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A B S T R A C T

Objectives: A major open question, affecting the decisions of policy makers, is the estimation of the true
number of Covid-19 infections. Most of them are undetected, because of a large number of asymptomatic
cases. We provide an efficient, easy to compute and robust lower bound estimator for the number of
undetected cases.
Methods: A modified version of the Chao estimator is proposed, based on the cumulative time-series
distributions of cases and deaths. Heterogeneity has been addressed by assuming a geometrical
distribution underlying the data generation process. An (approximated) analytical variance of the
estimator has been derived to compute reliable confidence intervals at 95% level.
Results: A motivating application to the Austrian situation is provided and compared with an independent
and representative study on prevalence of Covid-19 infection. Our estimates match well with the results
from the independent prevalence study, but the capture–recapture estimate has less uncertainty
involved as it is based on a larger sample size. Results from other European countries are mentioned in
the discussion. The estimated ratio of the total estimated cases to the observed cases is around the value
of 2.3 for all the analyzed countries.
Conclusions: The proposed method answers to a fundamental open question: “How many undetected
cases are going around?”. CR methods provide a straightforward solution to shed light on undetected
cases, incorporating heterogeneity that may arise in the probability of being detected.
© 2020 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
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Introduction

Currently, health systems across the globe are challenged by the
ongoing Covid-19 pandemic. It is not a simple task to assess the
efficiency of current health systems in detecting, treating, and
preventing onward transmission of Covid-19, as the number of
undetected infections is by definition unknown. Understanding
the diffusion of the epidemic and assessing the number of real
infections of Covid-19 is crucial for implementing effective public
and health policies in tackling the virus. Unfortunately, official
reporting and statistics significantly underestimate the true
number since there exists a vast proportion of asymptomatic
* Corresponding author at: Dipartimento di Giurisprudenza, Economia, Politica e
Lingue Moderne, Libera Università Ss Maria Assunta, Via Pompeo Magno 22, 00192 -
Roma, Italy.
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infected patients including those with mild symptoms among all
infected individuals who are not detected. Indeed, the infected
individuals with low–mild symptoms are likely not going to get in
contact with the health care system and will also not be recorded in
official statistics.

For example, reports estimate the number of infected in Italy to be
around 3.5 times higher than reported (Tuite et al., 2020). Slightly
lowerestimateshavebeengivenforGermany(Ranjan,2020).Another
study discusses that Italy mostly focuses on testing in hospitals with
symptoms; hence, the roughly 50% asymptomatic are not covered by
this approach (Onder et al., 2020). The same percentage of
asymptomatic is also reported in Iceland (Shahan, 2020). The
asymptomatic individuals in fact can be a direct transmitter of the
virus and their unawareness can indirectly strengthen and increase
the transmission of Covid-19. Indeed, it seems fair to say that the
undetected cases are the major driver in spreading the disease as
detected cases are and will be systematically contained.
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Most of the existing analyses performed a secondary data
analysis from several sources of data already in the public domain
(Menkir et al., 2020). Because published estimates of the
distribution of Covid-19 vary widely, with estimates of the basic
reproduction number, R0, alone ranging from subcritical (i.e., <1)
to >3 (Giordano et al., 2020; Li et al., 2020a,b; Maugeri et al., 2020;
Zhao et al., 2020; Zhou et al., 2020), mathematical models of
infectious diseases, such as Susceptible-Infected-Recovered mod-
els, computing the theoretical number of people infected with a
contagious illness in a closed population over time, needs to be
evaluated on a range/grid of simulated values, each based on
different assumptions and adjusted based on data from different
geographic areas (Chen et al., 2020). Other much simpler (Nishiura
et al., 2020) or sophisticated (Flaxman et al., 2020) approaches are
also used to estimate the number of undetected cases, but with
large, almost unacceptable, uncertainty on the obtained estimates.

As mentioned above, several methods have been proposed to
estimate the undetected number of infections but none has yet
suggested to use capture–recapture methods, which is, in some
sense, the most obvious method to estimate a dark number. For
more details see Böhning (2016). Hence, the purpose of this
contribution is to propose a lower bound estimator for the number
of people affected by Covid-19 but not detected for various reasons,
the major one being that they are asymptomatic. In other words,
the aim is to estimate the size of an elusive, i.e., partially
unobserved, population. Capture–recapture (CR) methods are
designed to achieve this goal. In a nutshell, capture–recapture
methods use the capture history of individuals to estimate those
who have never been caught. The method suggested uses only the
frequencies of those caught once and those caught twice. In the
Covid-19 application, these are the ones newly identified at some
day and the ones caught twice are those newly identified the day
before (and surely still infected one day later, so that they are
considered as twice identified) subtracted by the number of deaths
at the given day. Hence, our proposal is developed using the
cumulative distribution of the observed cases and deaths. The use
of CR methods is not straightforward as we are dealing with an
open population, subject to deaths, and heterogeneity in the
probability of being detected. A modified version of Chao's
estimator under a geometric distribution, suitable for the setting
here, is introduced. It accounts for heterogeneity in a simple way
and can be easily computed starting from data collected by all
government sources. In this way, the policy makers can have
Table 1
Cumulative counts of infections with Covid-19 for Austria starting at t0 = 15 March
2020 to tm= 6 April 2020.

t 15/03 16/03 17/03 18/03 19/03 20/03 21/03 22/03
N(t) 860 1,018 1,332 1,646 2,179 2,649 2,922 3,582

t 23/03 24/03 25/03 26/03 27/03 28/03 29/03 30/03
N(t) 4,474 5,283 5,588 6,909 7,697 8,271 8,788 9,618

t 31/03 01/04 02/04 03/04 04/04 05/04 06/04
N(t) 10180 10,711 11,129 11,524 11,781 12,051 12,297

Table 2
Cumulative counts of deaths from Covid-19 for Austria starting at t0 = 15 March 2020 t

t 15/03 16/03 17/03 18/03 19/03 20/03 

D(t) 1 2 4 4 6 6 

t 27/03 28/03 29/03 30/03 31/03 01/04 

D(t) 58 68 86 108 128 146 
benchmark, statistically valid, estimates of the lower bound for the
total number of cases and, accordingly, adjust their interventions.

This short note is organized as follows. In Section “Basic
notation and date”, we introduce the basic notation and how we
are going to work with the cumulative distribution of observed
cases and deaths. Section “Statistical methods” provides all the
necessary details to obtain the estimates. An example to Austrian
data is provided in Section “Application to the Austrian situation”.
A discussion showing other interesting insights on several
European countries concludes.

Basic notation and data

We will denote with N(t) the cumulative count of infections at
day t where t = t0, . . . , tm. Hence DN(t) = N(t) � N(t � 1) are the
number of new infections at day t where t = t0 + 1, . . . , tm. Also, let
D(t) denote the cumulative count of deaths at day t where t = t0,
. . . , tm. t0 defines the beginning of the observational period and tm
defines the end. We assume the trivial assumption tm> t0, so that
the observational window is not empty. Again, we denote with DD
(t) = D(t) � D(t � 1) the count of new deaths at day t where t = t0 + 1,
. . . , tm. To illustrate, we look at these data (taken from https://
www.worldometers.info/coronavirus/country/austria/) for the
country of Austria as provided in Table 1 for the infections and
in Table 2 for the deaths.

Statistical methods

The question arises how this can be linked to a capture–
recapture approach. For this purpose we briefly review the
capture–recapture model we like to harness here. Suppose a
target population is sampled for units of interest repeatedly. Let X
denote the number of times a unit is identified in this sampling
process. Also, let px denote the probability of identifying a unit x
times where x = 0, 1, . . . . In the capture–recapture world the
following mixture model is quite common:

px ¼ uð1 � uÞx: ð1Þ
In (1) occurs the geometric distribution as a suitable count
distribution. Now we can find p0, the probability for missing a unit
of interest (infection) as p0 ¼ p21=p2, the ratio of the square of the
probability of identifying a unit twice divided by the probability of
detecting a unit once. Replacing p1 and p2 with the observed
frequencies f1 of those identified exactly once and f2 of those
identified exactly twice leads to an estimate of the hidden unitsbf 0 ¼ f 21=f 2. The validity of the estimate depends on the validity of
the geometric distribution (1). To weaken this assumption we
allow the parameter u to vary in the population with arbitrary
unknown distribution f(u) to reflect varying identification proba-
bilities across the target population:

px ¼
Z
uð1 � uÞxf ðuÞdu: ð2Þ

Often the Poisson distribution is used in (2) instead of the
geometric distribution. However, we prefer to use the latter as we
o tm= 7 April 2020.

21/03 22/03 23/03 24/03 25/03 26/03
8 16 21 28 31 49

02/04 03/04 04/04 05/04 06/04
158 168 186 204 220

https://www.worldometers.info/coronavirus/country/austria/
https://www.worldometers.info/coronavirus/country/austria/


Table 3
Estimated hidden and total cases of Covid-19 for Austria and various sizes of the
observational window ranging from t0 = 15 March 2020 to t0 = 18 March 2020; the
second part of the table contains the associated proportions of total population in
Austria (8.859 million).

t0 Hidden cases Total cases 95% CI

15 17,264 29,561 28,412–30,709
16 16,638 28,935 27,800–30,069
17 16,326 28,623 27,491–29,754
18 15,420 27,716 26,602–28,831

15 0.0019 0.0033 0.0032–0.0035
16 0.0019 0.0033 0.0031–0.0034
17 0.0018 0.0032 0.0031–0.0034
18 0.0017 0.0031 0.0030–0.0033
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think of the geometric distribution as a Poisson distribution mixed
with an exponential density, hence the geometric is able to
incorporate already some of the likely present heterogeneity in the
population.

We assume that model (2) is valid which we consider as a weak
assumption. Then, using the Cauchy–Schwarz inequality for
moments, it is possible to show that for the probability p0 of
missing a unit of interest the following inequality holds:

p0 � p21
p2

: ð3Þ

Replacing p1 and p2 on the right-hand side of (3) with the observed
frequencies f1 of those identified exactly once and f2 of those
identified exactly twice leads to the lower bound estimate of Chao
(Chao, 1987, 1989; Chao and Colwell, 2017):

bf 0 ¼ f 21
f 2

: ð4Þ

Here f0 is the frequency of units that remains unobserved or hidden
for which (4) is a lower bound estimate. In the case of no
heterogeneity, (4) is a direct estimate of f0. Chao's lower bound has
been also generalized to include covariate information such as
regional information (Böhning et al., 2016) but we do not follow up
on this aspect at this stage.

The idea is to apply this estimator (4) day-wise. We take an
arbitrary day t. At this day we have DN(t) new infections. This will
be viewed as f1, the infected people identified just once. If we look
at DN(t � 1), then this is the count of new infections the day before.
But these will still be infected at day t unless they decease. So, f2
corresponds to DN(t � 1) � DD(t). We can ignore the number of
recoveries as we are looking at infections which are very recent
(notified at day t or t � 1). Hence we are able to give the estimate for
the number of hidden infections at day t as

HðtÞ ¼ ½DNðtÞ�2
DNðt � 1Þ � DDðtÞ ð5Þ

and global estimate of hidden infections is achieved by summing
up over all days in the observational period:

Ht0 ¼
Xtm

t¼t0þ1

½DNðtÞ�2
DNðt � 1Þ � DDðtÞ : ð6Þ

We will use a bias-corrected form of (5) suggested by Chao (1989)
and given as

Ht0 ¼
Xtm

t¼t0þ1

DNðtÞ½DNðtÞ � 1�
1 þ DNðt � 1Þ � DDðtÞ : ð7Þ

We define the understanding that DN(t � 1) � DD(t) is set to 0 if it
becomes negative, in other words we use max{0, DN(t � 1) � DD
(t)}. The final estimate of the total size of infection is then given as
what has been observed at the end of the observational window tm
and the estimate of the hidden numbers:

total size of infections ¼ NðtmÞ þ Ht0 : ð8Þ
We need to address the uncertainty involved in the estimator

(7). A variance estimate of (5) has been provided in Niwitpong et al.
(2013) and is given here as

dVarHðtÞ ¼ ½DNðtÞ�4
½1 þ DNðt � 1Þ � DDðtÞ�3

þ 4½DNðtÞ�3
½1 þ DNðt � 1Þ � DDðtÞ�2

þ ½DNðtÞ�2
½1 þ DNðt � 1Þ � DDðtÞ� ; ð9Þ

so that the final variance estimate of Ht0 is given as

Xtm
t¼t0þ1

dVarHðtÞ ð10Þ

assuming stochastically independence of the H(t) terms over
observation time t. A 95% confidence interval can then be
constructed by means of

Ht0 � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXtm
t¼t0þ1

dVar
vuut HðtÞ:

Application to the Austrian situation

The results are provided in Table 3 for the country of Austria
which includes estimates of the hidden and total (observed +
hidden) cases with 95% confidence intervals. At the 6th of April the
number of infections was 12,297 which is the observed number.
We have chosen the 15th of March as beginning of the
observational period. However other dates are possible as well
so that we looked at estimates in dependence of the beginning of
the observation period. It can be seen that results change slightly.
Of course, if the window is made too small estimates of hidden
numbers will only refer to observations made in this window. The
major question arises if the estimates of Table 3 are realistic and do
they represent a reasonable estimate of the true size of the
undetected infections. The best comparison would give a
representative sample of the target population where sampling
is done to find infection with a valid diagnostic test. For Austria we
have an independent study on the size of the Covid-19 outbreak
(https://www.sora.at/nc/news-presse/news/news-einzelansicht/
news/covid-19-praevalenz-1006.html). The study was led by
Günther Ogris and Christoph Hofinger (SORA Institute for Social
Research and Consulting) and is known as the dark number study.
The study was rolled out during the 1 April and 6 April 2020 and
sampled 1544 persons across Austria covering all ages up to 94
years. The study used a PCR-test for diagnosing infection which is
assumed to be accurate. According to the study, the proportion of
infected people was 0.0033. If this proportion is applied to the
population of Austria, as study in media release points out, during
the study period there were 28,500 infected persons in Austria. The
study estimates that we have provided match very well with the
results of the study, independent where we start the observational
window. The dark number study also reports a 95% confidence
interval for the proportion of infected persons which ranges from
0.0012 to 0.0076, corresponding to 10,200 and 67,400 infected
persons, respectively. Clearly, the capture–recapture estimate is
included in this large interval but as we are able to utilize much
larger routinely collected data on infected persons, the uncertainty

https://www.sora.at/nc/news-presse/news/news-einzelansicht/news/covid-19-praevalenz-1006.html
https://www.sora.at/nc/news-presse/news/news-einzelansicht/news/covid-19-praevalenz-1006.html


Figure 1. Ratio of total to observed case as a function of the end of the observational
period starting at day 5 which is the 20th of March 2020; the solid line is a LOWESS
smoother.

Table 4
Estimated hidden and total cases of Covid-19 for several European countries, at 18/
04/2020.

Country Hidden cases Total cases 95% CI Total/observed

Italy 211,768 384,201 381,649–386,762 2.23
Germany 178,451 315,890 312,429–319,350 2.30
Spain 232,057 423,783 421,112–426,454 2.21
UK 149,150 257,842 255,482-260,202 2.37
Greece 2,901 5,108 4,718–5,499 2.31
Austria 17,264 29,560 28,412–30,709 2.40
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provided by the capture–recapture approach is considerably
reduced which is reflected in the relative short confidence
intervals. The ratio of the total estimated cases to the observed
cases is interesting in itself. A ratio of 2.5 would mean that for every
observed patient there are 1.5 infected persons unseen. The reason
for this can be manifold as these unseen cases might be without
symptoms or show very mild signs of infection. It is also interesting
to investigate how this ratio changes over the duration of the
pandemic. In Figure 1 we see a scatter-plot of this ratio against a
varying end point of the observational period starting at day 5
(20th of March) and ending at day 23 (6th of April). As the ratio
shows quite a bit of random variation, in particular for early days,
we have also included a LOWESS smoother. It becomes clear in
Figure 1 that the ratio stabilizes around day 15 as the end of the
observational period which can be also taken as guidance for
choosing the size of the observational period.

Discussion

The proposed method answers to a fundamental open question:
“How many undetected cases are going around?”. Of course, we
provide a lower bound, but this information may be treated as a
starting point whenever interventions and tools to dampen the
spread of the epidemic are rolled out. CR methods are easy to apply
in practice, and this is one of the merits of the method. Moreover,
we simply use time series of cumulative data, readily available
from official sources. Given that individual data are not publicly
available, CR methods provide a straightforward solution to shed
light on undetected cases, incorporating heterogeneity that may
arise in the probability of being detected simply considering the
widely known and used geometric distribution.

We have applied the capture–recapture approach using Chao's
estimator for large entities such as countries in Europe. However,
the approach can be also utilized to indicate regional variation, in
other words application to smaller geographical or administrative
units. In addition, if age-specific numbers are provided Chao's
estimator can be applied in an age-stratified way.

Another question relates to the size of the observational period.
In the case, study we have used 3 weeks as this would cover a
period where a person infectious at the first day might still be so at
the end of the period. Hence we are trying to estimate the hidden
population which is infectious and not a mix of persons being
infectious and persons having passed the infection. An interesting
thought which was contributed by an anonymous referee was to
take a period starting from the very first case and ending with the
very last one. Applying the estimator would give an estimate of the
size of the population who has passed the infections (and
potentially have reached immunity).

The example provided here relies on Austrian data, but many
other countries can be analyzed even if there are not benchmark
survey studies to compare with. For example, taking data up to 17/
04/2020 from https://github.com/open-covid-19/data on several
European countries and considering data from the day which we
record the first death, we obtain the estimates of undetected cases
for Italy, Germany, Spain, UK and Greece (see Table 4). The last
column in Table 4 shows the ratio of the total estimated cases to the
observed cases. There is a remarkable stability around the value of
2.3.

All the obtained estimates are surrounded by some uncertainty.
Confidence intervals for the modified Chao's lower bound have
been provided and are seemingly reliable, in particular compared
to those presented in other studies. We emphasize that the
estimates provided are conservative, in the sense that they provide
lower bounds on the size of undetected infections. However, we
have provided some evidence such as in the situation of Austria
that these lower bounds are not far away from the true size of
infection in the target population. This needs to be followed up by
further comparisons with representative sampling studies on
target population infection.

This is just a first evidence on the use of capture–recapture
methods to study Covid-19 data. Another question is still open: “is
there a way of estimating an upper bound for the number of
undetected cases?”. Again capture–recapture methods could be
implemented to provide an answer to this question and help policy
makers to evaluate the Covid-19 epidemic situation locally and at
the current phase of its development.
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