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ABSTRACT: A binary classificationmodel is trained by random forest using data from 41 stations in Norway to predict the

precipitation in a given hour. The predictors consist of results from radar nowcasts and numerical weather predictions.

The results demonstrate that the random forest model can improve the precipitation predictions by the radar nowcasts and

the numerical weather predictions. This study clarifies whether certain potential factors related to model training can

influence the predictive skill of the random forest method. The results indicate that enforcing a balanced prediction by

resampling the training datasets or lowering the threshold probability for classification cannot improve the predictive skill of

the random forestmodel. The study reveals that the predictive skill of the random forestmodel shows seasonality, but is only

weakly influenced by the geographic diversity of the training dataset. Finally, the study shows that the most impor-

tant predictor is the precipitation predictions by the radar nowcasts followed by the precipitation predictions by the

numerical weather predictions. Although meteorological variables other than precipitation are weaker predictors, the

results suggest that they can help to reduce the false alarm ratio and to increase the success ratio of the precipitation

prediction.

SIGNIFICANCE STATEMENT: Machine learning can be useful in improving weather forecasts with relatively in-

expensive computational efforts. Specifically, this study has demonstrated that radar nowcasts can be improved by

integrating the information from radar and numerical weather prediction using the random forest method. The random

forest method’s performance shows seasonality but is only weakly influenced by the geographic diversity of the training

dataset. Also, there is no need to use specific strategies to address the imbalance of the precipitation and no precipitation

frequency from the observations during model training. However, future study is needed to identify better predictor

choices to further improve the random forest method.
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1. Introduction

The methods that are primarily used for nowcasting pre-

cipitation over a short period of time (e.g., ,6 h) can be clas-

sified into two categories: 1) methods based on numerical

weather prediction (NWP) models, and 2) methods based on

extrapolating radar echoes (Dixon and Wiener 1993; Li et al.

1995; Germann and Zawadzki 2002; Mandapaka et al. 2012;

Hwang et al. 2015; Shi et al. 2015; Zou et al. 2019). To accu-

rately nowcast precipitation at a local station usingNWP-based

methods, models with fine spatial-temporal resolutions need to

be run, which can be computationally expensive (Reyniers

2008; Shi et al. 2015). Radar based precipitation nowcasts,

which are based on extrapolating radar echoes, can provide a

high spatial (1 km) and temporal resolution (10min; Reyniers

2008), but good predictive skill is not always guaranteed.

Nowcasting precipitation using both methods (radar echoes

and NWP) is not perfect, and the complexity of current now-

casting systems varies greatly. Some systems are based on

simple tracking algorithms, while others require a variety of

observations that are processed using sophisticated algorithms.

Furthermore, the biggest limitation with radar-based precipi-

tation nowcasting is the difficulty in predicting the develop-

ment of new precipitation areas, and it is not clear whether

methods based on sophisticated algorithms are more accurate

than simple methods (Reyniers 2008).

Machine learning (ML) methods, also called data-driven

methods, have gained popularity in recent years. In general,

ML requires a transfer function that links predictors (input) to

predictands (output) based on historical data, and new pre-

dictions can be made by feeding new predictor data into a

transfer function. Their advantages include that they can for-

mulate complex data relationships (e.g., nonlinearity) solely

based on historical data. They are relatively easy to implement

with a low computational cost, but their performance can be

compared to physical models (Mosavi et al. 2018).MLmethods

are often applied in predictions of natural hazards (e.g., floods,

landslides, and avalanches). For example, Liu et al. (2020)

apply three different ML algorithms to spatial modeling of

shallow landslides in Norway.

In this study, we explore whether predictions made by radar

nowcasts and NWP can be improved by ML models. If they

can, ML has the potential to be a practical method to improve

current nowcasting models. The performance of ML models
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can be improved by model training. Therefore, empirical tests

and trials are needed. Many algorithms are available to build

an ML model, but this study will not focus on choosing an

optimalML algorithm. Instead, a commonly known and robust

algorithm, random forest (RF; Breiman 2001), is used to

build a binary classification model for predicting whether there

is precipitation or no precipitation.

Generally speaking, precipitation data are often character-

ized by unbalanced frequencies of precipitation and no pre-

cipitation. The number of precipitation hours should be much

less than the number of hours without precipitation at most

locations. Just by always guessing the majority class (i.e., no

precipitation in this study), one can achieve the accuracy of

more than 50%, but such prediction does not consider the

minority class. Therefore, the accuracy can be misleading, as

the minority class is overlooked (Japkowicz and Stephen 2002;

Guo et al. 2008). There are two common strategies to address

the imbalance of the majority and minority class: 1) assigning

different costs for the predictions of the two classes and

2) resampling the original datasets to obtain balanced datasets

before training (Chawla et al. 2002). This study investigates

whether it is beneficial to use these strategies in the problem of

predicting precipitation and no precipitation.

The geographic locations of the data included for trainingmay

also influence the performance of the classification model built

by the RF. If the same physics governs the predictand–predictor

relationship for all regions, the predictand–predictor relation-

ship at different areas can bemodeled by one universal function.

In this case, only oneMLmodel is needed tomake predictions at

different locations.Adding training data from far away locations

may improve the prediction because the number of training

samples increases. On the other hand, if the predictand–

predictor relationships are strongly impacted by local factors,

training a local model using data from other regions will not be

useful. Also, predictors’ strength may vary with seasons. In

addition, the variables that are most relevant to the model

results often cannot be determined in advance. Thus, addi-

tional variables (other than nowcasts results from the radar

and NWP) may be needed to counterbalance the negative in-

fluences of incorrect predictions made by the radar nowcasts

and NWP.

There are two main objectives of this study. The first is to

clarify how the aforementioned factors related to model

training (i.e., methods used to deal with the unbalanced binary

classes, geographic locations and seasonality of training data,

and the choice of predictors) can influence the performance of

the RF binary classification used for precipitation prediction.

The second is to assess whether predictive skills of NWP and

radar based nowcasts can be further improved by using an RF

model. The rest of the paper is organized as follows. Section 2

presents the data, and the methodology is described in section 3.

Section 4 presents the main results. Discussions and conclusions

are provided in section 5.

2. Data

All data used in this study (radar nowcasts, NWP, and historical

observations) are obtained from the Norwegian Meteorological

Institute (2011). The algorithm for the radar nowcasts used in

this study is described in (Chambolle and Pock 2011), The

NWP model used in this study is the convective-permitting

operational weather prediction model Applications of Research

to Operations at Mesoscale (AROME). The model covers

Scandinavia and the Nordic Seas with a horizontal resolution of

2.5 km (Müller et al. 2017).
TheNorwegianmeteorological institute has dividedNorway

into 13 precipitation regions based on EOF and cluster analysis

of seasonal and annual precipitation variability (Hanssen-Bauer

andNordli 1998). Specifically, these regions are characterized by

highly correlated time series of monthly precipitation data. The

41 stations considered in this study are grouped into 9 of the 13

regions (Fig. 1). The data available for each station considered in

the study are divided into two subsets. The first subset consists of

data collected from February 2017 to December 2017, and the

second subset consists of data collected from February 2018 to

December 2018.

The two subsets are used as training and testing datasets,

respectively. The details of the datasets are presented in

section 2b. Only the results tested on the dataset of 2018 (and

trained by the dataset of 2017) are presented in the paper. The

same conclusions as presented in this paper can also be found

when the training and testing datasets are interchanged. The

datasets of the predictand and predictors (section 2b) at each

station are at least 73% complete for the period considered in

this study, and most datasets (35 out of 41 stations) are more

than 80% complete.

a. An example of precipitation predictions by radar or
numerical weather predictions (NWP) and observations

An example at a central eastern station in Norway is used to

compare the accuracy of radar nowcasts with that of NWP in

predicting precipitation and no precipitation (Fig. 2). It shows

FIG. 1. (right) The locations of the 41 stations used in this study

are depicted. They are grouped into 9 of the 13 precipitation re-

gions. The locations of weather radars in Norway are also shown.

(left) The ratio of the prior probability of precipitation to that of no

precipitation in each region.
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that radar nowcasts are often more accurate than NWP. In this

example, the accuracy (i.e., the percentage of correct predic-

tions out of all predictions) of the dichotomous predictions of

Class 1 (precipitation) and Class 0 (no precipitation) by the

NWP and radar nowcasts is 0.85 and 0.92, respectively. The

better accuracy of the radar nowcasts also corresponds to a

higher degree of covariation (i.e., higher Spearman correlation

coefficient) between the precipitation observations and pre-

cipitation predictions.

Second, the observations are dominated by Class 0 (no

precipitation), which is typical of most regions in Norway. In

this example, approximately 7% of all observations are pre-

cipitation events. Therefore, guessing no precipitation (i.e.,

predicting 0) for all cases can give an impressively high accu-

racy of 0.93, which is close to the accuracy of the radar nowcasts

and exceeds that of NWP by approximately 9%. To surpass the

simple prediction of always guessing 0 (no precipitation), it is

desirable to improve the predictive skills of NWP and radar

nowcasts by some other methods, such as an RF model.

b. The predictand and predictors of the random forest
(RF) model

In this study, the RF model is used to predict whether there

is precipitation within a given hour of observation at a station.

The predictand of the RF model is the observed accumulated

precipitation in 1 h, denoted as RR1hr, with an observational

interval of 6 h (i.e., 0000–0100, 0600–0700, 1200–1300, and

1800–1900UTC). The predictand is labeled as Class 1 if RR1hr

exceeded or equaled to 0.1mm. Otherwise, it is labeled as

Class 0.

This study considers 17 variables as potential predictors for

the RF model. The predictors consist of variables that are di-

rectly related to the precipitation predictions by the radar

nowcasts (1 and 2 in Table 1) and NWP (3 and 4 in Table 1). In

addition, some other NWP-derived variables (5–17 in Table 1)

are also used as predictors. These variables are chosen because

of their potential relevance to precipitation and the availability

of data on the variables during the period of study. In partic-

ular, the K index is a measure of thunderstorm potential

(George 2014), and it is defined as K 5 T850mb 2 T500mb 1
Td850mb 2 T700mb 2 Td700mb, where T and Td denote tem-

perature and dewpoint temperature at the specified pressure

level (1 mb 5 1 hPa). This study also includes the wind speed

normal to the topographic aspect in the predictors, as this

variable can address the potential influence of topography on

precipitation. A topographic aspect is the compass direction

that a slope faces.

The variables from the radar nowcasts and NWP are

forecasting values that correspond to the observational hour.

The forecast lead time of the radar nowcasts is 2 h, and the

FIG. 2. (top) Accumulated precipitation in 1 h (RR1hr) and the corresponding classification of precipitation and no precipitation are

shown for the observation, NWP, and radar nowcasts for the station 24890 (Bromma, Nes) in region 2. (bottom) The darker bar plot shows

the accuracy of the precipitation classification (the percentage of correct predictions out of all predictions) by the radar nowcast (radar),

NWP, and a base prediction of always guessing no precipitation [Base(0)]. The lighter bar plot indicates the Spearman correlation

coefficients between the RR1hr from observation (obs) and those from the NWP/radar nowcasts.
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forecast reference time is 6 h before the observational hour for

AROME. Both the main cycles of AROME and the observa-

tional hours for the predictands are 0000, 0600, 1200, and

1800 UTC, so the interval of 6 h is the shortest between a fore-

cast reference time and the next available hour of observation.

In other words, the AROME model is initialized 6 h before the

observational hour. The grid spacing of AROME is 2.5 km 3
2.5 km, while that of the radar nowcasts is 1 km 3 1 km.

Each predictor variable listed in Table 1 is the average of two

expressions as shown in Eq. (1). The first expression is the

value at the grid point closest to each station. Given that the

atmosphere is a continuum, the weather at one location is

influenced by its surroundings. Therefore, the second expres-

sion is the average grid values weighted by the inverse of the

distance from the center of a square of 100 km 3 100 km,

centered at the grid point closest to the station. The 100 km 3
100 km area is large enough to include all grid points the values

of which can contribute meaningfully to the result of the in-

verse distance weighted average:
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where

d p1 and p2 are the two expressions of a predictor;
d xc and pc denote the grid point closest to each station and

the corresponding predictor, respectively;

d xi is the ith grid point in the area of 100 km 3 100 km

centered at xc;
d N is the number of grid points in the area; and
d wi 5 1/d(xc, xi) denotes the weight of the ith grid point (i.e.,

the inverse distance from xc).

3. Methodology

a. Random forest

This study uses RF to implement the ML model for pre-

dicting precipitation. This section gives a brief overview of RF.

Random forest belongs to the ensemble learning, which is a

process based on generating many simple models and aggre-

gating their results (Hastie et al. 2009). The individual model

for RF classification is a tree-based classification model. A

node in the tree represents a spilt point on a predictor variable.

Each terminal node of a tree (i.e., a leaf) is one particular

classification (i.e., the prediction). The tree structure can be

created by repeatedly dividing the training data (i.e., binary

splitting). The splitting point of each predictor variable is de-

termined based on some cost function. For classification, a

commonly used cost function is the Gini index which measures

the degree of homogeneity of the groups created by each split.

The splitting process stops when terminal nodes contain a

minimum number of training data samples, or the tree’s growth

reaches a maximum depth. The test data can be passed down

the tree structure (i.e., various nodes) created by training until

terminal nodes are reached. In this way, new predictions

are made.

Tree models can output posterior probability for each class.

Following the definition of the Statistics andMachine Learning

Toolbox of MATLAB (MathWorks 2019), the posterior

probability of a class associated with the tree model can be

defined as the number of splitting sequences that lead to the

classification of the class divided by the number of all possible

splitting sequences. Posterior probability can be converted to

classification through the choice of a threshold probability p,

that is,

d Posterior probability $ p / Predicting Class 1
d Posterior probability , p / Predicting Class 0

The posterior probability for the RF classification model is

defined as the mean posterior probability for each class of all

tree models used to build the RF model. The prior probability

in this study is defined as the fraction of training samples of

each class out of all training samples.

Tree models are prone to have a high level of noise, which

makes the prediction results unstable as a small change in

training data can lead to very different sequences of splitting.

One remedy is bagging; that is, aggregating the noisy results

obtained from many tree models. For classification models,

bagging refers to building a committee of tree models using

bootstrapped samples from the training dataset, and the indi-

vidual classification by each tree model is analogous to

casting a vote. The result of the classification is the majority

vote of the committee. Random forest modifies the procedures

of bagging by ensuring all tree models within the committee

TABLE 1. List of all variables considered as predictors for the

RF model.

Full name Abbreviation

1 Accumulated precipitation in 1 h from

the radar nowcasts

RR1hr(Radar)

2 Duration of precipitation in 1 h from

the radar nowcasts

tL(Radar)

3 Accumulated precipitation in 6 h

from AROME

RR6hr(NWP)

4 Accumulated precipitation in 1 h

from AROME

RR1hr(NWP)

5 Air pressure at sea level SLP

6 Air temperature at 2m T2m

7 Fog area fraction Fog AF

8 Low-type cloud area fraction LowC AF

9 Medium-type cloud area fraction MediumC AF

10 High-type cloud area fraction HighC AF

11 Relative humidity at 2m RH2m

12 Zonal wind U at 10m U10m

13 Meridional wind V at 10m V10m

14 Atmospheric boundary layer thickness ABLT

15 Wind speed normal to the topographic

aspect

WSNT

16 Average dewpoint depression from

1000 to 500 mb

DD(1000–500 mb)

17 K index K
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are decorrelated. Decorrelation is achieved by randomly

selecting a subset of predictor variables to form the splitting

sequence during the tree-growing process (Breiman 2001).

An important feature of RF is the use of out-of-bag (OOB)

samples, which are samples not included in the tree growing

process. Specifically, the prediction of zi 5 (xi, yi) in the input

space is derived from the majority vote of tree models con-

structed using bootstrap samples in which zi is not included.

Therefore, the training process is identical to that obtained by

N-fold cross validation (Hastie et al. 2009). TheOOB error can

be used to find the number of trees needed for the RF model,

and the training is terminated once the OOB error stabilizes.

For each training case in this study, at least 500 trees are used,

which is not smaller than the number of trees that stabilized the

OOB error.

b. Evaluation of classification models

Themodel results in this study are a dichotomous prediction:

precipitation exceeding 0.1mm within the hour of observation

(RR1hr $ 0.1mm) is labeled as Class 1, and no precipitation

(RR1hr, 0.1mm) is labeled as Class 0. The 23 2 contingency

table summarizes all possible prediction outcomes (Table 2).

Various metrics for evaluating the model performance can be

derived from the contingency table.

Since the prior probability of Class 1 is much smaller than

that of Class 0 in most regions (Fig. 2), the contingency table is

dominated by correct rejection D. The most common metric

accuracy is defined as

ACC5
A1D

A1B1C1D
, (2)

whereD is predominantly larger thanA,B, andC, the accuracy

will always be good even though Class 1 (i.e., the minority) is

greatly misclassified.

Therefore, this study focuses on metrics that can reflect the

skills of the classification of the minority Class 1 (RR1hr $

0.1mm). They are the probability of detection (POD), prob-

ability of false detection (POFD), false alarm ratio (FAR),

success ratio (SR), critical success index (CSI), skill score rel-

ative to the base prediction of always predicting 0 (SS0), and

frequency bias. The meanings of these metrics in the context of

this study are summarized in Table 3, and their formulas are

listed below (Wilks 2011; Inness and Dorling 2012):

POD5
A

A1C
, (3)

POFD5
B

B1D
, (4)

FAR5
B

A1B
, (5)

SR5
A

A1B
, (6)

CSI5
A

A1B1C
, (7)

SS05
ACC2ACC(0)

12ACC(0)
, (8)

bias5
A1B

A1C
, (9)

whereACC [Eq. (2)] is the accuracy of the classificationmodel,

and ACC(0) is the accuracy of the base prediction of always

predicting 0.

In addition, SR can be expressed as SR 5 1 2 FAR. CSI

considers both false alarms B and missed predictions of pre-

cipitation C; therefore, CSI is a more balanced metric than

POD and SR (Nurmi 2003). CSI and bias can be expressed by

POD and SR as

CSI5
1

1

SR
1

1

POD
2 1

, (10)

bias5
POD

SR
. (11)

Therefore, the quantities: POD, SR (FAR), CSI, and the bias

can be visualized in one diagram (Roebber 2009), with SR as

the x axis and POD as the y axis.

SS0 # 0 indicates that the classification model is not more

accurate than simply guessing Class 0 (the majority class:

precipitation) for all occasions, and bias , 1 and bias . 1 in-

dicate underprediction and overprediction of precipitation

events, respectively (Inness and Dorling 2012).

Moreover, since the RF classification model can output

posterior probability, different classification results can be

achieved by changing the threshold probability. The receiver

operating characteristics (ROC) curve provides a visual rep-

resentation of the general goodness of the classification model

by plotting POFD versus POD as the threshold probability

varies. The area under the ROC curve (AUC) associates the

characteristics of the ROC with a number which varies be-

tween 0 (the worst model) and 1 (the best model).

Finally, the empirical 90% confidence intervals based on

bootstrap are calculated for all metrics evaluations. Specifically,

each test dataset is sampled with replacement 10 000 times. All

sampled test datasets are the same size as the original one, and the

metrics are evaluated on each sampled dataset. A sequence of

differences between the metrics of the original dataset and those

of the sampled datasets is calculated, and the 95th and 5th per-

centiles of the sequence are extracted to construct the empirical

90% confidence interval for the metrics of the original dataset.

c. Factors influencing RF predictability

This study compares the test results of different RF models

trained using a controlled variation of each factor of interest to

demonstrate how the factors can influence the predictive skills

of the RF model.

TABLE 2. A 2 3 2 contingency table for a binary classification;

A, B, C, and D represent the number of cases belonging to each

category.

Observe 1 Observe 0

Predict 1 A (hit) B (false alarm)

Predict 0 C (miss) D (correct rejection)
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1) FACTOR 1: THRESHOLD PROBABILITY AND

RESAMPLING METHODS

The time series of observed precipitation is characterized

by the unbalanced prior probability of precipitation and no

precipitation. Classification models that are trained using un-

balanced datasets tend to predict the majority class more fre-

quently while ignoring the minority class (Longadge and

Dongre 2013). First, the study assesses whether the problem

caused by the unbalanced prior probability of the training data

can be solved simply by choosing a different threshold proba-

bility for classification. In particular, the focus has been on

lowering the threshold probability to allowmore predictions of

the minority class.

Next, the prediction results of a model trained without

resampling (No RS) and of models trained using 1) over-

sampling (OS) of theminority class and 2) undersampling (US)

of the majority class have been compared. OS and US are

two common methods for addressing the problem of the un-

balanced training dataset.

Oversampling is achieved by applying the synthetic minority

oversampling technique (SMOTE; Chawla et al. 2002), which

constructs synthetic minority class samples in the feature space.

Undersampling is achieved by randomly removing some sam-

ples that belong to themajority class. Resampling usingOS and

US results in balanced training datasets.

2) FACTOR 2: GEOGRAPHIC DIVERSITY AND

SEASONALITY OF TRAINING DATASETS

This study assesses whether it is possible to use one general

model for the whole country or whether separate models are

necessary for different locations. A related question is how the

geographic diversity of the training data can influence the

predictive skills of the RF classification model. To address this

question, the trained models have been classified into three

types based on the geographic diversity of the training data.

The first type is the RF model trained for each station by

only using the data from the station. The second type is the RF

model trained for each precipitation region (Fig. 1), which is

obtained by pooling the training data from all stations in the

region. The third type is the RF model trained by pooling

training data from all stations. The three types of models are

labeled as 1) Local, 2) Region, and 3) All, respectively.

In terms of the diversity of locations included in the training

data, the first type (Local) is the least diverse because all

training data are derived from a specific location. There is no

geographic difference between the training and test data when

applying a local model to predict the test data at the station.

The third model (All) is the most diverse, since the training

data are derived from stations all over the country. The

training data in this case include locations that are very remote

from the stations where the predictions are needed (i.e., the

location of test data). The geographic diversity of the second

model (Region) is between that of Local and All.

Moreover, since the NWP and radar nowcast’s predictive

skills vary with seasons, it is expected that the RF model may

also be influenced by seasonality. Four seasonal models have

been trained using only data from winter, summer, spring, and

fall from the training dataset and tested on the respective

seasonal data of the test dataset.

3) FACTOR 3: CHOICE OF PREDICTORS

Two different approaches have been used to analyze the

influence of each predictor on the RF classification model.

The first approach obtains the ranking of predictor impor-

tance by permutating the training data of each predictor.

Specifically, a baseline metric is evaluated on the training

dataset, and a feature column (i.e., each predictor) of the

training dataset is reshuffled. Then, the metric is evaluated

again. The difference between the metrics before and after the

permutation is calculated, and a larger difference suggests that

the predictor is more important.

However, when two predictors are collinear, shuffling the

values of one of them will not prevent the information of this

predictor being fed into the RF model, as the RF model can

TABLE 3. Descriptions of various metrics used in this study.

Abbreviation Full name Meanings Best Worst

POD Probability of

detection

The fractional success of predicting precipitation out of all

occasions when precipitation is observed

1 0

POFD Probability of false

detection

The number of times precipitation is falsely predicted out of all

occasions when precipitation is not observed

0 1

FAR False alarm ration The number of times precipitation is falsely predicted out of all

precipitation predictions

0 1

SR Success ratio The fractional success of precipitation prediction out of all

precipitation predictions

1 0

CSI Critical success index The fractional success of precipitation prediction out of all

precipitation predictions and missed predictions of precipitation

1 0

SS0 Skill score relative to a

base prediction

The relative improvement of the classification model from the base

prediction of always predicting the majority Class 0 (no

precipitation)

1 ,0

bias Frequency bias Quantifies whether the RFmodel tends to predict the precipitation

more (bias . 1) or less (bias , 1) often than it is actually

observed

1
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obtain the same information from the correlated predictor.

Therefore, the method based on permutation may not reflect

the actual ranking of importance (Scikit-Learn Developers

2019). To solve this problem, the predictors are grouped into

clusters by performing hierarchical clustering of the Spearman

correlation matrix of predictors and keeping a single predictor

from each cluster. Furthermore, a variable of random values is

added as a reference predictor. The random variable will not

add any information to the RF model; therefore, in an ideal

situation it should have the lowest measure of importance

among all predictors.

The second approach examines the relationship between

the metrics of the RF classification model and the Spearman

correlation coefficient between the precipitation observations

(the predictand) and each predictor, denoted as r[RR1hr(obs),

predictor]. Intuitively, the predictive information of a predic-

tor can be assessed by the degree of covariation between the

time series of the predictor and the precipitation observation.

If the better predictive skills of the RF model correspond to

higher covariations between the precipitation observation

and a predictor, assessed by r[RR1hr(obs), predictor], then the

predictor has a positive influence on the RF model.

A numerical experiment based on bootstrapping has been

used to examine the relationships between the metrics of

the RF classification models and r[RR1hr(obs), predictor].

Specifically, the test data of all 41 stations used in this study

FIG. 3. Results of the RF models with different training datasets and tested on test datasets from all stations.

All, Region, and Local refer to training data from all stations, stations in a region, and a local station, re-

spectively. No RS refers to the use of the original dataset without resampling. OS (US) refers to resampling by

oversampling (undersampling), and p denotes the threshold probability for classification. (a) The metrics

(POD, SR, FAR, CSI, and bias). (b) POFD and ROC curves are shown, and the AUC values for all training

cases considered are approximately 0.92 as labeled. (c) Values of SS0 for various training cases. The same

metrics used to evaluate the two benchmarks: the precipitation predictions by the radar nowcasts and NWP

are also shown for comparison. The error bars and dashed lines in the plot of SS0 indicate the 90% bootstrap

confidence intervals.
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have been combined, and the test data at each station consist of

all predictors and the precipitation observation [RR1hr(Obs)].

Overall, 10 000 test units have been created by repeatedly

drawing a random sample of 500 data points from the pooled

test data. Various metrics for evaluating the RF model, as well

as r[RR1hr(obs), predictor], have been calculated for each test

unit, and the pattern between the metrics and r[RR1hr(obs),

predictor] is displayed by the probability distribution based on

the 10 000 test units.

Since the bootstrapping experiment is based on the data of

the 41 stations, no additional information can be added by

bootstrapping. However, the results of the bootstrapping ex-

periment help to delineate the underlying relationship be-

tween quantities of interest, since 41 data points may not be

TABLE 4. The empirical 90% bootstrap confidence intervals for various metrics shown in Fig. 3. All, Region, and Local refer to RF

models trained using data from all stations, stations in each region, and each local station, respectively. No RS, OS, and US denote no

resampling, oversampling, and undersampling, respectively. Precipitation predictions by the radar nowcasts and NWP are the two

benchmarks.

Geographic diversity Resampling Threshold probability DSR DPOD DCSI Dbias DPOFD

All No RS p 5 0.2 0.007 0.007 0.007 0.023 0.003

All No RS p 5 0.3 0.008 0.009 0.008 0.018 0.002

All No RS p 5 0.4 0.009 0.009 0.009 0.014 0.002

All No RS p 5 0.5 0.008 0.009 0.008 0.012 0.002

All No RS p 5 0.6 0.010 0.010 0.010 0.012 0.001

All No RS p 5 0.7 0.009 0.009 0.008 0.010 0.001

All No RS p 5 0.8 0.010 0.008 0.008 0.008 0.001

All OS p 5 0.5 0.008 0.008 0.006 0.015 0.002

All US p 5 0.5 0.007 0.007 0.007 0.019 0.003

Region No RS p 5 0.5 0.008 0.010 0.009 0.013 0.002

Local No RS p 5 0.5 0.009 0.009 0.008 0.013 0.001

Benchmarks

Radar 0.010 0.010 0.009 0.014 0.002

NWP 0.008 0.008 0.006 0.018 0.002

FIG. 4. (top) The percentage of test cases belonging to hit, false alarm, miss, and correct rejection for the RFmodel trained by using the

original data (without resampling) from all stations but with different threshold probability p for classification. (bottom)The percentage of

test cases belonging to hit, false alarm, miss, and correct rejection for the RF models trained by using data from all stations with and

without resampling (No RS). OS and US refer to oversampling and undersampling, respectively. The red and blue solid lines indicate

the values of the benchmarks: the radar nowcasts and NWP, respectively. The error bars and dashed lines indicate the corresponding

90% bootstrap confidence intervals for the RF models and benchmarks.
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enough to display the complete pattern. The number of data

points in each test unit, 500, is chosen subjectively, but the

choice ensures a broad range of values for all quantities of

interest (i.e., metrics of the RF model and the Spearman cor-

relation coefficients between the predictand and predictors).

Moreover, a third approach is used to assess whether addi-

tional meteorological variables, other than those directly re-

lated to the precipitation predictions from the radar nowcasts

and NWP, can contribute to the predictive skills of RF.

Specifically, the predictors in Table 1 can be divided into three

subsets:

(i) Variables directly related to the precipitation prediction

by the radar nowcasts (1 and 2 in Table 1);

(ii) Variables directly related to the precipitation prediction

by AROME (3 and 4 in Table 1); and

(iii) Meteorological variables output from AROME other

than precipitation (5–17 in Table 1).

Random forest models built by different subsets of predic-

tors are compared with each other. The subsets of predictors

are i and ii (precipitation only), iii (no precipitation), i (radar

nowcasts only), and ii and iii (NWP only).Two complemen-

tary subsets of all test data (Test 1 and Test 2) have been used

to evaluate the RF models. Specifically, the precipitation

observations in Test 1 are correctly predicted by either the

radar nowcasts or NWP and are misclassified by both the radar

nowcast and NWP in Test 2.

d. Comparing RF with NWP and radar nowcasts

The same bootstrapping experiment described in section

3c(3) has also been used to examine the relationship between

the predictive skill of the RF model and that of precipitation

predictions by the radar nowcasts and NWP, to determine

whether the RF model can further improve the predictions

made by the radar nowcasts and NWP. For each of the 10 000

test units of the bootstrapping experiment, various metrics

described in section 3b have been calculated for the RFmodel,

as well as for the corresponding precipitation predictions by

the radar nowcasts and NWP. The samemetrics have also been

calculated for the test data of all 41 stations. Themetrics for the

RF and for the radar/NWP have been compared using the

probability distribution based on the 10 000 test units as well as

the scatterplot of the 41 stations.

4. Results

The RF models can be tested on three test cases: 1) the test

dataset of each station, 2) combining the test datasets of

FIG. 5. The metrics of POD, SR, CSI, SS0, and AUC for evaluating RF models with training datasets consisting of data from a local

station (Local), stations from a region (Region), and all stations (All), respectively, and tested on the test datasets in each region. The

number of training samples in each region is shown in the last column. The samemetrics (exceptAUC) for evaluating the two benchmarks:

the precipitation predictions by the radar nowcasts and NWP are also shown for comparison. The yellow rectangles indicate the empirical

90% bootstrap confidence intervals.
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stations in each region (Fig. 1), and 3) combining the test

datasets of all 41 stations. The results of the RF models were

also compared with the predictions (precipitation or no

precipitation) by the radar nowcasts and NWP, which were

used as the two benchmarks for comparison with the RF

classification models.

Most results presented in sections 4a and 4b were tested on

test case 3. The results are displayed in Fig. 3, and the corre-

sponding 90% empirical bootstrap confidence intervals for

various metrics are listed in Table 4, but they are too small to

be clearly marked in Fig. 3, except for the SS0.

a. Comparing various threshold probability and

resampling methods

Figures 3a and 3b demonstrates that, as the threshold

probability decreased from p 5 0.8 to p 5 0.2, the POD in-

creased, but the probability of false detection (POFD) and the

FAR also increased, thereby lowering the SR. Moreover, the

SS0 appeared to be associated with the threshold probability

p5 0.5 (Fig. 3c). The values of the critical success index (CSI)

did not vary noticeably from p 5 0.5 to p 5 0.2 but began to

decrease for p . 0.5 (Fig. 3a). Overprediction of precipita-

tion was associated with p , 0.4, and underprediction of

precipitation occurred when p . 0.4 (Fig. 3a). The metrics

associated with the RF model were better than the corre-

sponding metrics for both benchmarks only at p 5 0.5.

The upper panel of Fig. 4 summarizes the effects of changing

the threshold probability p on the four elements of the con-

tingency table. As the threshold probability decreased, the

percentage of hits (Fig. 4a) increased and the percentage of

misses (Fig. 4c) decreased, which contributed positively to the

predictive skill of the RF model. However, the percentage of

false alarms increased notably (Fig. 4b) and the correct re-

jection was also reduced (Fig. 4d), which lowered the pre-

dictive skill of the RF model. Since the percentages of hits,

false alarms, andmisses associated with p5 0.5 were all better

than those of the radar nowcasts and NWP, p 5 0.5 was

chosen as the default threshold probability for classification

in this study.

Figures 3 and 4e–4h demonstrate that resampling the

training data to increase the proportion of the minority class

had the same effects as lowering the threshold probability from

p 5 0.5. In particular, the results of oversampling (OS) and

undersampling (US), as well as decreasing the threshold

probability p, were like moving along the ROC curve toward

the point of (1, 1) in the ROC space (Fig. 3b); in other words,

FIG. 6. The metrics of AUC, CSI, and SS0, for evaluating the seasonal RF models trained and tested using

data from winter, summer, fall, and spring, respectively, for each region as well as for all regions combined

(labeled as All). The Spearman correlations between precipitation from observations and radar nowcasts/NWP

for each season are also displayed. The error bars indicate the corresponding 90% bootstrap confidence

intervals.
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both POD and POFD increased. In the diagram of SR versus

POD (Fig. 3a), the results of the OS, US, and decreasing p

from 0.5 were similar to those obtained from moving along

the same CSI contour toward higher POD and lower SR

[Eq. (10)]. Also, the values of SS0 for US and OS decreased

by approximately 40% and 13%, respectively, from that of

no resampling (No RS) with p 5 0.5 (Fig. 3c). Overall, the

results displayed on Figs. 3 and 4 show that resampling the

training datasets and lowering the threshold probability

for classification are not effective in improving the pre-

dictive skill of the RF model. Therefore, the results dis-

cussed in the rest of this paper are based on the case of No

RS and p 5 0.5.

b. Influences of geographic diversity and seasonality of

training datasets

Figure 3 also demonstrates that there were negligible dif-

ferences among the RF models trained by the datasets con-

sisting of data from a local station, stations in a region and all

stations. The differences among the Local, Region, and All

models were further verified on the test data of each region, as

shown in Fig. 5. The difference between the Region model

and Local model was negligible for all metrics considered in

any region. The CSI, SR, and POD of the All model differed

by around 10% or more from those of the Local model and

the Region model in regions 4, 6, 7, and 12, but the SS0 and

AUC were approximately the same for all three models in all

regions.

Moreover, Fig. 6 shows that the variations of AUC of the

four seasons were not substantial. However, the values of CSI

and SS0 show that predictive skills of summer and spring were

lower than those of winter and fall when considering the test

results of pooling test data of all regions. Although the seasonal

variations of predictive skills in terms of CSI and SS0 differed

in regions, it was common that either winter or fall values stood

out as the best, and the lowest values among the four seasons

were often found in summer and spring in most regions.

However, region 12 was exceptional as the summer CSI was

more than 50% higher than the other three seasons. Moreover,

the Spearman correlations between the precipitation predic-

tions by radar nowcasts/NWP and observation were more

likely to be higher in fall and winter than in summer and spring,

but region 12 was a notable exception.

c. Influences of chosen predictors

This section summarizes the results of using three different

approaches [outlined in section 3c(3)] to analyze the influence

of the chosen predictors on the predictive skills of the

RF model.

1) FIRST APPROACH: RANKING IMPORTANCE BY

PERMUTATION OF PREDICTOR DATA

The heatmap of all predictors listed in Table 1 is shown in

Fig. 7. The heatmap indicates that some predictors were highly

correlated. The dendrogram in Fig. 7 shows the hierarchical

clustering of predictors based on the Spearman correlations of

the predictors. Three clusters were identified: 1) Fog AF and

RH2m, 2) LowC AF, RR6hr(NWP), and RR1hr(NWP), and

3) RR1hr(Radar) and tL(Radar). Furthermore, the heatmap

indicates that variables belonging to these three clusters had

higher Spearman correlation coefficients with the precipitation

observations (i.e., the predictand) than the other variables.

To remove strong collinearity to rank the importance of pre-

dictors, one variable was kept in each cluster. The predictors in

FIG. 7. (left) The heat map of all predictors listed in Table 1 and the precipitation observations for the dataset consisting of data from all

stations. (right) The dendrogram used to visualize the hierarchical clustering of the Spearman correlations of the predictors. The three

clusters of variables with strong collinearity are marked.
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Table 1 without strong collinearity were chosen as RR1hr(Radar),

RR6hr(NWP), SLP, T2m, MediumC AF, HighC AF, RH2m,

U10m, V10m, ABLT, WSNT, DD(1000–500mb), and K.

Moreover, a sequence of random numbers denoted as rand was

added as a reference predictor [as explained in section 3c(3)].

These predictors were used to train RF models, and Fig. 8

shows the ranking of predictor importance by permutation of

these predictors.

The results indicate that the most and second most im-

portant predictors were precipitation predictions by the

radar nowcasts and NWP. Specifically, RR1hr(Radar) was

at least 2.7 times more important than that of RR6hr(NWP),

FIG. 8. Ranking importance by permutations of uncorrelated predictors for the RF models trained by using the training datasets from

(top) all stations and (others) from stations in each region. The error bars indicate the range between the minimum and maximum values

of importance ranking obtained by repeating the process 10 times.
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and RR1hr(Radar) was at least 4.5 times more impor-

tant than that of the third variable for most training cases

except the model trained by data in region 12. Notably, the

differences in importance among the first three variables

were less pronounced for the model trained by data in

region 12.

2) SECOND APPROACH: SPEARMAN CORRELATION

BETWEEN THE PRECIPITATION OBSERVATIONS

AND PREDICTORS

This study has also asked whether meteorological variables

other than precipitation output from the NWP (AROME)

have positive influences on the predictive skills of the RF

model, despite their low importance. To answer this question,

bootstrapping was used [section 3c(3)] to qualitatively ex-

amine how the covariation between each predictor and the

precipitation observation can be related to the metrics of the

RF model.

The metrics POD, SR, CSI, SS0 and AUC were strongly

correlated to the Spearman correlation coefficients between

the precipitation observations and predictions by the radar and

AROME [i.e., RR1hr(Radar), tL(Radar), RR6hr(NWP),

and RR1hr(NWP)] as shown in Fig. 9. Some of these

metrics were also influenced by the Fog AF, LowC AF,

MediumC AF, RH2m, U10m, ABLT, DD(1000–500 mb),

and K (Fig. 10). However, the influences of these variables

were less pronounced than RR1hr(Radar), tL(Radar),

RR6hr(NWP), and RR1hr(NWP). Some of these variables

belonged to the same cluster of strong collinearity shown

in section 4c(1).

Some variables showed no apparent relationship between

the metrics of the RF model and the Spearman correlation

FIG. 9. Probability density functions (PDF) of various metrics (POD, SR, CSI, SS0, and

AUC) conditioned on the Spearman correlations between the precipitation observations and

the predictors: (first column) RR1hr(Radar), (second column) tL(Radar), (third column)

RR6hr(NWP), and (fourth column) RR1hr(NWP). The full names of the predictors are listed

in Table 1. The PDF is derived from a numerical experiment based on bootstrapping as de-

scribed in section 3c(3).
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coefficients between the variable and precipitation observa-

tion. These variables were the T2m, SLP, WSNT, V10m, and

HighC AF (Fig. 11). These variables also had the lowest

rankings in importance besides the random variable for the RF

All model, as shown in the top panel of Fig. 8.

3) THIRD APPROACH: PARTITION OF PREDICTORS

AND TEST DATA

A third approach has been used to study overall, whether

additional meteorological variables not directly related to

precipitation contribute to the predictive skills of the RF

model. The results of the third approach are shown in Fig. 12.

All predictors listed in Table 1 have been divided into three

subsets i, ii, and iii as described in section 3c(3). When all test

data were used, the RF model with only predictors of subset

iii (no precipitation) resulted in the lowest predictive skill.

The RF model with predictors of subsets i and ii (only pre-

cipitation) had the highest predictive skill among all RF

models with subsets of predictors. However, its predictive

skill was still lower than the RF model with all predictors

(Fig. 12a). The RF model with NWP only predictors ii and iii

was slightly better than the one with radar nowcast only

predictors of subset i. Overall, Fig. 12a shows that the metrics

of the RF model were improved by including subset iii

(weather variables other than precipitation) in addition to

predictors from subsets i and ii. However, the improvement

was limited, generally less than 15%.

The test data subsets, Test 1 and Test 2, represented the

best and worst scenarios of the precipitation predictions by

the radar nowcasts and NWP (Fig. 12b). In particular, Test

2 represented the situation when both the radar nowcast

and NWP failed to predict precipitation. In this situation,

the RF model that included subsets iii as predictors [i.e.,

RF(iii), RF(ii), (iii)] as predictors could not improve POD.

However, the SR was improved by approximately 55%

from that of the RF model with only subsets i and ii as

predictors.

d. Comparing precipitation predictions by RF with NWP
and radar nowcast

The bottom panel of Fig. 13 shows the comparison of

precipitation predictions by the two benchmarks: the ra-

dar nowcasts and NWP with the RF All model tested on

the dataset consisting of test data from all stations.

Overall, the metrics (POD, SR, CSI, and SS0) for evalu-

ating the RF model exceeded those for the radar nowcasts

and NWP. The increases of the metrics by using the RF

model from the two benchmarks were generally moderate

except for the SS0. In particular, the RF model increased

the value of SS0 from 20.08 (NWP) to 0.39. The com-

parison of bias also indicates that NWP overpredicted

precipitation whereas the RF model and radar nowcasts

underpredicted precipitation.

The top and middle panels of Fig. 13 show the comparisons

of metrics tested on the bootstrapped samples [section 3c(3)]

and test datasets of individual stations. The results further

demonstrate that 1) better predictive skills of the radar

nowcasts and NWP corresponded to better performance of

FIG. 10. As in Fig. 9, but for the predictors labeled at the top of each column.
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the RF model in general, and 2) the metrics of the RF model

(POD, SR, CSI, and SS0) exceeded those of the radar

nowcasts and NWP for most cases, but the improvement in

POD was less evident than other metrics. Moreover, the

comparison of bias indicates that the RF model under-

predicted precipitation (i.e., bias , 1) for approximately

87% of all stations. The radar nowcasts underpredicted

precipitation for about 75% of all stations. However, the

NWP overpredicted precipitation (bias . 1) for 95% of all

stations.

5. Discussion and conclusions

This study examines some potential factors related to

training an RF model for processing the precipitation predic-

tions from radar nowcasts and NWP. These factors are

1) typical strategies for addressing imbalanced datasets for bi-

nary classification (i.e., lowering the threshold probability for

classification, resampling the trainingdatasets), 2) the geographic

diversity and seasonality of the training datasets, and 3) the

choice of predictors.

The results in section 4a suggest that neither resampling the

training dataset nor decreasing the threshold probability from

p5 0.5 can improve the predictive skill of the RF model. Both

resampling and lowering the threshold probability redistribute

the test cases belonging to hit, false alarm, miss, and correct

rejection from that of No RS (p 5 0.5) by increasing the fre-

quency of the minority predictions. The positive contributions

(more hit and less miss) resulting from the increased minority

predictions are always counterbalanced by the negative con-

tributions (mostly the increased false alarms and decreased

correct rejections).

Furthermore, OS achieves the redistribution of the ele-

ments of the contingency table by adding repetitive predictive

information from the training data of the minority class,

whereas US deletes predictive information from the training

data of the majority class. The added and deleted training

cases contain either correct or incorrect information for

prediction. Therefore, the predictive skills of OS and US do

not necessarily exceed those of the original training dataset

(No RS) as shown by the results of the study. Figure 3 shows

that the SS0 of OS was approximately three times that of US,

and Fig. 4 shows that US altered the distribution of the four

elements of the contingency table more than OS did. The

results suggest that deleting correct predictions can have

more negative influences on predictive skills than adding in-

correct predictions.

The results of section 4b suggest that the differences among

the All model, the Region model, and the Local model are not

large enough to make any one of them noticeably more or less

accurate. Therefore, the geographic diversity of the training

dataset is not a decisive factor in influencing the predictive

skills of the RF model. This suggests that training one model

for a large region may not reduce the quality of the forecast

comparing to training separate models for separate regions or

individual stations.

FIG. 11. As in Fig. 9, but for the predictors labeled at the top of each column.
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The results of section 4c suggest that the predictive skill of

the RFmodel is driven by the skills of precipitation predictions

from the radar nowcasts and NWP. Although the RF model is

not as influenced by meteorological variables other than

precipitation, the results of section 4c(3) suggest that addi-

tional meteorological variables not directly related to pre-

cipitation can help to improve the RF model by reducing the

false alarm ratio thereby increasing the success ratio of pre-

dicting precipitation.

The seasonal variations of RF models’ predictive skills

generally correspond to the strength of the Spearman corre-

lations between the radar/NWP prediction and observations in

different seasons (Fig. 6). For NWP, it is well known that

summer weather events are more likely to be attributed to

local-scale convections, which may not be well resolved by

numerical weather models. Also, because the summer precip-

itation events caused by local-scale convections are often

short-lived, extrapolation of radar echoes may not respond

quickly enough to track and predict the precipitation system.

Therefore, predictive skills are better in cold seasons (winter

and fall) and worse in warm seasons (summer and spring) in

most regions, but region 12 is a notable exception. The results

suggest that both radar and NWP in this region perform poorly

during winter, even worse than in summer. One potential

reason could be that the region is relatively dry during winter

comparing to other regions. The uncertainty of precipitation

detection by radar and NWP can be greater with less frequent

precipitation events.

It is also noticeable that the CSI values of radar nowcasts in

nearly all regions exceed that of NWP, except in region 12

where the CSI of radar nowcasts is only around one-third of

that of NWP (Fig. 5). Moreover, the difference in importance

between the top two predictors (precipitation predictions by

radar nowcasts and NWP) is less pronounced in region 12 than

other regions (Fig. 8), which also suggests that the predictive

skills of radar nowcasts in region 12 is lower than in other

regions.

The above results suggest that radar nowcasts in region 12

are abnormal and could be outliers. In general, radar has ex-

ceptional advantages over other observing systems in now-

casting precipitation because it collects the information of

precipitation particles in three dimensions with a high spatial

and temporal resolution (Wang et al. 2017). However, rainfall

estimation by radar is also subject to errors of various sources,

such as beam shielding, ground clutter, anomalous propaga-

tion (Testik and Gebremichael 2010). The unusually low CSI

values and less prominent importance score of radar nowcasts

in region 12 suggest that radar measurements used for

FIG. 12. The predictors are partitioned into three subsets: (i) the precipitation predictions by the radar

nowcasts (1 and 2 in Table 1), (ii) the precipitation predictions by NWP (3 and 4 in Table 1), (iii) the variables

output from NWP other than precipitation (5–17 in Table 1). (left) The metrics (POD, SR, CSI, SS0, and

AUC) for evaluating the RF models with different combinations of predictor subsets i, ii, iii tested on the

dataset consisting of test data from all stations. (right) Various metrics for evaluating the same set of RF

models as in the left panel, but tested on two complementary subsets of all test data (Test 1 and Test 2). The

precipitation observations in Test 1 are correctly predicted by either the radar nowcasts or NWP and are

misclassified by both the radar nowcasts and NWP in Test 2. Error bars: the empirical 90% bootstrap con-

fidence intervals.

2476 WEATHER AND FORECAST ING VOLUME 35

Brought to you by UNIVERSITETSBIBLIOTEKET I | Unauthenticated | Downloaded 03/12/21 07:50 PM UTC



nowcasting precipitation in region 12 are subject to some

systematic errors. Further investigations are needed to ad-

dress the issue.

In conclusion, there are robust improvements in most of the

verificationmeasures tested in the study as shown in section 4d.

However, it is beneficial to further improve the RF model

by identifying additional useful predictors other than those

examined in this study in case of low predictive skills of radar

nowcasts and NWP, such as in region 12.
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bootstrapped samples (the filled contour) and test data from each station (the scatterplot), respectively. The error bars indicate the

empirical 90% bootstrap confidence intervals.
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