediction of wind fields for the wind energy
applications with an acceptable accuracy.

In the present work, LES results of wind turbine wakes under neutral atmospheric condition
are analyzed through the truncated POD approaches. We focus on the temporal dynamics of
modal basis functions by investigating how the representation of the missing small-scale features
(i.e. turbulent structures) in the standard POD method can be improved through incorporating
two stochastic procedures. We then conduct a series of statistical analyses in the wake field
estimated from the POD-based ROMs against the high-fidelity LES model data.

2. LES model
To study flow fields and wake structure/variability, we use LES configured for neutral boundary
layer conditions. LES resolves the large scale eddies by filtering out the small scales of motions.
Small scales are then incorporated by the means of sub-grid scale parameterizations for scales
of O(1) m. In this study, we use the Paralleized Large-Eddy Simulation Model (PALM) for
solving non-hydrostatic and incompressible atmospheric boundary layer flow fields (i.e. using
the Boussinesq approximation) [13]. PALM uses an Arakawa C-grid for spatial discretization and
turbines are implemented in this model using an Actuator Disk Model with Rotation (ADM-R)
[9]. The ADM-R parameters in this study have been set to model the NREL 5 MW reference
turbine [12].

2.1. Simulation setup
The domain size is 6912×2304×1459 m with a grid size of ∆x = ∆y = ∆z = 6 m. The grid
cell is stretched in z direction above 800 m with the factor of 1.04, maximum cell size is capped
at ∆zmax = 12 m. We locate two wind turbines aligned from the west to east boundary with
8D distance from each other, where D denotes the turbine diameter. At the sea surface, we
use the Neumann Boundary Condition (BC) for the velocity and scalar fields. We use Dirichlet
BC for the upper boundary condition. We assign periodic BC for the north and the south
boundaries and non-periodic (inflow-outflow conditions) for the west-east (direction of main
flow) boundaries. Using non-periodic BC for the west and east boundaries necessitates the
use of a precursor run to produce initial steady and fully turbulent flow in a smaller domain
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(2304×2304×1459 m) which will be used later to fill out the main run domain through a cyclic
repetition procedure. In the main run, we use radiation boundary conditions at the outflow
(east) boundary for velocity and Neumann boundary conditions for the scalar fields. We have
discarded planetary rotation in both the precursor and the main runs. The main run has been
performed for a period of 3 days. We use the first 2.97 days for the analysis and the rest of the
data for a forecast in this study. The output data have been stored every 10 minutes.

3. Methods
Since all ROMs rely on information and features provided by the data (i.e. a data-driven
procedure), the quality of LES snapshots is a key to capture important features by modal
decomposition. In this section, we first give a brief overview of POD for dynamic wake modelling
and then construct our POD-based ROM. Finally, temporal weight coefficients in the modal
representation are modelled as independent stochastic processes to check whether the stochastic
forcing can partly capture the effects of missing small scale dynamics.

3.1. Proper Orthogonal Decomposition (POD)
Let us write x = (x, y, z) for the position vector, u = (u, v, w) for the wind velocity vector, u
as the mean, and u′ = u−u as fluctuating velocity, all estimated from the LES data. The idea
behind the POD is to decompose the fluctuating velocity field into a number of deterministic
spatial fields, φi(x), modulated by random time-dependent weighting coefficients, ai(t):

u′(x, t) =
N∑
i=1

ai(t)φi(x), (1)

where t presents time, and N is the total number of modes in the above truncated representation.
The POD is optimal in the sense that the expansion in Eq. (1) maximizes the kinetic energy
captured by the first N POD modes. To calculate these ai(t) and φi(x), we start by creating a
snapshot matrix, A, using nt LES 3D data, each with the size of nx × ny × nz:

A =

 · · · · · ·· · · · · ·
· · · · · ·


nt×m

, (2)

where m = 3nx×ny×nz for the 3D velocity field. The Singular Value Decomposition (SVD) of
the correlation matrix C = AAT will result in eigenvalues (energy of each mode) and eigenvectors
(orthogonal modes) of the POD decomposition. Due to orthogonality of these modes, we have

aj(t) =

∫ ∫ ∫
x
u′(x, t)φj(x)dx and ai(t)aj(t) = λjδij , (3)

where the overbar denotes temporal averaging, and λj denotes the strength of the jth POD

mode. Here, λ1 ≥ λ2 ≥ · · · ≥ λN are real eigenvalues (calculated from SVD) so that aj(t)2 = λj
for j = 1, · · · , N . In the POD, modes are ranked by their energy.

3.2. Stochastic models
In Eq. (1), all dynamical information associated with temporal variation of wind is encapsulated
in the time-dependent weighting coefficients, aj(t), where j = 1, · · · , N and 0 < t < T for the
final analysis time T . As the wind field describes a stochastic phenomenon, it is natural to use
probabilistic methods to model/predict aj(t) by including some stochasticity. In the statistical
viewpoint, the empirical probability density of these time-dependent weights fits almost properly
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to the normal distribution with an auto-correlation approximated by an exponential-decaying
function in time (this is according to our analysis). These characteristics allow us to apply
different stochastic models such as Gaussian process and state-dependent Stochastic Differential
Equations (SDEs) to construct time series of aj . Here, we provide a very brief description of
these methods.

3.2.1. Standard Gaussian Process (GP ) Assume that âj is a Gaussian process used to produce
the time series of aj for any j [6]. This stochastic process at the jth POD mode is explained by
its mean, µj , and covariance function, kj(t, t

′), as â(t) ∼ GP (µj , kj(t, t
′)) so that

µj(t) = Ξ[âj(t)], (4)

kj(t, t
′) = Ξ[(âj(t)− µj)(âj(t′)− µj)]. (5)

Here, Ξ denotes the mathematical expectation value. We can consider the GP as a classical
regression of M observation pairs (tij , y

i
j) (or training set at jth POD mode) so that

yij = âj(ti) + εj , (6)

where i = 1, · · · ,M , and εj denote an additive Gaussian noise with a zero mean and variance
of σ2ε , i.e. εj ∼ N(0, σ2ε ). Given the training set, we aim to predict the target values y∗j for new

target input t∗ (i.e. t ≤ t∗ as interpolation and t > t∗ as forecast). Since p(yj |t) = N(0, kj+σ
2
ε I),

the distribution for the new input in connection with the training set is given by:[
yj
y∗j

]
∼ N

(
0,

[
kj(t, t) + σ2ε I kj(t, t

∗)
kj(t

∗, t) kj(t
∗, t∗)

])
, (7)

where kj(t, t
∗) = kj(t

∗, t). According to the property of the Gaussian distribution, the prediction
at each j is obtained as:

y∗j = kT∗j(kj + σ2ε I)−1yj , (8)

where k∗j = kj(t
∗, t∗) and kj = kj(t, t).

3.2.2. SDE-based model We aim to reconstruct the POD weighting coefficients, aj , by another
SDE-based process âj at the jth POD mode. In Ito-sense, the one-dimensional stochastic
differential equation for the evolution of âj obeys the following general form [15]:

dâj(t) = f(âj(t), t) · dt+ g(âj(t), t) · dW (t), (9)

where f(â(t), t) and g(â(t), t) are drift and diffusion terms that define the statistical properties
of âj(t). W (t) denotes a standard Wiener process which satisfies three conditions: (i) W (0) = 0;
(ii) for random variables 0 < s < t < T , the increment W (t) −W (s) has normal distribution
with zero mean and variance of t − s; and (iii) for 0 < s < t < α1 < α2 < T , the increments
W (t) − W (s) and W (α1) − W (α2) are statistically independent. Here, T denotes the final
analysis time.

In Eq. (9), âj(t) represents the time series calculated from projecting the LES velocity field
on the jth POD mode. In this method, we should define functions f and g such that the
autocorrelation of âj(t) could be fitted to an exponential-decaying curve. In this paper, we
assume that aj(t) at each POD mode follows the Ornstein-Uhlenbeck process [17]:

dâj(t) = −αj(µj − âj(t)) · dt+

dγ(t)︷ ︸︸ ︷
σj
√

2αj · dW (t), (10)
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where γ is a driftless subordinator, µj and σj are the mean and the standard deviation of âj(t)
at the jth POD mode, respectively. The autocorrelation is governed by an exponential-decaying
function with decay rate of αj for the jth POD mode as follows:

ρ(τ) = âj(t)âj(t+ τ) = e−αj ·τ , (11)

where τ denotes the time lag, and the over-bar represents the time averaging operator. Generally,
Eq. (10) needs to be solved numerically for two types of convergence, i.e. strong and weak.
Strong convergence focuses on the stochastic trajectories by the means of describing the goodness
of the approximation (i.e. mean of error), while the weak convergence captures the average
behaviour of the stochastic process (i.e. error of the mean). Studying the convergence properties
of SDEs is beyond the scope of the present work and readers are referred to [14] for further
information.

Figure 1. Snapshots of the LES data for the stream-wise u velocity field: (a) in the yz-plane
at the location of the first turbine; (b) in the yz-plane at the location of the second turbine; (c)
in the xy-plane at hub height and t = 1 day; and (d) in the xy-plane at hub height and t = 1.5
day. To highlight effects of atmospheric boundary layer height on wake characteristics, results
in this figure are performed under stable boundary conditions.
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4. Results
In this section, we first show LES model results and then apply the POD approach to the LES
xy-data at hub height (i.e. reducing the three-dimensional problem into two-dimension at a
constant height of z = 104 m). The two stochastic schemes explained in Section 3.2 are then
applied in order to construct probabilistic models for aj over all mode numbers. Finally, we
show tentative results on how to use the SDE-based approach for, a short-term, prediction of
the stream-wise velocity field u.

4.1. LES model results
Figure 1 shows instantaneous wake structures acting on turbines in the vertical yz (at the
locations of the first and the second turbines) and the horizontal xy (at hub height) sections
under stable condition. Figures 1-c and d show non-symmetrical behaviours of the flow field
in the wake area, particularly for the second turbine. We use LES-ADM-R implementations to
obtain the ROMs that are able to retain the important statistical features of the main flow and
the wake fields. The shown results in this figure are associated with the simulations under stable
boundary condition in order to show the effects of atmospheric boundary layer height variability
on developments of wake. We conduct hereafter all simulations under neutral condition.

4.2. POD projection
Figure 2 shows histograms calculated directly from aj data at the jth POD mode. Applying
the best fit functions to the data (continuous red lines) suggests that the time-dependent weight
coefficients are normally distributed for these modes. The normality test of aj for all modes,
based on values of skewness and kurtosis, confirms further the fact that the weighting coefficients
follow a normal distribution (skewness and kurtosis are approximately around 0 and 3 for all j
at sampling rate of 600 s, not shown).

Figures 3-a and b show two modes of POD representing spatially coherent features in the
wake areas. The second-ranked mode associated with the most energetic structures in the
wake and the mode number 10 shows correlated features with the energetic modes in the
wake. Figure 3-c illustrates energy spectrum of aj(t) for 4 different POD modes calculated
from all input LES snapshots. The first mode of decomposition captures energetic structures
in aj(t) (large-scale motion) for ≥ 99% of total energy of all LES snapshots. It is observed
that the energy of fluctuations in the energy spectra declines by increasing j. Energy content
of each POD mode for the turbulent flow can be further determined through the POD-based
eigenvalue and its cumulative sum, Fig. 3-d. According to the truncated cumulative energy,
Σn
j=1λj/Σ

nt
j=1λj , around 60% of the kinetic energy of the velocity field is recovered by the first 50

modes while the energy of the first 200 modes represents around 80% of the energetic features.
Here, n = 1, · · · , nt.

We reconstruct the u-component of the velocity field using the POD modes calculated
according to Eq. (1) with varying number of modes N , see Fig. 4. It is obvious that a more
accurate description of the flow field is achieved by increasing the number of modes, the number
of LES snapshots, and the model resolution that enables the method to recover small-scale
structures particularly in the wake areas.

4.3. Probabilistic Models
Figures 5-a and b illustrate the Squared Exponential (SE) covariance kernel of GP defined by:

k(t, t′) = σker exp

(
−(t− t′)2

ξ2

)
, (12)
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Figure 2. Comparison between histograms of the time-dependent coefficients aj in Eq. (1) at
(a) first mode, j = 1; (b) j = 10; (c) j = 20; and (d) j = 40. Plots contain also the best-fitted
distributions (red curves).

where the input pair (t, t′) denotes the positions of data points and the (positive definite) kernel
k(t, t′) maps the input pair to a real value, representing the distance between data points. The
shape of the kernel depends further on a couple of hyper-parameters, i.e. σker and ξ. Here
σker and ξ control the normalisation and width of the kernel, respectively. In Fig. 5-a and
b, the covariance matrices are shown for σker = 1 and two different widths. Figure 5-c shows
a number of GP-based realisations (with zero mean) corresponding to each of the covariance
matrices. Another example is a periodic kernel that allows the kernel function to repeat itself.
It is expressed as follows:

k(t, t′) = σker exp

(
−2 sin2(|t− t′|/χ)

ξ2

)
, (13)

where χ determines the distance between sequential repetitions (see Fig. 5-d and e). Length-
scale ξ and normalization factor σker are defined similar to the SE kernel. This kernel is properly
applicable for the data with cyclic nature. Fig. 5-f illustrates a number of GP realizations
generated by a periodic kernel for given values of hyper-parameters [6].
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Figure 3. (a,b) POD spatial basis functions for mode number of 2 and 10, respectively; (c)
Energy power spectra of aj for j = 1, 15, 30, 45; and (d) cumulative energy of POD modes.

To check the ability of GP in reproducing weighting coefficients, we compare between time
series of aj for j = 1, derived from the LES data, and the one estimated from the GP with SE
kernel in Fig. 5-g. It is shown that two time series generally share similar behaviour, except
slightly faster fluctuations for the GP one.

Now, we aim to construct time series of the second stochastic model by solving Eq. (10)
through a numerical integration scheme. Before discussing the numerical solver, it is important
to point out that Eq. (10) (i.e. Ornstein–Uhlenbeck process) is defined by the mean, standard
deviation, and autocorrelation function of the time series. Figure 6-a shows a day-long time
series of u-velocity for a point located in the free-stream flow. Autocorrelation of corresponding
data (red markers) is shown against the exponential fit (black line) using the expression given by
Eq. (11), to estimate the decay rate αj . The exponential function in Fig. 6-b provides a good fit
to the observed autocorrelation data. Note that the convergence of numerical stochastic model
depends directly on how well the observed autocorrelation data can be fitted by an exponential-
decaying curve.

We now apply explicit stochastic Euler integration to solve this problem [16, 14]. Explicit
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Figure 4. The velocity field u at day 3: (a) the original field; (b) the reconstructed flow field
using N = 50 modes; and (c) the reconstructed flow field using N = 400 modes.

Euler scheme is written as

ân+1
j = ânj + f(tj , â

n
j )dt+ g(tj , â

n
j )∆Wn

j , (14)

where ânj denotes the numerical solution for aj(tn) at jth POD mode at discrete time tn,

dt = tn+1 − tn is the length of time discretization. ∆Wj = Wn+1
j −Wn

j ∼ N(0,
√
dt) denotes

the random increments of a Brownian process [16]. Wiener process is approximated using the
MATLAB pseudo-random generator tool. For the initial values of ânj , we use the POD-based
aj(t0), this will increase the rate of convergence. Figure 6-c shows two realisations of stochastic
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Figure 5. (a,b) Numerical covariance matrices for σker = 1, and ξ = 0.1, 3 respectively; (c) a
number of GP-based realisations for σker = 1 and ξ = 3; (d,e) the same as (a,b) except using
periodic kernel; (f) a number of GP-based realizations with a periodic kernel for σker = 1 and
ξ = 3. For all periodic kernel realizations, we set χ = 1; and (g) comparison of POD based
time series of aj and the one generated from the SDE process. Colour maps in (a,b,d,e) indicate
higher correlations by warmer colors.

trajectories generated by solving Eq. (14) with the same initial values for the velocity time series
as shown in Fig. 6-a.

Figure 7 shows the stream-wise velocity snapshot from LES (as a reference) to check the
performance of different truncated POD-based velocity reconstructions for the fixed value of
N = 50 at day 2.97. The flow fields just behind each turbine have been successfully recovered
by all methods, highlighting the ability of decomposition in capturing large eddies particularly
in the near-wake areas (i.e. more energetic modes). However, in far-wake zones, the interactions
between wakes and ambient flow cause more discrepancies between the full-scale model and the
ROMs results. Figures 7-b and c show that two stochastic models are not significantly different,
the SDE-based model provides, however, a slightly similar spatial distribution of energy over
variety of scales compared with the reference distribution. Visual inspections suggest that small
scale features are recovered better in the SDE-based model than the GP-based models, in both
the near- and the far-wake areas. The discrepancies of the two stochastic models with respect
to the original field can be explained partly by the fact that the temporal stochastic models
cannot capture the nonlinear dynamical mode-mode interactions, and we have to account these
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Figure 6. (a) Wind time series at point (xpos, ypos) = (3231, 831) m from LES; (b)
autocorrelation of the corresponding data (red markers) and fitted exponential curve (black
line), i.e. Eq. (11); and (c) two SDE-based realization.

interactions through applying, for example, Galerkin-POD scheme [5].

Figure 7. (a) Original stream-wise velocity u directly from LES at day t = 2.97. Two yellow
markers indicate two locations for extracting time series used in the coming examples; (b)
reconstructed u by the standard POD scheme; (c) reconstructed u from the SDE-based model;
and (d) reconstructed u from the GP-based model.

Figures 8-a and b show time series of stream-wise wind sampled at two different, spatially
separated points, as shown by markers in Fig. 7-a. In this figure, we aim to show whether
the stochastic models preserve the statistical properties of the main time series by the means
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Figure 8. (a,b) time series of stream-wise velocity fields estimated from different models at two
positions shown by markers in Fig. 7-a; (c) histograms of corresponding time series at position
1; and (d) histograms of corresponding time series at position 2.

Table 1. Results of the PDF-fitting for two time series. For data from both locations, all
distributions are positively skewed, since b̃ < 3.6 except for the position 2 where b̃ > 3.6 for
POD-based u. In this case, the Weibull distribution becomes more Gaussian.

Position 1 Position 2

Model ã b̃ ã b̃

LES 13.6 1.0 13.1 0.9
POD 12.0 0.8 13.4 10.1
POD-SDE 10.5 0.7 12.0 0.8
POD-GP 11.9 0.8 12.1 0.9

of statistical distributions. The histograms of the corresponding time series in Fig. 8-a and b
suggest that Weibull functions have been properly fitted to the observed histograms at these
stations. PDF of the Weibull distribution for the u component is given by

W (u; b̃; ã) =
ã

b̃

(
u

ã

)b̃−1
e−(u

ã ), (15)
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where ã and b̃ indicate the scaling and the shape parameters of the Weibull distribution. The
Weibull curves capture both the peak and the sloping edge of the observed histograms (not
shown). However, the fitted Weibull functions in Figs. 8-c and d offer different statistics, e.g.
various skewnesses and kurtosis, compared to the original LES stream-wise velocity distribution
(see Table 1). The discrepancies are strongly enhanced in the inflow areas of the waked turbine
(i.e. position 2). In this case, two stochastic models can capture peaks while overestimating
the sloping edge compared to the reference histogram (black line). We observed also larger
departure between the shape of the POD-based histogram and the reference histogram in this
case.

Figure 9. Illustration of JPDFs calculated from two points as marked in Fig. 7-a for: (a)
original LES data; (b) standard POD model; (c) SDE-based POD; and (d) GP-based POD.
Number of bins for all samples is set to 32.

In Fig. 9, the stream-wise wind velocity at hub height is used to form a Joint Probability
Density Function (JPDF) for wind time series at two selected positions. The reason for
examining the JPDF is to focus: (i) on the performance of models in recovering two-point
statistics of stream-wise velocity; and (ii) checking how two separated points in space are
correlated across the scales of interest in the far-field area of the first turbine. Figure 9-a and
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b show the two-point JPDF of the original high-fidelity data (as reference) and the POD-based
results, respectively. In Fig. 9-a, the smaller variations in u values at position 1 correspond
somewhat to the larger variation of u values at position 2. It is observed graphically that the
reference JPDF reveals slightly negative (but scattered) correlation for these two-point u − u
relationship. All POD-based models retain the same characteristics. More specifically, the
negative correlation is clearly pronounced in the GP-based plot (i.e. Fig. 9-d) and the SDE-
based JPDF (Fig. 9-c) compares better, in terms of spatial distribution, with the ground truth
JPDF (see the velocity axes in this figure). While the slopes of fitting lines to JPDF for all
models are in good agreement, they are steeper than the one related to the reference JPDF (not
shown). It is important to mention that the two-point-correlation comparisons as carried out
here depend fully on the location of the two points in the study domain.

Figure 10. (a) Original stream-wise velocity u from LES at day 3; and (b) the corresponding
predicted field at day 3 produced by the SDE-based scheme has been run between day 2.97 and
day 3, i.e. 40 minutes forecast.
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4.4. Short-term forecast
So far we have interpolated the stream-wise velocity field for a period of [0, 2.79] days. In
this section, we provide a tentative result associated with the short-term (i.e. 40 minutes)
forecast ability of the SDE-based model. Here, the stochastic trajectories are generated for
the period between [2.97, 3] days from the initial values at t = 2.97 day. Figure 10 compares
between the original LES u velocity at day 3 and the one predicted by applying the SDE-
based model, i.e. 40 minutes forecast between day 2.97 and day 3. It is observed that the
model is reproducing effectively large scales of motions, particularly in the near-field areas.
Uncertainty of the forecast increases by transition from near-wake to far-wake areas. We
postpone further quantitative investigations on predictive characteristics of developed stochastic
models in another independent work elsewhere.

5. Conclusion
In this study, we used LES snapshots under neutral atmospheric boundary condition, that
incorporate the effects of wind turbines (using ADM-R), to develop low-order models based on a
truncated POD approach. The standard POD model decomposes the LES snapshots in a series
of orthogonal spatial basis functions modulated by time-dependent (deterministic) weighting
coefficients. Two different probabilistic models were utilized to replace the deterministic
coefficients in the standard POD model by stochastic (time-dependent) weighting coefficients.
The reconstructed wake fields by applying deterministic and stochastic coefficients showed the
ability of stochastic models to capture some of the missing small-scale features that could not
be captured by the use of the standard POD method, for a given number of modes. We further
checked tentatively the predictive ability of one of the stochastic approaches.

Future work includes to account for the effects of mode-mode nonlinear interactions and
applying the method for the wind farm control. In addition, the results of developed ROMs will
be validated carefully against the high-fidelity simulations and available field data.
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case. Energies,6, 696–716.

[5] Hamilton N, Viggiano B, Calaf M, Tutkun M, Cal R B, 2017 A generalized framework for reduced-order
modeling of a wind turbine wake. Wind Energy, DOI: 10.1002/we.2167.

[6] Rasmussen C, Williams C, 2005 Gaussian Processes for Machine Learning. MIT Press: Publisher, ISBN
026218253X.
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