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Understanding learner behaviour
in online courses with Bayesian
modelling and time series
characterisation

Robert L. Peach*5™, Sam F. Greenbury?, lain G. Johnston?, Sophia N. Yaliraki*,
David J. Lefevre® & Mauricio Barahona'**

The intrinsic temporality of learning demands the adoption of methodologies capable of exploiting
time-series information. In this study we leverage the sequence data framework and show how
data-driven analysis of temporal sequences of task completion in online courses can be used to
characterise personal and group learners’ behaviors, and to identify critical tasks and course sessions
in a given course design. We also introduce a recently developed probabilistic Bayesian model to learn
sequential behaviours of students and predict student performance. The application of our data-driven
sequence-based analyses to data from learners undertaking an on-line Business Management course
reveals distinct behaviors within the cohort of learners, identifying learners or groups of learners that
deviate from the nominal order expected in the course. Using course grades a posteriori, we explore
differences in behavior between high and low performing learners. We find that high performing
learners follow the progression between weekly sessions more regularly than low performing learners,
yet within each weekly session high performing learners are less tied to the nominal task order. We
then model the sequences of high and low performance students using the probablistic Bayesian
model and show that we can learn engagement behaviors associated with performance. We also show
that the data sequence framework can be used for task-centric analysis; we identify critical junctures
and differences among types of tasks within the course design. We find that non-rote learning tasks,
such as interactive tasks or discussion posts, are correlated with higher performance. We discuss

the application of such analytical techniques as an aid to course design, intervention, and student
supervision.

Learning is a process that occurs over time': new knowledge is built upon existing knowledge, suggesting that we
should incorporate a temporal dimension in the analysis of learning data. The availability of time-stamped data
has improved substantially with the advent of computer-based education platforms?, coupled with advances in
educational data mining and learning analytics that provide new and innovative tools for automated analysis.
However, despite this increase in available tools, temporal analyses are still understudied in education research®”.
It is therefore important to expand the toolbox of temporal methodologies that are constructed to extract action-
able information directly from the observed data without over-simplifying the learning process. For instance, the
superiority of distributed learning over massed learning inherently posits the benefits of a consistent learning
behaviour over time instead of an irregular, syncopated approach to learning*. However, the distinction into
only two such broad behaviours is an over-simplification, and a number of subtly different temporal behaviours
have been shown to exist in real data’. In general, the wide availability of data opens the possibility to introduce
more powerful methodologies that do not reduce observations to predetermined, broad categories, and aim to
extract more nuanced results and conclusions.

In educational data mining, the most common approach to temporal analysis is to describe each student
through a feature vector composed of a small selection of aggregated features from time-series data (e.g., time-gap
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between sessions, participation time, number of sessions, post views)®%. These feature vectors can be combined
with additional non-temporal information, such as grades or demographic information. The position of each
vector (i.e., each student) in feature space can be further analysed using supervised or unsupervised learning
algorithms to make predictions or to investigate the structure of the data’. For instance'’, extracted features aggre-
gated over the course of a week (video views and active learning days combined with features such as country of
origin) to predict drop-out rates. Similarly, one study selected four predictive features (video-skipping, assign-
ment skipping, lag, and assignment performance) to predict drop out rates'!. Feature analyses have also been
highly successful at predicting stop out 1-week in advance'?, yet the analysis of posting patterns of students on a
forum over the course of a semester. did not reveal anything about learning outcomes and student engagement
with forum threads'. Recently, unsupervised clustering of features from learners following a blended course
on two platforms (face-to-face, online)'* identified four behavioural groups according to their differing levels
of engagement across the two platforms. Other examples of temporal feature extraction include the number of
times a student logged into their account', temporal trace data (e.g., time to answer correctly)'®, and the time
to half-way completion and total frequency of completion'’. Each of these approaches aimed to develop tools
for course managers or learning designers to understand and visualise participant performance.

Whilst feature vector analyses can be predictive of drop-out or performance in particular scenarios, these
approaches are limited by the choice of features (‘feature engineering’), itself limited by the granularity of the
data. Indeed, extending the feature space to include higher resolution temporal features (e.g, timestamps of lec-
ture viewings or start-dates of peer-graded assessments) has been shown to improve prediction accuracies for
drop-out and final performance'®*®. Despite such improvements, temporal feature vectors lead to a ‘temporally
averaged’ analysis of student trajectories, as they do not capture longitudinal (dynamical) changes, and therefore
may miss important events or temporal dependencies.

Beyond feature vector representations, there have been developments guided by theoretical considerations®.
For example, a temporal analysis of conversational data used segmentation (or ‘stanzas’) to construct a network
of micro-scale elements to reveal connections across timescales?!. A study of communal knowledge in online
knowledge building discourse used temporal analytics combined with graph theory to identify ideas and their
mobility over time?2. Graph centrality has been used to explore temporal and contextual profiles of shared epis-
temic agency on discourse transcripts®, identifying pivotal points of discourse exchanges. One study empha-
sised the importance of temporality as the main component of learning analytics through main path analysis of
Wikiversity domains to model the flow of ideas®*. The method they developed could be used to support teachers
in coordinating knowledge building, yet the method is not suited to sequential completion of tasks and would
instead be interesting when applied to courses with no distinct task order. Another approach of temporal analy-
sis is to perform so-called micro-analyses, where singular ‘extreme’ learners are examined in depth to explore
differing behaviours®. Whilst such approaches provide insight into particular behaviours, the conclusions are
difficult to generalise and justify statistically®.

Whilst each temporal analysis requires a theoretically justified model, there is clearly also a need for high-
resolution data that can reveal nuanced longitudinal relationships. Considering this, another study used a coarse
grained approach across knowledge components to identify focal points that were worthy of more in-depth
analysis using high-resolution data and analysis?. This method integrated the temporal and data resolution
scales that often evade temporal analyses, however, this approach may ignore potentially important focal points
that can only be identified using high resolution analysis from the start. An alternative study used dynamic
time warping on high-resolution task data to calculate similarities between the raw time-series of a cohort of
students undertaking an on-line degree, and implemented a quasi-hierarchical clustering algorithm to identify
data-driven groupings of students that exhibited similar temporal behaviours®. The behavioural clusters were
shown to be more predictive of final performance than classifiers based on temporal feature extraction method.

More recently, sequence-based methods have been shown to provide meaningful insights. For example, one
study used optimal sequence matching to analyse the sequence of hand movements in a multi-modal learning
environment?. They found that incorporating temporality into their analysis was crucial to find a correlation
between sensorimotor coordination and learning gains. A similar study used sequence-based method such as
Lag-sequential analysis (LSA) and Frequent Sequence Mining (FSM) for the purpose of discovering sequen-
tial patterns in collaborative learning®. They found that both LSA and FSM were able to uncover productive
threads for collaborative learning. Data sequence models aim to model within- and between-semester temporal
patterns®, emphasising the importance of incorporating temporal relationships of heterogeneous data to more
accurately predict success or failure of students relative to non-temporal models with the same data.

The recent success of sequence data analyses, as described above, suggests that using a sequence data frame-
work can provide insightful analyses into learning analytics. We also highlight that the temporal sequence data
framework is flexible: it provides an opportunity to analyse student trajectories as well as course learning design.
One study concluded that using analytical techniques, including temporal analyses such as sequence mining,
could highlight interesting anomalies or irregularities that can be the object of a more focused investigation by
individuals with deep knowledge of the course®® . Accordingly, we use the data sequence framework to take a
task-centric perspective, and identify common irregularities in task sequences across students.

Here, we develop a framework to model and analyse temporal sequences of task completion and task-to-task
transitions by students taking a course, and allows us to compare them to the expected (i.e., designed) task order
in the course. Our work introduces novel data-driven metrics and a Bayesian probabilistic model for analysis and
prediction of sequence data, and shows that the order of task completion at fine-grained resolution facilitates
improved prediction of performance and can be used to inform task-level course design. Unlike methods that
construct feature vectors, our temporal data sequence framework? directly incorporates temporal relation-
ships between tasks. In the paper, we present the mathematical formulation and structure of the temporal data
sequence framework, and we show how the data-driven analyses and Bayesian model can be used to predict
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Degree Course Online MBA (2 years)
Module Corporate Finance
Number of sessions 10

Number of tasks, T 123

Number of students, N 81

Male/Female 57/24

Age range (years) 28-53

Mean grade (std) 68.4% (9.3%)

Mean grade bottom 25% (std) 55.6% (4.6%)

Mean grade top 25% (std) 79.3% (3.3%)

Table 1. Information about course and summary statistics for the dataset used in this paper.
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Figure 1. The grade distribution for the entire cohort with the bottom and top 25% groups highlighted in red
and blue respectively.

student success, to reveal student confidence at a task level, and, from a task-centric perspective, to aid with
learning re-design. We illustrate our work through data of student task completion collected from an online
course taken over one semester as part of a 2-year MBA programme.

Methods

In this section we first describe and summarise the high-resolution dataset used to exemplify our analytical meth-
ods. Secondly, we describe the structure of the sequence data framework which forms the basis of the analytical
methods and models introduced in this paper for the analysis of temporal sequence data. We then highlight key
data-driven quantities that can be extracted from our data sequence model representation for the analysis of
high-resolution LMS data. We then introduce a Bayesian probabilistic model for modeling sequence trajectories
of learners and use it for predicting performance. Finally, we show that sequence data framework can be used to
perform task-centric analyses and introduce data-driven metrics to reveal insights into course learning design.

Course information. The subjects in this study were N = 81 post-experience learners pursuing a 2-year
post-graduate part-time Management degree at a selective research orientated institution, a summary of the
data is displayed in Table 1. The cohort ranged in age from 28 to 53 years old (57 males, 24 females) and resided
in 18 geographically disparate countries. Although the subjects met face-to-face at the start of each academic
year, the course was studied completely online without any further physical interaction. We gathered computer
interaction data of the learners undertaking the online management course ‘Corporate Finance’ during the sec-
ond semester of the first academic year. The anticipated study load was 5-7 h per week for the single course we
analyzed. This course was run in parallel with a second course (not analyzed here) with a similar workload. An
online session was delivered to the students each week, with the course running over 10 weeks (for a total of 10
sessions). The course was assessed via a combination of coursework and a final exam. Coursework was under-
taken at three points during the course: Sessions 3, 4 and 9. The performance distribution of the entire cohort
had a median of 69.7 (mean 68.4), with a longer tail towards low performance, see Fig. 1.

Types of tasks. As students progress through the course, they are faced with tasks that are either marked
(e.g., coursework) or non-marked (e.g., watching a video). The tasks fall into six main categories:
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Figure 2. The sequence data framework represents each task as a node which is ordered according to the
course learning design. Each student is represented by a sequence of tasks. This framework forms the basis for
application of various data-driven analyses and Bayesian sequence modeling.

1. Coursework: Marked. Contribution (30%) towards final grade. The coursework is normally introduced
2 weeks before the deadline. Completion defined as user submitted.

2. Quiz: Marked. Contribution (10%) towards final grade. The quiz would be a multi-choice response and would
be automatically graded. Completion defined as grade awarded.

3. Multi-response Polls. Not marked. No contribution towards final grade. This task type generally includes a
variety of questions which require text input as an answer. The final answers are not seen by their peers but
can be seen by the tutors and course leader. Completion defined as user input.

4. Reading/video. Not marked. No contribution towards final grade. Completion of the task is defined as having
watched the video or having opened the reading link.

5. G-chart. Not marked. No contribution towards final grade. The learner is asked a question and offered a set
of options. Their answer is added to a chart that displays the distribution of learner answers. Completion
defined as user input.

6. Discussion post. Not marked. No contribution towards final grade. Discussion posts are often questions
posed by the course leader which require thoughtful response from the learners. The learners responses can
be seen by their peers after they have completed the task. Completion defined as user input.

Note that, whilst some tasks do not directly contribute towards the final grades, they do have an indirect effect
on the final grade—a 10% participation grade is awarded to each student based on their overall task completion
to incentivise task completion. The most up-to-date version of our learning management system now includes a
much larger and more diverse set of tasks. However, at the time of data collection, the set of tasks was limited to
those described above. As a further note, the students take an exam at the end of the year that contributes (50%)
of their grade for a given module. The exam is not included as a task during the course, but does contribute
towards the final grade. In the remainder of the paper, a ‘task’ is any one of the above six types.

Sequence data framework. The 10 sessions of the course are made up of a total of T = 123 tasks identi-
fied by their *Task ID; an integer from 1 to 123 representing the nominal order of the course layout, i.e., the order
in which tasks appear to learners as they navigate the online course website. This nominal task order g is repre-
sented as the ordered set s® = {1,2,...,123}. Each learner k is described by the ordered set of completed tasks:

RO )

where t* is the task ID of the jth task completed by learner k. Note that the sets may be of different lengths for
different learners since task completion is not compulsory and the number of completed tasks may vary from
individual to individual. Figure 2 displays some example sequences for students using the framework described
here.

We can also coarse grain our sequence framework. Given that tasks are grouped into sessions we compute
the transition probability p(next session s + 1| previous session s), by substituting the task IDs for session IDs
in the ensemble S. We use all these quantities to analyze the behaviors and critical juncture tasks associated with
the course.

Data-driven learner-centric analysis. Given our data sequence framework we introduce two key meth-
ods for analyzing the sequence data to investigate learner behaviours. The whole cohort of learners is then
described by the ensemble of ordered sets of tasks, S = {s(k)};zl:l. From this ensemble, we can compute the fol-
lowing two key quantities:
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1. The number of times that task i appears as the jth element across the ensemble S is denoted as n;;. The
probability p;; that task i appears as the jth completed task across S is thus given by p;; = n;j/ Zj njj. These
probabilities are compiled in the T x T matrix P = (p;;).

2. To quantify the transitions between tasks, we count the number of times m;; that task j is immediately pre-
ceded by task i across the ensemble S, and normalise it across all transitions to obtain the probability that
task j is preceded by task i across the ensemble: p;.j = m;j/ 3, ; mjj.

To obtain the conditional probability, we need to normalize across all tasks:
mij = p(next taskj| previous task i) = p;;/ Zj pi—j- These conditional probabilities are compiled in the
T x T matrix 7 = (7).

It should be noted that this matrix provides a summary of transitions to any task given a previous task
acquisition, but 77 is not a stochastic transition matrix for task acquisition due to tasks being irreversibly
acquired.

The sequence analysis methods were adapted from®'.

Bayesian probabilistic model: a generative model for task sequences. In the description of a
learner’s task sequence, no assumptions about an underlying model that may have generated the sequences.
The most general probabilistic model assumes that task completion is determined by all the tasks previously
completed. If we assume that the order in which previous tasks were completed can be ignored, this model is a
first-order Markov chain with a hypercubic state space defined by 2 states and an associated T 27! edges rep-
resenting the transition matrix between these states. As T = 123, the state space and associated parameter space
of the transition matrix is too large to be tractable.

Here we introduce the application of HyperTraPS, a recently developed probabilistic Bayesian model*'~**. We
fit this model to derive parameterisations that can be used for student classification. The model reduces the full
hypercubic state space to a tractable T2 = 15,129 state space by assuming that the probability of the next task in
the sequence is proportional to a basal rate of acquisition for that task and independent contributions from tasks
already completed. These are fitted from the aggregate set of observed transitions (the student task sequences).

As we have complete information on the order in which tasks are completed, the utility of a generative model
in this case may be found in its use as a classifier. Utilising and extending the Naive Bayes classifier introduced
in*, we consider the probability that a learner k belongs to the high performing group g; and the low perform-
ing group g after completing 7 tasks with task set s*. We can write the odds ratio relating to this probability as:

Pk € g11s®) P |m(g1)P(g1)
P(k € Is®) — P(s®|7(g2))P(g2)
where 7 (gj) are posterior samples drawn from the HyperTraPS model fitted to a set of sequences from labeled

group j. In this paper, the two groups considered are the top 25% (g1) and the bottom 25% (g2) based upon their
score in the course.

Data-driven task-centric analysis. Using our sequence data framework, we compute statistical proper-
ties of every task: (1) the frequency with which it is completed and (2) the mean rank at which the task was
completed across all learner sequences. The difference in these values could be calculated between two groups,
giving the difference in completion frequency and difference in completion order respectively.

Student confidence analysis. To investigate the effectiveness of our analytical methods and model, we
use a student confidence analysis to introduce a ‘story-telling’ or causal inference aspect . At the end of each ses-
sion, students are asked to reflect on the tasks they had been given to complete. There were given three options
to choose from for each task: (a) *Yes I feel confident I can do this, (b) ’I need to revisit this, and (c) ’I need more
support. For each task we calculate the proportion of students that felt confident (stated confidence) or did not
feel confident (needed to revisit or requested support).We use this data to quantify when a student was not con-
fident on an individual task, and we measure the confidence of a student across the set of tasks as:

‘confident’

(g =
‘revisit’ + ‘support’ + ‘confident’ m

where a larger value indicates a more confident student and a lower value indicates a less confident student. Using
this additional student-provided data, we can associate anomalous sequence orderings with measures of student
confidence at both individual and group levels.

Ethics and consent.  All methods were carried out in accordance with relevant guidelines and regulations.
Ethical approval from the Education Ethics Review Process (EERP) at Imperial College London was attained
(EERP 1718-032b) and a waiver for informed consent was granted (also contained within EERP 1718-032b) for
this study.

Results

Data-driven learner-centric analysis. Ensemble task completion behaviors of student cohort relative to
course design.  As defined above, the completion sequences of N learners over T tasks can be summarized as a
T x T 2D-histogram (or matrix of numbers) P, where each element p;; corresponds to the probability that task i
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Figure 3. (A) 2D-histogram compiling the probabilities of task completion for the 81 learners. The y-axis
denotes the course task ID, i.e., the nominal completion order. Each task is part of a weekly session. The x-axis
displays the point in the learners’ sequence in which that task was actually completed. Some of the key task
types (coursework, quiz) are indicated by colours. (B) Each insert shows a magnification of a different part of
A: (i) the beginning of the course; (ii) large deviations from the nominal task order later on; (iii) bimodality of
responses for particular tasks; and (iv) the broad distributions of task completion towards the end. Note also the
wider spread in coursework and quiz tasks.

was completed in the jth position across the ordered sequences of the cohort. Figure 3A displays this histogram
for our learner cohort, with tasks ordered according to their nominal task order g (1-123) along the vertical axis
and plotted against the actual completion order in the learners sequences on the horizontal axis. The histogram
for each task across each row summarizes the spread of the actual order of completion across the learners in the
cohort. If all learners had completed all tasks in the nominal order g, then P would have been the identity matrix,
with all the probability located on the diagonal. Therefore, the off-diagonal spread signals departure from the
nominal order across the cohort. For example, learners completed task 1 as their first task with high coincidence
(77%, p11 = 0.77), yet, even for this first task, there was a sizeable proportion of learners (21%, p1» = 0.21) that
completed task 1 as their second task. Overall, the strong diagonal component of Fig. 3A suggests that learners
generally follow the nominal task order, with deviations evidenced by the presence of such off-diagonal elements.

At the beginning of the course, we observe a cohesive start in which learners generally follow the expected
course structure as evidenced by the sequential peaks of each histogram up to task 15 (Fig. 3B(i)). Yet, more in
detail, we observe some deviation from the nominal course structure. For example, very early on task 2 is most
commonly completed in third position, whilst task 3 is completed second (Fig. 3B(i)). Considering these two
tasks in more detail, task 2 requires the learner to complete a vast amount of reading whilst task 3 requires the
learner to submit an estimate for a quantitative question. Task 3 is located on the next screen requiring the learner
to actively leave the web page containing task 2 to access task 3. Since task 3 is inherently related to task 2 (both
explore financial inter-mediation), it could be that learners did not feel they comfortably understood the material
in task 2 until they completed task 3. Another deviation occurs between task 15 and task 16 (Fig. 3B(i)), whereby
task 16 is completed earlier than task 15 on average. Task 15 requires the learner to complete a quantitative quiz
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with several complex financial questions. Although the quiz did not contribute to their final course grade, the
learners may have wanted to leave the quiz until the end of the learning session, or they might have believed that
additional material may become available later to aid them in the quiz.

Beyond such small deviations from the nominal task order, we also identify much larger deviations. Fig-
ure 3B(ii) highlights tasks that have been completed much earlier that expected from the nominal task order.
Interestingly, these tasks are completed in sequential order within their session, signalling a jump-ahead from
the learners to an out-of-order later session. Such jump-ahead deviations appear as diagonal streaks in the lower
triangle of Fig. 3A, but note that similar deviations are also observed in the upper triangle of Fig. 3A indicating
tasks that were completed later relative to the nominal task order.

There are several features of the cohort dynamics that become more prominent as task completion progresses.
In Fig. 3B(iii), we observe an example of bimodality (two peaks) in task completion indicating that there are
two groups of learners completing these tasks systematically, but at different points in their sequences (relative
to the nominal task order). Note that the presence of bimodality is not simply an artifact of learners randomly
missing tasks, if so we would observe a single broad peak, but the emergence of subgroups of learners following
different strategies. Indeed, this instance of bimodality appears at the beginning of Session 7 (task 84-task 95)
and becomes less pronounced after Session 7 is finished. After a more thorough analysis, we find that a large
group of learners appear to skip both task 78 and task 81 whilst the remaining learners complete these two tasks,
resulting in a branching of two sets of learners corresponding to left-hand and right-hand peaks. Both of task 78
and 81 are interactive tasks that required an application of learned knowledge, which may have caused the split
between those that were able to complete the tasks and those that were not.

As task completion progresses, we observe a broadening of the task distributions (Fig. 3B(iv)). Such broaden-
ing is expected when completion of tasks is not mandatory; if a learner misses a task and continues to follow the
nominal task ordering of the course they will have a shift in their actual completion sequence relative to other
learners. The broadening is amplified towards the end of the course, as a consequence of learners skipping an
increased number of tasks (variable across the cohort of learners), in order to finish the course before the final
exam.

An examination of the deviation of the different learners from the nominal task order is presented in Fig. 4.
Figure 4A shows two distinct task sequences for two learners: learner 17, who follows closely the nominal course
order almost all the way to completion, and learner 29, who completes only about half of the total tasks in a more
idiosyncratic order, with several jumps between sessions and completing only a little over 50% of the tasks of
the course. We compile this information for all 81 learners in Fig. 4B, where we show the (normalized) distance
between the actual completion of tasks and the nominal task order for each learner ordered in descending order
of performance from top to bottom. Tasks in blue were completed earlier in the sequence relative to the nominal
order, whilst tasks in red indicates later completion in the sequence relative to the nominal order. The learners
of Fig. 4A are indicated by dots (green for learner 17, purple for learner 29). The observed deviations of learner
29 are seen as blocks of tasks (in blue and red) completed out of sync with the nominal task order. In contrast,
the profile of learner 17 is almost totally white, indicating a constant progression in accordance with the nomi-
nal order. Figure 4B also shows that low performing learners tend to exhibit large deviations from the nominal
task order more often than high performing learners (although certainly not exclusively) and a lower fraction
of completed tasks (as evidenced by the larger black blocks). Note that the figure shows sequential blocks of
tasks, commonly corresponding to a single session, which have been completed out of sequence relative to the
nominal order. This indicates that analyzing sequences not only at the level of tasks, but also at the level of weekly
sessions can provide a meaningful temporal basis for the analysis of learners’ behaviors?!, as we explore below.

A comparison between high-resolution and coarse-grained temporal sequences. Above, we extracted quantities
that revealed deviations from the designed course sequence for both individual students and the ensemble of
students. In this section we explore the high resolution task-level data and compare it against a coarse grained
version of the data (coarse grained by week).

Figure 5A plots the task transition probability matrix  defined above in two different (but equivalent) ways:
as a transition graph (i) and as a transition matrix (ii). As expected, we find strong transitions that follow the
nominal structure both within each session as well as clockwise from session to session in Fig. 5A(i). This is
similarly shown in Fig. 5A(ii) by the strong concentration on the diagonal and upper diagonal, which indicates
the high probability that learners follow the nominal order of the course. However, we also find a large num-
ber of non-sequential transitions between tasks as a consequence of learners jumping forwards or backwards
in the course. These are shown as non-sequential edges in Fig. 5A(i) and off-diagonal elements in Fig. 5A(ii).
Specifically, we observe a large number of non-sequential transitions within sessions 2, 3 and 5. For example,
within session 3 there is a large probability that learners complete task 42 and then return to task 38. Task 38 is a
discussion post where learners were required to publicly write a response to a tutor question whereas task 42 is
a quiz with various questions regarding equity markets and valuations. It appears that a large number of learn-
ers completed the quiz before the discussion post, perhaps because they did not feel confident completing the
public discussion post until they had gained additional information or understanding from the quiz. To explore
this further we analysed the percentage of students that felt confident undertaking this task. We found that only
60% (59/81) of students were confident in this task (self-assessed at the end of each session), whereas across the
remaining tasks within session 3 the average number of students that were confident was higher (69%, std. 7%)
and the average task confidence across the module was (68% std. 8%).

For comparison, we take a coarse-grained approach and calculate the transition probabilities between the 10
weekly sessions (Fig. 5B) represented as: the inter-session transition graph in (i) and the coarse-grained transi-
tion matrix in (ii). As in the task level analysis, there is a strong clock-wise sequential component in the graph
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Figure 4. (A) Sample trajectories of two learners (17 and 29) as they undertook the course. Learner 17 followed
closely the nominal task ordering for the majority of the course only deviating towards the latter tasks. Learner
29 exhibited large deviations from the nominal task ordering throughout and only completed half the course.
(B) A heat map displaying the relative distance between the actual completion order and the nominal order for
all learners (rows). The learners are ordered by descending performance from top to bottom, as indicated by

the grade colourmap. If a learner had completed the course exactly as the nominal order dictates then the row
would be white. Tasks completed earlier relative to the nominal order appear blue, whilst tasks completed later
than the nominal order appear red. The region after the student has completed the course is colored in black.
The learners in A are indicated by a green dot (learner 17) and a purple dot (learner 29).

(i) and a concentration of probability on the main and upper diagonal in the matrix (ii), indicating that learners
generally follow the session sequence. However, there are obvious deviations. For example, we observe that there
is a high probability that learners will transition back to session 3 from several sessions (6, 7, 8, 9, 10). Similarly,
learners at session 10 (the final session) will often transition to previous sessions (sessions 8 and 9), maybe in an
effort to revise and complete parts of the course they had skipped over while completing the course.

These results suggest that task-level (high resolution) and session-level (coarse-grained) sequence data provide
true but alternative descriptions of the data that can lead to distinct but complementary conclusions. Within the
high resolution analysis we are able to identify individual anomalous tasks (such as task 38), whilst within the
coarse-grained analysis we identified an anomalous week (e.g. week 3). This section highlights the importance
of using high-resolution temporal data coupled with an appropriate temporal model for analysis.

Comparing sequence completion patterns between high and low performance learners. Given the differences
between the high resolution and coarse grained analyses, we perform a similar comparison whilst exploring
student performance. As suggested by Fig. 4B, the pathways and patterns of task completion may differ between
high and low performing learners. To explore this hypothesis in more detail, we divide our cohort of learners
into two groups: those in the top 25% (Group 1) and bottom (Group 2) 25% of performers according to course
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Figure 5. (A(i)) The transition probability between tasks 7 is represented as a transition graph. Each blue node
corresponds to a task, each sub-circle corresponds to a weekly session of tasks (numbered from 1-10), and the
entire circle corresponds to the full course. The edge thickness between tasks corresponds to the probability

mjj of transitioning to task j given the previously acquired task i. Generally, there is a high probability of
transitioning between sequential tasks; however, there are often large non-sequential transition probabilities.
(A(ii)) A heatmap of the matrix 7 (in logarithmic scale). Off-diagonal elements correspond to deviations

from the course structure. (B(i)) A transition probability graph between weekly sessions, where each node
corresponds to a session and the edges between sessions i and j are weighted by the probability of transitioning
between any task in session i to any task in session j. Although there is a strong probability of sequentially
completing the sessions, there are is a significant number of deviations from the session sequence (e.g., from
session 10 to sessions 9 and 8, or from session 6 to session 3). The transitions within a session (self-loops) and
the transition from start to session 1 are not shown for clarity of visualisation (B(ii)) A heatmap of the transition
probability between sessions. The diagonal exhibits the highest probability given that a learner is most likely to
transition between tasks within a session followed by the upper diagonal, representing transitions to the next
session in the nominal sequence.

grade. Although more nuanced performance groups could be created, we opted for a simple split into the bottom
25% and top 25% to ensure a bimodal performance distribution.

We compute two separate transition matrices wyp and wrp from the sequences of learners in Group 1
(high performers) and in Group 2 (low performers), respectively, and obtain the difference between both:
Am = myp — mrp. In Fig. 6A we show the transition graph (i) and transition matrix (ii) where the high perform-
ers have larger probability (i.e., the elements of A > 0). Similarly, Fig. 6B presents the transition graph (i) and
transition matrix where the low performers have larger probability (i.e., the elements —Am > 0). To compare
the transition probabilities between session of high vs. low performers, we compute the Jensen-Shannon (J-S)
distance (Figure S1). Our results show that the mean J-S distance for outgoing session transitions (rows of the
transition matrix) was 0.12 and the mean J-S distance of incoming session transitions (columns of the transition
matrix) was 0.16, where a J-S distance of 0 corresponds to identical distributions and a value of 1 to maximally
different). The relatively low dissimilarity between the two groups reflects the fact that both groups of students
follow overall the intended course structure. We also note that the dissimilarity between the transition patterns
of the two groups (high and low performers) increases as the course progresses towards the later sessions.
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Figure 6. The transition probability between weekly sessions is calculated separately for the top 25% performers
and the bottom 25% performers and the difference between the probabilities in the two groups is calculated.

(A) The session-to-session transitions that are more probable for high performance learners (i) mapped onto a
network structure and (ii) visualized as a transition matrix heatmap. (B) The session-to-session transitions that
are more probable for low performance learners (i) mapped onto a network structure and (ii) visualised as a
transition matrix heatmap.

However, we also identify a number of differences in the transitions when comparing high and low per-
formers. For example, low performers were more likely to transition directly from session 5 to session 9, which
contained a coursework task that needed to be completed, and after completion of session 9 they were likely to
transition back to session 6. In general, low performing learners have a higher probability of transitioning to a
task within the same session (diagonal of Fig. 6B(ii)) but also a higher rate of transitions between non-sequential
sessions (Fig. 6B(i)). These two views are only seemingly contradictory: low performers tend to follow the nomi-
nal task order within sessions but do not follow the nominal session order within the course. We also observe
that the only point where high performers are more likely to depart from the course session structure than low
performers is in the jump back transitions form session 10, an indication of an effort to revise and complete
missing tasks just before the end of the course. These results reinforce the need for high-resolution data and
analysis. Using a coarse-grained approach we would observe low performing students following the course ses-
sion structure in a less consistent manner, yet we would not observe their higher probability of following the
nominal task order within each session.

Using the student confidence % defined in Eq. (1), we found that the low performance group were significantly
(paired t-test, p=0.041, alpha=0.05) less confident (no. tasks confident, mean=0.65, std=0.27) than the high
performance group (no. tasks confident, mean=0.76, std=0.19) across the entire module. At the group level, the
confidence values correlate with performance as we would expect.

In addition to comparing high and low performers, we can also compare groups of students characterised by
other factors, such as demographic information. As another illustration of the applicability of the framework,
we have carried out similar analyses for groups based on gender and age (see Supplementary Information).
Figure S2A shows that female learners are more likely to follow the nominal course order (as indicated by
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Figure 7. Application of Bayesian probabilistic model to learn sequence trajectories. (A) Probability that each
learner in top 25% belongs to top 25% (i) and the probability that each learner in the bottom 25% belongs to
top 25% (ii) using averages across posterior samples trained on data from the respective groups. Each learner
is a blue line, the mean across all learners an orange dashed line and the proportion over 0.5 as a green dashed
line. After around 30 tasks the probability goes to unity and zero respectively for the two test groups providing
indication that the probabilistic model is able to learn differences between the two groups. (B) The top plots
utilized data included in the training dataset for testing, while the bottom plots train with 70% of the learners
from each group and test on the remaining 30% from each group. This indicates whether the learned model
can differentiate unseen learners giving it true predictive utility. There is much greater variability in the position
of the each learner’s blue line, but on average the orange and green lines lie above and below the 0.5 threshold
indicating there is some predictive power. Interestingly, the strongest predictive region seems to be in the

gap where coursework is completed later after completing more of the course, a trend observed in the higher
performing group. The predictive power weakens at large # due to fewer training and test samples completing
that many tasks.

the higher probability of on-diagonal transitions) when compared to male learners, who exhibit more erratic
sequences. Interestingly, we find that the larger probability of transitioning from session 10 to earlier sessions,
which was associated with efforts to revise or complete skipped sections, is dominated by male learners. Regard-
ing age groups, Figure S3A shows the analysis that compares the highest 25% and lowest 25% by age. We find
that younger learners exhibit a stronger adherence to the expected ordering of the course, whereas older learners
depart from the nominal order and have a stronger tendency to revise earlier sessions (especially 2, 3 and 4).

Bayesian model for sequence trajectories. In this section, we use the probabilistic generative model
to examine whether we can predict the group (top 25%, g or bottom 25%, g») to which a student belongs after
completing n tasks with task set s®). We perform two experiments to consider the plausibility of such a model
for the data.

In our first numerical experiment, we test whether the probabilistic model can learn parameterisations that
can distinguish two groups. We draw posterior samples 7 (g;) and 7 (g>) from HyperTraPS for the entire set of
gi1and g. For each learner in the training datasets g and g, we plot the probability that they belong to their
respective groups. Figure 7 (top) shows the result of this when the test learners that we are trying to predict
group identity are including in the training dataset. In this case, the left-hand plot (for the top 25% learners)
and right-hand plot (for the bottom 25% learners) show strong predictive ability after only a few tasks have been
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Figure 8. Comparing the high and low performing groups: The difference between the two groups in
completion frequency versus the difference between the two groups in mean completion order. The tasks are
identified by their task ID and colored by type (the six types are listed in the legend). For each task type, the
median and inter-quartile range is plotted. If a task appears in the upper half, the task has been completed earlier
on average by the group of high performers. If a task is located in the right half, the task has been completed
more frequently by the group of high performers. Discussion posts, multi-response polls and G-chart tasks are
completed significantly earlier and more frequently by high performers suggesting the importance of active
learning. Coursework tasks appear earlier in the sequence of low performers because low performers have
completed less of the course by the time the coursework is due for submission.

completed in the set of all tasks with the probability going to unity and zero for the groups respectively after
around 30 tasks. This indicates the probabilistic model is able to learn differences between the two groups in its
parameterisations , an important prerequisite for establishing whether learners task set s®in conjunction with
parameterisations of a generative model can be used to predict performance.

In our second numerical experiment, we test whether the probabilistic model can use learned parameterisa-
tions to predict which group unseen learners belong to. We do this by splitting our groups g; and g; into a 70%
training and 30% test split. We draw posterior samples from rain (¢1) and 7irain (¢2), and then perform the same
method to calculate the probability that learners from the test split belong to g and g (given we know their true
labels). Figure 7 (bottom) illustrates the results for the test split of learners (split by their true label g; on left-hand
side and g; on right-hand side). The results indicate much less certainty for individual learners, with misclassifica-
tion occurring. However, the averages across learners in each group indicate some predictive power with average
values mainly above 0.5 for g and below 0.5 for g,. Additionally, the region of strongest predictive power where
the averages are farthest from 0.5 is around the region where we have observed learners being particularly diver-
gent in their choice of task suggesting the results may be robust. Given such small dataset sizes of only around
15 learners for training, this result would be able to be validated on courses with many more learners available.

Data-driven task-centric analysis. Usinga data sequence framework, we have shown that we can analyse
individual or ensemble trajectories of students. However, one of the benefits of a data sequence framework is that
it can be used for task-centric analysis, i.e. each individual task can be analysed with respect to the sequences
of a group of students to study particular outcomes such as performance. In this section we introduce task-cen-
tric quantities that can be extracted using a data sequence framework. In particular, we explore the differences
between high and low performance in completion behaviour for individual tasks and task types.

The tasks are of six types: Coursework; Reading/Video; Quiz; G-chart task, Multi-response poll, and Discus-
sion post. For each task, we calculate: (i) the difference in the frequency of completion between high and low
performers; (ii) the difference in the mean position in the completion sequence between high and low performers.
The results for all tasks are shown in Fig. 8 identified by their Task ID and colored by their task type. Deviations
from the (0,0) point in the centre of Fig. 8 correspond to differences between low and high performers. If a
task appears in the upper half, the task has been completed earlier on average by the group of high performing
learners. If a task is located on the right half, the task has been completed more frequently by the group of high
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performing learners. Therefore, a task located in the upper right quadrant is completed earlier (in the learner
sequence - not necessarily in time) and more frequently by high performance learners.

In Fig. 8 we also show the median and interquartile range for each task type. The median for the 'Reading/
Video' tasks appears almost directly at the centre of the plot, indicating that completing a video or a reading task
is not correlated with high or low performance. In contrast, other task types show significant deviations between
the two groups. Specifically, discussion posts or interactive tasks such as multi-response submissions (usually
requires a learner to make a calculation) and G-chart tasks (learners must submit a choice from a selection of
answers) have a median that is located in the upper right quadrant, i.e., they are completed more frequently
and earlier by high performers. In addition, coursework tasks appear significantly earlier in the sequences of
low performers. Although this might seem counter intuitive at first sight, it is consistent with the fact that low
performers tend to skip more tasks but do complete courseworks.

Beyond general task types, we can identify specific tasks that may be correlated with high performance. For
example, tasks 64 and 78 (highlighted in Fig. 8) exhibit high frequency and early completion by the high per-
forming learners. Task 64 was an open discussion where learners were asked to perform two calculations and
then discuss the results; task 78 required learners to make a decision about picking stocks for a portfolio. Both
of these tasks require the learner to understand the previous content. The public nature of the answers among
their peers might put off learners that lack confidence in their answers. In the case of discussion tasks, where
a learner must submit a public answer to a tutor’s question, 19/20 discussion tasks are found in the right half,
where high performers complete these tasks more frequently, and 15/20 are found in the upper right quadrant,
where they also appear earlier in the sequence of high performers.

The bottom half contains a number of tasks such as the coursework tasks 36, 54, 55 and 115. As discussed
above, coursework tasks appear significantly earlier in the sequence of low performers as a reflection of the fact
that they have completed fewer tasks by the time the coursework is due for submission. Hence low performance
learners skip ahead to reach the coursework. Other tasks completed earlier and more often by low performing
students include a number of tasks from session 2 (tasks 17, 20, and 29) and session 9 (tasks 108 and 109) which
appear because low performing students skipped the beginning of both sessions.

For completeness, we have also extended the task-centric analysis to compare learners by gender and age (see
Supplementary Information). We find that the female group completed a larger number of tasks and complete
them later in their sequence (Figure S2B). Regarding age groups, only discussion posts and multi-response polls
are completed more often by older learners relative to younger learners, but older learners complete quizzes and
coursework later in their sequence of tasks (Figure S3B).

Discussion

In general, current temporal analyses of student data tend to obfuscate the longitudinal relationships between
events through averaging, coarse-graining or feature extraction. In this paper, we have used a data sequence
framework to develop a set of data-driven analyses and a Bayesian sequence model to investigate high-resolution
task completion data of learners. We show that using this framework we can introduce a task-centric analysis
which could help inform learning design. In general, we identify aggregate and individual learner behaviors;
explore the relationship between course structure and learner trajectories; reveal the connection between comple-
tion patterns and task types; and identify points in the course where learners might benefit from intervention.

The first section used the data sequence model to analyze the ensemble of learner trajectories relative to the
nominal task order. We highlighted the fact that although learners generally follow the nominal course structure,
a number of exceptions occur, for different reasons, at different junctures in the course. We identified various
behaviors such as bimodality and branching from nominal task ordering that occurred as a consequence of
groups of learners taking alternative approaches to task completion. Our comparison between learner trajecto-
ries and nominal course structure revealed large deviations in different parts of the course, and increasingly as
the course progresses. Whilst not pursued here, analyzing the causal effects of such behaviors could provide the
educator with an improved understanding of their course design, and about individual learners undertaking
the course.

In the second section, we compared high-resolution and coarse-grained temporal analyses. The transition
probability between tasks and sessions was used to study the deviations when learners transition between non-
sequential tasks. The analysis at the coarse-grained level of inter-session transitions revealed specific sessions in
the course structure where deviations from the nominal course structure occurred, highlighting the importance
of an analysis at different levels of time resolution to understand the interactions of learners with the material?'.

In the third section, we furthered our comparison of high-resolution and coarse-grained approaches to
evaluate differences between high and low performance learners. We began our exploration of the differences
in completion behaviors between high and low performing learners. Having split the learners into two groups
according to the median grade, we showed that low performing learners followed more strictly the task struc-
ture within a session but were less likely to follow the session structure throughout the course. The analysis also
showed that low performers tend to skip a number of sessions in order to complete coursework tasks. Similar
comparisons between gender and age groups were also presented.

In the penultimate results section, we introduced a Bayesian probabilistic model to learn the trajectories of
task completion sequences. Using the top 25% and bottom 25% groups of students (as a simple bimodal per-
formance distribution) we showed that the task completion sequences could be learned and used for predicting
student performance.

In the final section, we showed that our data sequence model could be used for task-centric analyzes. We
examined the link between the completion of individual tasks and learner performance. Our analysis showed
that completion of task types related to active learning (such as discussion posts, multi-response polls, or G-chart
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tasks) were correlated with above median performance. The completion of such tasks, some of which are also
visible to the peer learners, might indicate a level of understanding and confidence in the knowledge of the
material around that task. An educator may consider encouraging the completion of some of those key tasks (or
making them compulsory) in order to encourage the learner to learn the material in order to complete that task.

We found a clear distinction between high and low performers as regards to the types of tasks, how frequently
they were completed, and at what point in their sequence. These findings could be considered in the context of
Bloom’s Taxonomy of Learning®. For example, discussion-based tasks require skills toward the higher end of
the taxonomy, whereas tasks that comprise reading texts and watching videos require skills towards the lower
end. It is then not surprising that tasks in the former category were more commonly completed and earlier in
the study sequence of high performing students. Identifying these types of tasks could help tutors structure the
courses to reinforce the importance and build-up towards such tasks, as well as identifying differences between
groups of learners. Through a small illustrative exemplar study, these results highlight the power of relatively
simple sequence analysis methods applied to learning data, and the potential for their use on available data to
reveal the connections between learning patterns, performance, and course design.

Whilst the majority of on-line courses have a designed linear structure, it is clear that cognitive development
does not progress through a fixed sequence of events. The alternative is to present each course component in
parallel, without a displayed intended structure, and students can begin at any point and transition between any
components of the course. In such a system, our Bayesian sequence model could still be applied given that it is
able to characterise the complete state-space of possible trajectories and is not dependent on the ground truth
course structure. We intend to pursue this use of our Bayesian model in further work. A second direction for
future methodological research would be to look at higher order network models which do not make Marko-
vian assumptions. Indeed, considering the full trajectories of each student could yield higher order temporal
dependencies that may better model the transitions between tasks®.

Finally, it would be important to investigate the practical implications of our framework. Firstly, we are able to
make real-time predictions of student success given limited observed sequences; therefore, we could implement
our framework into a live course and make live student interventions to measure changes in student perfor-
mance. This experiment would provide interesting insights into precision/personalised learning. Secondly, our
framework provides the potential for in-depth analysis into course design by educators and learning designers
to re-organise a course based on task importance, which could then be benchmarked against the original course.
An experiment of this form would confirm the practicality of our framework and provide evidence for analyti-
cally driven decision making in education.
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