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The reconstruction of past climate variability using physical and geochemical parameters

from lake sedimentary records is a well-established and widely used approach. These

geological records are also known to contain large and active microbial communities,

believed to be responsive to their surroundings at the time of deposition, and proceed

to interact intimately with their physical and chemical environment for millennia after

deposition. However, less is known about the potential legacy of past climate conditions

on the contemporary microbial community structure. We analysed two Holocene-length

(past 10 ka BP) sediment cores from the glacier-fed Ymer Lake, located in a highly

climate-sensitive region on south-eastern Greenland. By combining physical proxies,

solid as well as fluid geochemistry, and microbial population profiling in a comprehensive

statistical framework, we show that the microbial community structure clusters according

to established lithological units, and thus captures past environmental conditions and

climatic transitions. Further, comparative analyses of the two sedimentary records

indicates that the manifestation of regional climate depends on local settings such as

water column depth, which ultimately constrains microbial variability in the deposited

sediments. The strong coupling between physical and geochemical shifts in the lake and

microbial variation highlights the potential of molecular microbiological data to strengthen

and refine existing sedimentological classifications of past environmental conditions and

transitions. Furthermore, this coupling implies that microbially controlled transformation

and partitioning of geochemical species (e.g., manganese and sulphate) in Ymer lake

today is still affected by climatic conditions that prevailed thousands of years back in time.

Keywords: palaeoclimate, Greenland, microbial ecology, stratification, climate sensitivity, microbial stratification

1. INTRODUCTION

Our ability to reconstruct past climate relies on the use of palaeoclimate proxies. These fingerprints
of past climate conditions commonly comprise characteristics such as grain size measurements,
mineral composition, organic matter content, geochemical signals tracking redox conditions, or
biological signatures like plant spores and lipids, all of which are preserved in continuous geological
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archives like marine and lacustrine sediment sequences (e.g.,
Mayewski et al., 2004; Wanner et al., 2008; Sundqvist et al., 2014;
Davies et al., 2015; Domaizon et al., 2017).

Alongside these conventional proxies, complex microbial
communities are present in the sediments. Microbial cells that
make up these communities are deposited on the sediment
surface and buried over time (Starnawski et al., 2017), and
the community composition is influenced by a number of
environmental conditions that are ultimately controlled by the
prevailing climate conditions at the time of deposition. For
example, correlations are found between microbial community
structures and stratigraphic variability in marine sediments that
reflect changing redox conditions and organic matter availability
(Inagaki and Nealson, 2006; Inagaki et al., 2015; Orsi et al.,
2017; More et al., 2019). In addition, microbial abundance
and activity in marine sediments are known to correlate with
lithological characteristics resulting from changing depositional
environments (Parkes et al., 2005; Picard and Ferdelman, 2011;
Zinke et al., 2019). Similar connections have been observed in
sediments from lacustrine settings, highlighting the important
roles of catchment hydrology, lake water geochemistry and
depositional conditions in controlling microbial populations
(Vuillemin et al., 2016, 2018).

These findings tentatively suggest that microbial communities
in marine and lacustrine sediment records may provide
additional constraints to past climate reconstructions. However,
at present we do not know how to translate their structure
or composition into specific environmental conditions, thus
disqualifying them as proxies sensu stricto. In addition, parts
of the microbial population continue to be active and the
relative and absolute abundances of individual taxa change
over geological time (e.g., Parkes et al., 2005; Kirkpatrick
et al., 2019; Zhao et al., 2019). This dynamic nature makes it
even more challenging to link past climate conditions with a
specific microbial population. Furthermore, the molecular signal
typically used to infer the community structure could be distorted
as it might comprise a combination of active, dormant and dead
cells as well as extracellular DNA fragments (Pedersen et al., 2014;
Domaizon et al., 2017; Ahmed et al., 2018; Ramírez et al., 2018;
Ellegaard et al., 2020).

Here, we investigate links between palaeoclimate,
environmental conditions and microbial community structure
in two sediment cores from the seasonally ice-covered and
glacier-fed Ymer lake on southeast Greenland. This study
location is subject to rapid ongoing surface warming, caused
by the amplified climate response of the Arctic (Serreze and
Barry, 2011) and exposed to a number of climate-sensitive
processes that are specific to Arctic lakes, such as ecological
regime shifts, lake ice-climate feedbacks and changes in
glacial erosion (Smol et al., 2005; Brown and Duguay, 2010;
van der Bilt et al., 2016). Assuming a positive correlation
between microbial response and climatic shifts, these major
changes are likely to generate a microbial community structure
in the sediment record that captures past environmental
conditions. Our aim is to add data to the current body
of literature in order to provide further constraints on
the subject and investigate if the composition of buried

microbial populations reflect climatic conditions at the time
of deposition.

Our study builds on a previous palaeoclimate reconstruction
based on sediment proxies by van der Bilt et al. (2018), and adds
new data on pore water geochemistry, and microbial community
structure. By applying multivariate statistics on these parameters,
we show that the microbial population structure captures
and reflects previously inferred shifts in palaeoenvironmental
conditions at Ymer Lake. Using contrasting sedimentary records
for the lower and upper basins of the lake, we show that
while this reflection is captured irrespective of local settings,
basin-specific features like water column depth and fluvial
input nevertheless constrain the specific community in each
sediment core.

2. MATERIALS AND METHODS

2.1. Background and Regional Setting
Our study site, the informally named Ymer Lake, is located
on Ammassalik Island near the coast of South-East Greenland
(Figure 1A) (65.37oN, 37.43oW). The lake measures 0.29 km2

and comprises two basins: the deep (max. 22 m) Upper Ymer
Lake and the shallow (max. 10 m) Lower Ymer Lake (Figure 1B).
The lake receives water from twomain sources: the 0.9 km2 Ymer
Glacier, perched in a cirque to the south with an inlet to the
lower lake basin, and a much larger (3.5 km2) unnamed up-valley
lake connected to the upper lake basin via a stream. More details
about the catchment can be found in Supplementary Section 1.1

and in van der Bilt et al. (2018). We analysed one sediment core
from each basin. A 248 cm long core from the Upper Ymer Lake
(UYL-P1-14; abbreviated UYL) and a 228 cm long core from
the Lower Ymer Lake (LYL-P1-14; abbreviated LYL). Henceforth,
we will refer to the composite data of LYL and UYL as YL.
Both cores were retrieved in July 2014 using a modified piston
corer with an 11 cm diameter plastic coreliner. The cores have
previously been used to reconstruct regional Holocene climate
variability, and four lithological units have been identified (van
der Bilt et al., 2018). In short: Unit 4 (10–9.5 cal. ka BP is
characterised by deglaciation of the catchment area. Unit 3 (9.5–
5 cal. ka BP), whose onset is marked by a Glacial Lake Outburst
Flood (GLOF) deposit, is interpreted as the warm Holocene
Optimum. Unit 2 (5.0–1.2 cal. ka BP) was deposited when the
catchment became more prone to avalanches and flooding in
response to Neoglacial climate deterioration. The transition to
unit 1 (1.2–0 cal. ka BP) is marked by resumption of glacial
activity (erosion) in the catchment as the still-present cirque
glacier formed.

2.2. Sampling and Storage
The core was stored at 5◦C for 2 months before it was split
in halves and analysed by XRF scanning. After additional
storage for 4 months, microbial and pore water sampling
was performed. While we acknowledge that storage may have
impacted our samples, the relatively high concentrations of
dissolved Mn2+ and Fe2+ (Figure 2) throughout both cores
suggest little or no reaction with oxygen during storage,
which otherwise could drastically change both community
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FIGURE 1 | (A) Overview of the catchment area showing Ymer Lake (cyan),

Ymer Glacier and the larger, unnamed up-stream lake. Embedded: Regional

map showing Greenland and nearby land. Embedded regional map by

Tentotwo, Wikimedia Commons CC BY-SA 3.0. (B) Bathymetric map of Ymer

Lake. One piston core was gathered from each basin of Ymer Lake. 1B is

modified from van der Bilt et al. (2018) with permission. (C) Correlation of

sedimentation rates based on 14 C-dating of LYL (Betula leaves, n = 13) was

performed using AnalySeries 2.0.8. (Paillard et al., 1996) based on linear

interpolation of n = 59 tie points. Blue dots mark dated depths in LYL.

structure and pore water composition. Nevertheless, we choose
to remain very cautious about drawing inferences from
presence to function for any specific microbial group in
our data.

2.3. Microbial Sampling, DNA Extraction,
Sequence Processing, and Quantification
The two cores were subsampled at regular depth intervals (17
from LYL and 14 from UYL, see Table 1 for details) using
sterile cut-off syringes. Approximately 0.5 g of sediments was
used to extract genomic DNA, applying the FastDNA R© spin
kit for soil from MPBIO according to manufacturer protocol.
Two blank extractions were included to assess contamination.
16S rRNA gene amplicon libraries were prepared as follows:
Extracted DNA was subjected to PCR amplification in duplicate
using the primers Uni519F (5’-CAGCMGCCGCGGTAA-3’)
and 806R (5’-GACTACHVGGGTATCTAATCC-3’). Subsequent
library preparation followed a previously described protocol
(Jorgensen and Zhao, 2016). All libraries were pooled in a 1:1
ratio based on DNA concentration and sequenced using an Ion
Torrent Personal Genome Machine (Life Technology, USA).

After sequencing, all reads were filtered and clustered denovo
at 97% similarity into Operational Taxonomic Units (OTUs)
using the USEARCH and UPARSE algorithms (Edgar, 2010,
2013). Sequences were trimmed to 220 base pairs. Taxonomic
classification of OTUs was performed using the program CREST
with the SilvaMod reference database (Lanzen et al., 2012) built
upon Silva SSURef nr release 106 (Pruesse et al., 2007), using
the Lowest Common Ancestor algorithm. As contamination
control, two blank samples were included in the pipeline,
one for each core. 1) If an OTU in the sample data was
represented by 20 sequences or less while being present in
the blank, or 2) if the number of sequences in the sample
data was less than one order of magnitude higher than the
number of sequences in the blank, the OTU was discarded. This
approach roughly follows previously published contamination
control (Lee et al., 2015). Singletons were then removed, and
samples were subsampled (rarefied) to 15058 reads, the lowest
read count in any one sample. For further details regarding
preparation of the 16S rRNA gene amplicon library, sequence
processing, and taxonomic classification, we refer the reader to
Supplementary Section 1.2.

2.4. Physical and Geochemical Analyses
The acquisition of down-core physical proxy variables and XRF
elemental profiles is described in-depth by van der Bilt et al.
(2018). Pore water was collected from regular depth intervals
(see Table 1) using 0.2 µm Rhizon filters. A total of 15 samples
from LYL and 13 from UYL were extracted and each split into
four aliquots. One aliquot was analysed for pH using a mobile
Metrohm 826 pH meter and alkalinity using a Metrohm 888
Titrando automatic titrator. A second aliquot was used for the
measurement of nutrients (NH+

4 , NO
2−
3 , PO3−

4 ) by photometric
methods using a 4-channels Continuous Flow Analyzer (Seal
Analytical Quaatro), and a third aliquot was analysed for anions
(SO2−

4 , Cl−) using an ion chromatograph (Metrohm). The fourth
aliquot was acidified to 2% HNO3 and analysed for cations
a Thermo Scientific iCAP 7600 inductively-coupled plasma
optical emission spectrometer (ICP-OES) with Scandium as
internal standard. Precision was better than 2% for all major
elements reported in this study. From here on, the physical and
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FIGURE 2 | All pore water variables used in the study, including pH and alkalinity. Blue dashed line: LYL; red line: UYL. Horisontal dotted and spaced dotted lines refer

to lithological separation into units for LYL and UYL, respectively.

geochemical variables are collectively referred to as context data.
All context variables, in both high and low resolution, can be seen
in Figures 2, 3, and a complete list of variables is provided in
section 2.6.1.

2.5. Age-Depth Correlation
LYL was previously dated based on macrofossil (Betula leaves;
n = 13) 14C ages as reported by van der Bilt et al. (2018). This
chronology was used to produce an age-depth correlation with
UYL and to align lithological units between the two cores. The
correlation was established using version 2.0.8 of the AnalySeries
software package (Paillard et al., 1996), and tie-points (n = 59)
were selected by linearly interpolating Magnetic Susceptibility
(MS) and Loss-on-Ignition (LOI) measurements (see section
2.6.1), as well as XRF-based Mn, Ti, and Ca counts.

2.6. Ordination and Clustering
To compare the microbial community structure’s ability
to capture palaeoclimate transitions to that of physical or
geochemical proxy data and pore water composition, we
performed a number of ordination and clustering analyses.

2.6.1. Variable Selection and Sample Coercion
In line with the work of van der Bilt et al. (2018), we selected
mean grain size, LOI, iron/titanium ratio (Fe/Ti), Dry Bulk
Density (DBD), andMS as parameters to replicate the established
separation into lithological units. We used conservative Ti counts
to track minerogenic input (Bakke et al., 2009). Additionally,
we included XRF-counts of iron (Fe-XRF) and manganese (Mn-
XRF), as these may capture shifts in stratification brought about
by, for example, changes in seasonal ice cover (Cuven et al., 2010).
Finally, we included the XRF ratios Mn/Ti and Si/Ti, which may
signify changes in redox-state (Davies et al., 2015).

To evaluate the ability of pore water to corroborate these
proxy variables in detecting past climate transitions and constrain
microbial response to past climate variability, we selected species
and variables identified as biologically relevant and/or sensitive
to microbially-mediated diagenesis. These include NH+

4 , NO
2−
3 ,

PO3−
4 , SO2−

4 , and dissolved iron (Fe2+), manganese (Mn2+), and
silicon (Si4+), in addition to pH and alkalinity (Berner et al., 1970;
Froelich et al., 1979; Zeng et al., 2009; Glombitza et al., 2013).

Microbial data, i.e., all taxonomically assigned OTUs, were
grouped on phylum, class, order and OTU levels. On all
taxonomic levels, unassigned sequences were binned and labelled
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TABLE 1 | Adjusted sampling horizons for microbial community composition and

pore water extraction.

Microbial

horizon

Pore water

horizon

Microbial

horizon

Pore water

horizon

LYL [cm bsf] LYL [cm bsf] UYL [cm bsf] UYL [cm bsf]

(5) (5)

10 8 10 8

20 15 20 15

30 24 30 25

40 36 40 35

50 46 50 45

75 69 75 70

90 86 100 95

105 103 125 120

115 122 152 149

140 144 177 174

150 157 201 199

163 167 227 224

179 182 246 242

189 192

213 217

(223)

To enable statistical comparison, some samples (in parentheses) were removed prior to

constrained analyses. For each core, adjacent samples correspond in statistical analyses.

bsf, below surface.

“No hits.” We then used the resulting taxonomic compositional
distribution to investigate the microbial community’s ability to
capture/reflect palaeoclimate transitions. Multivariate analysis
was performed using Principal Component Analysis (PCA). PCA
was selected over non-Metric MultiDimensional Scaling (nMDS)
to enable addition and interpretion of context data as response
variables, see section 2.6.2 below for details.

To allow statistical comparison between the different data
types, we coerced all data to the number of pore water samples
that were sampled at the lowest resolution (Table 1). Physical
and solid geochemical parameters were recorded at higher
resolution than other data and were therefore averaged over
a set of nearest neighbours aligned to respective microbial
sampling horizons. From now on, samples are referred to by
their core, plus sample depth in centimetres. For one horizon
(UYL 246), we could not obtain a complete set of neighbours, so
downstream analysis was performed on the incomplete set. See
Supplementary Section 1.3 for details, including a complete list
of neighbour omissions.

2.6.2. Statistical Methods
To resolve the closed composition of the microbial data and
remove any forced correlations, we log-transformed with zero-
replacement all columns on all levels (Aitchison, 1982; Martín-
Fernández et al., 2003). The context data was subjected to
column-wise Hellinger transformation to ameliorate variability
(Legendre and Gallagher, 2001). PCA was performed on phylum,
class, and order levels. To determine the subset of context
variables that best explain the variance expressed by themicrobial

community, henceforth referred to as the minimum adequate
model, we used the iterative ordistep function (both forward and
backward selection, otherwise default settings) in the R package
vegan (Oksanen et al., 2018). In order to ensure the selection
of a robust minimum adequate model, we ran the function 100
times for each core and taxonomic level. Selected models were
subsequently controlled for variance inflation using the vif.cca
function in vegan. We then performed Redundancy Analysis
(RDA, a constrained version of PCA; van den Wollenberg,
1977) on the microbial data using the selected minimum
adequate model variables as constraints to determine their
explanatory power. Hierarchical Cluster Analysis with Euclidean
distance and the square root of Ward’s agglomeration criterion
was used to assess sample clustering based on the two first
resultant eigenvectors. All statistical analyses were performed
in the R statistical programming environment (R Core Team,
2018). Analysis of similarities between groups of samples was
performed using the anosim function, with 9999 permutations,
in the R package vegan (Oksanen et al., 2018). In order to
quantify the compliance between unconstrained (PCA) and
constrained (RDA) analyses, we correlated their primary and
secondary eigenvectors using Spearman’s rho (ρ). In addition,
we correlated the variance in the unconstrained microbial
community structure with variance in selected geochemical
variables to quantify their relationship, as previously done by
Jorgensen et al. (2012).

3. RESULTS

3.1. DNA Sequencing Analysis
After pre-processing, 2932 OTUs (97% similarity) remained
in the dataset. We identified 2092 OTUs in LYL and 2495
in UYL, of which 1655 were present in both cores. OTUs
were binned into 54 phyla, 97 classes, and 192 orders.
Complete OTU tables for the aforementioned taxonomic
levels, including blanks and discarded samples, are available
in the supplement, as is a plot showing the distribution
of the classes surpassing 1% relative abundance (Figure S1).
Bacteria constituted 91.7% of all reads, Archaea 6.9%, Eukaryota
0.1%, and 1.3% could not be assigned to any domain.
Proteobacteria was the most abundant bacterial phylum
(24.7%), followed by Planctomycetes (11.2%), Chloroflexi
(10.6%), Aminicenantes, previously Candidate Division OP8
(8.0%) and Atribacteria, previously Candidate Division OP9
(6.9%), respectively. The most abundant bacterial classes
were Deltaproteobacteria (17.6%), Phycisphaerae (8.5%), and
Chloroflexi Subdivision 6 (6.3%). Crenarchaeota was the most
abundant archaeal phylum (5.6%), and the Bathyarchaeota,
previously Miscellaneous Crenarchaeotic Group (5.6%) was the
most abundant archaeal class. 17 phyla, 15 classes and 13 orders
exceeded 1% relative abundance. We could assign 98.7% of all
reads on phylum level, 76.7% on class level, and 53.6% on
order level.

3.2. Physical and Geochemical Analyses
Dry Bulk Density (DBD) profiles are highly similar between
UYL and LYL in units 4 (high values; ca. 10–9.5 cal. ka BP)
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FIGURE 3 | Physical and XRF proxy variables used in the study, plus additional redox-sensitive ratios Mn/Ti and Si/Ti. Mean is mean grain size. Blue line: LYL, high

resolution; red line: UYL, high resolution; cyan line: LYL, upscaled resolution; orange line: UYL, upscaled resolution. Horisontal dotted and dashed lines refer to

lithological separation into units for LYL and UYL, respectively. For XRF data, upscaling was performed using a running average of n = 50 for neighbours on either side

of the center point. For DBD, LOI and MS, n = 4 and for mean grain size, n = 2.

and 3 (abrupt drop to low and stable levels; ca. 9.5–5.0 cal.
ka BP), as seen in Figure 3. In unit 2 (ca. 5.0–1.2 cal. ka
BP) and 1 (ca. 1.2–0 cal. ka BP), DBD values in LYL are
significantly lower than in UYL, and the difference is highest
around the onset of glacier growth in the catchment area (i.e.,
transition from unit 2 to unit 1). The inverse of DBD is true
for Loss-On-Ignition (LOI) (Figure 3): Minima occur in unit 4
and 1, and a maximum around the transition from unit 2 to
unit 3. LOI is approximately 6% higher in LYL than in UYL.
Magnetic Susceptibility (MS) levels remain similar for both cores
throughout, including concurring increases in unit 1 and 4.Mean
grain size doubles on average, from 19.5 ± 4.1 µm in to 39.6 ±

16.2 µm, for unit 2 of LYL. This behaviour is not seen in UYL,
where the measurements are stable (22.3 ± 6.1 µm) except for
two extreme observations in unit 1 and 4, respectively.

Mn-XRF remains constant and largely invariant throughout
both cores (Figure 3). Fe-XRF, on the other hand, displays a
pattern similar to that observed for LOI; Concurring profiles
throughout unit 4 and 3, before counts and variability drastically
increase in LYL around the transition between unit 3 and 2,
whereas UYL retains its trajectory towards slightly elevated levels

in unit 1. Levels for the immobile minerogenic indicator Ti
diverge in unit 2 and partly in unit 1, with a marked drop-off
in LYL.

Total NO (nitrate plus nitrite) concentrations peak in both
the top and bottom of UYL, reaching a maximum of 21.8
µM in unit 4. Concentrations in LYL remain comparatively
low, never surpassing 1.7 µM. SO2−

4 levels reach maxima of
3.77 mM at 122 cm in LYL and 5.41 mM at 120 cm in
UYL, roughly corresponding to the transition between unit 2
and 3 in both cores (Figure 2). Further down-core, a steep
decline in concentration coincides with an increase in alkalinity
throughout unit 3 and 4 (Figure 2). PO3−

4 exhibits a similar
pattern, fluctuating between 1 and 6 µM throughout units 1
to 3 before peaking at around 20 µM in unit 4 in both cores.
Mn2+ and Fe2+ concentrations decline to less than 1 µM in
unit 4 in both cores, but Mn2+ concentration is initially much
higher in UYL (max 177 µM) than in LYL (max 79.4 µM), and
vice versa for Fe2+ (max 795 µM in LYL vs. 334 µM in UYL).
Non-zero concentrations of dissolved Mn2+ and Fe2+ at the
sediment/water interface in both core indicate that bottomwaters
in both LYL and UYL are anoxic.
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3.3. Age-Depth Correlation
Linear interpolation (section 2.5), correlating UYL with already
dated LYL, indicates that sedimentation rates have remained
nearly identical in UYL and LYL during the last millennium,
placing the boundary between unit 1 and 2 at around 35 cm
sediment depth in both cores (Figure 1C). Sedimentation rate
was higher in LYL than in UYL between 1.0 and 4.0 cal. ka
BP. By this token, the transition boundary between unit 1 and
2 in UYL is set at 120 cm (130 cm in LYL). Between approx.
4–9 cal. ka BP the ratio of sedimentation in UYL and LYL lies
stably around 3:2. Consequently, the transition between unit 3
and 4 in UYL is set at 238 cm (218 cm in LYL), implying that
there are no unit 4 samples in LYL, for which 213 cm is the
deepest horizon.

3.4. Unconstrained Ordination
3.4.1. Physical and Geochemical Variables
Results from ordination and cluster analysis using the proxy
variables DBD, LOI, MS, mean grain size, Fe-XRF, Mn-XRF, Ti,
Fe/Ti, Mn/Ti, and Si/Ti on LYL, UYL, and YL are shown in
Figure 4. For LYL (Figure 4A), we see distinct groups for unit
2 and unit 3, however, these are not fully separated from unit 1
samples in the associated cluster dendrogram (Figure S2A). The
relative within-unit variability was higher in UYL (Figure 4B),
resulting in dendrogram clusters (Figure S2B) not capturing
the sediment gradient as clear-cut as for LYL. UYL 246 stands
out as an extreme observation, indicating a very different
sedimentological regime in unit 4. The composite of both cores,
YL (Figure 4C and Figure S2C), shows that whereas unit 3 is
very similar between the two cores, the remaining samples do not
overlap in their clustering, with the highest discrepancy in unit 2
and 4.

Along the main axis of variance, the pore water variables
(PO3−

4 , SO2−
4 , total NO, NH+

4 , Mn2+, Fe2+, Si4+, pH and
alkalinity) in LYL display a gradient from negative values in unit 1
and 2, toward increasingly positive values with increasing sample
depth (Figure S3A). Samples from unit 1 and 2 cluster together

(Figure S2D), but unit 1 displays higher dispersion among
samples. In UYL (Figure S3B), samples from unit 1, 2 and 3 are
placed increasingly positively along the second axis of variance,
but with largest dispersion in unit 3. In both UYL and YL, UYL
246 again stands out as an extreme observation (Figures S3B,C),
which is likely associated with the observed NO spike (Figure 2).
In YL (Figure S3C), all unit 1 and 2 samples cluster together
with little dispersion (Figure S2F), whereas samples from unit 3
spread out more, this time more distinctly along the main axis
of variance instead of the second, as is the case for the individual
cores (Figures S3A,B).

3.4.2. Microbial Community Structure
Based on visual inspection of initial ordination results and
fraction of unassigned OTUs, the class level was found to carry
the optimal trade-off between precision and taxonomic coverage,
and was selected for downstream analysis. Resulting scatter plots
from PCA of all microbial classes identified in LYL (Figure 5A)
shows a distinct clustering of samples into lithological units.
The main divide appears to be between unit 1 and 2 on one
hand, and 3 on the other (Figure S4A), placing them negatively
and positively along the main axis of variance, respectively.
Notably, LYL 213 positions in the extreme top-right corner
despite belonging to unit 3, albeit only five cm above unit 4,
indicating a highly distinct microbial community compared to all
other samples. In UYL (Figure 5B), UYL 227 and UYL 246 now
cluster together, contrary to the physical variables (Figure 4),
and appear to make up the majority of spread along the main
axis of variance. The two samples from the deepest horizons
are grouped closer to samples from unit 1 than from unit 3
in the cluster dendrogram (Figure S4B). The scatter plot from
PCA on YL (Figure 5C) shows a systematic offset between the
two cores. The microbial community in unit 4 plus UYL 227
from unit 3 is highly similar, and highly dissimilar to other
communities (Figure S4C), likely due to their high abundance of
Nitrospirae: 49.0% of reads in LYL 213, 13.7% in UYL 227, and
14.9% in UYL 246.

FIGURE 4 | Ordination plot for first and second axes of variance from PCA of physical and XRF variables. (A) LYL (filled shapes), (B) UYL (hollow shapes), and (C) YL.

Unit 1: black squares; unit 2: purple circles; unit 3: green triangles; unit 4: blue diamonds. Axis labels denote the percentage of total variance explained by the

respective principal components (PCs).
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3.5. Constrained Ordination of Microbial
Community Structure
RDA is a version of PCA where the primary axes of variance
are defined as constraints imposed by the user. In this study,
we use RDA to explore the effect of minerogenic input and
redox-sensitive variables on the microbial community structure.
The minimum adequate model is defined as the optimum set
of constraints for explaining the variance expressed by a given
dataset (see also section 2.6.2). The selected variables are then
imposed as constraints, in our case on the microbial community
structure, during RDA.

For LYL (Figure 6A), the variance inflation factor for LOI
and DBD as calculated by the vif.cca function in the R package
vegan exceeded 10 (Oksanen et al., 2018). Variance inflation
is a measure of overlap of variance explained by two or more
variables, and so a high value is indicative of redundancy.
LOI had the highest factor and was subsequently removed as

advised in the function documentation. The twomain constraints
are first Mn2+, then Ti, and these two are weakly correlated.
Mn2+ correlates negatively with unit 3 samples, reflecting its
low concentration in the pore water profile (Figure 2). Ti
correlates positively with samples associated with glacial activity
in the catchment. Alkalinity and Fe-XRF were the two main
constraints identified for UYL (Figure 6B). These are entirely
uncorrelated. UYL 125 is clustered with unit 2 in the dendrogram
(Figure S4E), reflecting the transition from unit 3 to unit 2 in
the palaeoclimate record. UYL 227 again groups distinctly with
UYL 246 (Figure S4E) and is strongly positively correlated with
alkalinity. Fe-XRF seems to account for most of the structuring
of unit 1–3. Additionally, Ti and Fe-XRF correlate strongly
(ρ = 0.90, p < 2.2 · 10−16), and the high variance inflation
factor between the two show that they account for the same
variance in the dataset. However, Ti explains slightly less variance
then Fe-XRF: 21.7%. A total of five constraints: Mn2+, LOI,

FIGURE 5 | Ordination plot for first and second axes of variance from PCA of the microbial community composition in LYL on class level. (A) LYL (filled shapes), (B)

UYL (hollow shapes), and (C) YL. Unit 1: black squares; unit 2: purple circles; unit 3: green triangles; unit 4: blue diamonds. Axis labels denote percentage of total

variance explained by the respective principal components (PCs).

FIGURE 6 | Ordination plot for first and second axes of variance from RDA of the microbial community composition in LYL on class level. (A) LYL (filled shapes), (B)

UYL (hollow shapes), and (C) YL. Constraints were selected to constitute a minimum adequate model best explaining the variance in the microbial community

structure data. Unit 1: black squares; unit 2: purple circles; unit 3: green triangles; unit 4: blue diamonds. Axis labels denote percentage of total variance explained by

the respective principal components (PCs).
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Fe-XRF, Fe/Ti, and alkalinity, were selected for the YL minimum
adequate model (Figure 6C). LOI is negatively correlated with
unit 1 and 4 samples, but positively correlated with unit 2 in
LYL, reflecting the higher average LOI content in LYL compared
to UYL (Figure 2). In line with down-core increase, alkalinity
weakly correlates with unit 3 and 4 samples (Figure 2).

3.6. Analysis of Similarities
We perform analysis of variance (anosim) on class-level,
transformed microbial data with Euclidean distance as
appropriate (Aitchison, 1982; Gloor et al., 2017). The relative
similarity between cores is highest in unit 3: R = 0.41
(p = 0.0051). The relative similarities in unit 1 and unit 2 are
far lower, at R = 0.81 (p = 0.1) and R = 0.83 (p = 0.004),
respectively. Unit 1 only consists of 3 samples in either core,
hence 719 permutations exhausts all possible combinations for
this comparison, and the associated significance level cannot fall
below 0.1.

3.7. Correlations Between Variables and
the Microbial Community
To quantify the relationship between the microbial community
structure and its surrounding environment directly, we correlate
eigenvectors from PCA and RDA with each other. The obtained
correlation for primary eigenvectors (Figures S5A–C) are both
above 0.9 (absolute value), and highly significant (p < 2.0 ·

10−6). However, the correlation for UYL is heavily reliant on
UYL 227 and UYL 246 for its significance (Figure S5B). For the
secondary eigenvectors (Figures S5D–F), correlations all attain
ρ > 0.79 (absolute value, p < 3.0 · 10−4). These correlations
quantify the strong correspondence between the unconstrained
and constrained ordinations and also verify that the selected set
of context variables explain the main axes of variance in the
microbial community.

Following Jorgensen et al. (2012), we also correlate primary
eigenvectors from PCA on the microbial community with
variables selected first by ordistep to directly quantify the effect
of the latter on the former. DissolvedMn2+, the main structuring
variable for LYL (Figure S6A), correlates strongly (ρ = 0.897)
and highly significantly (p = 5.29 · 10−6) with the corresponding
primary PCA eigenvector. The analogous correlation between
alkalinity and the primary PCA eigenvector of UYL (Figure S6B)
is even stronger (ρ = 0.946, p = 9.83 · 10−7), but relies on
UYL 227 and UYL 246 in order to be significant. Finally, there
is a strong (ρ = 0.822, p = 8.41 · 10−8) correlation between
the primary PCA eigenvector and dissolved Mn2+, the main
structuring gradient for YL (Figure S6C).

4. DISCUSSION

4.1. Clustering of Geochemical and
Physical Variables in Ymer Lake
The Holocene sedimentary records presented here have
previously been subdivided into four lithological units, each
representing intervals characterised by distinct climatic
conditions (van der Bilt et al. 2018; see also section 2.1). This
was done using a multi-proxy approach combined with visual

logging. Using statistical approaches (clustering and ordination)
on a spatially up-scaled subset of these proxies, our analyses
largely reproduce the subdivision into these lithological units,
particularly in LYL (Figures 4A,B and Figures S4A,B). However,
we also note that there are some pronounced deviations where
one or several samples from one unit cluster together with
samples from a different unit (Figure S2). While this, at least
to some extent, could be explained by the use of up-scaled data
collected along a gradient, it highlights the importance of visual
and contextual guidance when lithological units are defined.

In addition to geochemical variables in the solid phase
(scanning XRF), we also perform ordination and clustering based
on the geochemical variation in the pore waters (Figures S2D–F,
S3). These results show no clear separation between units
and only unit 3 (ca. 9.5–5.0 cal. ka BP) in LYL is clearly
defined. Geochemical depth profiles of pore water composition
results from the sequential depletion of electron acceptors
during organic carbon mineralisation (Froelich et al., 1979).
The sequence in which the electron acceptors are depleted is
dictated by Gibbs free energy and largely independent from
climate conditions. In addition, pore water is mobile and partly
controlled by diffusion rates. Hence, as the boundaries are
expected to be less defined, ordination and clustering using pore
water composition seems less likely to reproduce a clustering
pattern into lithological units.

4.2. Microbial Variability and Relation to
Depositional Conditions
The microbial community profile in both cores largely group
according to the previously inferred four lithological units
(Figures 5A,B and Figure S4), and even more so than the
physical and XRF variables (Figures 4A,B and Figures S2A–C).
This finding strongly suggests that the contemporary signal
of the microbial community is still influenced by conditions
prevalent during the time of deposition, even after thousands
of years of burial. In that respect, our findings reflect those of
e.g., Vuillemin et al. (2016, 2018), who also correlate distinct
microbial communities with different sediment lithology. While
this type of analysis shows that the combined influence from
past climate are still imprinted in the community composition,
it does not suggest which specific factors explain this linkage.
In an attempt to resolve this question, we compiled our context
variables into a single data table and compared their explanatory
power. By doing so, we show that the variables explaining most
of the microbial variance are potentially products of microbial
activity; Mn2+ and alkalinity in LYL and UYL, respectively. It
might seem contradictory that, on the one hand, community
structure is linked to past depositional conditions, while the
variance is best explained by pore water constituents largely
independent from past climate on the other. However, it is
important to note that not all variance is explained by Mn2+

and alkalinity (29.6% in LYL and 27.2% in UYL, respectively).
Moreover, causality cannot be inferred from ordination analyses
or correlations alone, hence the results need to be contextualised
before qualified interpretations about the direction of forcing
can be made. In this case, it seems reasonable to conclude that
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the community structure and its related activity causes the close
linkage and not vice versa. Furthermore, it points toward a
community that is at least partly active. This notion is supported
by the very tight correlations between PCA eigenvectors and
Mn2+ and alkalinity (Figures S5, S6). These correlations would
be highly unlikely if the community variability inferred from the
DNA fingerprint originated chiefly from dormant or dead cells
rather than an active population.

The second best explanatory variables are XRF-counts of
titanium (Ti) in LYL and iron (Fe) in UYL, respectively. We note
that Fe has a very strong correlation with Ti (ρ = 0.90, p < 2.2 ·
10−16) in UYL, suggesting that both capture the same process and
that Ti also in UYL is a powerful explanatory variable (see section
3.5 for details). This tight linkage between microbial variability
and Ti in both cores is further substantiated by the highly
significant correlation when the composite dataset is analysed
ρ = 0.66 with p < 0.0002 (Figure S7A). Ti is a variable that
tracksminerogenic clastic input, a parameter that is closely linked
to climate-sensitive processes like weathering, flooding and run-
off (van der Bilt et al., 2015). As Ti is also considered redox
insensitive and unaffected by microbial activity, it allows us to
predict the direction of forcing with a high degree of confidence;
variability in minerogenic input has a significant impact on the
microbial community structure, directly or indirectly.

Our results suggest that the microbial communities in the
sediments are metabolically active with a consequently tight
link to pore water constituents associated with metabolic
processes. We also show that major environmental (depositional)
transitions are identified by co-occurring shifts in microbial
populations. The latter retain a quantifiable link to variables
proposed by van der Bilt et al. (2018) to be driven by changing
climate, especially those linked to changes in the input of
minerogenic material. While these results give strong hints to
the direction of forcing, testing for any mechanistic coupling
between depositional conditions and microbial community
structure is beyond the scope of this study. However, by
comparing sedimentary records from each of the two connected
basins of Ymer Lake (Figure 1B), we outline how local, site-
specific, manifestations of regional climate forcing may constrain
deposited microbial communities.

4.3. Local Settings Constrain Climatic
Influence on Microbial Populations
The two investigated sites are located only 200 meters apart and
thus experienced the same climatic conditions, yet our results
demonstrate inter-basin variability in physical, geochemical and
microbial parameters (Figures 4C, 5C). While sediment input to
the lower and upper lake show little variation during deposition
of unit 3 (Figures 3, 4C), corresponding to the Early-to-Mid
Holocene (ca. 9.5–5.0 cal. ka BP), the depositional conditions in
the two basins started to diverge abruptly around the regional
transition to a cooler climate during the Late Holocene after ca.
5.0 cal. ka BP (Briner et al., 2016; Axford et al., 2017; van der
Bilt et al., 2018). This is reflected in the values of several physical
parameters (i.e., LOI, DBD, mean grain size, MS), and redox state
as seen in Figures 3, 4C. We argue that the marked difference in

water depth (Figure 1B) is likely to be responsible for part of the
observed increased deviation. One of the assumed consequences
would be a more reduced environment in the shallower and
smaller lower lake. This notion is supported by the elevated levels
of organic carbon content (LOI) and redox sensitive parameters
(Fe/Ti and Mn/Ti) observed here as compared to the upper
lake (Figure 3). We also note that the upper and lower lake
system receive fluvial input from different sources, namely an
upstream lake and Ymer glacier, respectively. While this in itself
is likely to cause some of the variation, one could speculate that a
colder climate may have kept the shallow (< 0.5 m; Figure 1B)
connection between the two basins closed by ice for longer
periods, highlighting the potential differences in fluvial input
more clearly. Overall, this suggests that despite experiencing
similar climatic forcings, site-specific factors like water depth
greatly affect the physical and geochemical signature in the
deposited sediments.

It is clear from our combined ordination analyses (Figures 5C,
6C) that the contemporary microbial communities also differ
between the upper and lower basins, irrespective of identical
regional climate forcings. We furthermore note that our unit-
wise comparative analysis (anosim) show that the communities
are most similar in unit 3 (R = 0.41, p = 0.0051) and least
so in unit 2 (R = 0.83, p = 0.004), thereby following the
trend in variability observed for the depositional conditions. The
same local settings that we claim contributed to the observed
differences in sediment composition are also highlighted by
Rogozin et al. (2009) as drivers of variability in limnicmicrobiota.
The mechanisms behind this control are multiple but one of
the more important is the control on redox state, particularly
in seasonally or permanently ice-covered lakes like our study
site (Coolen et al., 2004; Rogozin et al., 2009; Bertilsson et al.,
2013; Schütte et al., 2016). The strong correlation between the
secondary axis of microbial variability and the redox-sensitive
ratio Fe/Ti across all our samples (ρ = −0.73, p = 1.2 · 10−4,
data not shown), make us suggest that redox conditions remains
an important factor shaping the microbial community in the
sediments, as also noted formarine environments (e.g., Orsi et al.,
2017). Our data do not allow to test if the initial population
settling and developing in the surface sediments have indeed been
different through time at the two sites. However, as the seeding
population continuously adapts to the prevailing redox condition
in the lake at any given time (Coolen et al., 2004; Rogozin et al.,
2009; Bertilsson et al., 2013; Schütte et al., 2016; Thomas and
Ariztegui, 2019), we find it more plausible that an initial strong
linkage is maintained over time rather than developed after
burial through changes in community structure. We therefore
suggest that the initial microbial community established in the
surface sediments differed between the two sites. While they are
very likely to evolve over time, they maintain their link to past
depositional conditions.

When searching for other explanatory factors related to
microbial variability we again wish to highlight the strong and
significant positive correlation with minerogenic input (Ti), a
link that is retained across the two basins and even strengthened
during periods with large differences in depositional conditions
(Figure S7). In this light, we note that Ti is also often used to
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track detrital input (e.g., Bakke et al., 2009) and its apparent
anti-correlation to LOI in our samples supports such use.
This, in combination with the strong correlations between the
secondary microbial variability (PCA second eigenvector) and
organic carbon (LOI) in the combined dataset lead us to suggest
that variability in organic carbon input is another very strong
influencing parameter on microbial variability, in line with
previous studies of lake sediments (Nelson et al., 2007; Kallmeyer
et al., 2015; Vuillemin et al., 2018).

In sum, our comparative analyses of the two sedimentary
records show that variations in past depositional conditions,
brought about by regional climate forcing, are captured in
the contemporary microbial communities, and give hints to
important underlying drivers such as lake redox conditions and
organic carbon content. These drivers are directly influenced
by regional climate; however, their manifestation is strongly
dependent on local settings such as water depth and fluvial input.
Hence, the direct link between climate conditions and microbial
communities has been “filtered” through local settings.

5. CONCLUSIONS

By leveraging the potential of Principal Component and
Redundancy Analyses (PCA and RDA), we show that the
contemporary microbial community structure within the
analysed cores capture past climatic conditions throughout the
Holocene. In fact, it seems to record climatic shifts better than
many physical and geochemical variables, highlighting how
microbial profiles can add biological context and detail to an
already established palaeoclimate reconstruction.

Our results suggest that the majority of the microbial
community is active and strongly connected to factors directly
linked to ongoing metabolic activity, but nonetheless retains
a quantifiable linkage to depositional conditions associated
with past climate history. It is important to note that this
linkage to climate is concerned with the community’s structural
variability and not necessarily to the specific composition (i.e.,
the variance between taxa as opposed to the presence or absence
of specific taxa in the community). We identify lake redox
conditions and organic carbon content as potential underlying
drivers of microbial community variability, in line with previous
suggestions (Vuillemin et al., 2016, 2018). These drivers are
constrained not only by regional climate forcing, but also by
basin-specific settings such as water depth and fluvial input.

An important notion to the apparent linkage between
microbial communities and past climate conditions is the
coupling to ongoing geochemical cycling. As microbes, through
their metabolic activity, regulate the partitioning of a number
of important geochemical elements across the sediment-water
interface (e.g., oxygen, nitrate, iron, manganese and sulphur), our

observations imply that major changes in past climate are still
influencing the water chemistry in the investigated lake today.

Although we are still far from understanding all the intricate
feedback mechanisms between past climate and contemporary
microbial activity, there is increasing evidence that they are
intimately linked (e.g., Kallmeyer et al., 2015; Vuillemin et al.,
2018; Zinke et al., 2019), suggesting that past climate is also
likely to influence our current climate and the response to
future change.
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