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ABSTRACT

The variability in the temperature on Svalbard, Norway, has been decreasing over the last four decades.

This may be due to the reduction in sea ice, transitioning the regional climate to amore stable, coastal one.We

quantify this transition in terms of decreasing volatility in a daily average temperature time series at Svalbard

Airport from 1976 to 2019. We use two different approaches: a nonstochastic model and a time-dependent

generalized autoregressive conditional heteroskedasticity (GARCH) model. These parametric approaches

include a time-dependent trend, where the slope depends on the day of the year. For Svalbard, the slope has a

minimum in late August and the steepest slope during winter is estimated to be 20.18C2 yr21. The non-

stochastic model, for which the conditional and unconditional variances are the same, only depends on the

marginal distribution and is perhaps the easiest to interpret. The GARCH model extends the nonstochastic

model by including short-range temporal dependence in the volatility and is thus more locally adapted.

Volatility modeling is important for a complete statistical description of the temperature dynamics on

Svalbard as an Arctic representative. In combination with increasing temperatures, the volatility reduction

makes the extremely cold days during winter occur less frequently. Although we focus exclusively on the

Svalbard Airport series, the models should be suitable for other temperature or climatic time series.

1. Introduction

For temperature time series, shifts in mean tempera-

ture over time are a main focus, but we can also ask:

what about the variation? Variation, variability, or vol-

atility is often measured in variance or standard devia-

tion. We analyze the time series of daily average

temperaturesmeasured at SvalbardAirport (Norway; red

dot in Fig. 1) from 1976 to 2019, with main focus on the

evolution of the volatility. The location is chosen for its

proximity to the North Pole (78.28N) and is thereby a

representative of the Arctic, showing enhanced effects of

climate change. It is also a particularly interesting location

because of the relatively large difference between sum-

mer and winter day-to-day volatility.

Over the last decades the yearly mean temperature on

Svalbard has been increasing extensively. Isaksen et al.

(2016) suggest that this increase in temperature is driven

by sea ice decline, higher sea surface temperature, and a

general background warming and Kohnemann et al.

(2017) reach a similar conclusion.Onarheim et al. (2014)

discuss causes for loss of sea ice north of Svalbard during

winter. They found that warm Atlantic Ocean water is

likely to have caused the sea ice loss. Declining extent of

sea ice has consequences for the regional climate in the

Arctic, but research is also being done on the effect at

lower latitudes (Screen et al. 2015). The report Climate

in Svalbard 2100 (Hanssen-Bauer et al. 2019), commis-

sioned by the Norwegian Environment Agency, dis-

cusses past, present, and projected future climate on

Svalbard under different emission scenarios. The report

is an assessment of existing literature and model results

[cf. Hanssen-Bauer et al. (2019) and references therein]

related to climate on Svalbard, but also presents some

new results from atmosphere, ocean, and hydrological

models. Under the scenario RCP8.5 (referred to as

‘‘business as usual’’ or ‘‘high emissions’’) they project an

increase in annual mean temperature of almost 108C,
a 65% increase in annual precipitation, and a 20%

increase in heavy rainfalls from the reference period 1971–

2000 to 2071–2100. The projections are based on phys-

ical climate models and, although they are associated

with high uncertainty, they show where the Svalbard
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climate is heading. However, the authors do not present

a trend for temperature volatility. Screen (2014) finds that

subseasonal cold-season temperature variability has sig-

nificantly decreased over the last decades in the mid- to

high-latitude Northern Hemisphere. He claims this is

partly due to that northerlywinds and associated cold days

are warming more rapidly than southerly winds and warm

days. This decrease in variability is consistent with our

findings on Svalbard. On the global scale, Huntingford

et al. (2013) find that the time-evolving standard deviation

of globally averaged temperatures is stable.

Variance is a distributional characteristic that is highly

relevant for occurrence of extremes, and here we dis-

tinguish between climatic and distributional extremes.

Climatic extremes are temperature observations

exceeding a quantile in a reference distribution.

Distributional extremes are extremes with respect to the

marginal distribution of the temperature on a given day,

irrespective of any effect of global warming. A distri-

butional extreme is not necessarily a climatic extreme

and vice versa. The mean temperature is increasing

globally, and a distributional extreme is a large deviation

from this changing mean. We have illustrated these

concepts in Fig. 2, where a distributional extreme is an

observation in the pink shaded area and a climatic ex-

treme is outside the vertical blue lines. Figure 2a illus-

trates the reference distribution. When only the mean

temperature increases, the probability of upper tail cli-

matic extremes increases substantially, while the distri-

butional extreme probability remains unchanged (Fig. 2b).

If the variance decreases at the same time, what is de-

fined as a distributional extreme becomes less extreme,

while the lower-tail probability of climatic extremes will

decrease further (Fig. 2c; relative to Fig. 2b). Although

the figure is somewhat exaggerated to illustrate the

point, we find that on Svalbard the mean temperature

has increased and, for the summer, the variance has not

changed (Fig. 2b). For the rest of the year, the variance

has decreased (Fig. 2c). This will have consequences for

the occurrence of climatic extremes and the magnitude

of distributional extremes for the temperature. We in-

vestigate this on Svalbard in terms of conditional and

unconditional variance.

Conditional variance is the variance conditioned on

past information, while the unconditional variance is

based on the marginal distribution of the variables and

depends only on the day of the year. Typically, the im-

mediate past history will be of highest influence on the

conditional volatility. If considering a series of inde-

pendent observations, the two variability concepts are

equal, but this is rarely the case for time series.

A series of uncorrelated variables can be dependent

with significant correlation when transformed to a

squared process. This indicates conditional hetero-

skedasticity and an autoregressive conditional hetero-

skedasticity (ARCH; Engle 1982) or generalized ARCH

(GARCH; Bollerslev 1986) model may be suited. These

models are primarily used in fields like finance and

FIG. 1. Map of Svalbard, with Svalbard Airport shown in red.

FIG. 2. Marginal temperature distributions for (a) a specific day

in a reference period and (b),(c) a distant future after a climatic

change. From (a) to (b), the mean increases, and from (b) to (c) the

variance is decreased. The pink-shaded areas are the distributional

extreme regions, defined by quantiles in the new climate marginal

distribution. The climatic extremes are defined by being outside the

interval indicated by the dashed blue vertical lines, given by

quantiles in the reference distribution in (a).
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econometrics, where modeling of, for example, stock

returns is of interest. Stock returns are known for being

leptokurtic with time-dependent volatility and extreme

returns appear in clusters. These are some characteris-

tics of a GARCH model. In temperature time series

there are seasonal components in both the conditional

and unconditional variance, and this is not necessarily

captured by standardGARCHmodels.We use aGARCH

model with a time-dependent trend, where the slope

parameter follows a cosine curve, and with harmonic

functions to describe the general seasonal component.

Except for the trend, our volatility model is similar to

that of Campbell and Diebold (2005). There are cer-

tainly other ways of modeling development in volatility,

but a GARCH-type model preserves the uncorrelated-

ness of the residuals, while modeling the second-order

behavior of the squared process in a linear way. Dupuis

(2012, 2014) uses a deterministic seasonal volatility and

a stationary exponential GARCH model, respectively,

in preprocessing temperature series before using extreme

value methods on the residuals. She studies daily extreme

temperatures and removes trend and season in the tem-

perature level, aswedo, though in a somewhat differentway.

By combining tail properties of the residual distributionwith

climate change, Dupuis (2012) obtains an increased proba-

bility of climatic extremes for four U.S. cities. Others have

also applied GARCH models on temperature time series

(e.g., Tol 1996; Taylor and Buizza 2004). Although our

models can be used for prediction, the main goal here is to

quantify the rate of change in the daily variance.

We describe in section 2 the Svalbard temperature time

series data, and the method is presented in section 3. The

estimated models are discussed in section 4, and we make

some concluding remarks in section 5.

2. Data description

The data are collected, stored, and maintained by the

Norwegian Meteorological Institute (MET Norway), and

can be downloaded (http://eklima.met.no). Nordli et al.

(2014) describe the daily average surface air temperature

time series at Svalbard Airport, which is located near the

outer part of Adventfjorden (see Fig. 1). The station, using

an MI-33 screen, recorded its first temperature in August

1975 and is still operating. From 1 January 2005, the daily

mean is calculated as the average temperature of every

hour of the day. For observations prior to this date,

Köppen’s formula (Köppen 1888) is used, that is,

dailymean 5T2k(T2T
min

) ,

where T is the average of the temperatures measured

at 0600, 1200, and 1800 UTC, Tmin is the minimum

temperature of the day, and k is a factor depending on

the month and location of the station. On 5 October

2010, the screen was changed to an MI-74 and relocated

to a site farther away from the runway of the airport to

prevent thermal influence. Parallel measurements of the

old and new site were performed from 27 October 2010

to 8 November 2011, and, according to Nordli et al.

(2014), all monthly mean differences between the two

sites during this period fall in the interval [20.098C,
0.068C]. Therefore, they conclude that the temperature

series is homogeneous through the relocation and screen

type shift of October 2010. MET Norway has chosen

Svalbard Airport as the only Reference Climate Series

on Spitsbergen, the largest island of Svalbard.

A Svalbard Airport composite series of monthly

mean temperatures back to September 1898 was recon-

structed by Nordli et al. (2014), adding to the composite

series of Nordli (2010), and is available online (http://

eklima.met.no). The reconstruction is performed by pre-

dicting the temperature at Svalbard Airport from mea-

surements at other stations for the period 1911–75. For the

period 1898–1911, the authors use observations from

hunting and research expeditions. To estimate transfer

functions between the temperature at Svalbard Airport

and the expedition locations, temporary stations were

placed at these historical sites from 2010 to 2012, as part of

the Arctic Climate and Environment of the Nordic Seas

and the Svalbard–Greenland Area (AWAKE) project

(Nordli et al. 2014).Annualmeans of this series are plotted

in Fig. 3 with a simple linear regression line with slope

3.28C per century. Nordli et al. (2014) report a yearly trend

of 2.68C per century for the period prior to 2012, so in-

cluding the years following have increased the trend. In our

analysis, we use daily observations, which are only avail-

able from August 1975. As can be seen in Fig. 3, this pe-

riod, if considered to be isolated, has amuch steeper linear

trend of 12.28C per century, relative to the full series.

Similarly,Hanssen-Bauer et al. (2019) find a linear trend of

10.18C per century for the period 1971–2017 at Svalbard

Airport.Wehave chosen 1976–2019 because of availability

FIG. 3. Annual means of the full composite series of Nordli et al.

(2014) from 1899 to 2019. The blue part of the curve is the years of

available daily observations (from 1976 onward). The red solid line

is the linear regression line of the full series, and the red dashed line

is the linear regression for the years following 1976. The estimated

trends are respectively 3.28 and 12.28C per century.
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of daily measurements, because modeling conditional

volatility, as different from unconditional volatility, re-

quires time dependence in data and many observations.

Thus, data that are based on month or year are less rele-

vant for such modeling because of lower dependence and

fewer data. It is also on the daily scale that we are inter-

ested in making inference about the variability. A conse-

quence of this is that we have picked a period duringwhich

the temperature has increased excessively.

The data contain no missing values, but METNorway

rates observations in terms of quality on a discrete scale

from 0 to 7, where 0–1 isOK [acceptable], 2–4 is slightly

uncertain, 5 is very uncertain, 6 is very uncertain, based

on model data, and 7 is erroneous. In our data there are

0.3% of the observations with status 6 and 0.07% with

status 5, but we treat them all equally. For simplicity, we

have removed all observations on 29 February in leap

years, so that every year has 365 days. The data are

presented in Fig. 4 for the entire period where each

panel is a decade. Notice that in Fig. 4, the yearly

maximum temperatures are fairly stable for the entire

period, while the minimum temperatures seem much

more volatile. The observations prior to 1 January 1976

(1 August–31 December 1975) are used for the regres-

sion model and the nonparametric volatility models (see

section 3) but are discarded from the main analysis. We

also remove observations after 31 December 2019,

giving a total of 16 060 observations over 44 years.

3. Method

Let Yt denote the daily average temperature at time t.

Our primary interest is on the volatility of the process

and we therefore split our model into two parts, a re-

gression model and a volatility model. The residuals of

the regression model are input to the volatility model.

We consider the regression model primarily as a de-

trending and deseasonalizing step to get a white noise

process with time-dependent variance. For the seasonal

effects of the models, let ct 5ck
t (h, z) denote a finite

FIG. 4. Daily mean air temperatures at Svalbard Airport from 1976 to 2019, organized by

decade.
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Fourier series of order k with parameters h5 {h1:k} and

z 5 {z1:k}; that is,

c
t
5ck

t (h, z)5�
k

j51

h
j
cos(2pjt/t)1�

k

j51

z
j
sin(2pjt/t) ,

where t 5 365 is the period.

a. Regression model

The regression model is an autoregressive model with

exogenous covariates, given by

Y
t
5 Ŷ

t
1X

t
, m

t
5m1gt t21 1c

t
and

Ŷ
t
5m

t
1�

p

j51

f
j
(Y

t2j
2m

t2j
)1�

q

j51

u
j
X

t2j
, (1)

where t is the day index,ct 5cr
t (a, b), a5 {a1:r}, b5 {b1:r},

Xt is the residual process, p, q, and r are the orders of

the autoregressive, moving average, and Fourier parts

of the model, respectively, and ({f1:p}, {u1:q}, m, g, a, b) is

the parameter vector. The mean model mt consists of a

linear trend parameter g, measured in degrees Celsius

per year, and a finite Fourier series ct that captures

seasonal effects, and the one-step predictor Ŷt also in-

cludes an autoregressive moving-average (ARMA) part for

short-range linear correlation. In meteorology, anomalies

are usually deviations from a normal temperature. The

residual process {Xt} is also an anomaly series, but this is

relative to the regression model. We are mainly interested

in the volatility of {Xt}. Two different parametric ap-

proaches to modeling the conditional variance are con-

sidered. In addition, we use two nonparametricmethods as

benchmarks for the parametric models.

b. Parametric volatility

We assume that Xt 5 h1/2
t Zt, where {Zt} is the iid in-

novation series following a standardized t distribution

with n degrees of freedom and {ht} is the conditional

variance and the term of interest here. The first model

is a first-order time-dependent GARCH model for the

volatility; that is,

h
t
5s2

t (12a2b)1aX2
t21 1bh

t21
,

s2
t 5v1k

t
t t211c

t
, and

k
t
5 k

A
1 221(k

B
2 k

A
)f12 cos[2p(t2 t

0
)/t]g , (2)

where t0 is a hyperparameter and ct 5cs
t (c, d). We as-

sume a 1 b , 1, which guarantees stability of the sto-

chastic part. In (2), the parameter vector is (n, v, kA, kB,

a, b, c, d), s is the order of the finite Fourier series, and

c5 {c1:s} and d5 {d1:s} are seen as nuisance parameters.

The climate change of volatility kt is parameterized to

allow for different rates of change throughout the year

by assuming a cosine curve. We estimate the minimum

and maximum of the curve, kA and kB, respectively, and

require these to be one-half year apart. This specific

formulation is partly inspired by inspecting the empirical

data. Note that the scale of kt is degrees Celsius squared

per year and that s2
t is not the variance of Xt, but Eht is.

The second parametric model is a special case of (2)

with a 5 b 5 0 and

h
t
5s2

t . (3)

Under this model, ht will also be the unconditional

variance, Eht 5s2
t , since s

2
t is not stochastic. Estimation

TABLE 1. Parameter estimates and standard errors (SDE) for the regression model and the parametric volatility models. The standard

errors are the square root, diagonal elements of the invertedHessianmatrix. An asterisk indicates that 0.01, p value, 0.05; otherwise the

p value , 0.001.

Volatility Model

Regression Model Nonstochastic GARCH

Parameter Estimate SDE Parameter Estimate SDE Parameter Estimate SDE

f1 0.553 0.089 n 9.319 0.646 n 10.470 0.805

f2 0.954 0.025 v 11.207 0.206 v 11.033 0.323

f3 20.556 0.071 kA 20.096 0.011 kA 20.084 0.015

u1 0.381 0.088 c1 10.053 0.240 a 0.060 0.006

u2 20.836 0.091 d1 5.399 0.243 b 0.845 0.017

u3 20.234 0.011 c2 20.401* 0.194 c1 10.473 0.320

m 27.325 0.310 d2 2.201 0.218 d1 3.615 0.462

g 0.121 0.012 c3 21.898 0.122 d2 1.902 0.253

a1 28.550 0.217 d3 20.567 0.120 c3 22.277 0.144

b1 24.977 0.217

a2 1.876 0.203

b2 0.951 0.203
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and model selection of (3) is done independently of (2),

although we use the same parameter symbols.

In (2), notice that the term s2
tu, with u 5 1 2 a 2 b,

corresponds to the constant term ina standardGARCH(1, 1)

model. This parameterization is used to be able to

compare the climate change parameters of (2) and (3).

For the model (2), we get by iterating

h
t
5us2

t 1aX2
t21 1bh

t21
5us2

t 1 (aZ2
t21 1b)h

t21

5u�
‘

j50

s2
t2jP

j

k51

(aZ2
t2k 1b) .

The unconditional variance is given by

E h
t
5u�

‘

j50

s2
t2jP

j

k51

E (aZ2
t2k 1b)5u�

‘

j50

(a1b)js2
t2j ,

by the independence of {Zt}. That is, the unconditional

variance is a weighted average of the deterministic part

of (2). We have that

E h
t1t

2Eh
t
5uk

t �
‘

j50

(a1b)j 5k
t
,

where we have exploited that s2
t1t 2s2

t 5 kt as a result of

periodicity of cs
t and kt. Thus, the yearly change in un-

conditional variance of both (2) and (3) is kt, and kt can

be compared across (2) and (3). The same holds for the

intercepts.

c. Nonparametric volatility

For the nonparametric, we apply a moving variance

(MVAR) with window width m,

ĥ
t
5 (m2 1)21�

m

j51

X2
t2j , (4)

and an exponentially weighted moving average (EWMA)

model, given by

ĥ
t
5

12 l

12 lt21�
t22

k50

lkX2
t2k21, l5 e21/j, t$ 2. (5)

FIG. 5. The regression model residual series {Xt} by decade.
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Here, j . 0 is a smoothing parameter and, for t 5 1,

ĥ1 5X2
1 . We refer to (2)–(5) as GARCH, nonstochastic,

MVAR, and EWMA, respectively.

d. Parameter estimation and model selection

The deterministic part of the regression model (1) is

estimated by linear regression, whereupon the errors are

modeled as an ARMA(p, q) by maximum likelihood

with conditional least squares for initial estimates

(Brockwell andDavis 1991, 256–258). Estimation of the

parametric volatility models is done by maximizing a

conditional Student’s t likelihood. For the nonstochastic

model the estimation is carried out under the restriction

a5 b5 0.We use theMVAR value for 1 January 1976 as

initial value.

Because of the trend in the GARCH model, the

model is nonstationary if kt 6¼ 0. If kt [ 0, it is periodi-

cally stationary. With a negative trend we have the issue

that when t / ‘ the variance will become negative.

Hence, the model cannot be extrapolated infinitely, and

asymptotic theory here has an issue. Nevertheless, it is

possible to extend the model in such a way that asymp-

totic arguments can be exploited.

Model selection is done by backward stepwise selec-

tion, that is, by first including many terms and then

gradually removing the insignificant ones. Following this

procedure, we select the model with the lowest Akaike

information criterion (AIC; Brockwell and Davis 1991,

302–306).

FIG. 6. Empirical variance of {Xt} by year and month. The red lines are linear regressions based on the blue observations. At a 5%

significance level, the negative trends for July, August, and September are not statistically significant.

FIG. 7. Fitted kt5 kA2
21{11 cos[2p(t2 h)/t]}: The vertical lines

indicate the minimum and maximum of kt, respectively, at

22 February and 24 August.
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For the nonparametric we must choose a smoothing

parameter j for EWMA and a window width m for the

MVAR. These are considered as hyperparameters. The

smoothing parameter j is chosen by minimizing the

mean square error (MSE); that is,

MSE(j)5n21�
n

t51

"
X2

t

ĥ
t
(j)

2 1

#2

. (6)

The window widthm is set to capture seasonal variation

and to get a relatively smooth estimate. The former is an

argument for a small window, and the latter speaks to a

large one. The selection is based on trial and error with

these criteria in mind.

4. Results

The estimation results for the parametric approaches

are presented in Table 1, where the selected orders are

p 5 q 5 3 and r 5 2 for the regression model and s 5 3

for both volatility models. In the model selection, we

found that kB in both models and c2 and d3 in the

GARCH model were not significantly different from

zero and are thus fixed to zero. All estimates in Table 1

are significant with p values smaller than 1023, except for

c2 in the nonstochastic model with a p value of 0.038.

These p values are based on a Gaussian approximation.

The regression model is not of particular interest here,

but notice that the trend parameter g is estimated to

0.1218C per day, which corresponds to a temperature

increase of 12.18Cper century. This is consistent with the

yearly aggregated trend displayed in Fig. 3. The result-

ing residuals {Xt} are plotted in Fig. 5.

We have parameterized kt to take into account that

changes are not homogeneous for all seasons. To see this

effect on {Xt}, we have plotted the empirical variance for

every month and year in Fig. 6. Here, the steepest de-

cline in variance is found in February, and we have

therefore set the hyperparameter t0 5 53, which implies

that 22 February is the day of largest yearly negative

change. Other days in February were also tested, but the

22nd provided the lowest AIC among the candidates. At

this day, the nonstochastic and GARCH models esti-

mate changes of kA 5 20.0968 and 20.084 8C2 yr21, re-

spectively. That kB is zero corresponds to not having a

trend in August, which fits well with the linear trends in

Fig. 6 being nonsignificant for the summer months.

Figure 7 shows the fitted curve of kt for every day of the

year. One pitfall of this simple cosine is that it assumes

symmetry in the fall and spring. Although zero trend

during summer seems pleasing, the somewhat restrictive

cosine does not appear to go deep enough during winter,

compared to the empirical rates of change. However, it

is more robust, and it serves its purpose in terms of

successfully separating summer and winter.

To ensure that the climate change parameter of

volatility is significant without relying on a Gaussian

approximation that is based on asymptotic arguments,

we have bootstrapped the null distribution of k̂A. That is,

we have simulated the parametric models using the es-

timated parameters, except that kA5 0, 10 000 times and

FIG. 8. Bootstrapped distribution of both of the standardized kA estimators underH0: kA 5 0. The vertical lines

are the point estimates from Table 1 (vertical solid blue arrows) with their respective 95% Gaussian confidence

interval (dashed blue lines) and the 95% confidence intervals of the bootstrapped null distribution (dashed

red lines).
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estimated the parameters. The nonparametric density

estimates of k̂A/SDE(k̂A), where SDE is the standard

error, are presented in Fig. 8 with 95% bootstrapped

confidence intervals under the null hypothesis, H0:

kA 5 0. We have also included the point estimates for

the original data (Table 1) with the respective Gaussian

confidence intervals. As can be seen, the estimates are

far away from the 95% H0 intervals and the null hy-

potheses are clearly rejected in both cases.

In Fig. 9, we have plotted the different volatility esti-

mates as 95% upper bound one-step prediction bands

together with the absolute value of Xt. For the EWMA

estimated process, we choose ĵ5 21:01 by minimizing

the MSE in (6), and for the MVAR we let the window

size m 5 30. The bands in the figure are based on

the fitted ty distribution for the parametric, while for the

MVAR and EWMA we fitted a t distribution to the

standardized residuals using MLE with 7.89 and 7.43

degrees of freedom, respectively. Overall, the four dif-

ferent approaches behave similarly. The nonstochastic

model, which implies that the residuals of model (1) are

independent, describes the data well. The GARCH

model follows the nonstochastic closely for most of the

time but is more adapted to the observations. The

EWMA and 30-day MVAR are similar to each other.

Their main purpose is to validate the parametric ap-

proaches, as they overall do. The nonstochastic estimate

seems to be slightly too low during winter early in the

series and too high toward the end, but this estimate is

also more robust against outliers relative to the others.

For {Xt} in Fig. 5 and {jXtj} in Fig. 9, we clearly see a

pattern of highly volatile winters and stable summers

with a smooth transition between the seasons. The same

pattern is also present in the fitted prediction bands of

Fig. 9. The marginal coverage probabilities of the 95%

standardized ty-prediction intervals are 94.8% and 94.7%

for nonstochastic and GARCH, and 93.7% and 93.9% for

MVAR and EWMA, respectively.

To further evaluate the fitted models, we consider the

standardized empirical residuals, Ẑt 5 ĥ21/2
t Xt for t 5

1, . . . , n, where ĥt is the fitted conditional volatility of

either (2) or (3). They should be uncorrelated and

FIG. 9. Upper limit of 95% one-step prediction intervals based on the fitted t distributions

and conditional variance estimates using the four methods, i.e., fty(0:975)ĥ1/2
t g, with ty(0.975)

being the 97.5% percentile of the standardized ty distribution. The light-blue points are the

absolute value of Xt, and ideally only 5% of them should be above the prediction band.
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standard Student’s t distributed, with n degrees of free-

dom. In Fig. 10a, quantile–quantile (QQ) plots for the

model residuals against the respective ty quantiles are

presented. The nonparametric benchmark residuals are

also included, although they are not required to be

t distributed. Sample autocorrelations of Ẑt and Ẑ2
t

with lags up to 400 for each of the methods are found

in Figs. 10b and 10c. For all models, the quantiles

of the standardized residuals are consistent with the

corresponding t distribution, except for somewhat

lighter tails. According to the observed autocorrelations

of Zt, none of the residuals are uncorrelated, but the

correlations are weak, with the strongest around 20.05.

Since the period of the original data is 365, we include

400 lags in the plotted ACF, and in doing so we have a

multiple testing problem. If we Bonferroni adjust (Dunn

1961) the significance level to account for multiple test-

ing, we only get significant deviations fromwhite noise for

the first lag for the parametric and the first and second lags

for the nonparametric. With such a high number of ob-

servations (16 060), we do not expect to keep the white

noise hypothesis completely. Apart from the mentioned

trace of correlation, we see a tendency of a nonadjusted

periodicity in the standardized residuals from the sample

FIG. 10. (a) The QQ plots for each model residuals against the respective ty-distribution quantiles. For nonstochastic and GARCH

models, n is the estimated degrees of freedom fromTable 1, and forMVARandEWMAwehave estimated a standardized t distribution to

the empirical residuals usingMLE. Also shown are sample autocorrelation functions for (b) Ẑt and (c) Ẑ2
t up to lag 400 for every method.

Bartlett’s confidence intervals of 95% with (green dashed lines) and without (blue dashed lines) Bonferroni adjustment for multiple

testing are also included.

8484 JOURNAL OF CL IMATE VOLUME 33

Brought to you by UNIVERSITETSBIBLIOTEKET I | Unauthenticated | Downloaded 08/06/21 10:15 AM UTC



autocorrelations. More interesting is the autocorrelation

of the squared residuals that has more structure. For the

nonstochastic, there are some notable correlations for

the first lags, before stabilizing between the bands. The

EWMA shows signs of an almost perfect periodic auto-

correlation, while the periodic structure of the MVAR is

more complex. In complete contrast, the GARCHmodel

has no significant correlations for the squared residuals

with Bonferroni adjusted 95% confidence intervals, but

also just few with the standard Bartlett’s. In total, we

recommend the GARCH model based on the standard-

ized residuals.

Distributional extremes are related to the marginal

distribution of the temperatures, as discussed in the in-

troduction. We therefore need the unconditional vari-

ance, which for the nonstochastic model is the same as

the conditional. For the GARCH model, however, the

unconditional variance is given by Eht. This expectation

can be approximated by Monte Carlo simulation from

the fitted model. That is, we simulate 10 000 realizations

of the model and calculate the mean of ht for every day.

In Fig. 11 we present both the nonstochastic variance-

and Monte Carlo–approximated GARCH variance es-

timates for each day of the years 1979 and 2019. As

expected with the models we have used, we see that the

1979 variance curves are above the 2019 throughout

winter and spring, whereas during late summer and early

autumn the difference is small or zero. At the peak in

February, the distance between the curves is consistent

with kA 3 40 years ’ 23.8 and 23.78C2, respectively.

We also see here that the GARCH and nonstochastic

models give consistent unconditional estimates, although

the winter peak in variance of the GARCH is slightly

lower than the nonstochastic. This is also a good figure

for seeing the seasonal aspects of the variability in

temperature on Svalbard.

We have created density plot animations for each

day of these years, and for every year on the days

22 February and 5 June, that are available as online

supplementalmaterial. In the former animation, one can

clearly see the seasonal variations, and the latter visu-

alizes the development, as the models describe it, over

the years. The visual change in density from 1979 to 2019

during winter is minor, because the variance is high and

thus the changes are relatively smaller. Around June the

relative changes are larger, and the density plots reflect

this result, whereas in August the change is zero. In

terms of changes in the distribution of the temperature,

the change in mean is by far the most important, but

there is also an effect from the change in variance.When

the mean increases and the variance decreases (e.g., in

winter), it takes away more probability mass from the

left than the right tail of the reference distribution

(Fig. 2c) and together they contribute to decreasing the

occurrence of really cold winter days.

5. Concluding remarks and discussion

In the specific case of Svalbard, we see a deviation

from periodic stationarity in terms of a negative sea-

sonally dependent trend kt in the volatility. The summer

temperatures on Svalbard are increasing without any

significant change in variance. For the rest of the year,

they are both increasing and gettingmore stable in terms

of a decreasing volatility. According to the models, the

distributional extreme values are less extreme in the

new climate, with summer being the exception. The left

climatic extremes become less likely, both due to the

FIG. 11. Comparison of unconditional variances from the nonstochastic and GARCHmodels for 1979 and 2019.

The GARCHmodel variance is a mean of 10 000 Monte Carlo simulations from the fitted model; 22 February and

24 August are indicated by vertical dashed lines.
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shift in mean and decreasing volatility, while for the right

climatic extremes, the decreasing volatility contributes in

reducing their magnitude. As mentioned earlier, Hanssen-

Bauer et al. (2019; see also references therein) predict a

warmer and increasingly wet climate on Svalbard, with

more open, ice-free waters. Our contribution to the dis-

cussion about climate on Svalbard is that, except for the

summer, the day-to-day variation of the temperature is

on a decreasing trend. The decreasing volatility, that to

some extent is a consequence of the sea ice retreat,

could be conceived as a transition from a continental

winter climate to a coastal winter climate. In this re-

spect, kt quantifies the transition between these two

different climate types. The decline can, however,

not continue forever and must necessarily subside. If

we were to extrapolate the parametric trend, the var-

iance would at some point turn negative, which is

impossible.

Such a trend appears to be of climatological interest

and is connected to climate change. We are pleased that

these relatively simple models manage to capture many

characteristics of the raw data. The stable summer

temperatures and volatile winters are apparent in the

fitted prediction bands of Fig. 9 and the unconditional

variances of Fig. 11. The parametricmodels give a strong

negative trend in winter and weak in summer (Fig. 7),

consistent with Fig. 6. However, the cosine curve is most

likely too restrictive and further development of the

models should allow for more advanced dynamics in kt.

It should also be possible to apply the method that we

have used to other climatological series, but it requires a

portion of high-quality daily-based data. It is an open

question as to whether the climate change of volatility is

nonzero at other locations.

Supplemental material

Animations of density plots based on the uncondi-

tional variances can be found in the online supplemental

material for every day of the years 1979 and 2019 and for

22 February and 5 June in every year between 1976

and 2019.
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